SlideShare una empresa de Scribd logo
1 de 28
Analysis of Algorithms
Algorithm
Input Output
An algorithm is a step-by-step procedure for
solving a problem in a finite amount of time.
Analysis of Algorithms 2
Running Time (§3.1)
Most algorithms transform
input objects into output
objects.
The running time of an
algorithm typically grows
with the input size.
Average case time is often
difficult to determine.
We focus on the worst case
running time.
 Easier to analyze
 Crucial to applications such as
games, finance and robotics
0
20
40
60
80
100
120
Running
Time
1000 2000 3000 4000
Input Size
best case
average case
worst case
Analysis of Algorithms 3
Experimental Studies (§ 3.1.1)
Write a program
implementing the
algorithm
Run the program with
inputs of varying size and
composition
Use a function, like the
built-in clock() function, to
get an accurate measure
of the actual running time
Plot the results
0
1000
2000
3000
4000
5000
6000
7000
8000
9000
0 50 100
Input Size
Time
(ms)
Analysis of Algorithms 4
Limitations of Experiments
It is necessary to implement the
algorithm, which may be difficult
Results may not be indicative of the
running time on other inputs not included
in the experiment.
In order to compare two algorithms, the
same hardware and software
environments must be used
Analysis of Algorithms 5
Theoretical Analysis
Uses a high-level description of the
algorithm instead of an implementation
Characterizes running time as a
function of the input size, n.
Takes into account all possible inputs
Allows us to evaluate the speed of an
algorithm independent of the
hardware/software environment
Analysis of Algorithms 6
Pseudocode (§3.1.2)
High-level description
of an algorithm
More structured than
English prose
Less detailed than a
program
Preferred notation for
describing algorithms
Hides program design
issues
Algorithm arrayMax(A, n)
Input array A of n integers
Output maximum element of A
currentMax  A[0]
for i  1 to n  1 do
if A[i]  currentMax then
currentMax  A[i]
return currentMax
Example: find max
element of an array
Analysis of Algorithms 7
Pseudocode Details
Control flow
 if … then … [else …]
 while … do …
 repeat … until …
 for … do …
 Indentation replaces braces
Method declaration
Algorithm method (arg [, arg…])
Input …
Output …
Method/Function call
var.method (arg [, arg…])
Return value
return expression
Expressions
Assignment
(like  in C++)
 Equality testing
(like  in C++)
n2 Superscripts and other
mathematical
formatting allowed
Analysis of Algorithms 8
The Random Access Machine
(RAM) Model
A CPU
An potentially unbounded
bank of memory cells,
each of which can hold an
arbitrary number or
character
0
1
2
Memory cells are numbered and accessing
any cell in memory takes unit time.
Analysis of Algorithms 9
Primitive Operations
Basic computations
performed by an algorithm
Identifiable in pseudocode
Largely independent from the
programming language
Exact definition not important
(we will see why later)
Assumed to take a constant
amount of time in the RAM
model
Examples:
 Evaluating an
expression
 Assigning a value
to a variable
 Indexing into an
array
 Calling a method
 Returning from a
method
Analysis of Algorithms 10
Counting Primitive
Operations (§3.4.1)
By inspecting the pseudocode, we can determine the
maximum number of primitive operations executed by
an algorithm, as a function of the input size
Algorithm arrayMax(A, n) # operations
currentMax  A[0] 2
for i  1 to n  1 do 2 + n
if A[i]  currentMax then 2(n  1)
currentMax  A[i] 2(n  1)
{ increment counter i } 2(n  1)
return currentMax 1
Total 7n  1
Analysis of Algorithms 11
Estimating Running Time
Algorithm arrayMax executes 7n  1 primitive
operations in the worst case. Define:
a = Time taken by the fastest primitive operation
b = Time taken by the slowest primitive operation
Let T(n) be worst-case time of arrayMax. Then
a (7n  1)  T(n)  b(7n  1)
Hence, the running time T(n) is bounded by two
linear functions
Analysis of Algorithms 12
Growth Rate of Running Time
Changing the hardware/ software
environment
 Affects T(n) by a constant factor, but
 Does not alter the growth rate of T(n)
The linear growth rate of the running
time T(n) is an intrinsic property of
algorithm arrayMax
Analysis of Algorithms 13
Growth Rates
Growth rates of
functions:
 Linear  n
 Quadratic  n2
 Cubic  n3
In a log-log chart,
the slope of the line
corresponds to the
growth rate of the
function
1E+0
1E+2
1E+4
1E+6
1E+8
1E+10
1E+12
1E+14
1E+16
1E+18
1E+20
1E+22
1E+24
1E+26
1E+28
1E+30
1E+0 1E+2 1E+4 1E+6 1E+8 1E+10
n
T
(n
)
Cubic
Quadratic
Linear
Analysis of Algorithms 14
Constant Factors
The growth rate is
not affected by
 constant factors or
 lower-order terms
Examples
 102n + 105 is a linear
function
 105n2 + 108n is a
quadratic function
1E+0
1E+2
1E+4
1E+6
1E+8
1E+10
1E+12
1E+14
1E+16
1E+18
1E+20
1E+22
1E+24
1E+26
1E+0 1E+2 1E+4 1E+6 1E+8 1E+10
n
T
(n
)
Quadratic
Quadratic
Linear
Linear
Analysis of Algorithms 15
Big-Oh Notation (§3.5)
Given functions f(n) and
g(n), we say that f(n) is
O(g(n)) if there are
positive constants
c and n0 such that
f(n)  cg(n) for n  n0
Example: 2n + 10 is O(n)
 2n + 10  cn
 (c  2) n  10
 n  10/(c  2)
 Pick c  3 and n0  10
1
10
100
1,000
10,000
1 10 100 1,000
n
3n
2n+10
n
Analysis of Algorithms 16
Big-Oh Example
Example: the function
n2 is not O(n)
 n2  cn
 n  c
 The above inequality
cannot be satisfied
since c must be a
constant
1
10
100
1,000
10,000
100,000
1,000,000
1 10 100 1,000
n
n^2
100n
10n
n
Analysis of Algorithms 17
More Big-Oh Examples
7n-2
7n-2 is O(n)
need c > 0 and n0  1 such that 7n-2  c•n for n  n0
this is true for c = 7 and n0 = 1
 3n3 + 20n2 + 5
3n3 + 20n2 + 5 is O(n3)
need c > 0 and n0  1 such that 3n3 + 20n2 + 5  c•n3 for n  n0
this is true for c = 4 and n0 = 21
 3 log n + log log n
3 log n + log log n is O(log n)
need c > 0 and n0  1 such that 3 log n + log log n  c•log n for n  n0
this is true for c = 4 and n0 = 2
Analysis of Algorithms 18
Big-Oh and Growth Rate
The big-Oh notation gives an upper bound on the
growth rate of a function
The statement “f(n) is O(g(n))” means that the growth
rate of f(n) is no more than the growth rate of g(n)
We can use the big-Oh notation to rank functions
according to their growth rate
f(n) is O(g(n)) g(n) is O(f(n))
g(n) grows more Yes No
f(n) grows more No Yes
Same growth Yes Yes
Analysis of Algorithms 19
Big-Oh Rules
If is f(n) a polynomial of degree d, then f(n) is
O(nd), i.e.,
1. Drop lower-order terms
2. Drop constant factors
Use the smallest possible class of functions
 Say “2n is O(n)” instead of “2n is O(n2)”
Use the simplest expression of the class
 Say “3n + 5 is O(n)” instead of “3n + 5 is O(3n)”
Analysis of Algorithms 20
Asymptotic Algorithm Analysis
The asymptotic analysis of an algorithm determines
the running time in big-Oh notation
To perform the asymptotic analysis
 We find the worst-case number of primitive operations
executed as a function of the input size
 We express this function with big-Oh notation
Example:
 We determine that algorithm arrayMax executes at most
7n  1 primitive operations
 We say that algorithm arrayMax “runs in O(n) time”
Since constant factors and lower-order terms are
eventually dropped anyhow, we can disregard them
when counting primitive operations
Analysis of Algorithms 21
Computing Prefix Averages
We further illustrate
asymptotic analysis with
two algorithms for prefix
averages
The i-th prefix average of
an array X is average of the
first (i + 1) elements of X:
A[i]  (X[0] + X[1] + … + X[i])/(i+1)
Computing the array A of
prefix averages of another
array X has applications to
financial analysis
0
5
10
15
20
25
30
35
1 2 3 4 5 6 7
X
A
Analysis of Algorithms 22
Prefix Averages (Quadratic)
The following algorithm computes prefix averages in
quadratic time by applying the definition
Algorithm prefixAverages1(X, n)
Input array X of n integers
Output array A of prefix averages of X #operations
A  new array of n integers n
for i  0 to n  1 do n
s  X[0] n
for j  1 to i do 1 + 2 + …+ (n  1)
s  s + X[j] 1 + 2 + …+ (n  1)
A[i]  s / (i + 1) n
return A 1
Analysis of Algorithms 23
Arithmetic Progression
The running time of
prefixAverages1 is
O(1 + 2 + …+ n)
The sum of the first n
integers is n(n + 1) / 2
 There is a simple visual
proof of this fact
Thus, algorithm
prefixAverages1 runs in
O(n2) time
0
1
2
3
4
5
6
7
1 2 3 4 5 6
Analysis of Algorithms 24
Prefix Averages (Linear)
The following algorithm computes prefix averages in
linear time by keeping a running sum
Algorithm prefixAverages2(X, n)
Input array X of n integers
Output array A of prefix averages of X #operations
A  new array of n integers n
s  0 1
for i  0 to n  1 do n
s  s + X[i] n
A[i]  s / (i + 1) n
return A 1
Algorithm prefixAverages2 runs in O(n) time
Analysis of Algorithms 25
properties of logarithms:
logb(xy) = logbx + logby
logb (x/y) = logbx - logby
logbxa = alogbx
logba = logxa/logxb
properties of exponentials:
a(b+c) = aba c
abc = (ab)c
ab /ac = a(b-c)
b = a log
a
b
bc = a c*log
a
b
Summations (Sec. 1.3.1)
Logarithms and Exponents (Sec. 1.3.2)
Proof techniques (Sec. 1.3.3)
Basic probability (Sec. 1.3.4)
Math you need to Review
Analysis of Algorithms 26
Relatives of Big-Oh
big-Omega
 f(n) is (g(n)) if there is a constant c > 0
and an integer constant n0  1 such that
f(n)  c•g(n) for n  n0
big-Theta
 f(n) is (g(n)) if there are constants c’ > 0 and c’’ > 0 and an
integer constant n0  1 such that c’•g(n)  f(n)  c’’•g(n) for n  n0
little-oh
 f(n) is o(g(n)) if, for any constant c > 0, there is an integer
constant n0  0 such that f(n)  c•g(n) for n  n0
little-omega
 f(n) is (g(n)) if, for any constant c > 0, there is an integer
constant n0  0 such that f(n)  c•g(n) for n  n0
Analysis of Algorithms 27
Intuition for Asymptotic
Notation
Big-Oh
 f(n) is O(g(n)) if f(n) is asymptotically less than or equal to g(n)
big-Omega
 f(n) is (g(n)) if f(n) is asymptotically greater than or equal to g(n)
big-Theta
 f(n) is (g(n)) if f(n) is asymptotically equal to g(n)
little-oh
 f(n) is o(g(n)) if f(n) is asymptotically strictly less than g(n)
little-omega
 f(n) is (g(n)) if is asymptotically strictly greater than g(n)
Analysis of Algorithms 28
Example Uses of the
Relatives of Big-Oh
f(n) is (g(n)) if, for any constant c > 0, there is an integer constant n0 
0 such that f(n)  c•g(n) for n  n0
need 5n0
2  c•n0  given c, the n0 that satisfies this is n0  c/5  0
 5n2 is (n)
f(n) is (g(n)) if there is a constant c > 0 and an integer constant n0  1
such that f(n)  c•g(n) for n  n0
let c = 1 and n0 = 1
 5n2 is (n)
f(n) is (g(n)) if there is a constant c > 0 and an integer constant n0  1
such that f(n)  c•g(n) for n  n0
let c = 5 and n0 = 1
 5n2 is (n2)

Más contenido relacionado

La actualidad más candente

Lecture 5: Asymptotic analysis of algorithms
Lecture 5: Asymptotic analysis of algorithmsLecture 5: Asymptotic analysis of algorithms
Lecture 5: Asymptotic analysis of algorithmsVivek Bhargav
 
Algorithm chapter 2
Algorithm chapter 2Algorithm chapter 2
Algorithm chapter 2chidabdu
 
how to calclute time complexity of algortihm
how to calclute time complexity of algortihmhow to calclute time complexity of algortihm
how to calclute time complexity of algortihmSajid Marwat
 
Lecture 4 asymptotic notations
Lecture 4   asymptotic notationsLecture 4   asymptotic notations
Lecture 4 asymptotic notationsjayavignesh86
 
Algorithm analysis
Algorithm analysisAlgorithm analysis
Algorithm analysissumitbardhan
 
Analysis Of Algorithms I
Analysis Of Algorithms IAnalysis Of Algorithms I
Analysis Of Algorithms ISri Prasanna
 
Ch24 efficient algorithms
Ch24 efficient algorithmsCh24 efficient algorithms
Ch24 efficient algorithmsrajatmay1992
 
Algorithms Lecture 1: Introduction to Algorithms
Algorithms Lecture 1: Introduction to AlgorithmsAlgorithms Lecture 1: Introduction to Algorithms
Algorithms Lecture 1: Introduction to AlgorithmsMohamed Loey
 
Data Structure: Algorithm and analysis
Data Structure: Algorithm and analysisData Structure: Algorithm and analysis
Data Structure: Algorithm and analysisDr. Rajdeep Chatterjee
 
Analysis of algorithn class 2
Analysis of algorithn class 2Analysis of algorithn class 2
Analysis of algorithn class 2Kumar
 
asymptotic analysis and insertion sort analysis
asymptotic analysis and insertion sort analysisasymptotic analysis and insertion sort analysis
asymptotic analysis and insertion sort analysisAnindita Kundu
 
Anlysis and design of algorithms part 1
Anlysis and design of algorithms part 1Anlysis and design of algorithms part 1
Anlysis and design of algorithms part 1Deepak John
 
Asymptotic analysis
Asymptotic analysisAsymptotic analysis
Asymptotic analysisSoujanya V
 
Introduction to Algorithms
Introduction to AlgorithmsIntroduction to Algorithms
Introduction to AlgorithmsVenkatesh Iyer
 
DESIGN AND ANALYSIS OF ALGORITHMS
DESIGN AND ANALYSIS OF ALGORITHMSDESIGN AND ANALYSIS OF ALGORITHMS
DESIGN AND ANALYSIS OF ALGORITHMSGayathri Gaayu
 
Data Structures and Algorithm Analysis
Data Structures  and  Algorithm AnalysisData Structures  and  Algorithm Analysis
Data Structures and Algorithm AnalysisMary Margarat
 
Lecture 3 insertion sort and complexity analysis
Lecture 3   insertion sort and complexity analysisLecture 3   insertion sort and complexity analysis
Lecture 3 insertion sort and complexity analysisjayavignesh86
 

La actualidad más candente (20)

Lecture 5: Asymptotic analysis of algorithms
Lecture 5: Asymptotic analysis of algorithmsLecture 5: Asymptotic analysis of algorithms
Lecture 5: Asymptotic analysis of algorithms
 
Algorithm chapter 2
Algorithm chapter 2Algorithm chapter 2
Algorithm chapter 2
 
how to calclute time complexity of algortihm
how to calclute time complexity of algortihmhow to calclute time complexity of algortihm
how to calclute time complexity of algortihm
 
Lecture 4 asymptotic notations
Lecture 4   asymptotic notationsLecture 4   asymptotic notations
Lecture 4 asymptotic notations
 
Algorithm analysis
Algorithm analysisAlgorithm analysis
Algorithm analysis
 
chapter 1
chapter 1chapter 1
chapter 1
 
Analysis Of Algorithms I
Analysis Of Algorithms IAnalysis Of Algorithms I
Analysis Of Algorithms I
 
Ch24 efficient algorithms
Ch24 efficient algorithmsCh24 efficient algorithms
Ch24 efficient algorithms
 
Algorithms Lecture 1: Introduction to Algorithms
Algorithms Lecture 1: Introduction to AlgorithmsAlgorithms Lecture 1: Introduction to Algorithms
Algorithms Lecture 1: Introduction to Algorithms
 
Data Structure: Algorithm and analysis
Data Structure: Algorithm and analysisData Structure: Algorithm and analysis
Data Structure: Algorithm and analysis
 
Complexity analysis in Algorithms
Complexity analysis in AlgorithmsComplexity analysis in Algorithms
Complexity analysis in Algorithms
 
Asymptotic Notation
Asymptotic NotationAsymptotic Notation
Asymptotic Notation
 
Analysis of algorithn class 2
Analysis of algorithn class 2Analysis of algorithn class 2
Analysis of algorithn class 2
 
asymptotic analysis and insertion sort analysis
asymptotic analysis and insertion sort analysisasymptotic analysis and insertion sort analysis
asymptotic analysis and insertion sort analysis
 
Anlysis and design of algorithms part 1
Anlysis and design of algorithms part 1Anlysis and design of algorithms part 1
Anlysis and design of algorithms part 1
 
Asymptotic analysis
Asymptotic analysisAsymptotic analysis
Asymptotic analysis
 
Introduction to Algorithms
Introduction to AlgorithmsIntroduction to Algorithms
Introduction to Algorithms
 
DESIGN AND ANALYSIS OF ALGORITHMS
DESIGN AND ANALYSIS OF ALGORITHMSDESIGN AND ANALYSIS OF ALGORITHMS
DESIGN AND ANALYSIS OF ALGORITHMS
 
Data Structures and Algorithm Analysis
Data Structures  and  Algorithm AnalysisData Structures  and  Algorithm Analysis
Data Structures and Algorithm Analysis
 
Lecture 3 insertion sort and complexity analysis
Lecture 3   insertion sort and complexity analysisLecture 3   insertion sort and complexity analysis
Lecture 3 insertion sort and complexity analysis
 

Similar a 3 analysis.gtm

Data Structures and Algorithms Lecture 2: Analysis of Algorithms, Asymptotic ...
Data Structures and Algorithms Lecture 2: Analysis of Algorithms, Asymptotic ...Data Structures and Algorithms Lecture 2: Analysis of Algorithms, Asymptotic ...
Data Structures and Algorithms Lecture 2: Analysis of Algorithms, Asymptotic ...TechVision8
 
analysis of algorithms
analysis of algorithmsanalysis of algorithms
analysis of algorithmsMyMovies15
 
DAA-Unit1.pptx
DAA-Unit1.pptxDAA-Unit1.pptx
DAA-Unit1.pptxNishaS88
 
Advanced Datastructures and algorithms CP4151unit1b.pdf
Advanced Datastructures and algorithms CP4151unit1b.pdfAdvanced Datastructures and algorithms CP4151unit1b.pdf
Advanced Datastructures and algorithms CP4151unit1b.pdfSheba41
 
Daa unit 6_efficiency of algorithms
Daa unit 6_efficiency of algorithmsDaa unit 6_efficiency of algorithms
Daa unit 6_efficiency of algorithmssnehajiyani
 
Data Structure & Algorithms - Introduction
Data Structure & Algorithms - IntroductionData Structure & Algorithms - Introduction
Data Structure & Algorithms - Introductionbabuk110
 
Data Structures- Part2 analysis tools
Data Structures- Part2 analysis toolsData Structures- Part2 analysis tools
Data Structures- Part2 analysis toolsAbdullah Al-hazmy
 
CS8451 - Design and Analysis of Algorithms
CS8451 - Design and Analysis of AlgorithmsCS8451 - Design and Analysis of Algorithms
CS8451 - Design and Analysis of AlgorithmsKrishnan MuthuManickam
 
04. Growth_Rate_AND_Asymptotic Notations_.pptx
04. Growth_Rate_AND_Asymptotic Notations_.pptx04. Growth_Rate_AND_Asymptotic Notations_.pptx
04. Growth_Rate_AND_Asymptotic Notations_.pptxarslanzaheer14
 
Computational Complexity.pptx
Computational Complexity.pptxComputational Complexity.pptx
Computational Complexity.pptxEnosSalar
 
Algorithm analysis basics - Seven Functions/Big-Oh/Omega/Theta
Algorithm analysis basics - Seven Functions/Big-Oh/Omega/ThetaAlgorithm analysis basics - Seven Functions/Big-Oh/Omega/Theta
Algorithm analysis basics - Seven Functions/Big-Oh/Omega/ThetaPriyanka Rana
 

Similar a 3 analysis.gtm (20)

Data Structures and Algorithms Lecture 2: Analysis of Algorithms, Asymptotic ...
Data Structures and Algorithms Lecture 2: Analysis of Algorithms, Asymptotic ...Data Structures and Algorithms Lecture 2: Analysis of Algorithms, Asymptotic ...
Data Structures and Algorithms Lecture 2: Analysis of Algorithms, Asymptotic ...
 
Lec7.ppt
Lec7.pptLec7.ppt
Lec7.ppt
 
Lec7.ppt
Lec7.pptLec7.ppt
Lec7.ppt
 
analysis of algorithms
analysis of algorithmsanalysis of algorithms
analysis of algorithms
 
Annotations.pdf
Annotations.pdfAnnotations.pdf
Annotations.pdf
 
Cis435 week01
Cis435 week01Cis435 week01
Cis435 week01
 
Lec1
Lec1Lec1
Lec1
 
DAA-Unit1.pptx
DAA-Unit1.pptxDAA-Unit1.pptx
DAA-Unit1.pptx
 
Advanced Datastructures and algorithms CP4151unit1b.pdf
Advanced Datastructures and algorithms CP4151unit1b.pdfAdvanced Datastructures and algorithms CP4151unit1b.pdf
Advanced Datastructures and algorithms CP4151unit1b.pdf
 
Daa unit 6_efficiency of algorithms
Daa unit 6_efficiency of algorithmsDaa unit 6_efficiency of algorithms
Daa unit 6_efficiency of algorithms
 
Data Structure & Algorithms - Introduction
Data Structure & Algorithms - IntroductionData Structure & Algorithms - Introduction
Data Structure & Algorithms - Introduction
 
Lec1
Lec1Lec1
Lec1
 
Data Structures- Part2 analysis tools
Data Structures- Part2 analysis toolsData Structures- Part2 analysis tools
Data Structures- Part2 analysis tools
 
CS8451 - Design and Analysis of Algorithms
CS8451 - Design and Analysis of AlgorithmsCS8451 - Design and Analysis of Algorithms
CS8451 - Design and Analysis of Algorithms
 
Big Oh.ppt
Big Oh.pptBig Oh.ppt
Big Oh.ppt
 
04. Growth_Rate_AND_Asymptotic Notations_.pptx
04. Growth_Rate_AND_Asymptotic Notations_.pptx04. Growth_Rate_AND_Asymptotic Notations_.pptx
04. Growth_Rate_AND_Asymptotic Notations_.pptx
 
Computational Complexity.pptx
Computational Complexity.pptxComputational Complexity.pptx
Computational Complexity.pptx
 
Unit ii algorithm
Unit   ii algorithmUnit   ii algorithm
Unit ii algorithm
 
Algorithm analysis basics - Seven Functions/Big-Oh/Omega/Theta
Algorithm analysis basics - Seven Functions/Big-Oh/Omega/ThetaAlgorithm analysis basics - Seven Functions/Big-Oh/Omega/Theta
Algorithm analysis basics - Seven Functions/Big-Oh/Omega/Theta
 
Chapter two
Chapter twoChapter two
Chapter two
 

Último

Concrete Mix Design - IS 10262-2019 - .pptx
Concrete Mix Design - IS 10262-2019 - .pptxConcrete Mix Design - IS 10262-2019 - .pptx
Concrete Mix Design - IS 10262-2019 - .pptxKartikeyaDwivedi3
 
Electronically Controlled suspensions system .pdf
Electronically Controlled suspensions system .pdfElectronically Controlled suspensions system .pdf
Electronically Controlled suspensions system .pdfme23b1001
 
computer application and construction management
computer application and construction managementcomputer application and construction management
computer application and construction managementMariconPadriquez1
 
CCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdf
CCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdfCCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdf
CCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdfAsst.prof M.Gokilavani
 
An experimental study in using natural admixture as an alternative for chemic...
An experimental study in using natural admixture as an alternative for chemic...An experimental study in using natural admixture as an alternative for chemic...
An experimental study in using natural admixture as an alternative for chemic...Chandu841456
 
Instrumentation, measurement and control of bio process parameters ( Temperat...
Instrumentation, measurement and control of bio process parameters ( Temperat...Instrumentation, measurement and control of bio process parameters ( Temperat...
Instrumentation, measurement and control of bio process parameters ( Temperat...121011101441
 
Why does (not) Kafka need fsync: Eliminating tail latency spikes caused by fsync
Why does (not) Kafka need fsync: Eliminating tail latency spikes caused by fsyncWhy does (not) Kafka need fsync: Eliminating tail latency spikes caused by fsync
Why does (not) Kafka need fsync: Eliminating tail latency spikes caused by fsyncssuser2ae721
 
Heart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptxHeart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptxPoojaBan
 
Work Experience-Dalton Park.pptxfvvvvvvv
Work Experience-Dalton Park.pptxfvvvvvvvWork Experience-Dalton Park.pptxfvvvvvvv
Work Experience-Dalton Park.pptxfvvvvvvvLewisJB
 
Application of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptxApplication of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptx959SahilShah
 
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETEINFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETEroselinkalist12
 
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdfCCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdfAsst.prof M.Gokilavani
 
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdfCCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdfAsst.prof M.Gokilavani
 
IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024Mark Billinghurst
 
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort serviceGurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort servicejennyeacort
 
Arduino_CSE ece ppt for working and principal of arduino.ppt
Arduino_CSE ece ppt for working and principal of arduino.pptArduino_CSE ece ppt for working and principal of arduino.ppt
Arduino_CSE ece ppt for working and principal of arduino.pptSAURABHKUMAR892774
 
Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...VICTOR MAESTRE RAMIREZ
 
Risk Assessment For Installation of Drainage Pipes.pdf
Risk Assessment For Installation of Drainage Pipes.pdfRisk Assessment For Installation of Drainage Pipes.pdf
Risk Assessment For Installation of Drainage Pipes.pdfROCENODodongVILLACER
 

Último (20)

Concrete Mix Design - IS 10262-2019 - .pptx
Concrete Mix Design - IS 10262-2019 - .pptxConcrete Mix Design - IS 10262-2019 - .pptx
Concrete Mix Design - IS 10262-2019 - .pptx
 
Electronically Controlled suspensions system .pdf
Electronically Controlled suspensions system .pdfElectronically Controlled suspensions system .pdf
Electronically Controlled suspensions system .pdf
 
computer application and construction management
computer application and construction managementcomputer application and construction management
computer application and construction management
 
Design and analysis of solar grass cutter.pdf
Design and analysis of solar grass cutter.pdfDesign and analysis of solar grass cutter.pdf
Design and analysis of solar grass cutter.pdf
 
CCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdf
CCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdfCCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdf
CCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdf
 
An experimental study in using natural admixture as an alternative for chemic...
An experimental study in using natural admixture as an alternative for chemic...An experimental study in using natural admixture as an alternative for chemic...
An experimental study in using natural admixture as an alternative for chemic...
 
Instrumentation, measurement and control of bio process parameters ( Temperat...
Instrumentation, measurement and control of bio process parameters ( Temperat...Instrumentation, measurement and control of bio process parameters ( Temperat...
Instrumentation, measurement and control of bio process parameters ( Temperat...
 
POWER SYSTEMS-1 Complete notes examples
POWER SYSTEMS-1 Complete notes  examplesPOWER SYSTEMS-1 Complete notes  examples
POWER SYSTEMS-1 Complete notes examples
 
Why does (not) Kafka need fsync: Eliminating tail latency spikes caused by fsync
Why does (not) Kafka need fsync: Eliminating tail latency spikes caused by fsyncWhy does (not) Kafka need fsync: Eliminating tail latency spikes caused by fsync
Why does (not) Kafka need fsync: Eliminating tail latency spikes caused by fsync
 
Heart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptxHeart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptx
 
Work Experience-Dalton Park.pptxfvvvvvvv
Work Experience-Dalton Park.pptxfvvvvvvvWork Experience-Dalton Park.pptxfvvvvvvv
Work Experience-Dalton Park.pptxfvvvvvvv
 
Application of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptxApplication of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptx
 
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETEINFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
 
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdfCCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
 
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdfCCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
 
IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024
 
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort serviceGurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
 
Arduino_CSE ece ppt for working and principal of arduino.ppt
Arduino_CSE ece ppt for working and principal of arduino.pptArduino_CSE ece ppt for working and principal of arduino.ppt
Arduino_CSE ece ppt for working and principal of arduino.ppt
 
Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...
 
Risk Assessment For Installation of Drainage Pipes.pdf
Risk Assessment For Installation of Drainage Pipes.pdfRisk Assessment For Installation of Drainage Pipes.pdf
Risk Assessment For Installation of Drainage Pipes.pdf
 

3 analysis.gtm

  • 1. Analysis of Algorithms Algorithm Input Output An algorithm is a step-by-step procedure for solving a problem in a finite amount of time.
  • 2. Analysis of Algorithms 2 Running Time (§3.1) Most algorithms transform input objects into output objects. The running time of an algorithm typically grows with the input size. Average case time is often difficult to determine. We focus on the worst case running time.  Easier to analyze  Crucial to applications such as games, finance and robotics 0 20 40 60 80 100 120 Running Time 1000 2000 3000 4000 Input Size best case average case worst case
  • 3. Analysis of Algorithms 3 Experimental Studies (§ 3.1.1) Write a program implementing the algorithm Run the program with inputs of varying size and composition Use a function, like the built-in clock() function, to get an accurate measure of the actual running time Plot the results 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 0 50 100 Input Size Time (ms)
  • 4. Analysis of Algorithms 4 Limitations of Experiments It is necessary to implement the algorithm, which may be difficult Results may not be indicative of the running time on other inputs not included in the experiment. In order to compare two algorithms, the same hardware and software environments must be used
  • 5. Analysis of Algorithms 5 Theoretical Analysis Uses a high-level description of the algorithm instead of an implementation Characterizes running time as a function of the input size, n. Takes into account all possible inputs Allows us to evaluate the speed of an algorithm independent of the hardware/software environment
  • 6. Analysis of Algorithms 6 Pseudocode (§3.1.2) High-level description of an algorithm More structured than English prose Less detailed than a program Preferred notation for describing algorithms Hides program design issues Algorithm arrayMax(A, n) Input array A of n integers Output maximum element of A currentMax  A[0] for i  1 to n  1 do if A[i]  currentMax then currentMax  A[i] return currentMax Example: find max element of an array
  • 7. Analysis of Algorithms 7 Pseudocode Details Control flow  if … then … [else …]  while … do …  repeat … until …  for … do …  Indentation replaces braces Method declaration Algorithm method (arg [, arg…]) Input … Output … Method/Function call var.method (arg [, arg…]) Return value return expression Expressions Assignment (like  in C++)  Equality testing (like  in C++) n2 Superscripts and other mathematical formatting allowed
  • 8. Analysis of Algorithms 8 The Random Access Machine (RAM) Model A CPU An potentially unbounded bank of memory cells, each of which can hold an arbitrary number or character 0 1 2 Memory cells are numbered and accessing any cell in memory takes unit time.
  • 9. Analysis of Algorithms 9 Primitive Operations Basic computations performed by an algorithm Identifiable in pseudocode Largely independent from the programming language Exact definition not important (we will see why later) Assumed to take a constant amount of time in the RAM model Examples:  Evaluating an expression  Assigning a value to a variable  Indexing into an array  Calling a method  Returning from a method
  • 10. Analysis of Algorithms 10 Counting Primitive Operations (§3.4.1) By inspecting the pseudocode, we can determine the maximum number of primitive operations executed by an algorithm, as a function of the input size Algorithm arrayMax(A, n) # operations currentMax  A[0] 2 for i  1 to n  1 do 2 + n if A[i]  currentMax then 2(n  1) currentMax  A[i] 2(n  1) { increment counter i } 2(n  1) return currentMax 1 Total 7n  1
  • 11. Analysis of Algorithms 11 Estimating Running Time Algorithm arrayMax executes 7n  1 primitive operations in the worst case. Define: a = Time taken by the fastest primitive operation b = Time taken by the slowest primitive operation Let T(n) be worst-case time of arrayMax. Then a (7n  1)  T(n)  b(7n  1) Hence, the running time T(n) is bounded by two linear functions
  • 12. Analysis of Algorithms 12 Growth Rate of Running Time Changing the hardware/ software environment  Affects T(n) by a constant factor, but  Does not alter the growth rate of T(n) The linear growth rate of the running time T(n) is an intrinsic property of algorithm arrayMax
  • 13. Analysis of Algorithms 13 Growth Rates Growth rates of functions:  Linear  n  Quadratic  n2  Cubic  n3 In a log-log chart, the slope of the line corresponds to the growth rate of the function 1E+0 1E+2 1E+4 1E+6 1E+8 1E+10 1E+12 1E+14 1E+16 1E+18 1E+20 1E+22 1E+24 1E+26 1E+28 1E+30 1E+0 1E+2 1E+4 1E+6 1E+8 1E+10 n T (n ) Cubic Quadratic Linear
  • 14. Analysis of Algorithms 14 Constant Factors The growth rate is not affected by  constant factors or  lower-order terms Examples  102n + 105 is a linear function  105n2 + 108n is a quadratic function 1E+0 1E+2 1E+4 1E+6 1E+8 1E+10 1E+12 1E+14 1E+16 1E+18 1E+20 1E+22 1E+24 1E+26 1E+0 1E+2 1E+4 1E+6 1E+8 1E+10 n T (n ) Quadratic Quadratic Linear Linear
  • 15. Analysis of Algorithms 15 Big-Oh Notation (§3.5) Given functions f(n) and g(n), we say that f(n) is O(g(n)) if there are positive constants c and n0 such that f(n)  cg(n) for n  n0 Example: 2n + 10 is O(n)  2n + 10  cn  (c  2) n  10  n  10/(c  2)  Pick c  3 and n0  10 1 10 100 1,000 10,000 1 10 100 1,000 n 3n 2n+10 n
  • 16. Analysis of Algorithms 16 Big-Oh Example Example: the function n2 is not O(n)  n2  cn  n  c  The above inequality cannot be satisfied since c must be a constant 1 10 100 1,000 10,000 100,000 1,000,000 1 10 100 1,000 n n^2 100n 10n n
  • 17. Analysis of Algorithms 17 More Big-Oh Examples 7n-2 7n-2 is O(n) need c > 0 and n0  1 such that 7n-2  c•n for n  n0 this is true for c = 7 and n0 = 1  3n3 + 20n2 + 5 3n3 + 20n2 + 5 is O(n3) need c > 0 and n0  1 such that 3n3 + 20n2 + 5  c•n3 for n  n0 this is true for c = 4 and n0 = 21  3 log n + log log n 3 log n + log log n is O(log n) need c > 0 and n0  1 such that 3 log n + log log n  c•log n for n  n0 this is true for c = 4 and n0 = 2
  • 18. Analysis of Algorithms 18 Big-Oh and Growth Rate The big-Oh notation gives an upper bound on the growth rate of a function The statement “f(n) is O(g(n))” means that the growth rate of f(n) is no more than the growth rate of g(n) We can use the big-Oh notation to rank functions according to their growth rate f(n) is O(g(n)) g(n) is O(f(n)) g(n) grows more Yes No f(n) grows more No Yes Same growth Yes Yes
  • 19. Analysis of Algorithms 19 Big-Oh Rules If is f(n) a polynomial of degree d, then f(n) is O(nd), i.e., 1. Drop lower-order terms 2. Drop constant factors Use the smallest possible class of functions  Say “2n is O(n)” instead of “2n is O(n2)” Use the simplest expression of the class  Say “3n + 5 is O(n)” instead of “3n + 5 is O(3n)”
  • 20. Analysis of Algorithms 20 Asymptotic Algorithm Analysis The asymptotic analysis of an algorithm determines the running time in big-Oh notation To perform the asymptotic analysis  We find the worst-case number of primitive operations executed as a function of the input size  We express this function with big-Oh notation Example:  We determine that algorithm arrayMax executes at most 7n  1 primitive operations  We say that algorithm arrayMax “runs in O(n) time” Since constant factors and lower-order terms are eventually dropped anyhow, we can disregard them when counting primitive operations
  • 21. Analysis of Algorithms 21 Computing Prefix Averages We further illustrate asymptotic analysis with two algorithms for prefix averages The i-th prefix average of an array X is average of the first (i + 1) elements of X: A[i]  (X[0] + X[1] + … + X[i])/(i+1) Computing the array A of prefix averages of another array X has applications to financial analysis 0 5 10 15 20 25 30 35 1 2 3 4 5 6 7 X A
  • 22. Analysis of Algorithms 22 Prefix Averages (Quadratic) The following algorithm computes prefix averages in quadratic time by applying the definition Algorithm prefixAverages1(X, n) Input array X of n integers Output array A of prefix averages of X #operations A  new array of n integers n for i  0 to n  1 do n s  X[0] n for j  1 to i do 1 + 2 + …+ (n  1) s  s + X[j] 1 + 2 + …+ (n  1) A[i]  s / (i + 1) n return A 1
  • 23. Analysis of Algorithms 23 Arithmetic Progression The running time of prefixAverages1 is O(1 + 2 + …+ n) The sum of the first n integers is n(n + 1) / 2  There is a simple visual proof of this fact Thus, algorithm prefixAverages1 runs in O(n2) time 0 1 2 3 4 5 6 7 1 2 3 4 5 6
  • 24. Analysis of Algorithms 24 Prefix Averages (Linear) The following algorithm computes prefix averages in linear time by keeping a running sum Algorithm prefixAverages2(X, n) Input array X of n integers Output array A of prefix averages of X #operations A  new array of n integers n s  0 1 for i  0 to n  1 do n s  s + X[i] n A[i]  s / (i + 1) n return A 1 Algorithm prefixAverages2 runs in O(n) time
  • 25. Analysis of Algorithms 25 properties of logarithms: logb(xy) = logbx + logby logb (x/y) = logbx - logby logbxa = alogbx logba = logxa/logxb properties of exponentials: a(b+c) = aba c abc = (ab)c ab /ac = a(b-c) b = a log a b bc = a c*log a b Summations (Sec. 1.3.1) Logarithms and Exponents (Sec. 1.3.2) Proof techniques (Sec. 1.3.3) Basic probability (Sec. 1.3.4) Math you need to Review
  • 26. Analysis of Algorithms 26 Relatives of Big-Oh big-Omega  f(n) is (g(n)) if there is a constant c > 0 and an integer constant n0  1 such that f(n)  c•g(n) for n  n0 big-Theta  f(n) is (g(n)) if there are constants c’ > 0 and c’’ > 0 and an integer constant n0  1 such that c’•g(n)  f(n)  c’’•g(n) for n  n0 little-oh  f(n) is o(g(n)) if, for any constant c > 0, there is an integer constant n0  0 such that f(n)  c•g(n) for n  n0 little-omega  f(n) is (g(n)) if, for any constant c > 0, there is an integer constant n0  0 such that f(n)  c•g(n) for n  n0
  • 27. Analysis of Algorithms 27 Intuition for Asymptotic Notation Big-Oh  f(n) is O(g(n)) if f(n) is asymptotically less than or equal to g(n) big-Omega  f(n) is (g(n)) if f(n) is asymptotically greater than or equal to g(n) big-Theta  f(n) is (g(n)) if f(n) is asymptotically equal to g(n) little-oh  f(n) is o(g(n)) if f(n) is asymptotically strictly less than g(n) little-omega  f(n) is (g(n)) if is asymptotically strictly greater than g(n)
  • 28. Analysis of Algorithms 28 Example Uses of the Relatives of Big-Oh f(n) is (g(n)) if, for any constant c > 0, there is an integer constant n0  0 such that f(n)  c•g(n) for n  n0 need 5n0 2  c•n0  given c, the n0 that satisfies this is n0  c/5  0  5n2 is (n) f(n) is (g(n)) if there is a constant c > 0 and an integer constant n0  1 such that f(n)  c•g(n) for n  n0 let c = 1 and n0 = 1  5n2 is (n) f(n) is (g(n)) if there is a constant c > 0 and an integer constant n0  1 such that f(n)  c•g(n) for n  n0 let c = 5 and n0 = 1  5n2 is (n2)