SlideShare una empresa de Scribd logo
1 de 33
Descargar para leer sin conexión
1
Short Notes of Cement Chemistry
NARENDRA KUMAR KANCHKAR
Quality Controller(Cement)
nk.kanchkar@gmail.com
Cement History:
Joseph Aspdin took out a patent in 1824 for "Portland Cement," a material he produced
by firing finely-ground clay and limestone until the limestone was calcined. He called it Portland
Cement because the concrete made from it looked like Portland stone, a widely-used building
stone in England.
In 1845, Isaac Johnson made the first modern Portland Cement by firing a mixture of
chalk and clay at much higher temperatures, similar to those used today. At these temperatures
(1400C-1500C), clinkering occurs and minerals form which are very reactive and more strongly
cementitious.
-Development of rotary kilns
- Addition of gypsum to control setting
- Use of ball mills to grind clinker and raw materials
Rotary kilns gradually replaced the original vertical shaft kilns used for making lime from
the 1890s. Rotary kilns heat the clinker mainly by radiative heat transfer and this is more
efficient at higher temperatures, enabling higher burning temperatures to be achieved. Also,
because the clinker is constantly moving within the kiln, a fairly uniform clinkering temperature
is achieved in the hottest part of the kiln, the burning zone.
The two other principal technical developments, gypsum addition to control setting and
the use of ball mills to grind the clinker, were also introduced at around the end of the 19th
century.
In india first cement plant installation at Porbandar (Gujrat) in 1914
Cement Definition:
Cement is a binder, a substance that sets and hardens independently, and can bind
other materials together such as sand, bricks (civil material).
Cement is defined as a hydraulic binder which when mixed with water forms a paste
which sets and hardens by mass of hydration reaction and processes and which after hardening,
retains its strength and hardening even under water,
Cement used in construction is characterized as hydraulic or non-hydraulic. Hydraulic
cements (Portland cement) harden because of hydration chemical reactions that occur
independently of the mixture's water content; they can harden even underwater or when
constantly exposed to wet weather. The chemical reaction that results when the anhydrous
cement powder is mixed with water produces hydrates that are not water-soluble.
Material made by heating a mixture of limestone and clay in a kiln at about 1450 C, then
grinding to a fine powder with a small addition of gypsum.
Combination of C3A, C3S, C2S, C4AF and mix gypsum in few quantity is called cement.
2
Cement Manufacturing Technologies:
• Wet Process
• Dry Suspension (SP) Process
• Dry Pre calciner (PC) Process (Present time use)
Wet Process: These plant are characterized by low technology, low capacity, high man power and
high energy consumption.the maximum capacity of the wet process plant operating in India is only
300 TPD.
Dry Suspension (SP) Process: In SP plant, the ground raw meal is feed to a four stage Pre-heater
system.the hot air coming out of kiln is used for pre heating the could feed entering the system.
The material as it comes out of pre heater enters the kiln partial calcined (about 40%) at a
temperature of 800O
C. the kiln is used only for carrying out the remaining calcinations and sintering.
The cooling of clinker is done in the cooler and cooler air is used back in the kiln for combustion.
Generally ball mill used for grinding limestone.
Dry Pre Calciner (PC) Process:the dry Pre-calciner plant is advancement over the dry SP plant.
An additional vessel called the Precalciner is provided. The ground raw meal after getting preheated
in the pre heater system (6 stage pre-heater) enters the calciner. The fuel is partly (extant of 60%)
fired in the calciner. The additional heated is used for completing the calcinations reaction before
the material enters the kiln. the kiln is used only for carrying out the sintering reaction. Generally
VRM and roll press used for grinding limestone.
6 stage pre-heater:
S.No. Cyclone name Temperature
(Approx)
Getting sample loss Degree ofcalcinations
1. 1F& 2F 280-332O
C 30-33 % 10 %
2. 1E& 2E 370-420O
C 25-30 % 23 %
3. 1D & 2D 540-600O
C 20-25 % 40 %
4. 1C & 2C 630-710O
C 15-20 % 55 %
5. 1B & 2B 770-850O
C 10-15 % 24 %
6. 1A & 2A 857-890O
C 2-5 % 90-95 %
4 Zone occurs in kiln: -1.Dehydration Zone(1100O
C) 2. Calcinations Zone(1250O
C)3. Clinkersition Zone
(1400O
C) 4. Cooling Zone.(1000O
C)
3
*Examples of raw materials for portland cement manufacture.
Calcium Silicon Aluminum Iron Coal
Limestone Clay Clay/Bauxite Clay Anthracite
Marl Marl Shale Iron ore Bituminous
Calcite Sand Fly ash Mill scale Lignite
Aragonite Shale Aluminium ore refuse Shale Pith
Shale Fly ash Blast furnace dust Pet Cock
Sea Shells Rice hull ash
Cement kiln dust Slag
*Summary of the different ways to represent some cement minerals and products.
Chemical Name Chemical FormulaOxide Formula Cement
Notation
Mineral
Name
Tricalcium Silicate Ca3SiO5 3CaO.SiO2 C3S Alite
Dicalcium Silicate Ca2SiO4 2CaO.SiO2 C2S Belite
Tricalcium Aluminate Ca3Al2O6 3CaO.Al2O3 C3A Aluminate
Tetracalcium
Aluminoferrite
Ca2AlFeO5 4CaO.Al2O3.Fe2O3 C4AF Ferrite
Calcium hydroxide Ca(OH)2 CaO.H2O CH Portlandite
Calcium sulfate dihydrate CaSO4.2H2O CaO.SO3.2H2O C H2 Gypsum
Calcium oxide CaO CaO C Lime
Reaction Occurring in Pre heater to kiln:
1. Evaporation of free water - 100o
C
2. Release of combine water from clay - 500o
C
3. Dissociation of magnesium carbonate - 900o
C
4. Dissociation of Calcium carbonate - above900o
C
5. Dissociation of lime and clay - 900o
C-1200o
C
6. Commencement of liquid formation - 1200o
C-1280o
C
7. Further formation of liquid and completion - above1280o
C
Of clinker compound
Phase of Clinker formation:
It is know that fuel economy or improved burn ability in the formation of clinker can be effected
through the following stage of clinker burning.
= Formation of 2CaO.Fe2O3 :- 800o
C
= Formation of 2CaO.Fe2O3.CaO.Fe2O3 :-900o
C
= Formation of 2CaO.SiO2+2CaO.Al2O3 :-1000o
C
SiO2+Ferrite Phase
= Formation of 2CaO.SiO2, 5CaO.3(Al2O3) :-1100o
C
5CaO.Al2O3, 3CaO.SiO2, Ferrite Phase
= Formation of 2CaO.SiO2, 3CaO.SiO2 :-1200o
C
4
12CaO.7Al2O3, SiO2+2CaO.Fe2O3, 3CaO.SiO2,
= Formation of 3CaO.Al2O3, 3CaO.SiO2 :-1300o
C
2CaO.SiO2 + Ferrite Phase
= Formation of 3CaO.Al2O3, 3CaO.SiO2 :-1400o
C
2CaO.SiO2+ Ferrite Phase
Effects of Various Factors on Raw mix Burnability:
Characteristic
/Modulus
Limiting
range
Preferable
range
Effects
Silica modulus
(SM)
1.9-3.2 2.3-2.7
If SM High
Result in hard burning, high fuel consumption,
difficulty in coating formation, radiation from shell
is high, deteriorates the kiln lining
Alumina
modulus (AM)
1.5-2.5 1.3-1.6
If AM High
Impacts harder burning, high fuel consumption,
Increases C3A decreases C4AF, reduces liquid phase
& kiln output, if AM is too low and raw mix is
without free silica, clinker sticking and balling is too
high.
Lime
saturation
factor (LSF)
0.66-
1.02
0.92-0.96
A higher LSF
Make it difficult to burn raw mix, increases C3S,
reduces C2S, deteriorates refractory lining, increases
radiation from shell, increases kiln exit gas
temperature.
Free silica 0-3
As low as
possible
A higher silica
Increases fuel and power consumption, causes
difficulty in coating formation, deteriorates
refractory, increases radiation of heat kiln shell,
MgO 0-5 0-3
A higher MgO
Favours dissociation of C2S and CaO and lets C3S
form quickly, tends the balling easy in the burning
zone and affects kiln operation.
Alkalies 0-1 0.2-0.3%
A high alkali
Improves burnability at lower temperature &
deteriorates at higher, increase liquid content and
coating formation, lowers the solubility of CaO in
melt, breaks down alite & belite phases, creates
operational problem due to external & internal cycle.
Sulphur
compound
0-4 0.5-2%
A higher Sulphur compound
Acts as an effective mineraliser and modifier of
alkali cycle by forming less volatiles,
Fluorides 0-0.6
0.03-
0.08%
A higher fluorides
Leads to modify the kinetic of all burning reaction ,
lowers the temperature of C3S formation by 150-200
Chlorides 0.06
Up to
0.015%
A higher chlorides
Higher Cl forms more volatiles % causes operational
problem due to its complete volatilization in burning
zone, increases liquid formation & melting point of
the absorbed phase is drastically change.
5
Phase data for a Type I OPC paste made with a w/c of 0.45.
Volume %
Phase Density (g/cm3
) At Mixing Mature Paste
C3S 3.15 23.40 1.17
C2S 3.28 7.35 0.78
C3A 3.03 4.42 0.00
C4AF 3.73 2.87 1.39
Gypsum (CH2) 2.32 3.47 0.00
C-S-H (solid)a
2.65 0 29.03
C-S-H (with gel pores)b
1.90 0 49.99
Portlandite (CH) 2.24 0 13.96
Ettringite (AFt) 1.78 0 6.87
Monosulfoaluminate (AFm) 2.02 0 15.12
Water 1.00 58.49 31.69
Gel porosity -- 0 20.96
Capillary porosity -- 58.49 10.73
Bulk Density:(RAW & FINAL PRODUCT)
Cilnker = 1360 Kg/M3
,Gypsum = 1.38 Mt/M3
, Iron = 2700 Kg/M3
,Lime stone = 1400 Kg/M3
Fly ash = 550 Kg/M3
,Coal = 850 Kg/M3
, Sand = 1600 Kg/M3
,Cock = 480-640 Kg/M3
,
Cement = 1500 Kg/M3
,Raw meal = 1250 Kg/M3
,
Properties of the major cement minerals:
About 90-95% of a Portland cement is comprised of the four main cement minerals, which are C3S,
C2S, C3A, and C4AF, with the remainder consisting of calcium sulfate, alkali sulfates, unreacted
(free) CaO, MgO, and other minor constituents left over from the clinkering and grinding steps. The
four cement minerals play very different roles in the hydration process that converts the dry cement
into hardened cement paste. The C3S and the C2S contribute virtually all of the beneficial properties
by generating the main hydration product, C-S-H gel. However, the C3S hydrates much more quickly
than the C2S and thus is responsible for the early strength development. The C3A and C4AF minerals
also hydrate, but the products that are formed contribute little to the properties of the cement paste.
As was discussed in the previous section, these minerals are present because pure calcium silicate
cements would be virtually impossible to produce economically.
The crystal structures of the cement minerals are quite complex, and since these structures do not
play an important role in the properties of cement paste and concrete we will only present the most
important features here. More detailed information can be found in the book by Taylor. The
hydration reactions of the cement minerals are covered in Section5.3.
Tricalcium Silicate (C3S)
C3S is the most abundant mineral in Portland cement, occupying 40–70 wt% of the cement, and it is
also the most important. The hydration of C3S gives cement pastes most of its strength, particularly at
early times.
Pure C3S can form with three different crystal structures. At temperatures below 980˚C the
equilibrium structure is triclinic. At temperatures between 980˚C – 1070˚C the structure is
monoclinic, and above 1070˚C it is rhombohedral. In addition, the triclinic and monoclinic structures
each have three polymorphs, so there are a total of seven possible structures. However, all of these
structures are rather similar and there are no significant differences in the reactivity. The most
important feature of the structure is an awkward and asymmetric packing of the calcium and oxygen
6
ions that leaves large “holes” in the crystal lattice. Essentially, the ions do not fit together very well,
causing the crystal structure to have a high internal energy. As a result, C3S is highly reactive.
The C3S that forms in a cement clinker contains about 3-4% of oxides other than CaO and SiO2.
Strictly speaking, this mineral should therefore be called alite rather than C3S. However, as discussed
in Section 3.2, we will avoid using mineral names in this monograph. In a typical clinker the C3S
would contain about 1 wt% each of MgO, Al2O3, and Fe2O3, along with much smaller amounts of
Na2O, K2O, P2O5, and SO3.These amounts can vary considerably with the composition of the raw
materials used to make the cement, however. Of the three major impurities, Mg and Fe replace Ca,
while Al replaces Si.
One effect of the impurities is to “stabilize” the monoclinic structure, meaning that the structural
transformation from monoclinic to triclinic that would normally occur on cooling is prevented. Most
cements thus contain one of the monoclinic polymorphs of C3S.
There exist seven known polymorphs between room temperature and 1070 o
C: three triclinic (denoted
with T), three monoclinic (M) and one rhombohedral (R) polymorph. Due to incorporations in the alite
crystal lattice, M1 and M3 polymorphs are present mostly in industrial clinker. Cooling clinker from
1450oC, inversion of the R polymorph to M3 and further more to M1 occurs, forming small crystals (M3)
rich in substituents or large crystals, poor in substituted ions (M1). Especially, high MgO- concentrations
promote high nucleation, resulting in formation of small automorphic M3- crystals.The different
polymorphs do not show significant differences in the hydraulic properties.
Dicalcium Silicate (C2S)
As with C3S, C2S can form with a variety of different structures. There is a high temperature α
structure with three polymorphs, a β structure in that is in equilibrium at intermediate temperatures,
and a low temperature γ structure. An important aspect of C2S is that γ-C2S has a very stable crystal
structure that is completely uncreative in water. Fortunately, the β structure is easily stabilized by the
other oxide components of the clinker and thus the γ form is never present in portland cement. The
crystal structure of β−C2S is irregular, but considerably less so than that of C3S, and this accounts for
the lower reactivity of C2S. The C2S in cement contains slightly higher levels of impurities than C3S.
According to Taylor, the overall substitution of oxides is 4-6%, with significant amounts of Al2O3,
Fe2O3, and K2O.
The second largest clinker phase in Portland cement is belite. Its hydration product develops similar
strength in cement as alite, only much more slowly. Belite makes up between 15 and 30 wt.% of
Portland cement clinker and consists of 60-65 wt.% CaO, 29-35 wt.% SiO2 and 4-6 wt.% substituted
oxides, mainly Al2O3 and Fe2O3, but also K2O, Na2O, MgO, SO3 and P2O5.7 Belite crystallizes in
five polymorphs: α-belite, α’H-belite, α’L-belite, β-belite (H = “high” and L = “low” symmetry) and
γ-belite (Fig. 2-7), which differ in structural and hydraulic properties. The α’- polymorphs are the
most hydraulic forms of belite, whereas γ-belite is a non-hydraulic polymorph and does not account
for the setting and hardening of cement. β-belite is also a hydraulic polymorph, but less hydraulic
than the α’- polymorphs. It is the most common polymorph in industrial Portland cement clinker. A
phenomenon, that needs to be prevented by trace compounds inclusions, is disintegration (dusting) of
clinker, which happens if β-C2S is not stabilized during cooling and/or by inclusions affording a part
β-γ-C2S inversion. γ-C2S crystals are less dense (more voluminous) than β-C2S crystals, which
causes cracking of other β-C2S crystals, forming a voluminous powder and dust
7
Tricalcium Aluminate (C3A)
Tricalcium aluminate (C3A) comprises anywhere from zero to 14% of a portland cement. Like C3S, it
is highly reactive, releasing a significant amount of exothermic heat during the early hydration
period. Unfortunately, the hydration products of formed from C3A contribute little to the strength or
other engineering properties of cement paste. In certain environmental conditions (i.e., the presence
of sulfate ions), C3A and its products can actually harm the concrete by participating in expansive
reactions that lead to stress and cracking.
Pure C3A forms only with a cubic crystal structure. The structure is characterized by Ca+2
atoms and
rings of six AlO4 tetrahedra. As with C3S, the bonds are distorted from their equilibrium positions,
leading to a high internal energy and thus a high reactivity. Significant amounts of CaO and the
Al2O3 in the C3A structure can be replaced by other oxides, and at high levels of substitution this can
lead to other crystal structures. The C3A in portland cement clinker, which typically contains about
13% oxide substitution, is primarily cubic, with smaller amounts of orthorhombic C3A. The C3A and
C4AF minerals form by simultaneous precipitation as the liquid phase formed during the clinkering
process cools, and thus they are closely intermixed. This makes it difficult to ascertain the exact
compositions of the two phases. The cubic form generally contains ~4% substitution of SiO2, ~5%
substitution of Fe2O3, and about 1% each of Na2O, K2O, and MgO. The orthorhombic form has
similar levels, but with a greater (~5%) substitution of K2O.
Tetracalcium Aluminoferrite (C4AF)
A stable compound with any composition between C2A and C2F can be formed, and the cement
mineral termed C4AF is an approximation that simply the represents the midpoint of this
compositional series. The crystal structure is complex, and is believed to be related to that of the
mineral perovskite. The actual composition of C4AF in cement clinker is generally higher in
aluminum than in iron, and there is considerable substitution of SiO2 and MgO. Taylor. reports a
typical composition (in normal chemical notation) to be Ca2AlFe0.6Mg0.2Si0.15Ti0.5O5. However, the
composition will vary somewhat depending on the overall composition of the cement clinker.
*Set up and solve a system of four equations and four unknowns to find the mineral
composition of the cement.
Once the total amount of C, S, A, and F residing in the cement minerals has been calculated by
adjusting the total oxide composition of the cement or clinker (steps 1 and 2) and the ratio of the
oxides within each of the main cement minerals has been estimated (step 3), a system of four
equations in four unknowns can be set up and solved for the amount (in wt%) of each cement
mineral. Using the cement oxide composition for proficiency cement #135 given in Table 3.4 and the
mineral oxide compositions given in Table 3.5 results in the following set of equations:
0.716C3S + 0.635C2S + 0.566C3A + 0.475C4AF = 62.52 (C)
0.252C3S + 0.315C2S + 0.037C3A + 0.036C4AF = 21.34 (S)
0.010C3S + 0.021C2S + 0.313C3A + 0.219C4AF = 4.40 (A)
0.007C3S + 0.009C2S + 0.051C3A + 0.214C4AF = 3.07 (F)
a
Formula =1.7C-S-4H. b
Formula =1.7C-S-1.6H.
8
Rate of Clinker Phase on Properties of Cement:
C3A C3S C2S C4AF
Setting time Rapid Quick Slow -
Hydration Rapid Fast Slow Rapid
Early strength High-1day High-14 day Low -
Late strength - Less High -
Heat of
Hydration(cal/g)
207 120 62 100
Resistance to
Chemical attack
Poor Moderate High High
Dying Shrinkage - - low -
Alite C3S = Responsible for early Strength.
Belite C2S = Give ultimate (late) Strength along with alite.
Aluminate C3A = Contributes to early strength, Help faster setting, Liberates more heat in
concrete
C4AF = Not contribution to Strength, Requited to reduce the burning Temperature
for clinkerisationMostly occurs as a glassy interstitial phase.
Specification of Various Type of Cement:
TYPE OF
CEMENT
LOI MgO IR SO3
Finenes
s
(M
2
/Kg)
Soundnes
s
Lechate-
Auto
Clave
Setting
Time
IST- FST
Compressive
Strength
3 7 28
Days(N/mm
2
)
33 G
5%Mx 6%Mx
4%
Mx
3%Mx >225
10mm-
0.8%
30-600 16 22 33
43 G 5%
Mx
6%Mx
3%
Mx
3%Mx >225
10mm-
0.8%
30-600 23 33 43
53 G
4%Mx 6%Mx
3%
Mx
3%Mx >225
10mm-
0.8%
30-600 27 37 53
Low heat
cement
5%
Mx
6%Mx
4%
Mx
3%Mx >320
10mm-
0.8%
60-600 10 16 35
Rapid
hardening
- 6%Mx
4%
Mx
3%Mx >325
10mm-
0.8%
30-600 27 - -
Sulphate
Resisting
5%
Mx
6%Mx
4%
Mx
2.5%
Mx
>225
10mm-
0.8%
30-600 10 16 33
Masonary
Cement
- 6%Mx - 3%Mx
15%Mx
in 45M
10mm -1% 90m-24H - 3 5
Hydrophobic
cement
5%
Mx
6%Mx
4%
Mx
3%Mx >350
10mm-
0.8%
30-600 16 22 31
Super
sulphate
-
10%M
x
4%
Mx
1.5%
Mx
>400 5mm - --- 30-600 15 22 30
White cement
- 6%Mx
2%
Mx
- >225
10mm-
0.8%
30-600 15 20 30
PSC 5%
Mx
8%Mx
5%
Mx
3%Mx >225
10mm-
0.8%
30-600 16 22 33
PPC 5%
Mx
6%Mx
FORM
ULA 3%Mx >300
10mm-
0.8%
30-600 16 22 33
Special Test:PPC –Drying Shrinkage 0.15%max,
9
Important Formula Use in Cement Analysis.
Hydraulic Modulus: HM = CaO
SiO2 + Al2O3 +Fe2O3 (Typical Range: 1.7 to 2.3)
Silica Ratio: SM = SiO2
Al2O3 +Fe2O3 (Typical Range: 1.8 to 2.7)
Alumina Ratio: AM = Al2O3
Or Iron Modulus Fe2O3 (Typical Range: 1.0 to 1.7)
Lime saturation Factor: (For OPC Cement)
LSF = CaO- 0.7 SO3
2.8 SiO2 + 1.2Al2O3 +0.65Fe2O3 (Typical Range: 0.66 to 1.02)
Lime saturation Factor :( Lime stone)
LSF = CaO X 100
2.8 SiO2 + 1.2Al2O3 +0.65Fe2O3 (Typical Range: 95 to 110)
Lime saturation Factor: (if Alumina modulus >0.64) -
LSF = CaO
2.8 SiO2 + 1.65Al2O3 +0.35Fe2O3 (Typical Range: 92 to 108)
Lime saturation Factor: (if Alumina modulus <0.64)
LSF = CaO
2.8 SiO2 + 1.1Al2O3 +0.7Fe2O3 (Typical Range: 92 to 108)
Bogus’ formula for Clinker Constituent
(if Alumina modulus >0.64)
C3S = 4.071 CaO – (7.602 SiO2+ 6.718 Al2O3 +1.43Fe2O3+2.8SO3)Note: CaO = CaO - F/CaO
C2S = 2.867 SiO2 - 0.7544 C3S
C3A = 2.65 Al2O3 - 1.692 Fe2O3
C4AF = 3.043 Fe2O3
C3S = Tri Calcium Silicate. (Molecular weight = 228 g/g mol)
C2S = Di Calcium Silicate. (Molecular weight = 172 g/g mol)
C3A = Tri Calcium Aluminate. (Molecular weight =270 g/g mol)
C4AF = Tetra Calcium Aluminate Ferate. (Molecular weight = 486 g/g mol)
(if Alumina modulus <0.64)
C3S = 4.071 CaO – (7.602 SiO2 + 4.479 Al2O3 +2.86Fe2O3) Note: CaO = CaO - F/CaO
C2S = 2.867 SiO2 - 0.7544 C3S
C3A = 0
C4AF+ C2F =2.1 Al2O3 +1.702Fe2O3
Bogus’ formula for Cement Constituent
(if Alumina modulus >0.64)
Note: CaO = CaO - F/CaO
C3S = 4.071 CaO – (7.602 SiO2+ 6.718 Al2O3 +1.43Fe2O3+2.85 SO3)
C2S = 2.867 SiO2 - 0.7544 C3S
C3A = 2.65 Al2O3 - 1.692 Fe2O3
C4AF = 3.043 Fe2O3
10
Liquid Value:
LV= 1.13C3A +1.35C4AF + MgO +Alkalies
Burnability Index:
BI = C3S
C4AF + C3A
Burnability Factor:
BF = LSF + 10 SM – 3(MgO + Alkalies)
Coal Analysis:
NCV = 8455 – 114 (M% + Ash %) Cal/gm
UHV = 8900 – 138 (M % + Ash %) Cal/gm
GCV = PC X 86.5 – (60*M %)
PC = 100- (1.1*Ash + M %)
CV = % C*8000 + % H*32000
100 100
Coal Consumption: = Coal feed X 100
Clinker Production
Ash absorption: = % of ash in fuel X coal consumption
100
Raw meal to clinker factor: = 100-ash absorption
100-LOI
Specific Heat: V = NCV X % of coal Consumption
100
Insoluble Residue:
IR (max %) = X+4 (100-X) (Note: X= % of Fly ash)
100
Blain :
Blain = √Time X Factor
Factor = STD Blain
√Time
Bogus Factor :as per duda book
C4AF = C4AF/ Fe2O3 = 486/160=3.043,
C3A = C3A / Al2O3 = 270/102= 2.65, C3A/ Fe2O3 = 270/160= 1.69,
C2S = C2S /SiO2= 172/60=2.87,C2S /C3S= 172/228=0.75,
C3S = C3S/ CaO = 228/56= 4.07,
LSF =
11
CYCLONE LOSS: = 100(KF loss – Cyclone loss)
(100 – Cyclone loss) X KF loss
Clinker to cement factor: = Clink.+Flyash/Slag+additives(kg)
Clinker consumed (kg)
Chemical Composition (General):
LOI SiO2 Al2O3 Fe2O3 CaO MgO
Na2O
+K2O
SO3
F /
CaO
C3S C2S C3A C4AF
PPC 5.0 31.0 4.5 3.5 43.0 5.0 1.4 -
Clinker 0.5 21-22 5-6 3-5 62-65 3-6 .5-1.0 .2-1.0 .5-2 48 28 8 12
Limestone 34 12 2.4 1.6 43.0 3.8
Iron Ore 10 13 14 71 1 1.5
Letrite
Gypsum 16 14 1 1 34 1 .5 42
Mni Gyps
Fly ash 5mx 50-60 20-33 2-7 2-10 5 Mx 1.5mx 2.75mx
Physical Analysis of PPC:
TEST- Residue (sieve), Blain, Normal consistence, Setting time, Compressive strength,
Soundness-(AC&LC)
Blain (IS -4031 part-2) = 300 M2
/kg minimum
NC/SC Setting time Strength Auto clave Le-chate
IS- 4031 Part-4 Part-5 Part-6 Part-3 Part-3
Lab
Tempture
270
C ± 20
C 270
C ± 20
C 270
C ± 20
C 270
C ± 20
C 270
C ± 20
C
Lab/Chamber
R-Humidity
65% ± 5,
Not less than
90%
65% ± 5, Not
less than 90%
65% ± 5,
Not less than 90%
65% ± 5,
Not less than
90%
65% ± 5,
Not less than
90%
Sample
weight
300/400 gm 300/400 gm 200gm-cm,
600gm-1s+2s+3s
300/400 gm 100 gm
Water
Requirement
Req.waterX100
sample weight
NC*0.85*S.Wt
100
(NC+3) *800
4 100
=NC NC*0.78*S.wt
100
Apparatus Vicat
apparatus
Vicat apparatus Vibrating & CSTm AC machine
2150
C,
21 kg/cm2
Water Bath
100o
C
Expend Time As possible
vicat Reading
5-7 cm
As possible
vicat Reading 5-
7 cm
72 ±1hour- 16mpa
168 ±2hour-22mpa
672 ±4hour- 33mpa
(MPa=N/Kg*0.2032)
RH-C-24hour
ACM-3 Hour
WB-24hour
H.WB-3 Hour
Other Use needle
10mm
Use needle
2&5mm
Gauging
1min dry, 4 min wet
Gauging
5 min
Cube size 60-70mm 60-70mm 70mm 25,250mm 35mm
IS
Requirement
Initial – 30 min
minimum
Final-600 min
maximum
3 day- 16mpa
7 day- 22mpa
28 day- 33mpa
0.8 % max 10 mm max
X 100
12
FLY ASH Analysis (IS-1727)
TEST- BLAIN (Minimum 320),Lime Reactivity(min. 4.5 MPa), Dry Shrinkage (max .15), Comparative
Strength (Not less than 80%)
Lime Reactivity Dry Shrinkage Comparative Strength
Lab Temp.
/RH
27O
C ± 2 / 65% ± 5 27O
C ± 2 / 65% ± 5 27O
C ± 2 / 65% ± 5
Test
Specimen
50mm 25/250mm 50mm
Require
Sample
1: 2M: 9
H. Lime: Pozz: Sand
150:300M:1350gm
0.2N :0.8 :3
Pozz : Ce
ment : Sand
60N:240:900gm
0.2N :0.8 :3
Pozz : Cement : Sand
100N:400:1500gm
0.8 :3
Cement : Sand
400:1500gm
Require
Water (Table
Flow)
70 ± 5% with 10
drop in 06 Second
100-115% with 25
drop in 15 Second
105 ± 5% with 25
drop in 15 Second
Age of
Testing
10 Day 35 Day 7,28,90 Day 3,7,28, Day
Testing
Condition
2day RH chamber
(27±2O
C&>90%)
8day Environment
Cmb.
(50±2O
C&>90%)
24 hour RH chamber
(27±2O
C&>90%)
6day water tank-I
(27±2O
C
28day Environment
Chamber
(27±2O
C& 50%)-II
24 hour RH chamber
(27±2O
C&>90%)
7,28,90day water
tank
(27±2O
C)
24 hour RH
chamber
(27O
C&>90%)
7,28,90day
water tank
(27±2O
C)
Dry shrinkage= II-I
28 dya not less than
80% to blank
strength
Blank Strength
M=Specific gravity of Pozz.
Specific gravity of H. lime
N=Specific gravity of Pozz.
Specific gravity of cement
N=Specific gravity of Pozz.
Specific gravity of cement
STI (Scheme of testing & inspection)
Form-1:FORMAT FOR MAINTENANCE OF TEST RECORDS WEIGHMENT CONTROL AT PACKING STAGE (Clause 6.2)
Date Shift No. Of Bag Net mass of bags from nozzles No.1, No. 2, Remark
Form-2:RAW MATERIAL TESTING (CL.7 of STI)
Date of receipt of
material
Date of testing
Name of the
Material
Source of supply and
consignment No.
Details of analysis for
Specified requirements
Form-3:PRODUCTION DATA (POST GRINDING DETAILS OF PRODUCTION ACCEPTED & REJECTEDFOR ISI MARK)
Shift Quantity Passed for ISI Marking Rejected Remarks
Form-4-A:POZZOLANA (One sample per week) Column 6 of Table 1A (A) Calcined clay pozzolana
Date Fitness Lime Reactivity CompressiveStrength at 28 Days Drying ShrinkageMax
Form-4-B :FLY ASH POZZOLANA (See Column 6 of Table 1 A)
SO2+A1203 SiO2 MgO SO3 Na2O LOI Fineness Lime Compressive Drying Soundness
13
+Fe203 sulphur reactivity Strength Shrikage Auto clave
Form-5:CLINKER (DAILY COMPOSITE SAMPLE) (See Column 6 of Table 1A)
Laboratory Ball-Mill Testing is required to be done when there is change in the source of Raw Material or change in design
Date of
manuacture
Total
loss of
Ignition
Insoluble
Residue
SiO2 CaO AlO FeO SO MgO LSFLime
Saturation
Factor
Alunin
a
Factor
Sample
Pass/Fails
Disposa
l/
Action
-6-A:CLINKER GROUND WITH GYPSUM (Daily composite sample) (Note under Column 6 of Table 1 A)
Date of
Grinding
Fineness Soundness
AC - LC
Setting time
IST - FST
Compressive Strength
3day- 7day- 28day
Sample
Pass//fail
Disposal/Actio
n taken if sample
fails
Form-6-B:CLINKER GROUND WITH GYPSUM & POZZOLANA (Column 6 of Table I A)
Date of
Grinding
Fineness Soundness
AC - LC
Setting time
IST - FST
Compressive Strength
3day- 7day- 28day
Dry
shrinkage
(Weekly)
Sample
Pass/fail
Disposal/Ac
tio
Form-7: PORTLAND POZZOLANA CEMENT GRINDING/ BLENDING (Daily/Weekly Composite sample) (Column 5 of Table 1B)
Date of
Grinding
Loss on
Ignition
MgO Insoluble
Material
SO3 Fineness Soundness
Le-ch
Auto
Clave
Setting
Time
IST
/FST
Compressive
Strength
3 7 28
days
Drying
Shrinkage
(Weekly)
Sample
Pass/Fail
Acti
on
take
Form-8:PORTLAND POZZOLANA CEMENT CRINDING (For Alternate hourly Samples) (Column 5 of Table 1B)
Date of
Grinding
Time at Fineness Setting Time
(IST)-(FST)
Sample
fail/pass
Mode of disposal/Action
taken if sample fails
Form-9:PORTLAND POZZOLANA CEMENT PACKING STAGE (Daily/Weekly Composite Samples) (Column 6 of Table 1B)
Date
of
Pcking
Loss
On
Igniti
on
MgO Insoluble
Materia
SO3 Chloride
Content
(Weekly
Fine
ness
Soundness
Le Auto
Ch Clav
Setting
time
IST-
FST
Compressive
Strength
3 7 28
days
Drying
Shrinkage
(Weekly)
Sample
Pass
/Fail
Mode of
disposal/Ac
tion taken if
sample fails
Form-10:(See Clause 3 of STI)
S.No. Date Calibration Result of Calibration (Test records indicating
details of standard values and observed values for
each equipment to be kept in proforma for which
various columns be devised; as required)
Name of Equipment
Action taken if equipment
found
defective
Sl. No. (If any)
Remarks
FREQUENCY OF CALIBRATION:
Blaine’s apparatus- Daily with licensee’ sown Standard cement sampleand once in a month with standard
cement samples supplied by NCCBM.
Compressive strength -Once in a month with licensee’s own proving ring and the proving ring shall be calibrated once
Testing machine in two years from the recognized calibrating agency like NPL/NABL accredited Lab or
Proving ring manufacturer having NPL certified calibrator.
Apply Load Reading-1 R-2 R-3 Average True Load Error % Std.
Differ.
5,10,15,20 1+2+3/ 3 =app. load*avg. load
/Std. difference
=true.Load-app.Load)*100
/applied load
Autoclave pressure gauge - Once in a six months either by licensee’s own dead weight Pressure gauge or from
Approved independent agency /NABL accredited Lab or manufacturer of such
gauge having NPL certified calibrator.(dead weight Pressure gauge in 4year)
14
Vibration machine - Once in a month by licensee’s own tachometer. The tachometer shall be calibrated once
in three Years from approved out Side agency /NABL accredited Lab having NPL
certified calibrator. (12000 ± 400 RPM)
Chemical analysis
Type of analysis: 1 Gravimetric- IR, SO3, SiO2, R2O3 (Residual Oxide/3rd
group)
2 Volumetric- CaO, MgO (Fe2O3, Al2O3)
3 Spectroscopy 1.Flame Photo metter-K2O, Na2O (Uncoloured element)
2. UV-Spectro metter –TiO2, P2O5, MnO2, (Coloured & miner)
4 X-ray Method
Solution Prepare:
Normality: Equivalent weight
Volume in letter.
(Equivalent weight = In acid from:- Molecular weight
Removal H+
ion
In Basic from:- Molecular weight
Removal OH-
ion
Molaritiey: Gram mole number
Volume in letter.
(1000ppm=1gm chemical dissolved in 1000ml or1 Litter)
(1ppm= 1gm chemical dissolved in 100000ml or 1000 Litter)
Soiled chemical to solution (formula) = ENV
1000
(E=equivalent weight, N= Require Normality, V= Require volume)
Liquid chemical to solution formula = N1V1 =N2V2
Density = Mass
Volume
Important Molecular weight.
O-16, Na-23, Mg-24, Al-27, Si-28, S-32, Cl-34, K-39, Ca-40, Fe-55.8, Zn-65.39
CaCO3 =100, SiO2=60, Al2O3=102, Fe2O3 =160, MgO= 40, Na2O= 62, K2O = 94
C3S=228, C2S= 172, C3A= 270, C4AF= 486, CaSO4.2H2O =145
15
Titrate with NaOH
(0.2N) slow titration
Lime Stone- TC&MC
Q.1 why multiply 1.786 for CaO? = CaO/CaCo3
Q.2 why multiply 2.09 for MgO? = MgO/MgCo3
Q.3 why multiply 0.84 for MC?
Take 50 ml HCL (0.4N)
in conical Flask
Add 1.0 gm lime stone
sample
Boil minimum 2min
Add Indicator-
Phynopthleen C20H14O4
Mwt-318.33,pH-8.2-9.8
Cool
Take NaOH Burette
reading
TC = 100-Burette reading
Add excess10/20ml
NaOH (0.2N)
Boil about 1min.
Add Indicator-
Thymopthleen
Cool
Titrate with HCL (0.4N)
Fast titration
Take HCL Burette
reading
MC = [Ex.NaOH-{2*HCL-BR}] X0.84
End point white to
pink colour
End point purple
to white- pink
Solution use:
= NaOH (0.2N)
40(Mwt)*0.2(N)*1000(ml)/1000= 8gm/L
= HCL(0.4N)
36.46(Mwt)*100/35.4(Purity)=87.28ml/L-1N
=87.28ml/L-1N* 0.4 (Req.N)=34.91 ml/L
= Indicator dissolved in Alcohol
Calculation:
CC = TC – MC
CaO = CC / 1.786
MgO = MC / 2.09
16
Cement- IR & SO3
Q.1 what is IR?
Material which is not reacts (dissolved) with Acid and basis.
Q.2 why multiply 34.3 for SO3?
Because So3 is found in BaSO4 Form
= (SO3/BaSO4)*100 = (80/137+32+64)*100 = (80/233)100 =0.3433*100 = 34.33
IR (max %) = X+4 (100-X) (Note: X= % of Fly ash)
100
=methyl Orange use checking for alkali removes.
1.0 gm cement sample
Dissolved 1:1 HCL
Heat below boils
Temp. 15 minute
Filter- 40 N. paper
Wash Hot water
Filtrate
Residue
Boil + add hot BaCl2
10 ml
React with Na2CO3 -30
ml
Wash with 1:99 HCl &
Hot water Wash Hot water
Dryad in Oven
Ignited at 1000o
C
Minimum 30 min
Weight IR
Slowly Cool for ppt
form (4 hour)
Filter 42 N paper
Dryad in Oven
Ignited at 1000o
C
Weight
Weight X 34.3 = SO3
Solution use:
= 2N- Na2CO3= 10.6 gm sodium carbonate
dissolved in 100 ml distilled water
(Eq.wt = 53, Mwt 105.99 g/mol)
= 1:1 HCL = 50 ml HCL dissolved in 50 ml
Distil water.(Mwt 36.46 g/mol)
= BaCl2 = 10 gm BaCl2 dissolved in 100 ml
distilled water.
For Acid
reaction
For Base
reaction
IR=
Final weight-Initial weight
Heat 10 minute below
boil temp.
Filter- 40 N. paper
For Alkali
remove
17
Clinker, Cement & Raw material (SiO2, R2O3)
All Raw materials & Cement Clinker Sample
Wash Crucible with H2O
add NH4Cl + Bake on Hot
plate & cool it Filter with 40N paper
Add HCL (1:1), 20-30 ml
+Heat
0.5 gm sample in beaker
Add NH4Cl 2-3gm (mix well)
0.5 gm sample + Fusion mix.
In Platinum crucible
Fuse 1000o
C for 1 hour
Add HCL (1:1), 20-30 ml
Add Con. HCL- 5ml,
Bake on Hot plate & cool it
Add HCL (1:1), 10-20 ml
+Distilled water + Heat
Filtrate
Residue
Heat it +Add NH4Cl 2-3gm
Wash with hot Distilled water
Boil it + Add HNO3 (1:1), 0.5ml
Add NH4OH (1:1)
Dry (oven) + Ignite at 1000o
C
Filter with 41N paper
SiO2= (F wt – I wt)*200
2 drop H2SO4 + 2 drop H2O
Add 20 ml HF
Put on Hot plate & dry
SiO2= (F wt – I wt)*200
Filtrate in 500ml
flask
Residue
R2O3= (F wt – I wt)*200
Dry (oven) + Ignite at 1000o
C
CaO & MgO Process
next page
Use Solution:
NH4OH(1:1) –
250 ml NH3 + 250 ml H2O
HNO3 (1:1)-
Fusion mix.= (Na2CO3+K2CO3)
Reaction:
= M SiO3 + 2HCl M Cl2 + H2SiO3
= H2SiO3+ Evaporation SiO2 +(H2O)
= SiO2 + Impu. + 4HF SiF4 +2H2O H2SiO3 + 2H2 SiF6
= (FeCl3 + AlCl3) + 3NH4OH {Fe(OH)3 + Al(OH)3} + 3NH4Cl
={Fe(OH)3 + Al(OH)3} + Ignition Fe2O3 + Al2O3
Oxidizing
agent
Isolate
R2O3
ppt
form
18
Clinker, Cement & Raw material (CaO, MgO)-EDTA method
For-CaO For- MgO
(end colour red- pink to blue)
(end colour red- pink to purple)
Take 20 ml aliquot solution
After filtrate R2O3 solution make up 500 ml
Add Tri ethanol amine (TEA)
5 ml (For Isolation), C6H15NO3,
Mwt-149.19 g/m
Add Glycerol 5 ml
(For Isolation), C3H8O3,
Mwt-92.10 g/m
Add Patton & Reader (P&R)
Indicator, C21H14N2O7S
Mwt-438.42 g/m
Add 10-20 ml Sodium (4.0N)
Hydroxide NaOH (For pH-12)
Mwt-40 g/m
Titrate with EDTA
(ethylene di amine tetra
acetate) Mwt-372.34 g/m
{0.05608 X mol. EDTA(0.01)X V1 X Vmu X100} D.F.
Volume taken X Sample weight
= V1- EDTA Burette reading
= Vmu- Volume make up
= Difference Factor - as per EDTA standard
Take 20 ml aliquot solution
Add Tri ethanol amine (TEA)
5 ml (For Isolation), C6H15NO3,
Mwt-149.19 g/m
Add Eriochrome black T (EBT)
Indicator, C20H2N3NaO7S
Mwt-461.38 g/m
Add 10-20 ml Buffer Solution
(For pH-10)
Mwt-000 g/m
Titrate with EDTA
(ethylene di amine tetra
acetate) Mwt-372.34 g/m
{0.04032 X mol. EDTA(0.01)X (V2- V1)X Vmu X 100} D.F.
Volume taken X Sample weight
= V1- EDTA Burette reading
= V2- Cao titration BR
= Vmu- Volume make up
= DF –as per EDTA standard
Solution Use:
= Buffer solution- 70 gm NH4Cl dissolved in 570
ml NH4OH.
= 4.0N NaOH- 160 gm dissolved in 1000 ml H2O.
=EDTA- 3.7224 gm dissolved in H2O 100 ml and
make up 1000 ml solution.
= Zn solution (0.01N)-0.6537 gm diss. In 0.1N HCL
Reaction:
= Ca2+
+ EDTA.2Na+
2Na+
+ EDTA.Ca2+
Di Sodium Salt
E.D.T.A STANDARDISATION (Difference Factor)
= 10 ml Zn sol (0.1N).+ EBT +Buffer sol. Titrate
with EDTA (end colour pink to blue)
M1V1=M2V2, M2=0.01 X 10ml /B.R.
Ferric Oxide (Fe2O3) Testing by EDTA method in Cement (In OPC)
Make the solution to 250 ml in a standard volumetric
flask after removal of silica. Measure 25 ml of acid
solution of the sample through pipette in a flask. Add
very dilute ammonium
clear the turbidity with a
hydrochloric acid(1:10) and a few drops in excess to
Add 100 mg of sulphosalicylic acid and titrate with
0.01M EDTA solution carefully to a colouress or pale
CALCULATION:
1 ml of 0.01M EDTA = 0.7985 mg Fe
Fe2O3(%) = 0.07985 X V X M X 250 X 100
Where,V= volume of EDTA used and
W= weight of sample
M = Molarity of EDTA
19
Ferric Oxide (Fe2O3) Testing by EDTA method in Cement (In OPC)
Make the solution to 250 ml in a standard volumetric
flask after removal of silica. Measure 25 ml of acid
solution of the sample through pipette in a flask. Add
very dilute ammonium hydroxide (1:6) till turbidity
appears.
clear the turbidity with a minimum amount of dilute
hydrochloric acid(1:10) and a few drops in excess to
adjust the pH 1 to 1.5. Shake well.
Add 100 mg of sulphosalicylic acid and titrate with
0.01M EDTA solution carefully to a colouress or pale
yellow solution.
CALCULATION:-
1 ml of 0.01M EDTA = 0.7985 mg Fe2O3
(%) = 0.07985 X V X M X 250 X 100
W X 25
Where,V= volume of EDTA used and
W= weight of sample
M = Molarity of EDTA
Make the solution to 250 ml in a standard volumetric
flask after removal of silica. Measure 25 ml of acid
solution of the sample through pipette in a flask. Add
1:6) till turbidity
minimum amount of dilute
hydrochloric acid(1:10) and a few drops in excess to
Add 100 mg of sulphosalicylic acid and titrate with
0.01M EDTA solution carefully to a colouress or pale
Alumina (Al2O3) Testing by EDTA method in Cement
After testing of Fe
EDTA to the same flask add 1ml H3PO4(1:3)
and 5 ml of H2SO4(1:3) and one drop of thymol
add ammonium acetate solution by stirring until
the colour changes from red to yellow add 25 ml
of ammonium acetate in
Heat the solution to boiling for one minute and
then cool.Add 0.5 mg solid xylenol orange
indicator and bismuth nitrate solution slowly with
Add 2-3 ml of bismuth nitrate solution in
Titrate with EDTA to a sharp yellow endpoint
CALCULATION:-
1 ml of 0.01M EDTA = 0.5098 mg Al
Al2O3(%) = 0.05098 X V1 X M X 250 X 100
W X 25
V1= V2-V3-(V4 X factor of Bi(NO
Where,V1= volume of EDTA for alumina
V2 = total volume of EDTA used in titration
V3 = volume of EDTA used for iron
V4 = total volume of bismuth nitrate solution
used in the titration.
W= weight of sample
M = Molarity of EDTA
20
Alumina (Al2O3) Testing by EDTA method in Cement
After testing of Fe2O3 add 15 ml of standard
EDTA to the same flask add 1ml H3PO4(1:3)
and 5 ml of H2SO4(1:3) and one drop of thymol
blue into a flask
add ammonium acetate solution by stirring until
the colour changes from red to yellow add 25 ml
of ammonium acetate in excess to attain a pH of
5.5 -6.0
Heat the solution to boiling for one minute and
then cool.Add 0.5 mg solid xylenol orange
indicator and bismuth nitrate solution slowly with
constant stirring.
3 ml of bismuth nitrate solution in excess.
Titrate with EDTA to a sharp yellow endpoint
1 ml of 0.01M EDTA = 0.5098 mg Al2O3
(%) = 0.05098 X V1 X M X 250 X 100
W X 25
(V4 X factor of Bi(NO3)3
Where,V1= volume of EDTA for alumina
of EDTA used in titration
V3 = volume of EDTA used for iron
V4 = total volume of bismuth nitrate solution
21
RapidCaoof Clinker/PPCby KMnO4 method (ASTM)
PPC Cement Clinker Sample /OPC
Wash Crucible with H2O
Add NH4OH (1:1)
until Colour yellow
0.2 gm sample + Add 1:1 Hcl
0.2 gm sample + Fusion mix.
In Platinum crucible
Fuse 1000o
C for 1 hour
Add HCL (1:1), 20-30 ml
Just Boil+ Continue in Hot Plate
Add methyl Orange- few
drop
Just Boil
Add lump sum 0.2 gm
OXALIC Acid (until Colour
lightly pink)
Add 20ml hot Ammonium
Oxalate (50%) (White)
Filter with 40 No. Paper
Wash with hot water
Take Residue in beaker
Aliquot
solution
OUT
Titrate with KMnO4
(0.01772 N)
KMnO4 STANDARDISATION
*5.6 gm KMnO4 dissolved in
1000ml H2O for 0.1772N
Solution.
*0.67 gm OXALIC Acid + H2O+
1:1 H2So4 titrate with KMno4.
Factor = 56/BR
B.R. X 0.5 X Factor / Sample
wt.
Add H2SO4 (1:1)
22
Fast CaO
Take 0.5gm sample
Add 1:1 Hcl (20 ml Approx)
Just Boil
Filter With 41 No Paper in 500 ml round bottom
flask& make up 500 ml
Filter
Out
Cool & shake well
Take 20 ml aliquot sample in Conical Flask
Add approx 5 ml glycerol
Add Approx 1 ml TEA
Add NaOH ( 2 pellet)
Wine Red Color Add P&R Indicator 0.05gm (Approx)
Sky Blue Titrate With 0.01N EDTA
(until No Color Change)
Calculate
{0.05608 X mol. EDTA(0.01)X V1 X Vmu X100} D.F.
Volume taken X Sample weight
= V1- EDTA Burette reading
= Vmu- Volume make up
= Difference Factor - as per EDTA standard
OR
BR X 2.804 = CaO%
(For 20 ml Volume taken)
23
Iron (Raw material) -Dichromate method:(ASTM)
Clinker sample
0.5 gm sample + Fusion mix. In
Platinum crucible
Fuse in 1000o
C minimum 30 min
Cool and wash Pt. crucible with
1:1 HCl
Wash crucible with Distilled
water
0.5 gm clinker sample dissolved
in HCl -1:1
Boil & add SnCl2 Drop wise till
colourless solution
Completely cool (Room Temp.)
Add Barium di phenol Salfonate
(BDS) Indicator
Add 5-10 ml HgCl2 and Acid
mixture –Masking agent
Titrate with K2Cr2O7Potassium
dichromate
Iron= B.R X Factor (K2Cr2O7)
Solution Preparation:
=Acid mix.- 15% H2SO4+ 15%H3PO4 +70% H2O
=K2Cr2O7(N/16)– 3.07 gm dissolved in 1000ml
H2O
=BDS – 1gm dissolved in 100 ml dil. HCL (10%)
=SnCl2– 5 gm dissolved in 100 ml dil. HCL (10%)
=Fusion mix – Na2CO3+K2CO3
= HgCl2- 56 gm dissolved in 1000ml H2O
Reaction:
= 2Fe3+
+ Sn2+
2Fe2+
+ Sn4+
= 2Fe2+
+ K2Cr2O7 2Fe3+
K2Cr2O7calibration to FAS
= take 20 ml H2O + 0.5 gm FAS +
Acid mixture +BDS Ind. + titrate with
Potassium dichromate
Factor= 20/BR
24
Free Lime Test:(Clinker)
= Normality of HCL =. Purity *1000*Specific Gravity / 100 * Equivalent wt
= Normality of HCL =. (36 * 1000 * 1.18)/100*36.5 = 11.64 N.(N1)
= So 0.1N HCL=N1V1 = N2V2, =11.64*V2 = 0.1*1000, =V2= 0.1*1000/11.64 = 8.59ml
Take 1 gm Clinker sample in
beaker
Add 10 ml Ethylene Glycol
Put for 45 min in water bath
Filter with 40N paper
Filtrate
Residue out
Add Bromocrsol Grate Green
Indicator
Titrate with 0.1N HCL
End Colour –Green to golden
Yellow
F/CaO= B.R X 0.28 (HCL Factor)
Solution Preparation:
= 1 Glycerol : 5 Ethanol
Reaction:
Ca(OH)2 + 2HCl CaCl2 + H2O
Factor= CaO / 2 HCL
25
Cloride Test (Cl):-0.1% max
Take 1 gm sample in beaker
Dissolved 1:3 HNO3
Filter 41N paper in Conical
Take aliquot sample
Add 10 ml AgNO3 (0.1N)
Residue out
Add 2ml Nitro Benzene
Add 4 Drop Ferric Indicator
NH4.Fe (SO4)2.12H2O
Titrate with Ammonia thyo
saynte (.01N) NH4SCN
End Colour – white to
Solution Preparation:
Reaction:
M Cl2 + 2 HNO3 M(NO3)2+2HCl
HCl + AgNO3 AgCl + HNO3
AgNO3 + NH4SCN AgSCN + NH4NO3
0.3546 X 100 X (10-BR)
Sample weight
26
Alkali Test (Na2O+K2O):-( PPC=0.8% max)
*Pre heater Coating sample in (about) Na2O= 1-2% & K2O=12-16%.
Take 0.25 gm sample in
Platinum crucible
10 ml HF and backing
Add 2ml HNO3
Add 10 ml HClO4
(Per Choleric acid)
Put Hot plate & up to Syrupy
Residue out
Extract dissolved to 1:1 HNO3
in bicker
Filter 41N paper in 250 ml
Volumetric Flack
Make up 250 ml with H2O
Solution Preparation:
Blank Solution: 2.5 ml HNO3 + 2.5 ml
Alumina sulphate + 250 ml H2O.
Standard Solution:
NaCl: 1.885 NaCl Dissolved In 1000ml
H2O (for 1000ppm).
KCl: 1.583 KCl Dissolved In 1000ml H2O
(for 1000ppm).
Volume makeup X 100 X ppm reading
Sample weight X 106
27
Reactiv Silica Test: (Fly ash) (IS-3812)
Take 0.5 gm sample in beaker
Add 50 ml HCl (1:1)
Boil and Cool
Add 16 gm KOH
4 hour Put on Hot plate &
Volume maintain 60 ml by
H2O
Filter 40N Paper Residue out
Aliquot Solution bake
Dissolved with 1:1 HCl + Heat
Filter 40N paper
Residue dry in oven
Residue Ignite 1000O
C
RS= Initial Wt. – Final Wt.
*200
28
Sulpher Test: (Coal), ESCHKA Method (IS 1350-P3)
Coal Grading: Coal is the combination of Organic (Carbon) and Inorganic (Si02, R2O3 etc) material. It is use for
heating purpose.
Grade A+M % UHV cal/g
A <19.5 >6200
B 19.5-24.0 6200-5600
C 24.0-28.7 5600-4940
D 28.7-34.1 4940-4200
E 34.1-40.2 4200-3360
F 40.2-47.1 3360-2400
G 47.1-55.1 2400-1300
Un-grade >55.1 <1300
Type of Coal: 1. Anthracite 2.Buteminus 3. Lignite 4. Pith
Take 0.1 gm sample platinum
crucible
Add 1-2 gm ESCHKA mixture
Fuse at 800O
C
Dissolved to 1:1 HCl
Filter 41N paper
Aliquot Solution Boil
Solution Preparation:
= 0.1374 = S /BaSO4
= ESCHKA mixture = (2:1) Mgo+ Na2CO3
(Light Calcined magnesia oxide
+Anhydrous Sodium carbonate)
Residue out
Add 20 ml BaCl2
Cool
Filter 42N Paper
Residue Ignite at 900O
C
Ash X 0.1374 X100
29
Indian Standard ReferenceUse in Cement Chemistry
Cement
IS 269:1989 – Specification for ordinary Portland cement, 33 grade
IS 455:1989- Specification for Portland slag cement
IS 1489(Part 1):1991 Specification for Portland pozzolana cement Part 1 Flyash based
IS 1489(Part 2):1991 Specification for Portland-pozzolana cement: Part 2 Calcined clay based
IS 3466:1988 Specification for masonry cement
IS 6452:1989- Specification for high alumina cement for structural use.
IS 6909:1990 Specification for super sulphated cement
IS 8041:1990 Specification for rapid hardening Portland cement
IS 8042:1989 Specification for white Portland cement
IS 8043:1991 Specification for hydrophobic Portland cement
IS 8112:1989 Specification for 43 grade ordinary Portland (43-S)
IS 8229:1986 Specification for oil-well cement.
IS 12269:1987 Specification for 53 grade ordinary Portland
IS 12269:535 Specification for TRS-T40 grade ordinary Portland
IS 12330:1988 Specification for sulphate resisting Portland
IS 12600:1989 Specification for low heat Portland cement
Instrument use in cement analysis
IS 12803:1989 Methods of analysis of hydraulic cement by X-ray fluorescence spectrometer.
IS 12813:1989 Method of analysis of hydraulic cement by atomic absorption spectrophotometer
Apparatus use in cement analysis
IS 5512:1983 Specification for flow table for use in tests of hydraulic cements and pozzolanic
materials
IS 5513:1996 Specification for vicat apparatus.
IS 5514:1996 Specification for apparatus used in Le-Chatelier test
IS 5515:1983 Specification for compaction factor apparatus
IS 5516:1996 Specification for variable flow type air-permeability apparatus (Blaine type)
IS 14345:1996 Specification for autoclave apparatus
Physical & Chemical Analysis of Cement
IS 4031(Part 1):1996 Methods of physical tests for hydraulic cement: Part 1 Determination of
fineness by dry sieving
IS 4031(Part 2):1999 Methods of physical tests for hydraulic cement: Part 2 Determination of
fineness by specific surface by Blaine air permeability method
IS 4031(Part 3):1988 Methods of physical tests for hydraulic cement: Part 3 Determination of
soundness
IS 4031(Part 4):1988 Methods of physical tests for hydraulic cement: Part 4 Determination of
consistency of standard cement paste
IS 4031(Part 5):1988 Methods of physical tests for hydraulic cement: Part 5 Determination of initial
and final setting times
IS 4031(Part 6):1988 Methods of physical tests for hydraulic cement: Part 6 Determination of
compressive strength of hydraulic cement (other than masonry cement)
IS 4031(Part 7):1988 Methods of physical tests for hydraulic cement: Part 7 Determination of
compressive strength of masonry cement
IS 4031(Part 8):1988 Methods of physical tests for hydraulic cement: Part 8 Determination of
transverse and compressive strength of plastic mortar using prism
IS 4031(Part 9):1988 Methods of physical tests for hydraulic cement: Part 9 Determination of heat of
hydration
IS 4031(Part 10):1988 Methods of physical tests for hydraulic cement: Part 10 Determination of
drying shrinkage
30
IS 4031(Part 11):1988 Methods of physical tests for hydraulic cement: Part 11 Determination of
density
IS 4031(Part 12):1988 Methods of physical tests for hydraulic cement: Part 12 Determination of air
content of hydraulic cement mortar
IS 4031(Part 13):1988 Methods of physical tests for hydraulic cement: Part 13 Measurement of
water retentively of masonry cement
IS 4031(Part 14):1989 Methods of physical tests for hydraulic cement: Part 14 Determination of
false set
IS 4031(Part 15):1991 Methods of physical test for hydraulic cement: Part 15 Determination of
fineness by wet sieving
IS 4032:1985 Method of chemical analysis of hydraulic cement
IS 3535:1986 Methods of sampling hydraulic cement
IS 12423:1988 Method for colorimetric analysis of hydraulic
IS 4845:1968 Definitions and terminology relating to hydraulic cement.
IS 5305:1969 Methods of test for P2O5.
Pozzolana material
IS 1727:1967 Methods of test for pozzolana materials.
IS 12870:1989 Methods of sampling calcined clay pozzolana.
IS 3812(Part 1):2003 Specification for pulverized fuel ash Part 1 For use as pozzolana in cement,
cement mortar and concrete
IS 3812(Part 2):2003 Specification for pulverized fuel ash Part 2 For use as admixture in cement
mortar and concrete
IS 6491:1972 Method of sampling fly ash
IS 12089:1987 Specification for granulated slag for manufacture of Portland slag cement.
Coal
IS 1350:1984 (Part-I) Methods of test Proximate analysis
IS 1350:1970 (Part-II) Methods of test Calorific value.
IS 1350:1969 (Part-III) Methods of test Sulphur analysis
IS 1350:1974 (Part-IV) Methods of test Ultimate analysis.
IS 1350:1979 (Part-V) Methods of test Special Impurity.
Lime stone
IS 1760:1991 (Part- I to V) Methods of Chemical Analysis of Limestone.
IS 1760 (Part 3):1992 Methods of chemical analysis of limestone, dolomite and alliedmaterials:
Part 3 Determination of iron oxide, alumina, calcium oxideand magnesia
Gypsum
IS 1288:1982 Methods of test mineral gypsum.
IS 1289:1960 Methods of sampling mineral gypsum
IS 1290:1982 Mineral gypsum.
Bag
IS11652:1986 High density polyethylene (HDPE) woven sacks for packing cement
IS 11653:1986 Polypropylene (PP) woven sacks for packing cement
IS 12154:1987 Methods of Light weight jute bags for packing cement
IS 12174:1987 Jute synthetic union bags for packing cement
IS 2580:1995 Methods of Jute sacking bags for packing cement
Sand and Other
IS 169:1966Specification for atmospheric condition for testing. (for Physical Test)
IS 397:2003 Statistical Quality Control.
IS 460:1962Specification for test sieves.
IS 650:1991 Specification for standard sand for testing of cement.
IS 456:2000 Code of practice plain and reinforced concrete
31
IS 712:1964 Hydrated Limes.
IS No. Important Point
IS- 4032
*The difference between check determinations by EDTA method
shall not exceed 0.2 percent for calcium oxide and magnesia, 0.15, 0.2 percent for
silicaand alumina, and 0.1 percent for other constituents.
*The maximum acceptable difference in the percentage of each alkali
Between the lowest and highest value obtained shall be 0.04.
IS- 4031-P1
* Check the sieve after every 100 sieving
* EXPRESSION OF RESULTS
Report the value of R, to the nearest 0. I percent, as the residue on the 90 pm
sieve for the cement tested.
The standard deviation of the repeatability is about 0.2 percent and of the
reproducibility is about 0.3 percent.
IS- 4031-P2
The cement bed volume and the apparatus constant shall be recalibrated with
the reference cement: a) after 1 000 tests, b) In the case of using:-another type of
manometer fluid, another type of filter paper, anda new manometer tube; and c)
at systematic deviations of the secondaryreference cement.
IS- 4031-P3
IS- 4031-P4
IS- 4031-P5
32
Bag Testing:
Mass
75
Leng
th
74
Widt
h
48
Stitc
hes
14
Ends
40
Picks
40
Effective
valve Size
(10 x 22)
Seepage
of
Cement
Strength in KGF
Fabric Seam
(Gms
)
(Cm) (Cm)
Per
Dm
Per
Dm
Per
Dm
(Cm)
MAX-100
(Gms/Ba
g)
Warp
Way
87
Warp
Elongations
%
Weft
Way
87
Weft
Elongations
%
Top/
Bottom
40
69.0 74.0 48.5 14 39.00 39.0 11.0 22.50 55.0 89.1 21.0 86.1 21.0 42.0
= CaCO3 Maximum = 8.00% + 1.00%
Important Note.
= In PPC Cement Fly ash use not less than 15% and not more than 35%
=In PSC Cement Slag use not less than 25% and not more than 70%
= Endothermic reaction occurs in kiln & Pre heater.
= Exothermic reaction occurs in bomb calorimeter.
= Coal analysis sample size is (pass 212) -212 micron.
= 3.14 density of Portland cement.
= Di butyl thylate use in manometer (Blain apparatus) due to low density &viscosity, non volatile,
non hygroscopic liquid. (Air Permeability test).
= In CST, Cube Breaking Speed 35 N/mm2 or 2.9 Kn/s (only For Cube Size 70.5mm)
= During the calibration of CST/Balance maintain 27±2 or slandered equipment calibrated
temperature, otherwise use factor K= ± 0.027% with obtained value.
= Cement Expired as per BIS,in Bag 3 month and in bulk 6 months. (IS-8112)
= purity of gypsum = CaSO4/ SO3 = 172/80 = 2.15(factor)
= 1.6 ton CO2 generate in 1 ton clinker Production.
= 1.8 GJ/t Energy consumed for 1 ton clinker production in 6 stage Pre heater.
= Chromic Acid use forwashing glass ware. (10gm K2Cr2O7 + 200 ml H2SO4)
K2Cr2O7 + 4 H2SO4 K2SO4+ Cr2(SO4)3+4 H2O + 3O
X-ray: = nʎ= 2d sinθ
(n= number of wave, ʎ= wave length, d= distance two layer, sinθ= angle of wave)
When bombarding of cathode ray on high melting point metal than reflected ray is called X ray.
= C3S + H2O CSH + Ca (OH)2 + Fly ash CSH
References:-(http://iti.northwestern.edu/cement/monograph/Monograph1_4.html)
(http://www.understanding-cement.com/parameters.html)
*Cement_Data_Book_Duda_III edition.
* IS book 1727,3812,4031,4032,1350.
* jaypee cement testing manual.
* Taylor cement chemistry.
Note: writer not responsible for any mistake.
33
Thank you.............

Más contenido relacionado

La actualidad más candente

STUDY THE CORRELATION OF CLINKER QUALITY, RESIDE, PSD ON THE PERFORMANCE OF P...
STUDY THE CORRELATION OF CLINKER QUALITY, RESIDE, PSD ON THE PERFORMANCE OF P...STUDY THE CORRELATION OF CLINKER QUALITY, RESIDE, PSD ON THE PERFORMANCE OF P...
STUDY THE CORRELATION OF CLINKER QUALITY, RESIDE, PSD ON THE PERFORMANCE OF P...IAEME Publication
 
Clinker formation-concepts
Clinker formation-conceptsClinker formation-concepts
Clinker formation-conceptsmkpq pasha
 
Burning and cooling
Burning and coolingBurning and cooling
Burning and coolingirrraju1976
 
CON 123 Session 3 - Typical Raw Mix Design
CON 123 Session 3 - Typical Raw Mix DesignCON 123 Session 3 - Typical Raw Mix Design
CON 123 Session 3 - Typical Raw Mix Designalpenaccedu
 
Influence of process on quality
Influence of process on qualityInfluence of process on quality
Influence of process on qualitypradeepdeepi
 
Cement Process Chemistry
Cement Process ChemistryCement Process Chemistry
Cement Process ChemistryShambhudayal
 
Cement manufacturing process
Cement manufacturing processCement manufacturing process
Cement manufacturing processAbhinav Kp
 
Fly Ash Presentation Readymix Brunei
Fly Ash Presentation Readymix BruneiFly Ash Presentation Readymix Brunei
Fly Ash Presentation Readymix BruneiJames Wong Kiong
 
Manufacturing and Quality Control of Cement.
Manufacturing and Quality Control of Cement.Manufacturing and Quality Control of Cement.
Manufacturing and Quality Control of Cement.Abhishek Garai
 
Classification, manufacturing & uses of cement
 Classification, manufacturing & uses of cement Classification, manufacturing & uses of cement
Classification, manufacturing & uses of cementFiroz Mahmud
 
Cement manufacturing process
Cement manufacturing processCement manufacturing process
Cement manufacturing processShreenath Bohra
 
types and manufacturing of cement
types and manufacturing of cement types and manufacturing of cement
types and manufacturing of cement Zeeshan Afzal
 
Cement manufacturing process
Cement manufacturing processCement manufacturing process
Cement manufacturing processHavalarif
 
111658903 kiln-burning-systems
111658903 kiln-burning-systems111658903 kiln-burning-systems
111658903 kiln-burning-systemsIngrid McKenzie
 
Process for non process1
Process for non process1Process for non process1
Process for non process1pradeepdeepi
 

La actualidad más candente (20)

STUDY THE CORRELATION OF CLINKER QUALITY, RESIDE, PSD ON THE PERFORMANCE OF P...
STUDY THE CORRELATION OF CLINKER QUALITY, RESIDE, PSD ON THE PERFORMANCE OF P...STUDY THE CORRELATION OF CLINKER QUALITY, RESIDE, PSD ON THE PERFORMANCE OF P...
STUDY THE CORRELATION OF CLINKER QUALITY, RESIDE, PSD ON THE PERFORMANCE OF P...
 
Clinker formation-concepts
Clinker formation-conceptsClinker formation-concepts
Clinker formation-concepts
 
Cement course
Cement courseCement course
Cement course
 
Burning and cooling
Burning and coolingBurning and cooling
Burning and cooling
 
CON 123 Session 3 - Typical Raw Mix Design
CON 123 Session 3 - Typical Raw Mix DesignCON 123 Session 3 - Typical Raw Mix Design
CON 123 Session 3 - Typical Raw Mix Design
 
Influence of process on quality
Influence of process on qualityInfluence of process on quality
Influence of process on quality
 
Cement Process Chemistry
Cement Process ChemistryCement Process Chemistry
Cement Process Chemistry
 
Cement manufacturing
Cement manufacturing Cement manufacturing
Cement manufacturing
 
Cement manufacturing process
Cement manufacturing processCement manufacturing process
Cement manufacturing process
 
Fly Ash Presentation Readymix Brunei
Fly Ash Presentation Readymix BruneiFly Ash Presentation Readymix Brunei
Fly Ash Presentation Readymix Brunei
 
Manufacturing and Quality Control of Cement.
Manufacturing and Quality Control of Cement.Manufacturing and Quality Control of Cement.
Manufacturing and Quality Control of Cement.
 
cement ppt
cement pptcement ppt
cement ppt
 
Rotary kiln
Rotary kilnRotary kiln
Rotary kiln
 
Classification, manufacturing & uses of cement
 Classification, manufacturing & uses of cement Classification, manufacturing & uses of cement
Classification, manufacturing & uses of cement
 
Cement manufacturing process
Cement manufacturing processCement manufacturing process
Cement manufacturing process
 
types and manufacturing of cement
types and manufacturing of cement types and manufacturing of cement
types and manufacturing of cement
 
Chemistry of cement
Chemistry of cementChemistry of cement
Chemistry of cement
 
Cement manufacturing process
Cement manufacturing processCement manufacturing process
Cement manufacturing process
 
111658903 kiln-burning-systems
111658903 kiln-burning-systems111658903 kiln-burning-systems
111658903 kiln-burning-systems
 
Process for non process1
Process for non process1Process for non process1
Process for non process1
 

Destacado (20)

Testing of cement
Testing of cementTesting of cement
Testing of cement
 
2. testing of cement ppt
2. testing of cement ppt2. testing of cement ppt
2. testing of cement ppt
 
Tests on cement
Tests on cementTests on cement
Tests on cement
 
1. cement ppt
1. cement ppt1. cement ppt
1. cement ppt
 
Cement
CementCement
Cement
 
1 specific gravity of cement
1 specific gravity of cement1 specific gravity of cement
1 specific gravity of cement
 
Cement
CementCement
Cement
 
Cement
CementCement
Cement
 
Formulas kiln
Formulas kilnFormulas kiln
Formulas kiln
 
Presentation (prc I) Consistency , final & initial setting time test
Presentation (prc I) Consistency , final & initial setting time test Presentation (prc I) Consistency , final & initial setting time test
Presentation (prc I) Consistency , final & initial setting time test
 
Cement
CementCement
Cement
 
Stud l6-1-cement-manufacture
Stud l6-1-cement-manufactureStud l6-1-cement-manufacture
Stud l6-1-cement-manufacture
 
Construction material cement
Construction material cementConstruction material cement
Construction material cement
 
Quality control of concrete
Quality control of concreteQuality control of concrete
Quality control of concrete
 
Concrete- Classification,Properties and Testing
Concrete- Classification,Properties and TestingConcrete- Classification,Properties and Testing
Concrete- Classification,Properties and Testing
 
Concrete
ConcreteConcrete
Concrete
 
Construction material lime
Construction material limeConstruction material lime
Construction material lime
 
Cement
CementCement
Cement
 
CONSTRUCTION OF CEMENT CONCRETE ROAD
CONSTRUCTION OF CEMENT CONCRETE ROADCONSTRUCTION OF CEMENT CONCRETE ROAD
CONSTRUCTION OF CEMENT CONCRETE ROAD
 
Comparison Between GGBFS and PFA in Concrete Mixture
Comparison Between GGBFS and PFA in Concrete MixtureComparison Between GGBFS and PFA in Concrete Mixture
Comparison Between GGBFS and PFA in Concrete Mixture
 

Similar a Cement testing

Portland cement and its manufacturing
 Portland cement  and its  manufacturing Portland cement  and its  manufacturing
Portland cement and its manufacturingMuhammad Zubair
 
lecture 3 Manufacture of Portland cement.ppt
lecture 3 Manufacture of Portland cement.pptlecture 3 Manufacture of Portland cement.ppt
lecture 3 Manufacture of Portland cement.pptssuserb4074f
 
Cement Manufacture, Chemical Composition, Heat of Hydration.pptx
Cement  Manufacture, Chemical  Composition, Heat of Hydration.pptxCement  Manufacture, Chemical  Composition, Heat of Hydration.pptx
Cement Manufacture, Chemical Composition, Heat of Hydration.pptxADCET, Ashta
 
Ce materials5. portland cement
Ce materials5. portland cementCe materials5. portland cement
Ce materials5. portland cementAmeerHamzaDurrani
 
THE_CEMENT_MANUFACTURING_PROCESS.pdf by manas
THE_CEMENT_MANUFACTURING_PROCESS.pdf by manasTHE_CEMENT_MANUFACTURING_PROCESS.pdf by manas
THE_CEMENT_MANUFACTURING_PROCESS.pdf by manassahumanas8974
 
3aGee-CementManufacturingOverview.pdf
3aGee-CementManufacturingOverview.pdf3aGee-CementManufacturingOverview.pdf
3aGee-CementManufacturingOverview.pdfMaHFOOZ10
 
cement manufacturing process& quality .pptx
cement manufacturing process& quality .pptxcement manufacturing process& quality .pptx
cement manufacturing process& quality .pptxMadan Karki
 
cem-02-cement.ppt
cem-02-cement.pptcem-02-cement.ppt
cem-02-cement.pptRaju S
 
Cement class 12 notes of cement chapter.pdf
Cement class 12 notes of cement chapter.pdfCement class 12 notes of cement chapter.pdf
Cement class 12 notes of cement chapter.pdfSafalPoudel6
 
Chenistry khan khan
Chenistry khan khanChenistry khan khan
Chenistry khan khanAREEJKHAN29
 
5. important engineering material
5. important engineering material5. important engineering material
5. important engineering materialEkeeda
 
Chapter 5_Portland Cement_Lecture 3.pdf
Chapter 5_Portland Cement_Lecture 3.pdfChapter 5_Portland Cement_Lecture 3.pdf
Chapter 5_Portland Cement_Lecture 3.pdfjustLogMeBala8a
 
Presentation on Cement -07.06.2022.pptx
Presentation on Cement -07.06.2022.pptxPresentation on Cement -07.06.2022.pptx
Presentation on Cement -07.06.2022.pptxMuni Raja B
 
Manufacture of cement - Classification and hydration
Manufacture of cement - Classification and hydrationManufacture of cement - Classification and hydration
Manufacture of cement - Classification and hydrationPrakash Kumar Sekar
 
5_2019_03_03!07_22_45_PM.ppt
5_2019_03_03!07_22_45_PM.ppt5_2019_03_03!07_22_45_PM.ppt
5_2019_03_03!07_22_45_PM.pptChandraKant929866
 

Similar a Cement testing (20)

Portland cement and its manufacturing
 Portland cement  and its  manufacturing Portland cement  and its  manufacturing
Portland cement and its manufacturing
 
Cement
CementCement
Cement
 
Cement
CementCement
Cement
 
lecture 3 Manufacture of Portland cement.ppt
lecture 3 Manufacture of Portland cement.pptlecture 3 Manufacture of Portland cement.ppt
lecture 3 Manufacture of Portland cement.ppt
 
Cement Manufacture, Chemical Composition, Heat of Hydration.pptx
Cement  Manufacture, Chemical  Composition, Heat of Hydration.pptxCement  Manufacture, Chemical  Composition, Heat of Hydration.pptx
Cement Manufacture, Chemical Composition, Heat of Hydration.pptx
 
Ce materials5. portland cement
Ce materials5. portland cementCe materials5. portland cement
Ce materials5. portland cement
 
THE_CEMENT_MANUFACTURING_PROCESS.pdf by manas
THE_CEMENT_MANUFACTURING_PROCESS.pdf by manasTHE_CEMENT_MANUFACTURING_PROCESS.pdf by manas
THE_CEMENT_MANUFACTURING_PROCESS.pdf by manas
 
3aGee-CementManufacturingOverview.pdf
3aGee-CementManufacturingOverview.pdf3aGee-CementManufacturingOverview.pdf
3aGee-CementManufacturingOverview.pdf
 
cement manufacturing process& quality .pptx
cement manufacturing process& quality .pptxcement manufacturing process& quality .pptx
cement manufacturing process& quality .pptx
 
cem-02-cement.ppt
cem-02-cement.pptcem-02-cement.ppt
cem-02-cement.ppt
 
Cement class 12 notes of cement chapter.pdf
Cement class 12 notes of cement chapter.pdfCement class 12 notes of cement chapter.pdf
Cement class 12 notes of cement chapter.pdf
 
Cement
CementCement
Cement
 
Chenistry khan khan
Chenistry khan khanChenistry khan khan
Chenistry khan khan
 
5. important engineering material
5. important engineering material5. important engineering material
5. important engineering material
 
Chapter 5_Portland Cement_Lecture 3.pdf
Chapter 5_Portland Cement_Lecture 3.pdfChapter 5_Portland Cement_Lecture 3.pdf
Chapter 5_Portland Cement_Lecture 3.pdf
 
Presentation on Cement -07.06.2022.pptx
Presentation on Cement -07.06.2022.pptxPresentation on Cement -07.06.2022.pptx
Presentation on Cement -07.06.2022.pptx
 
Cement
CementCement
Cement
 
Manufacture of cement - Classification and hydration
Manufacture of cement - Classification and hydrationManufacture of cement - Classification and hydration
Manufacture of cement - Classification and hydration
 
5_2019_03_03!07_22_45_PM.ppt
5_2019_03_03!07_22_45_PM.ppt5_2019_03_03!07_22_45_PM.ppt
5_2019_03_03!07_22_45_PM.ppt
 
Cement
Cement Cement
Cement
 

Último

1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdfQucHHunhnh
 
psychiatric nursing HISTORY COLLECTION .docx
psychiatric  nursing HISTORY  COLLECTION  .docxpsychiatric  nursing HISTORY  COLLECTION  .docx
psychiatric nursing HISTORY COLLECTION .docxPoojaSen20
 
Seal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptxSeal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptxnegromaestrong
 
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...Nguyen Thanh Tu Collection
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introductionMaksud Ahmed
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingTechSoup
 
Food safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdfFood safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdfSherif Taha
 
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17  How to Extend Models Using Mixin ClassesMixin Classes in Odoo 17  How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17 How to Extend Models Using Mixin ClassesCeline George
 
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...pradhanghanshyam7136
 
General Principles of Intellectual Property: Concepts of Intellectual Proper...
General Principles of Intellectual Property: Concepts of Intellectual  Proper...General Principles of Intellectual Property: Concepts of Intellectual  Proper...
General Principles of Intellectual Property: Concepts of Intellectual Proper...Poonam Aher Patil
 
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptxMaritesTamaniVerdade
 
Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)Jisc
 
Micro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdfMicro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdfPoh-Sun Goh
 
Unit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxUnit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxVishalSingh1417
 
SOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning PresentationSOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning Presentationcamerronhm
 
This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.christianmathematics
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsTechSoup
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfagholdier
 
Application orientated numerical on hev.ppt
Application orientated numerical on hev.pptApplication orientated numerical on hev.ppt
Application orientated numerical on hev.pptRamjanShidvankar
 
ICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxAreebaZafar22
 

Último (20)

1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
 
psychiatric nursing HISTORY COLLECTION .docx
psychiatric  nursing HISTORY  COLLECTION  .docxpsychiatric  nursing HISTORY  COLLECTION  .docx
psychiatric nursing HISTORY COLLECTION .docx
 
Seal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptxSeal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptx
 
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introduction
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy Consulting
 
Food safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdfFood safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdf
 
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17  How to Extend Models Using Mixin ClassesMixin Classes in Odoo 17  How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
 
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
 
General Principles of Intellectual Property: Concepts of Intellectual Proper...
General Principles of Intellectual Property: Concepts of Intellectual  Proper...General Principles of Intellectual Property: Concepts of Intellectual  Proper...
General Principles of Intellectual Property: Concepts of Intellectual Proper...
 
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
 
Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)
 
Micro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdfMicro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdf
 
Unit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxUnit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptx
 
SOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning PresentationSOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning Presentation
 
This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The Basics
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdf
 
Application orientated numerical on hev.ppt
Application orientated numerical on hev.pptApplication orientated numerical on hev.ppt
Application orientated numerical on hev.ppt
 
ICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptx
 

Cement testing

  • 1. 1 Short Notes of Cement Chemistry NARENDRA KUMAR KANCHKAR Quality Controller(Cement) nk.kanchkar@gmail.com Cement History: Joseph Aspdin took out a patent in 1824 for "Portland Cement," a material he produced by firing finely-ground clay and limestone until the limestone was calcined. He called it Portland Cement because the concrete made from it looked like Portland stone, a widely-used building stone in England. In 1845, Isaac Johnson made the first modern Portland Cement by firing a mixture of chalk and clay at much higher temperatures, similar to those used today. At these temperatures (1400C-1500C), clinkering occurs and minerals form which are very reactive and more strongly cementitious. -Development of rotary kilns - Addition of gypsum to control setting - Use of ball mills to grind clinker and raw materials Rotary kilns gradually replaced the original vertical shaft kilns used for making lime from the 1890s. Rotary kilns heat the clinker mainly by radiative heat transfer and this is more efficient at higher temperatures, enabling higher burning temperatures to be achieved. Also, because the clinker is constantly moving within the kiln, a fairly uniform clinkering temperature is achieved in the hottest part of the kiln, the burning zone. The two other principal technical developments, gypsum addition to control setting and the use of ball mills to grind the clinker, were also introduced at around the end of the 19th century. In india first cement plant installation at Porbandar (Gujrat) in 1914 Cement Definition: Cement is a binder, a substance that sets and hardens independently, and can bind other materials together such as sand, bricks (civil material). Cement is defined as a hydraulic binder which when mixed with water forms a paste which sets and hardens by mass of hydration reaction and processes and which after hardening, retains its strength and hardening even under water, Cement used in construction is characterized as hydraulic or non-hydraulic. Hydraulic cements (Portland cement) harden because of hydration chemical reactions that occur independently of the mixture's water content; they can harden even underwater or when constantly exposed to wet weather. The chemical reaction that results when the anhydrous cement powder is mixed with water produces hydrates that are not water-soluble. Material made by heating a mixture of limestone and clay in a kiln at about 1450 C, then grinding to a fine powder with a small addition of gypsum. Combination of C3A, C3S, C2S, C4AF and mix gypsum in few quantity is called cement.
  • 2. 2 Cement Manufacturing Technologies: • Wet Process • Dry Suspension (SP) Process • Dry Pre calciner (PC) Process (Present time use) Wet Process: These plant are characterized by low technology, low capacity, high man power and high energy consumption.the maximum capacity of the wet process plant operating in India is only 300 TPD. Dry Suspension (SP) Process: In SP plant, the ground raw meal is feed to a four stage Pre-heater system.the hot air coming out of kiln is used for pre heating the could feed entering the system. The material as it comes out of pre heater enters the kiln partial calcined (about 40%) at a temperature of 800O C. the kiln is used only for carrying out the remaining calcinations and sintering. The cooling of clinker is done in the cooler and cooler air is used back in the kiln for combustion. Generally ball mill used for grinding limestone. Dry Pre Calciner (PC) Process:the dry Pre-calciner plant is advancement over the dry SP plant. An additional vessel called the Precalciner is provided. The ground raw meal after getting preheated in the pre heater system (6 stage pre-heater) enters the calciner. The fuel is partly (extant of 60%) fired in the calciner. The additional heated is used for completing the calcinations reaction before the material enters the kiln. the kiln is used only for carrying out the sintering reaction. Generally VRM and roll press used for grinding limestone. 6 stage pre-heater: S.No. Cyclone name Temperature (Approx) Getting sample loss Degree ofcalcinations 1. 1F& 2F 280-332O C 30-33 % 10 % 2. 1E& 2E 370-420O C 25-30 % 23 % 3. 1D & 2D 540-600O C 20-25 % 40 % 4. 1C & 2C 630-710O C 15-20 % 55 % 5. 1B & 2B 770-850O C 10-15 % 24 % 6. 1A & 2A 857-890O C 2-5 % 90-95 % 4 Zone occurs in kiln: -1.Dehydration Zone(1100O C) 2. Calcinations Zone(1250O C)3. Clinkersition Zone (1400O C) 4. Cooling Zone.(1000O C)
  • 3. 3 *Examples of raw materials for portland cement manufacture. Calcium Silicon Aluminum Iron Coal Limestone Clay Clay/Bauxite Clay Anthracite Marl Marl Shale Iron ore Bituminous Calcite Sand Fly ash Mill scale Lignite Aragonite Shale Aluminium ore refuse Shale Pith Shale Fly ash Blast furnace dust Pet Cock Sea Shells Rice hull ash Cement kiln dust Slag *Summary of the different ways to represent some cement minerals and products. Chemical Name Chemical FormulaOxide Formula Cement Notation Mineral Name Tricalcium Silicate Ca3SiO5 3CaO.SiO2 C3S Alite Dicalcium Silicate Ca2SiO4 2CaO.SiO2 C2S Belite Tricalcium Aluminate Ca3Al2O6 3CaO.Al2O3 C3A Aluminate Tetracalcium Aluminoferrite Ca2AlFeO5 4CaO.Al2O3.Fe2O3 C4AF Ferrite Calcium hydroxide Ca(OH)2 CaO.H2O CH Portlandite Calcium sulfate dihydrate CaSO4.2H2O CaO.SO3.2H2O C H2 Gypsum Calcium oxide CaO CaO C Lime Reaction Occurring in Pre heater to kiln: 1. Evaporation of free water - 100o C 2. Release of combine water from clay - 500o C 3. Dissociation of magnesium carbonate - 900o C 4. Dissociation of Calcium carbonate - above900o C 5. Dissociation of lime and clay - 900o C-1200o C 6. Commencement of liquid formation - 1200o C-1280o C 7. Further formation of liquid and completion - above1280o C Of clinker compound Phase of Clinker formation: It is know that fuel economy or improved burn ability in the formation of clinker can be effected through the following stage of clinker burning. = Formation of 2CaO.Fe2O3 :- 800o C = Formation of 2CaO.Fe2O3.CaO.Fe2O3 :-900o C = Formation of 2CaO.SiO2+2CaO.Al2O3 :-1000o C SiO2+Ferrite Phase = Formation of 2CaO.SiO2, 5CaO.3(Al2O3) :-1100o C 5CaO.Al2O3, 3CaO.SiO2, Ferrite Phase = Formation of 2CaO.SiO2, 3CaO.SiO2 :-1200o C
  • 4. 4 12CaO.7Al2O3, SiO2+2CaO.Fe2O3, 3CaO.SiO2, = Formation of 3CaO.Al2O3, 3CaO.SiO2 :-1300o C 2CaO.SiO2 + Ferrite Phase = Formation of 3CaO.Al2O3, 3CaO.SiO2 :-1400o C 2CaO.SiO2+ Ferrite Phase Effects of Various Factors on Raw mix Burnability: Characteristic /Modulus Limiting range Preferable range Effects Silica modulus (SM) 1.9-3.2 2.3-2.7 If SM High Result in hard burning, high fuel consumption, difficulty in coating formation, radiation from shell is high, deteriorates the kiln lining Alumina modulus (AM) 1.5-2.5 1.3-1.6 If AM High Impacts harder burning, high fuel consumption, Increases C3A decreases C4AF, reduces liquid phase & kiln output, if AM is too low and raw mix is without free silica, clinker sticking and balling is too high. Lime saturation factor (LSF) 0.66- 1.02 0.92-0.96 A higher LSF Make it difficult to burn raw mix, increases C3S, reduces C2S, deteriorates refractory lining, increases radiation from shell, increases kiln exit gas temperature. Free silica 0-3 As low as possible A higher silica Increases fuel and power consumption, causes difficulty in coating formation, deteriorates refractory, increases radiation of heat kiln shell, MgO 0-5 0-3 A higher MgO Favours dissociation of C2S and CaO and lets C3S form quickly, tends the balling easy in the burning zone and affects kiln operation. Alkalies 0-1 0.2-0.3% A high alkali Improves burnability at lower temperature & deteriorates at higher, increase liquid content and coating formation, lowers the solubility of CaO in melt, breaks down alite & belite phases, creates operational problem due to external & internal cycle. Sulphur compound 0-4 0.5-2% A higher Sulphur compound Acts as an effective mineraliser and modifier of alkali cycle by forming less volatiles, Fluorides 0-0.6 0.03- 0.08% A higher fluorides Leads to modify the kinetic of all burning reaction , lowers the temperature of C3S formation by 150-200 Chlorides 0.06 Up to 0.015% A higher chlorides Higher Cl forms more volatiles % causes operational problem due to its complete volatilization in burning zone, increases liquid formation & melting point of the absorbed phase is drastically change.
  • 5. 5 Phase data for a Type I OPC paste made with a w/c of 0.45. Volume % Phase Density (g/cm3 ) At Mixing Mature Paste C3S 3.15 23.40 1.17 C2S 3.28 7.35 0.78 C3A 3.03 4.42 0.00 C4AF 3.73 2.87 1.39 Gypsum (CH2) 2.32 3.47 0.00 C-S-H (solid)a 2.65 0 29.03 C-S-H (with gel pores)b 1.90 0 49.99 Portlandite (CH) 2.24 0 13.96 Ettringite (AFt) 1.78 0 6.87 Monosulfoaluminate (AFm) 2.02 0 15.12 Water 1.00 58.49 31.69 Gel porosity -- 0 20.96 Capillary porosity -- 58.49 10.73 Bulk Density:(RAW & FINAL PRODUCT) Cilnker = 1360 Kg/M3 ,Gypsum = 1.38 Mt/M3 , Iron = 2700 Kg/M3 ,Lime stone = 1400 Kg/M3 Fly ash = 550 Kg/M3 ,Coal = 850 Kg/M3 , Sand = 1600 Kg/M3 ,Cock = 480-640 Kg/M3 , Cement = 1500 Kg/M3 ,Raw meal = 1250 Kg/M3 , Properties of the major cement minerals: About 90-95% of a Portland cement is comprised of the four main cement minerals, which are C3S, C2S, C3A, and C4AF, with the remainder consisting of calcium sulfate, alkali sulfates, unreacted (free) CaO, MgO, and other minor constituents left over from the clinkering and grinding steps. The four cement minerals play very different roles in the hydration process that converts the dry cement into hardened cement paste. The C3S and the C2S contribute virtually all of the beneficial properties by generating the main hydration product, C-S-H gel. However, the C3S hydrates much more quickly than the C2S and thus is responsible for the early strength development. The C3A and C4AF minerals also hydrate, but the products that are formed contribute little to the properties of the cement paste. As was discussed in the previous section, these minerals are present because pure calcium silicate cements would be virtually impossible to produce economically. The crystal structures of the cement minerals are quite complex, and since these structures do not play an important role in the properties of cement paste and concrete we will only present the most important features here. More detailed information can be found in the book by Taylor. The hydration reactions of the cement minerals are covered in Section5.3. Tricalcium Silicate (C3S) C3S is the most abundant mineral in Portland cement, occupying 40–70 wt% of the cement, and it is also the most important. The hydration of C3S gives cement pastes most of its strength, particularly at early times. Pure C3S can form with three different crystal structures. At temperatures below 980˚C the equilibrium structure is triclinic. At temperatures between 980˚C – 1070˚C the structure is monoclinic, and above 1070˚C it is rhombohedral. In addition, the triclinic and monoclinic structures each have three polymorphs, so there are a total of seven possible structures. However, all of these structures are rather similar and there are no significant differences in the reactivity. The most important feature of the structure is an awkward and asymmetric packing of the calcium and oxygen
  • 6. 6 ions that leaves large “holes” in the crystal lattice. Essentially, the ions do not fit together very well, causing the crystal structure to have a high internal energy. As a result, C3S is highly reactive. The C3S that forms in a cement clinker contains about 3-4% of oxides other than CaO and SiO2. Strictly speaking, this mineral should therefore be called alite rather than C3S. However, as discussed in Section 3.2, we will avoid using mineral names in this monograph. In a typical clinker the C3S would contain about 1 wt% each of MgO, Al2O3, and Fe2O3, along with much smaller amounts of Na2O, K2O, P2O5, and SO3.These amounts can vary considerably with the composition of the raw materials used to make the cement, however. Of the three major impurities, Mg and Fe replace Ca, while Al replaces Si. One effect of the impurities is to “stabilize” the monoclinic structure, meaning that the structural transformation from monoclinic to triclinic that would normally occur on cooling is prevented. Most cements thus contain one of the monoclinic polymorphs of C3S. There exist seven known polymorphs between room temperature and 1070 o C: three triclinic (denoted with T), three monoclinic (M) and one rhombohedral (R) polymorph. Due to incorporations in the alite crystal lattice, M1 and M3 polymorphs are present mostly in industrial clinker. Cooling clinker from 1450oC, inversion of the R polymorph to M3 and further more to M1 occurs, forming small crystals (M3) rich in substituents or large crystals, poor in substituted ions (M1). Especially, high MgO- concentrations promote high nucleation, resulting in formation of small automorphic M3- crystals.The different polymorphs do not show significant differences in the hydraulic properties. Dicalcium Silicate (C2S) As with C3S, C2S can form with a variety of different structures. There is a high temperature α structure with three polymorphs, a β structure in that is in equilibrium at intermediate temperatures, and a low temperature γ structure. An important aspect of C2S is that γ-C2S has a very stable crystal structure that is completely uncreative in water. Fortunately, the β structure is easily stabilized by the other oxide components of the clinker and thus the γ form is never present in portland cement. The crystal structure of β−C2S is irregular, but considerably less so than that of C3S, and this accounts for the lower reactivity of C2S. The C2S in cement contains slightly higher levels of impurities than C3S. According to Taylor, the overall substitution of oxides is 4-6%, with significant amounts of Al2O3, Fe2O3, and K2O. The second largest clinker phase in Portland cement is belite. Its hydration product develops similar strength in cement as alite, only much more slowly. Belite makes up between 15 and 30 wt.% of Portland cement clinker and consists of 60-65 wt.% CaO, 29-35 wt.% SiO2 and 4-6 wt.% substituted oxides, mainly Al2O3 and Fe2O3, but also K2O, Na2O, MgO, SO3 and P2O5.7 Belite crystallizes in five polymorphs: α-belite, α’H-belite, α’L-belite, β-belite (H = “high” and L = “low” symmetry) and γ-belite (Fig. 2-7), which differ in structural and hydraulic properties. The α’- polymorphs are the most hydraulic forms of belite, whereas γ-belite is a non-hydraulic polymorph and does not account for the setting and hardening of cement. β-belite is also a hydraulic polymorph, but less hydraulic than the α’- polymorphs. It is the most common polymorph in industrial Portland cement clinker. A phenomenon, that needs to be prevented by trace compounds inclusions, is disintegration (dusting) of clinker, which happens if β-C2S is not stabilized during cooling and/or by inclusions affording a part β-γ-C2S inversion. γ-C2S crystals are less dense (more voluminous) than β-C2S crystals, which causes cracking of other β-C2S crystals, forming a voluminous powder and dust
  • 7. 7 Tricalcium Aluminate (C3A) Tricalcium aluminate (C3A) comprises anywhere from zero to 14% of a portland cement. Like C3S, it is highly reactive, releasing a significant amount of exothermic heat during the early hydration period. Unfortunately, the hydration products of formed from C3A contribute little to the strength or other engineering properties of cement paste. In certain environmental conditions (i.e., the presence of sulfate ions), C3A and its products can actually harm the concrete by participating in expansive reactions that lead to stress and cracking. Pure C3A forms only with a cubic crystal structure. The structure is characterized by Ca+2 atoms and rings of six AlO4 tetrahedra. As with C3S, the bonds are distorted from their equilibrium positions, leading to a high internal energy and thus a high reactivity. Significant amounts of CaO and the Al2O3 in the C3A structure can be replaced by other oxides, and at high levels of substitution this can lead to other crystal structures. The C3A in portland cement clinker, which typically contains about 13% oxide substitution, is primarily cubic, with smaller amounts of orthorhombic C3A. The C3A and C4AF minerals form by simultaneous precipitation as the liquid phase formed during the clinkering process cools, and thus they are closely intermixed. This makes it difficult to ascertain the exact compositions of the two phases. The cubic form generally contains ~4% substitution of SiO2, ~5% substitution of Fe2O3, and about 1% each of Na2O, K2O, and MgO. The orthorhombic form has similar levels, but with a greater (~5%) substitution of K2O. Tetracalcium Aluminoferrite (C4AF) A stable compound with any composition between C2A and C2F can be formed, and the cement mineral termed C4AF is an approximation that simply the represents the midpoint of this compositional series. The crystal structure is complex, and is believed to be related to that of the mineral perovskite. The actual composition of C4AF in cement clinker is generally higher in aluminum than in iron, and there is considerable substitution of SiO2 and MgO. Taylor. reports a typical composition (in normal chemical notation) to be Ca2AlFe0.6Mg0.2Si0.15Ti0.5O5. However, the composition will vary somewhat depending on the overall composition of the cement clinker. *Set up and solve a system of four equations and four unknowns to find the mineral composition of the cement. Once the total amount of C, S, A, and F residing in the cement minerals has been calculated by adjusting the total oxide composition of the cement or clinker (steps 1 and 2) and the ratio of the oxides within each of the main cement minerals has been estimated (step 3), a system of four equations in four unknowns can be set up and solved for the amount (in wt%) of each cement mineral. Using the cement oxide composition for proficiency cement #135 given in Table 3.4 and the mineral oxide compositions given in Table 3.5 results in the following set of equations: 0.716C3S + 0.635C2S + 0.566C3A + 0.475C4AF = 62.52 (C) 0.252C3S + 0.315C2S + 0.037C3A + 0.036C4AF = 21.34 (S) 0.010C3S + 0.021C2S + 0.313C3A + 0.219C4AF = 4.40 (A) 0.007C3S + 0.009C2S + 0.051C3A + 0.214C4AF = 3.07 (F) a Formula =1.7C-S-4H. b Formula =1.7C-S-1.6H.
  • 8. 8 Rate of Clinker Phase on Properties of Cement: C3A C3S C2S C4AF Setting time Rapid Quick Slow - Hydration Rapid Fast Slow Rapid Early strength High-1day High-14 day Low - Late strength - Less High - Heat of Hydration(cal/g) 207 120 62 100 Resistance to Chemical attack Poor Moderate High High Dying Shrinkage - - low - Alite C3S = Responsible for early Strength. Belite C2S = Give ultimate (late) Strength along with alite. Aluminate C3A = Contributes to early strength, Help faster setting, Liberates more heat in concrete C4AF = Not contribution to Strength, Requited to reduce the burning Temperature for clinkerisationMostly occurs as a glassy interstitial phase. Specification of Various Type of Cement: TYPE OF CEMENT LOI MgO IR SO3 Finenes s (M 2 /Kg) Soundnes s Lechate- Auto Clave Setting Time IST- FST Compressive Strength 3 7 28 Days(N/mm 2 ) 33 G 5%Mx 6%Mx 4% Mx 3%Mx >225 10mm- 0.8% 30-600 16 22 33 43 G 5% Mx 6%Mx 3% Mx 3%Mx >225 10mm- 0.8% 30-600 23 33 43 53 G 4%Mx 6%Mx 3% Mx 3%Mx >225 10mm- 0.8% 30-600 27 37 53 Low heat cement 5% Mx 6%Mx 4% Mx 3%Mx >320 10mm- 0.8% 60-600 10 16 35 Rapid hardening - 6%Mx 4% Mx 3%Mx >325 10mm- 0.8% 30-600 27 - - Sulphate Resisting 5% Mx 6%Mx 4% Mx 2.5% Mx >225 10mm- 0.8% 30-600 10 16 33 Masonary Cement - 6%Mx - 3%Mx 15%Mx in 45M 10mm -1% 90m-24H - 3 5 Hydrophobic cement 5% Mx 6%Mx 4% Mx 3%Mx >350 10mm- 0.8% 30-600 16 22 31 Super sulphate - 10%M x 4% Mx 1.5% Mx >400 5mm - --- 30-600 15 22 30 White cement - 6%Mx 2% Mx - >225 10mm- 0.8% 30-600 15 20 30 PSC 5% Mx 8%Mx 5% Mx 3%Mx >225 10mm- 0.8% 30-600 16 22 33 PPC 5% Mx 6%Mx FORM ULA 3%Mx >300 10mm- 0.8% 30-600 16 22 33 Special Test:PPC –Drying Shrinkage 0.15%max,
  • 9. 9 Important Formula Use in Cement Analysis. Hydraulic Modulus: HM = CaO SiO2 + Al2O3 +Fe2O3 (Typical Range: 1.7 to 2.3) Silica Ratio: SM = SiO2 Al2O3 +Fe2O3 (Typical Range: 1.8 to 2.7) Alumina Ratio: AM = Al2O3 Or Iron Modulus Fe2O3 (Typical Range: 1.0 to 1.7) Lime saturation Factor: (For OPC Cement) LSF = CaO- 0.7 SO3 2.8 SiO2 + 1.2Al2O3 +0.65Fe2O3 (Typical Range: 0.66 to 1.02) Lime saturation Factor :( Lime stone) LSF = CaO X 100 2.8 SiO2 + 1.2Al2O3 +0.65Fe2O3 (Typical Range: 95 to 110) Lime saturation Factor: (if Alumina modulus >0.64) - LSF = CaO 2.8 SiO2 + 1.65Al2O3 +0.35Fe2O3 (Typical Range: 92 to 108) Lime saturation Factor: (if Alumina modulus <0.64) LSF = CaO 2.8 SiO2 + 1.1Al2O3 +0.7Fe2O3 (Typical Range: 92 to 108) Bogus’ formula for Clinker Constituent (if Alumina modulus >0.64) C3S = 4.071 CaO – (7.602 SiO2+ 6.718 Al2O3 +1.43Fe2O3+2.8SO3)Note: CaO = CaO - F/CaO C2S = 2.867 SiO2 - 0.7544 C3S C3A = 2.65 Al2O3 - 1.692 Fe2O3 C4AF = 3.043 Fe2O3 C3S = Tri Calcium Silicate. (Molecular weight = 228 g/g mol) C2S = Di Calcium Silicate. (Molecular weight = 172 g/g mol) C3A = Tri Calcium Aluminate. (Molecular weight =270 g/g mol) C4AF = Tetra Calcium Aluminate Ferate. (Molecular weight = 486 g/g mol) (if Alumina modulus <0.64) C3S = 4.071 CaO – (7.602 SiO2 + 4.479 Al2O3 +2.86Fe2O3) Note: CaO = CaO - F/CaO C2S = 2.867 SiO2 - 0.7544 C3S C3A = 0 C4AF+ C2F =2.1 Al2O3 +1.702Fe2O3 Bogus’ formula for Cement Constituent (if Alumina modulus >0.64) Note: CaO = CaO - F/CaO C3S = 4.071 CaO – (7.602 SiO2+ 6.718 Al2O3 +1.43Fe2O3+2.85 SO3) C2S = 2.867 SiO2 - 0.7544 C3S C3A = 2.65 Al2O3 - 1.692 Fe2O3 C4AF = 3.043 Fe2O3
  • 10. 10 Liquid Value: LV= 1.13C3A +1.35C4AF + MgO +Alkalies Burnability Index: BI = C3S C4AF + C3A Burnability Factor: BF = LSF + 10 SM – 3(MgO + Alkalies) Coal Analysis: NCV = 8455 – 114 (M% + Ash %) Cal/gm UHV = 8900 – 138 (M % + Ash %) Cal/gm GCV = PC X 86.5 – (60*M %) PC = 100- (1.1*Ash + M %) CV = % C*8000 + % H*32000 100 100 Coal Consumption: = Coal feed X 100 Clinker Production Ash absorption: = % of ash in fuel X coal consumption 100 Raw meal to clinker factor: = 100-ash absorption 100-LOI Specific Heat: V = NCV X % of coal Consumption 100 Insoluble Residue: IR (max %) = X+4 (100-X) (Note: X= % of Fly ash) 100 Blain : Blain = √Time X Factor Factor = STD Blain √Time Bogus Factor :as per duda book C4AF = C4AF/ Fe2O3 = 486/160=3.043, C3A = C3A / Al2O3 = 270/102= 2.65, C3A/ Fe2O3 = 270/160= 1.69, C2S = C2S /SiO2= 172/60=2.87,C2S /C3S= 172/228=0.75, C3S = C3S/ CaO = 228/56= 4.07, LSF =
  • 11. 11 CYCLONE LOSS: = 100(KF loss – Cyclone loss) (100 – Cyclone loss) X KF loss Clinker to cement factor: = Clink.+Flyash/Slag+additives(kg) Clinker consumed (kg) Chemical Composition (General): LOI SiO2 Al2O3 Fe2O3 CaO MgO Na2O +K2O SO3 F / CaO C3S C2S C3A C4AF PPC 5.0 31.0 4.5 3.5 43.0 5.0 1.4 - Clinker 0.5 21-22 5-6 3-5 62-65 3-6 .5-1.0 .2-1.0 .5-2 48 28 8 12 Limestone 34 12 2.4 1.6 43.0 3.8 Iron Ore 10 13 14 71 1 1.5 Letrite Gypsum 16 14 1 1 34 1 .5 42 Mni Gyps Fly ash 5mx 50-60 20-33 2-7 2-10 5 Mx 1.5mx 2.75mx Physical Analysis of PPC: TEST- Residue (sieve), Blain, Normal consistence, Setting time, Compressive strength, Soundness-(AC&LC) Blain (IS -4031 part-2) = 300 M2 /kg minimum NC/SC Setting time Strength Auto clave Le-chate IS- 4031 Part-4 Part-5 Part-6 Part-3 Part-3 Lab Tempture 270 C ± 20 C 270 C ± 20 C 270 C ± 20 C 270 C ± 20 C 270 C ± 20 C Lab/Chamber R-Humidity 65% ± 5, Not less than 90% 65% ± 5, Not less than 90% 65% ± 5, Not less than 90% 65% ± 5, Not less than 90% 65% ± 5, Not less than 90% Sample weight 300/400 gm 300/400 gm 200gm-cm, 600gm-1s+2s+3s 300/400 gm 100 gm Water Requirement Req.waterX100 sample weight NC*0.85*S.Wt 100 (NC+3) *800 4 100 =NC NC*0.78*S.wt 100 Apparatus Vicat apparatus Vicat apparatus Vibrating & CSTm AC machine 2150 C, 21 kg/cm2 Water Bath 100o C Expend Time As possible vicat Reading 5-7 cm As possible vicat Reading 5- 7 cm 72 ±1hour- 16mpa 168 ±2hour-22mpa 672 ±4hour- 33mpa (MPa=N/Kg*0.2032) RH-C-24hour ACM-3 Hour WB-24hour H.WB-3 Hour Other Use needle 10mm Use needle 2&5mm Gauging 1min dry, 4 min wet Gauging 5 min Cube size 60-70mm 60-70mm 70mm 25,250mm 35mm IS Requirement Initial – 30 min minimum Final-600 min maximum 3 day- 16mpa 7 day- 22mpa 28 day- 33mpa 0.8 % max 10 mm max X 100
  • 12. 12 FLY ASH Analysis (IS-1727) TEST- BLAIN (Minimum 320),Lime Reactivity(min. 4.5 MPa), Dry Shrinkage (max .15), Comparative Strength (Not less than 80%) Lime Reactivity Dry Shrinkage Comparative Strength Lab Temp. /RH 27O C ± 2 / 65% ± 5 27O C ± 2 / 65% ± 5 27O C ± 2 / 65% ± 5 Test Specimen 50mm 25/250mm 50mm Require Sample 1: 2M: 9 H. Lime: Pozz: Sand 150:300M:1350gm 0.2N :0.8 :3 Pozz : Ce ment : Sand 60N:240:900gm 0.2N :0.8 :3 Pozz : Cement : Sand 100N:400:1500gm 0.8 :3 Cement : Sand 400:1500gm Require Water (Table Flow) 70 ± 5% with 10 drop in 06 Second 100-115% with 25 drop in 15 Second 105 ± 5% with 25 drop in 15 Second Age of Testing 10 Day 35 Day 7,28,90 Day 3,7,28, Day Testing Condition 2day RH chamber (27±2O C&>90%) 8day Environment Cmb. (50±2O C&>90%) 24 hour RH chamber (27±2O C&>90%) 6day water tank-I (27±2O C 28day Environment Chamber (27±2O C& 50%)-II 24 hour RH chamber (27±2O C&>90%) 7,28,90day water tank (27±2O C) 24 hour RH chamber (27O C&>90%) 7,28,90day water tank (27±2O C) Dry shrinkage= II-I 28 dya not less than 80% to blank strength Blank Strength M=Specific gravity of Pozz. Specific gravity of H. lime N=Specific gravity of Pozz. Specific gravity of cement N=Specific gravity of Pozz. Specific gravity of cement STI (Scheme of testing & inspection) Form-1:FORMAT FOR MAINTENANCE OF TEST RECORDS WEIGHMENT CONTROL AT PACKING STAGE (Clause 6.2) Date Shift No. Of Bag Net mass of bags from nozzles No.1, No. 2, Remark Form-2:RAW MATERIAL TESTING (CL.7 of STI) Date of receipt of material Date of testing Name of the Material Source of supply and consignment No. Details of analysis for Specified requirements Form-3:PRODUCTION DATA (POST GRINDING DETAILS OF PRODUCTION ACCEPTED & REJECTEDFOR ISI MARK) Shift Quantity Passed for ISI Marking Rejected Remarks Form-4-A:POZZOLANA (One sample per week) Column 6 of Table 1A (A) Calcined clay pozzolana Date Fitness Lime Reactivity CompressiveStrength at 28 Days Drying ShrinkageMax Form-4-B :FLY ASH POZZOLANA (See Column 6 of Table 1 A) SO2+A1203 SiO2 MgO SO3 Na2O LOI Fineness Lime Compressive Drying Soundness
  • 13. 13 +Fe203 sulphur reactivity Strength Shrikage Auto clave Form-5:CLINKER (DAILY COMPOSITE SAMPLE) (See Column 6 of Table 1A) Laboratory Ball-Mill Testing is required to be done when there is change in the source of Raw Material or change in design Date of manuacture Total loss of Ignition Insoluble Residue SiO2 CaO AlO FeO SO MgO LSFLime Saturation Factor Alunin a Factor Sample Pass/Fails Disposa l/ Action -6-A:CLINKER GROUND WITH GYPSUM (Daily composite sample) (Note under Column 6 of Table 1 A) Date of Grinding Fineness Soundness AC - LC Setting time IST - FST Compressive Strength 3day- 7day- 28day Sample Pass//fail Disposal/Actio n taken if sample fails Form-6-B:CLINKER GROUND WITH GYPSUM & POZZOLANA (Column 6 of Table I A) Date of Grinding Fineness Soundness AC - LC Setting time IST - FST Compressive Strength 3day- 7day- 28day Dry shrinkage (Weekly) Sample Pass/fail Disposal/Ac tio Form-7: PORTLAND POZZOLANA CEMENT GRINDING/ BLENDING (Daily/Weekly Composite sample) (Column 5 of Table 1B) Date of Grinding Loss on Ignition MgO Insoluble Material SO3 Fineness Soundness Le-ch Auto Clave Setting Time IST /FST Compressive Strength 3 7 28 days Drying Shrinkage (Weekly) Sample Pass/Fail Acti on take Form-8:PORTLAND POZZOLANA CEMENT CRINDING (For Alternate hourly Samples) (Column 5 of Table 1B) Date of Grinding Time at Fineness Setting Time (IST)-(FST) Sample fail/pass Mode of disposal/Action taken if sample fails Form-9:PORTLAND POZZOLANA CEMENT PACKING STAGE (Daily/Weekly Composite Samples) (Column 6 of Table 1B) Date of Pcking Loss On Igniti on MgO Insoluble Materia SO3 Chloride Content (Weekly Fine ness Soundness Le Auto Ch Clav Setting time IST- FST Compressive Strength 3 7 28 days Drying Shrinkage (Weekly) Sample Pass /Fail Mode of disposal/Ac tion taken if sample fails Form-10:(See Clause 3 of STI) S.No. Date Calibration Result of Calibration (Test records indicating details of standard values and observed values for each equipment to be kept in proforma for which various columns be devised; as required) Name of Equipment Action taken if equipment found defective Sl. No. (If any) Remarks FREQUENCY OF CALIBRATION: Blaine’s apparatus- Daily with licensee’ sown Standard cement sampleand once in a month with standard cement samples supplied by NCCBM. Compressive strength -Once in a month with licensee’s own proving ring and the proving ring shall be calibrated once Testing machine in two years from the recognized calibrating agency like NPL/NABL accredited Lab or Proving ring manufacturer having NPL certified calibrator. Apply Load Reading-1 R-2 R-3 Average True Load Error % Std. Differ. 5,10,15,20 1+2+3/ 3 =app. load*avg. load /Std. difference =true.Load-app.Load)*100 /applied load Autoclave pressure gauge - Once in a six months either by licensee’s own dead weight Pressure gauge or from Approved independent agency /NABL accredited Lab or manufacturer of such gauge having NPL certified calibrator.(dead weight Pressure gauge in 4year)
  • 14. 14 Vibration machine - Once in a month by licensee’s own tachometer. The tachometer shall be calibrated once in three Years from approved out Side agency /NABL accredited Lab having NPL certified calibrator. (12000 ± 400 RPM) Chemical analysis Type of analysis: 1 Gravimetric- IR, SO3, SiO2, R2O3 (Residual Oxide/3rd group) 2 Volumetric- CaO, MgO (Fe2O3, Al2O3) 3 Spectroscopy 1.Flame Photo metter-K2O, Na2O (Uncoloured element) 2. UV-Spectro metter –TiO2, P2O5, MnO2, (Coloured & miner) 4 X-ray Method Solution Prepare: Normality: Equivalent weight Volume in letter. (Equivalent weight = In acid from:- Molecular weight Removal H+ ion In Basic from:- Molecular weight Removal OH- ion Molaritiey: Gram mole number Volume in letter. (1000ppm=1gm chemical dissolved in 1000ml or1 Litter) (1ppm= 1gm chemical dissolved in 100000ml or 1000 Litter) Soiled chemical to solution (formula) = ENV 1000 (E=equivalent weight, N= Require Normality, V= Require volume) Liquid chemical to solution formula = N1V1 =N2V2 Density = Mass Volume Important Molecular weight. O-16, Na-23, Mg-24, Al-27, Si-28, S-32, Cl-34, K-39, Ca-40, Fe-55.8, Zn-65.39 CaCO3 =100, SiO2=60, Al2O3=102, Fe2O3 =160, MgO= 40, Na2O= 62, K2O = 94 C3S=228, C2S= 172, C3A= 270, C4AF= 486, CaSO4.2H2O =145
  • 15. 15 Titrate with NaOH (0.2N) slow titration Lime Stone- TC&MC Q.1 why multiply 1.786 for CaO? = CaO/CaCo3 Q.2 why multiply 2.09 for MgO? = MgO/MgCo3 Q.3 why multiply 0.84 for MC? Take 50 ml HCL (0.4N) in conical Flask Add 1.0 gm lime stone sample Boil minimum 2min Add Indicator- Phynopthleen C20H14O4 Mwt-318.33,pH-8.2-9.8 Cool Take NaOH Burette reading TC = 100-Burette reading Add excess10/20ml NaOH (0.2N) Boil about 1min. Add Indicator- Thymopthleen Cool Titrate with HCL (0.4N) Fast titration Take HCL Burette reading MC = [Ex.NaOH-{2*HCL-BR}] X0.84 End point white to pink colour End point purple to white- pink Solution use: = NaOH (0.2N) 40(Mwt)*0.2(N)*1000(ml)/1000= 8gm/L = HCL(0.4N) 36.46(Mwt)*100/35.4(Purity)=87.28ml/L-1N =87.28ml/L-1N* 0.4 (Req.N)=34.91 ml/L = Indicator dissolved in Alcohol Calculation: CC = TC – MC CaO = CC / 1.786 MgO = MC / 2.09
  • 16. 16 Cement- IR & SO3 Q.1 what is IR? Material which is not reacts (dissolved) with Acid and basis. Q.2 why multiply 34.3 for SO3? Because So3 is found in BaSO4 Form = (SO3/BaSO4)*100 = (80/137+32+64)*100 = (80/233)100 =0.3433*100 = 34.33 IR (max %) = X+4 (100-X) (Note: X= % of Fly ash) 100 =methyl Orange use checking for alkali removes. 1.0 gm cement sample Dissolved 1:1 HCL Heat below boils Temp. 15 minute Filter- 40 N. paper Wash Hot water Filtrate Residue Boil + add hot BaCl2 10 ml React with Na2CO3 -30 ml Wash with 1:99 HCl & Hot water Wash Hot water Dryad in Oven Ignited at 1000o C Minimum 30 min Weight IR Slowly Cool for ppt form (4 hour) Filter 42 N paper Dryad in Oven Ignited at 1000o C Weight Weight X 34.3 = SO3 Solution use: = 2N- Na2CO3= 10.6 gm sodium carbonate dissolved in 100 ml distilled water (Eq.wt = 53, Mwt 105.99 g/mol) = 1:1 HCL = 50 ml HCL dissolved in 50 ml Distil water.(Mwt 36.46 g/mol) = BaCl2 = 10 gm BaCl2 dissolved in 100 ml distilled water. For Acid reaction For Base reaction IR= Final weight-Initial weight Heat 10 minute below boil temp. Filter- 40 N. paper For Alkali remove
  • 17. 17 Clinker, Cement & Raw material (SiO2, R2O3) All Raw materials & Cement Clinker Sample Wash Crucible with H2O add NH4Cl + Bake on Hot plate & cool it Filter with 40N paper Add HCL (1:1), 20-30 ml +Heat 0.5 gm sample in beaker Add NH4Cl 2-3gm (mix well) 0.5 gm sample + Fusion mix. In Platinum crucible Fuse 1000o C for 1 hour Add HCL (1:1), 20-30 ml Add Con. HCL- 5ml, Bake on Hot plate & cool it Add HCL (1:1), 10-20 ml +Distilled water + Heat Filtrate Residue Heat it +Add NH4Cl 2-3gm Wash with hot Distilled water Boil it + Add HNO3 (1:1), 0.5ml Add NH4OH (1:1) Dry (oven) + Ignite at 1000o C Filter with 41N paper SiO2= (F wt – I wt)*200 2 drop H2SO4 + 2 drop H2O Add 20 ml HF Put on Hot plate & dry SiO2= (F wt – I wt)*200 Filtrate in 500ml flask Residue R2O3= (F wt – I wt)*200 Dry (oven) + Ignite at 1000o C CaO & MgO Process next page Use Solution: NH4OH(1:1) – 250 ml NH3 + 250 ml H2O HNO3 (1:1)- Fusion mix.= (Na2CO3+K2CO3) Reaction: = M SiO3 + 2HCl M Cl2 + H2SiO3 = H2SiO3+ Evaporation SiO2 +(H2O) = SiO2 + Impu. + 4HF SiF4 +2H2O H2SiO3 + 2H2 SiF6 = (FeCl3 + AlCl3) + 3NH4OH {Fe(OH)3 + Al(OH)3} + 3NH4Cl ={Fe(OH)3 + Al(OH)3} + Ignition Fe2O3 + Al2O3 Oxidizing agent Isolate R2O3 ppt form
  • 18. 18 Clinker, Cement & Raw material (CaO, MgO)-EDTA method For-CaO For- MgO (end colour red- pink to blue) (end colour red- pink to purple) Take 20 ml aliquot solution After filtrate R2O3 solution make up 500 ml Add Tri ethanol amine (TEA) 5 ml (For Isolation), C6H15NO3, Mwt-149.19 g/m Add Glycerol 5 ml (For Isolation), C3H8O3, Mwt-92.10 g/m Add Patton & Reader (P&R) Indicator, C21H14N2O7S Mwt-438.42 g/m Add 10-20 ml Sodium (4.0N) Hydroxide NaOH (For pH-12) Mwt-40 g/m Titrate with EDTA (ethylene di amine tetra acetate) Mwt-372.34 g/m {0.05608 X mol. EDTA(0.01)X V1 X Vmu X100} D.F. Volume taken X Sample weight = V1- EDTA Burette reading = Vmu- Volume make up = Difference Factor - as per EDTA standard Take 20 ml aliquot solution Add Tri ethanol amine (TEA) 5 ml (For Isolation), C6H15NO3, Mwt-149.19 g/m Add Eriochrome black T (EBT) Indicator, C20H2N3NaO7S Mwt-461.38 g/m Add 10-20 ml Buffer Solution (For pH-10) Mwt-000 g/m Titrate with EDTA (ethylene di amine tetra acetate) Mwt-372.34 g/m {0.04032 X mol. EDTA(0.01)X (V2- V1)X Vmu X 100} D.F. Volume taken X Sample weight = V1- EDTA Burette reading = V2- Cao titration BR = Vmu- Volume make up = DF –as per EDTA standard Solution Use: = Buffer solution- 70 gm NH4Cl dissolved in 570 ml NH4OH. = 4.0N NaOH- 160 gm dissolved in 1000 ml H2O. =EDTA- 3.7224 gm dissolved in H2O 100 ml and make up 1000 ml solution. = Zn solution (0.01N)-0.6537 gm diss. In 0.1N HCL Reaction: = Ca2+ + EDTA.2Na+ 2Na+ + EDTA.Ca2+ Di Sodium Salt E.D.T.A STANDARDISATION (Difference Factor) = 10 ml Zn sol (0.1N).+ EBT +Buffer sol. Titrate with EDTA (end colour pink to blue) M1V1=M2V2, M2=0.01 X 10ml /B.R.
  • 19. Ferric Oxide (Fe2O3) Testing by EDTA method in Cement (In OPC) Make the solution to 250 ml in a standard volumetric flask after removal of silica. Measure 25 ml of acid solution of the sample through pipette in a flask. Add very dilute ammonium clear the turbidity with a hydrochloric acid(1:10) and a few drops in excess to Add 100 mg of sulphosalicylic acid and titrate with 0.01M EDTA solution carefully to a colouress or pale CALCULATION: 1 ml of 0.01M EDTA = 0.7985 mg Fe Fe2O3(%) = 0.07985 X V X M X 250 X 100 Where,V= volume of EDTA used and W= weight of sample M = Molarity of EDTA 19 Ferric Oxide (Fe2O3) Testing by EDTA method in Cement (In OPC) Make the solution to 250 ml in a standard volumetric flask after removal of silica. Measure 25 ml of acid solution of the sample through pipette in a flask. Add very dilute ammonium hydroxide (1:6) till turbidity appears. clear the turbidity with a minimum amount of dilute hydrochloric acid(1:10) and a few drops in excess to adjust the pH 1 to 1.5. Shake well. Add 100 mg of sulphosalicylic acid and titrate with 0.01M EDTA solution carefully to a colouress or pale yellow solution. CALCULATION:- 1 ml of 0.01M EDTA = 0.7985 mg Fe2O3 (%) = 0.07985 X V X M X 250 X 100 W X 25 Where,V= volume of EDTA used and W= weight of sample M = Molarity of EDTA Make the solution to 250 ml in a standard volumetric flask after removal of silica. Measure 25 ml of acid solution of the sample through pipette in a flask. Add 1:6) till turbidity minimum amount of dilute hydrochloric acid(1:10) and a few drops in excess to Add 100 mg of sulphosalicylic acid and titrate with 0.01M EDTA solution carefully to a colouress or pale
  • 20. Alumina (Al2O3) Testing by EDTA method in Cement After testing of Fe EDTA to the same flask add 1ml H3PO4(1:3) and 5 ml of H2SO4(1:3) and one drop of thymol add ammonium acetate solution by stirring until the colour changes from red to yellow add 25 ml of ammonium acetate in Heat the solution to boiling for one minute and then cool.Add 0.5 mg solid xylenol orange indicator and bismuth nitrate solution slowly with Add 2-3 ml of bismuth nitrate solution in Titrate with EDTA to a sharp yellow endpoint CALCULATION:- 1 ml of 0.01M EDTA = 0.5098 mg Al Al2O3(%) = 0.05098 X V1 X M X 250 X 100 W X 25 V1= V2-V3-(V4 X factor of Bi(NO Where,V1= volume of EDTA for alumina V2 = total volume of EDTA used in titration V3 = volume of EDTA used for iron V4 = total volume of bismuth nitrate solution used in the titration. W= weight of sample M = Molarity of EDTA 20 Alumina (Al2O3) Testing by EDTA method in Cement After testing of Fe2O3 add 15 ml of standard EDTA to the same flask add 1ml H3PO4(1:3) and 5 ml of H2SO4(1:3) and one drop of thymol blue into a flask add ammonium acetate solution by stirring until the colour changes from red to yellow add 25 ml of ammonium acetate in excess to attain a pH of 5.5 -6.0 Heat the solution to boiling for one minute and then cool.Add 0.5 mg solid xylenol orange indicator and bismuth nitrate solution slowly with constant stirring. 3 ml of bismuth nitrate solution in excess. Titrate with EDTA to a sharp yellow endpoint 1 ml of 0.01M EDTA = 0.5098 mg Al2O3 (%) = 0.05098 X V1 X M X 250 X 100 W X 25 (V4 X factor of Bi(NO3)3 Where,V1= volume of EDTA for alumina of EDTA used in titration V3 = volume of EDTA used for iron V4 = total volume of bismuth nitrate solution
  • 21. 21 RapidCaoof Clinker/PPCby KMnO4 method (ASTM) PPC Cement Clinker Sample /OPC Wash Crucible with H2O Add NH4OH (1:1) until Colour yellow 0.2 gm sample + Add 1:1 Hcl 0.2 gm sample + Fusion mix. In Platinum crucible Fuse 1000o C for 1 hour Add HCL (1:1), 20-30 ml Just Boil+ Continue in Hot Plate Add methyl Orange- few drop Just Boil Add lump sum 0.2 gm OXALIC Acid (until Colour lightly pink) Add 20ml hot Ammonium Oxalate (50%) (White) Filter with 40 No. Paper Wash with hot water Take Residue in beaker Aliquot solution OUT Titrate with KMnO4 (0.01772 N) KMnO4 STANDARDISATION *5.6 gm KMnO4 dissolved in 1000ml H2O for 0.1772N Solution. *0.67 gm OXALIC Acid + H2O+ 1:1 H2So4 titrate with KMno4. Factor = 56/BR B.R. X 0.5 X Factor / Sample wt. Add H2SO4 (1:1)
  • 22. 22 Fast CaO Take 0.5gm sample Add 1:1 Hcl (20 ml Approx) Just Boil Filter With 41 No Paper in 500 ml round bottom flask& make up 500 ml Filter Out Cool & shake well Take 20 ml aliquot sample in Conical Flask Add approx 5 ml glycerol Add Approx 1 ml TEA Add NaOH ( 2 pellet) Wine Red Color Add P&R Indicator 0.05gm (Approx) Sky Blue Titrate With 0.01N EDTA (until No Color Change) Calculate {0.05608 X mol. EDTA(0.01)X V1 X Vmu X100} D.F. Volume taken X Sample weight = V1- EDTA Burette reading = Vmu- Volume make up = Difference Factor - as per EDTA standard OR BR X 2.804 = CaO% (For 20 ml Volume taken)
  • 23. 23 Iron (Raw material) -Dichromate method:(ASTM) Clinker sample 0.5 gm sample + Fusion mix. In Platinum crucible Fuse in 1000o C minimum 30 min Cool and wash Pt. crucible with 1:1 HCl Wash crucible with Distilled water 0.5 gm clinker sample dissolved in HCl -1:1 Boil & add SnCl2 Drop wise till colourless solution Completely cool (Room Temp.) Add Barium di phenol Salfonate (BDS) Indicator Add 5-10 ml HgCl2 and Acid mixture –Masking agent Titrate with K2Cr2O7Potassium dichromate Iron= B.R X Factor (K2Cr2O7) Solution Preparation: =Acid mix.- 15% H2SO4+ 15%H3PO4 +70% H2O =K2Cr2O7(N/16)– 3.07 gm dissolved in 1000ml H2O =BDS – 1gm dissolved in 100 ml dil. HCL (10%) =SnCl2– 5 gm dissolved in 100 ml dil. HCL (10%) =Fusion mix – Na2CO3+K2CO3 = HgCl2- 56 gm dissolved in 1000ml H2O Reaction: = 2Fe3+ + Sn2+ 2Fe2+ + Sn4+ = 2Fe2+ + K2Cr2O7 2Fe3+ K2Cr2O7calibration to FAS = take 20 ml H2O + 0.5 gm FAS + Acid mixture +BDS Ind. + titrate with Potassium dichromate Factor= 20/BR
  • 24. 24 Free Lime Test:(Clinker) = Normality of HCL =. Purity *1000*Specific Gravity / 100 * Equivalent wt = Normality of HCL =. (36 * 1000 * 1.18)/100*36.5 = 11.64 N.(N1) = So 0.1N HCL=N1V1 = N2V2, =11.64*V2 = 0.1*1000, =V2= 0.1*1000/11.64 = 8.59ml Take 1 gm Clinker sample in beaker Add 10 ml Ethylene Glycol Put for 45 min in water bath Filter with 40N paper Filtrate Residue out Add Bromocrsol Grate Green Indicator Titrate with 0.1N HCL End Colour –Green to golden Yellow F/CaO= B.R X 0.28 (HCL Factor) Solution Preparation: = 1 Glycerol : 5 Ethanol Reaction: Ca(OH)2 + 2HCl CaCl2 + H2O Factor= CaO / 2 HCL
  • 25. 25 Cloride Test (Cl):-0.1% max Take 1 gm sample in beaker Dissolved 1:3 HNO3 Filter 41N paper in Conical Take aliquot sample Add 10 ml AgNO3 (0.1N) Residue out Add 2ml Nitro Benzene Add 4 Drop Ferric Indicator NH4.Fe (SO4)2.12H2O Titrate with Ammonia thyo saynte (.01N) NH4SCN End Colour – white to Solution Preparation: Reaction: M Cl2 + 2 HNO3 M(NO3)2+2HCl HCl + AgNO3 AgCl + HNO3 AgNO3 + NH4SCN AgSCN + NH4NO3 0.3546 X 100 X (10-BR) Sample weight
  • 26. 26 Alkali Test (Na2O+K2O):-( PPC=0.8% max) *Pre heater Coating sample in (about) Na2O= 1-2% & K2O=12-16%. Take 0.25 gm sample in Platinum crucible 10 ml HF and backing Add 2ml HNO3 Add 10 ml HClO4 (Per Choleric acid) Put Hot plate & up to Syrupy Residue out Extract dissolved to 1:1 HNO3 in bicker Filter 41N paper in 250 ml Volumetric Flack Make up 250 ml with H2O Solution Preparation: Blank Solution: 2.5 ml HNO3 + 2.5 ml Alumina sulphate + 250 ml H2O. Standard Solution: NaCl: 1.885 NaCl Dissolved In 1000ml H2O (for 1000ppm). KCl: 1.583 KCl Dissolved In 1000ml H2O (for 1000ppm). Volume makeup X 100 X ppm reading Sample weight X 106
  • 27. 27 Reactiv Silica Test: (Fly ash) (IS-3812) Take 0.5 gm sample in beaker Add 50 ml HCl (1:1) Boil and Cool Add 16 gm KOH 4 hour Put on Hot plate & Volume maintain 60 ml by H2O Filter 40N Paper Residue out Aliquot Solution bake Dissolved with 1:1 HCl + Heat Filter 40N paper Residue dry in oven Residue Ignite 1000O C RS= Initial Wt. – Final Wt. *200
  • 28. 28 Sulpher Test: (Coal), ESCHKA Method (IS 1350-P3) Coal Grading: Coal is the combination of Organic (Carbon) and Inorganic (Si02, R2O3 etc) material. It is use for heating purpose. Grade A+M % UHV cal/g A <19.5 >6200 B 19.5-24.0 6200-5600 C 24.0-28.7 5600-4940 D 28.7-34.1 4940-4200 E 34.1-40.2 4200-3360 F 40.2-47.1 3360-2400 G 47.1-55.1 2400-1300 Un-grade >55.1 <1300 Type of Coal: 1. Anthracite 2.Buteminus 3. Lignite 4. Pith Take 0.1 gm sample platinum crucible Add 1-2 gm ESCHKA mixture Fuse at 800O C Dissolved to 1:1 HCl Filter 41N paper Aliquot Solution Boil Solution Preparation: = 0.1374 = S /BaSO4 = ESCHKA mixture = (2:1) Mgo+ Na2CO3 (Light Calcined magnesia oxide +Anhydrous Sodium carbonate) Residue out Add 20 ml BaCl2 Cool Filter 42N Paper Residue Ignite at 900O C Ash X 0.1374 X100
  • 29. 29 Indian Standard ReferenceUse in Cement Chemistry Cement IS 269:1989 – Specification for ordinary Portland cement, 33 grade IS 455:1989- Specification for Portland slag cement IS 1489(Part 1):1991 Specification for Portland pozzolana cement Part 1 Flyash based IS 1489(Part 2):1991 Specification for Portland-pozzolana cement: Part 2 Calcined clay based IS 3466:1988 Specification for masonry cement IS 6452:1989- Specification for high alumina cement for structural use. IS 6909:1990 Specification for super sulphated cement IS 8041:1990 Specification for rapid hardening Portland cement IS 8042:1989 Specification for white Portland cement IS 8043:1991 Specification for hydrophobic Portland cement IS 8112:1989 Specification for 43 grade ordinary Portland (43-S) IS 8229:1986 Specification for oil-well cement. IS 12269:1987 Specification for 53 grade ordinary Portland IS 12269:535 Specification for TRS-T40 grade ordinary Portland IS 12330:1988 Specification for sulphate resisting Portland IS 12600:1989 Specification for low heat Portland cement Instrument use in cement analysis IS 12803:1989 Methods of analysis of hydraulic cement by X-ray fluorescence spectrometer. IS 12813:1989 Method of analysis of hydraulic cement by atomic absorption spectrophotometer Apparatus use in cement analysis IS 5512:1983 Specification for flow table for use in tests of hydraulic cements and pozzolanic materials IS 5513:1996 Specification for vicat apparatus. IS 5514:1996 Specification for apparatus used in Le-Chatelier test IS 5515:1983 Specification for compaction factor apparatus IS 5516:1996 Specification for variable flow type air-permeability apparatus (Blaine type) IS 14345:1996 Specification for autoclave apparatus Physical & Chemical Analysis of Cement IS 4031(Part 1):1996 Methods of physical tests for hydraulic cement: Part 1 Determination of fineness by dry sieving IS 4031(Part 2):1999 Methods of physical tests for hydraulic cement: Part 2 Determination of fineness by specific surface by Blaine air permeability method IS 4031(Part 3):1988 Methods of physical tests for hydraulic cement: Part 3 Determination of soundness IS 4031(Part 4):1988 Methods of physical tests for hydraulic cement: Part 4 Determination of consistency of standard cement paste IS 4031(Part 5):1988 Methods of physical tests for hydraulic cement: Part 5 Determination of initial and final setting times IS 4031(Part 6):1988 Methods of physical tests for hydraulic cement: Part 6 Determination of compressive strength of hydraulic cement (other than masonry cement) IS 4031(Part 7):1988 Methods of physical tests for hydraulic cement: Part 7 Determination of compressive strength of masonry cement IS 4031(Part 8):1988 Methods of physical tests for hydraulic cement: Part 8 Determination of transverse and compressive strength of plastic mortar using prism IS 4031(Part 9):1988 Methods of physical tests for hydraulic cement: Part 9 Determination of heat of hydration IS 4031(Part 10):1988 Methods of physical tests for hydraulic cement: Part 10 Determination of drying shrinkage
  • 30. 30 IS 4031(Part 11):1988 Methods of physical tests for hydraulic cement: Part 11 Determination of density IS 4031(Part 12):1988 Methods of physical tests for hydraulic cement: Part 12 Determination of air content of hydraulic cement mortar IS 4031(Part 13):1988 Methods of physical tests for hydraulic cement: Part 13 Measurement of water retentively of masonry cement IS 4031(Part 14):1989 Methods of physical tests for hydraulic cement: Part 14 Determination of false set IS 4031(Part 15):1991 Methods of physical test for hydraulic cement: Part 15 Determination of fineness by wet sieving IS 4032:1985 Method of chemical analysis of hydraulic cement IS 3535:1986 Methods of sampling hydraulic cement IS 12423:1988 Method for colorimetric analysis of hydraulic IS 4845:1968 Definitions and terminology relating to hydraulic cement. IS 5305:1969 Methods of test for P2O5. Pozzolana material IS 1727:1967 Methods of test for pozzolana materials. IS 12870:1989 Methods of sampling calcined clay pozzolana. IS 3812(Part 1):2003 Specification for pulverized fuel ash Part 1 For use as pozzolana in cement, cement mortar and concrete IS 3812(Part 2):2003 Specification for pulverized fuel ash Part 2 For use as admixture in cement mortar and concrete IS 6491:1972 Method of sampling fly ash IS 12089:1987 Specification for granulated slag for manufacture of Portland slag cement. Coal IS 1350:1984 (Part-I) Methods of test Proximate analysis IS 1350:1970 (Part-II) Methods of test Calorific value. IS 1350:1969 (Part-III) Methods of test Sulphur analysis IS 1350:1974 (Part-IV) Methods of test Ultimate analysis. IS 1350:1979 (Part-V) Methods of test Special Impurity. Lime stone IS 1760:1991 (Part- I to V) Methods of Chemical Analysis of Limestone. IS 1760 (Part 3):1992 Methods of chemical analysis of limestone, dolomite and alliedmaterials: Part 3 Determination of iron oxide, alumina, calcium oxideand magnesia Gypsum IS 1288:1982 Methods of test mineral gypsum. IS 1289:1960 Methods of sampling mineral gypsum IS 1290:1982 Mineral gypsum. Bag IS11652:1986 High density polyethylene (HDPE) woven sacks for packing cement IS 11653:1986 Polypropylene (PP) woven sacks for packing cement IS 12154:1987 Methods of Light weight jute bags for packing cement IS 12174:1987 Jute synthetic union bags for packing cement IS 2580:1995 Methods of Jute sacking bags for packing cement Sand and Other IS 169:1966Specification for atmospheric condition for testing. (for Physical Test) IS 397:2003 Statistical Quality Control. IS 460:1962Specification for test sieves. IS 650:1991 Specification for standard sand for testing of cement. IS 456:2000 Code of practice plain and reinforced concrete
  • 31. 31 IS 712:1964 Hydrated Limes. IS No. Important Point IS- 4032 *The difference between check determinations by EDTA method shall not exceed 0.2 percent for calcium oxide and magnesia, 0.15, 0.2 percent for silicaand alumina, and 0.1 percent for other constituents. *The maximum acceptable difference in the percentage of each alkali Between the lowest and highest value obtained shall be 0.04. IS- 4031-P1 * Check the sieve after every 100 sieving * EXPRESSION OF RESULTS Report the value of R, to the nearest 0. I percent, as the residue on the 90 pm sieve for the cement tested. The standard deviation of the repeatability is about 0.2 percent and of the reproducibility is about 0.3 percent. IS- 4031-P2 The cement bed volume and the apparatus constant shall be recalibrated with the reference cement: a) after 1 000 tests, b) In the case of using:-another type of manometer fluid, another type of filter paper, anda new manometer tube; and c) at systematic deviations of the secondaryreference cement. IS- 4031-P3 IS- 4031-P4 IS- 4031-P5
  • 32. 32 Bag Testing: Mass 75 Leng th 74 Widt h 48 Stitc hes 14 Ends 40 Picks 40 Effective valve Size (10 x 22) Seepage of Cement Strength in KGF Fabric Seam (Gms ) (Cm) (Cm) Per Dm Per Dm Per Dm (Cm) MAX-100 (Gms/Ba g) Warp Way 87 Warp Elongations % Weft Way 87 Weft Elongations % Top/ Bottom 40 69.0 74.0 48.5 14 39.00 39.0 11.0 22.50 55.0 89.1 21.0 86.1 21.0 42.0 = CaCO3 Maximum = 8.00% + 1.00% Important Note. = In PPC Cement Fly ash use not less than 15% and not more than 35% =In PSC Cement Slag use not less than 25% and not more than 70% = Endothermic reaction occurs in kiln & Pre heater. = Exothermic reaction occurs in bomb calorimeter. = Coal analysis sample size is (pass 212) -212 micron. = 3.14 density of Portland cement. = Di butyl thylate use in manometer (Blain apparatus) due to low density &viscosity, non volatile, non hygroscopic liquid. (Air Permeability test). = In CST, Cube Breaking Speed 35 N/mm2 or 2.9 Kn/s (only For Cube Size 70.5mm) = During the calibration of CST/Balance maintain 27±2 or slandered equipment calibrated temperature, otherwise use factor K= ± 0.027% with obtained value. = Cement Expired as per BIS,in Bag 3 month and in bulk 6 months. (IS-8112) = purity of gypsum = CaSO4/ SO3 = 172/80 = 2.15(factor) = 1.6 ton CO2 generate in 1 ton clinker Production. = 1.8 GJ/t Energy consumed for 1 ton clinker production in 6 stage Pre heater. = Chromic Acid use forwashing glass ware. (10gm K2Cr2O7 + 200 ml H2SO4) K2Cr2O7 + 4 H2SO4 K2SO4+ Cr2(SO4)3+4 H2O + 3O X-ray: = nʎ= 2d sinθ (n= number of wave, ʎ= wave length, d= distance two layer, sinθ= angle of wave) When bombarding of cathode ray on high melting point metal than reflected ray is called X ray. = C3S + H2O CSH + Ca (OH)2 + Fly ash CSH References:-(http://iti.northwestern.edu/cement/monograph/Monograph1_4.html) (http://www.understanding-cement.com/parameters.html) *Cement_Data_Book_Duda_III edition. * IS book 1727,3812,4031,4032,1350. * jaypee cement testing manual. * Taylor cement chemistry. Note: writer not responsible for any mistake.