SlideShare una empresa de Scribd logo
1 de 82
Descargar para leer sin conexión
1
Introduction
Generative
Adversarial Networks
Yunjey Choi
Korea University
DAVIAN LAB
2
Speaker Introduction Introduction
B.S. in Computer Science & Engineering at Korea University
M.S. Student in Computer Science & Engineering at Korea University (Current)
Interest: Deep Learning,TensorFlow, PyTorch
GitHub Link: https://github.com/yunjey
3
Referenced Slides Introduction
• Namju Kim. Generative Adversarial Networks (GAN)
https://www.slideshare.net/ssuser77ee21/generative-adversarial-networks-70896091
• Taehoon Kim. 지적 대화를 위한 깊고 넓은 딥러닝
https://www.slideshare.net/carpedm20/ss-63116251
Introduction
01
5
Branches of ML Introduction
Semi-supervised
Learning Unsupervised
Learning
Supervised
Learning
Reinforcement
Learning
Machine Learning
No labeled data
No feedback
“find hidden structure”
Labeled data
Direct feedback
No labeled data
Delayed feedback
Reward signal
6
Supervised Learning Introduction
Discriminative
Model woman
The discriminative model learns how to classify input to its class.
man
(1)
(1)
(2)
(2)
Input image
(64x64x3)
7
Unsupervised Learning Introduction
Generative
Model
Latent
code
The generative model learns the distribution of training data.
(100)
Image
(64x64x3)
8
Generative Model
𝑋 1 2 3 4 5 6
𝑃 𝑋
1
6
1
6
1
6
0
6
1
6
2
6
1 2 3 4 5 6
1
6
2
6
𝑝 𝑥
𝑥
Probability Distribution Introduction
Random variable
Probability Basics (Review)
Probability mass function
9
Generative Model
What if 𝑥 is actual images in the training data?
At this point, 𝑥 can be represented as a (for example) 64x64x3 dimensional vector.
Probability Distribution Introduction
10
Generative Model
𝑥
𝑝 𝑑𝑎𝑡𝑎(𝑥)
Probability Distribution Introduction
There is a 𝑝 𝑑𝑎𝑡𝑎(𝑥) that represents the distribution of actual images.
Probability density function
11
Generative Model
𝑥
𝑝 𝑑𝑎𝑡𝑎(𝑥)
Probability Distribution Introduction
Let’s take an example with human face image dataset.
Our dataset may contain few images of men with glasses.
𝑥1 𝑥2 𝑥3 𝑥4
𝑥1 is a 64x64x3 high dimensional vector
representing a man with glasses.
The probability
density value is low
The probability
density value is high
12
Generative Model
𝑥
𝑝 𝑑𝑎𝑡𝑎(𝑥)
Probability Distribution Introduction
Our dataset may contain many images of women with black hair.
𝑥1 𝑥2 𝑥3 𝑥4
𝑥2 is a 64x64x3 high dimensional vector
representing a woman with black hair.
13
Generative Model
𝑥
𝑝 𝑑𝑎𝑡𝑎(𝑥)
Probability Distribution Introduction
Our dataset may contain very many images of women with blonde hair.
𝑥1 𝑥2 𝑥3 𝑥4
𝑥3 is a 64x64x3 high dimensional vector
representing a woman with blonde hair.
The probability
density value is
very high
14
Generative Model
𝑥
𝑝 𝑑𝑎𝑡𝑎(𝑥)
Probability Distribution Introduction
Our dataset may not contain these strange images.
𝑥1 𝑥2 𝑥3 𝑥4
𝑥4 is an 64x64x3 high dimensional vector
representing very strange images.
The probability
density value is
almost 0
15
Generative Model
𝑥
Probability Distribution Introduction
The goal of the generative model is to find a 𝑝 𝑚𝑜𝑑𝑒𝑙(𝑥) that
approximates 𝑝 𝑑𝑎𝑡𝑎(𝑥) well.
𝑥1 𝑥2 𝑥3 𝑥4
𝑝 𝑚𝑜𝑑𝑒𝑙(𝑥)
𝑝 𝑑𝑎𝑡𝑎(𝑥)
𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑜𝑓 𝑎𝑐𝑡𝑢𝑎𝑙 𝑖𝑚𝑎𝑔𝑒𝑠
𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑜𝑓 𝑖𝑚𝑎𝑔𝑒𝑠 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 𝑏𝑦 𝑡ℎ𝑒 𝑚𝑜𝑑𝑒𝑙
Generative Adversarial
Networks
02
17
Intuition in GAN GANs
G(z)
DGz D(G(z))
D D(x)
x
Fake image
Real image
The probability of that
x came from the real data
(0~1)Discriminator
Generator
Latent Code
May be high
May be low
Training with real images
Training with fake images
18
Intuition in GAN GANs
G(z)
DGz D(G(z))
D D(x)
x
Real image
(64x64x3)
This value should
be close to 1.Discriminator
(Neural Network)
The discriminator should classify
a real image as real.
19
Intuition in GAN GANs
G(z)
Dz D(G(z))
D D(x)
x
Fake image generated by the generator
(64x64x3)
Generator
This value should
be close to 0.
The discriminator should classify
a fake image as fake.
20
Intuition in GAN GANs
G(z)
DGz D(G(z))
D D(x)
x
Generated image
(64x64x3)
Generator
(Neural Network)
Latent Code
(100)
This value should
be close to 1.
The generator should create an image
that is indistinguishable from real to
deceive the discriminator
𝑚𝑖𝑛 𝑚𝑎𝑥 𝑉 𝐷, 𝐺 = 𝐸 𝑥~𝑝 𝑑𝑎𝑡𝑎(𝑥) log 𝐷 𝑥 + 𝐸𝑧~𝑝 𝑧(𝑧) log(1 − 𝐷(𝐺(𝑧)))
21
Objective Function of GAN GANs
G(z)
DGz D(G(z))
D D(x)
x
𝐺 𝐷
Training with real images
Training with fake images
Maximum when 𝐷(𝑥) = 1 Maximum when 𝐷(𝐺(𝑧)) = 0
Sample 𝑥 from real data distribution Sample latent code 𝑧 from Gaussian distribution
Train D to classify fake images as fake
Train D to classify real images as real
𝐷 should maximize 𝑉(𝐷, 𝐺)
Objective function
𝑚𝑖𝑛 𝑚𝑎𝑥 𝑉 𝐷, 𝐺 = 𝐸 𝑥~𝑝 𝑑𝑎𝑡𝑎(𝑥) log 𝐷 𝑥 + 𝐸𝑧~𝑝 𝑧(𝑧) log(1 − 𝐷(𝐺(𝑧)))
𝐺 is independent of this part
22
Objective Function of GAN GANs
𝐺 should minimize 𝑉(𝐷, 𝐺) Minimum when 𝐷(𝐺(𝑧)) = 1
G(z)
DGz D(G(z))
D D(x)
x
Train G to deceive D
𝐺 𝐷
Training with real images
Training with fake images
Objective function
23
PyTorch Implementation GANs
G(z) DGz D(G(z))
D D(x)x
Training with real images
Training with fake images
Define the discriminator
input size: 784
hidden size: 128
output size: 1
24
PyTorch Implementation GANs
G(z) DGz D(G(z))
D D(x)x
Discriminator
Assume x is MNIST (784 dimension)
Output probability(1 dimension)
25
PyTorch Implementation GANs
G(z) DGz D(G(z))
D D(x)x
Generator
Define the generator
input size: 100
hidden size: 128
output size: 784
Latent code (100 dimension) Generated image (784 dimension)
26
PyTorch Implementation GANs
G(z) DGz D(G(z))
D D(x)x
Binary Cross Entropy Loss (ℎ(𝑥), 𝑦)
− 𝑦 log ℎ 𝑥 − (1 − 𝑦) log(1 − ℎ(𝑥))
27
PyTorch Implementation GANs
G(z) DGz D(G(z))
D D(x)x
Optimizer for D and G
28
PyTorch Implementation GANs
G(z) DGz D(G(z))
D D(x)x
x is a tensor of shape (batch_size, 784).
z is a tensor of shape (batch_size, 100).
29
PyTorch Implementation GANs
G(z) DGz D(G(z))
D D(x)x
D(x) gets closer to 1.
D(G(z)) gets closer to 0
Forward, Backward and Gradient Descent
Train the discriminator
with real images
Train the discriminator
with fake images
30
PyTorch Implementation GANs
G(z) DGz D(G(z))
D D(x)x
Forward, Backward and Gradient Descent
D(G(z)) gets closer to 1
Train the generator
to deceive the discriminator
31
PyTorch Implementation GANs
G(z) DGz D(G(z))
D D(x)x
The complete code can be found here
https://github.com/yunjey/pytorch-tutorial
32
Objective Function of Generator
𝐺
Objective function of G
Non-Saturating Game GANs
Images created by the generator
at the beginning of training
𝑦 = log(1 − 𝑥)
The gradient is relatively small at D(G(z))=0
At the beginning of training, the discriminator can clearly classify the
generated image as fake because the quality of the image is very low.
This means that D(G(z)) is almost zero at early stages of training.
𝑚𝑖𝑛 𝐸𝑧~𝑝 𝑧(𝑧) log(1 − 𝐷(𝐺 𝑧 )
33
Solution for Poor Gradient
𝐺
𝑚𝑎𝑥 𝐸𝑧~𝑝 𝑧(𝑧) log 𝐷(𝐺 𝑧 )
𝐺
𝑚𝑖𝑛 𝐸𝑧~𝑝 𝑧(𝑧) log(1 − 𝐷(𝐺 𝑧 )
Non-Saturating Game GANs
𝑦 = log(𝑥)
The gradient is very large at D(G(z))=0
Use binary cross entropy loss function with fake label (1)
𝑚𝑖𝑛 𝐸𝑧~𝑝 𝑧(𝑧)[−𝑦 log 𝐷(𝐺 𝑧 ) − 1 − 𝑦 log(1 − 𝐷(𝐺 𝑧 )]
𝑚𝑖𝑛 𝐸𝑧~𝑝 𝑧(𝑧)[− log 𝐷 𝐺 𝑧 ]
𝐺
𝐺
𝑦 = 1
Modification (heuristically motivated)
• Practical Usage
34
Theory in GAN GANs
𝐸 𝑥~𝑝 𝑑𝑎𝑡𝑎(𝑥) log 𝐷 𝑥 + 𝐸𝑧~𝑝 𝑧(𝑧) log(1 − 𝐷(𝐺 𝑧 )
𝑚𝑖𝑛 𝐽𝑆𝐷(𝑝 𝑑𝑎𝑡𝑎||𝑝 𝑔)
𝐺, 𝐷
𝑚𝑖𝑛 𝑚𝑎𝑥 𝑉 𝐷, 𝐺
𝐺 𝐷
𝑥
𝑝 𝑔(𝑥)
𝑝 𝑑𝑎𝑡𝑎(𝑥)
𝐽𝑆𝐷(𝑃||𝑄) =
1
2
𝐾𝐿(𝑃| 𝑀 +
1
2
𝐾𝐿(𝑄| 𝑀
𝑤ℎ𝑒𝑟𝑒 𝑀 =
1
2
(𝑃 + 𝑄) KL Divergence
• Why does GANs work?
same
Please see Appendix for details
Because it actually minimizes the distance between the real data distribution and the model distribution.
Objective function of GANs Jenson-Shannon divergence
Variants of GAN
03
36
DCGAN Variants of
GAN
Radford et al. Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks, 2015
• Deep Convolutional GAN(DCGAN), 2015
The authors present a model that is still highly preferred.
37
DCGAN Variants of
GAN
DGz D(G(z))
D D(x)
x
Use convolution, Leaky ReLU
Use deconvolution, ReLU
• No pooling layer (Instead strided convolution)
• Use batch normalization
• Adam optimizer(lr=0.0002, beta1=0.5, beta2=0.999)
38
DCGAN Variants of
GAN
Radford et al. Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks, 2015
• Latent vector arithmetic
39
LSGAN Variants of
GAN
Xudong Mao et al. Least Squares Generative Adversarial Networks, 2016
• Least Squares GAN (LSGAN)
Proposed a GAN model that adopts the least squares loss function for the discriminator.
40
LSGAN Variants of
GAN
Vanilla GAN LSGAN
Remove sigmoid
non-linearity
in last layer
41
LSGAN Variants of
GAN
Vanilla GAN LSGAN
Generator is the
same as original
42
LSGAN Variants of
GAN
Vanilla GAN LSGAN
Replace cross entropy loss
to least squares loss (L2)
D(x) gets closer to 1
D(G(z)) gets closer to 0
(same as original)
43
LSGAN Variants of
GAN
Vanilla GAN LSGAN
Replace cross entropy loss
to least squares loss (L2)
D(G(z)) gets closer to 1
(same as original)
44
LSGAN Variants of
GAN
• Results (LSUN dataset)
Xudong Mao et al. Least Squares Generative Adversarial Networks, 2016
45
LSGAN Variants of
GAN
• Results (CelebA)
46
SGAN Variants of
GAN
D
G D
one-hot vector representing 2
Real image
latent vector z
fake image
(1) FC layer with softmax
• Semi-Supervised GAN
Training with real images
Training with fake images
11 dimension
(10 classes + fake)
(1)
(1)
one-hot vector representing a fake label
one-hot vector representing 5
Augustus Odena et al. Semi-Supervised Learning with Generative Adversarial Netwoks, 2016
47
SGAN Variants of
GAN
• Results (Game Character)
1 2 3 4 5
The generator can create an character image that takes a certain pose.
one-hot vectors
representing class labels
The code will be available soon: https://github.com/yunjey
48
ACGAN Variants of
GAN
Augustus Odena et al. Conditional Image Synthesis with Auxilary Classifier, 2016
• Auxiliary Classifier GAN(ACGAN), 2016
Proposed a new method for improved training of GANs using class labels.
49
ACGAN Variants of
GAN
real or fake?
D
G
real or fake?
D
one-hot vector representing 2
Real image
one-hot vector representing 5
latent vector z
fake image
one-hot vector representing 2
(1) FC layer with sigmoid
(2) FC layer with softmax
(1)
(2)
Discriminator
(multi-task learning)
(1)
(2)
• How does it work?
Training with real images
Training with fake images
Extensions of GAN
04
51
CycleGAN Extensions
• CycleGAN: Unpaired Image-to-Image Translation
presents a GAN model that transfer an image from a source domain A to a target
domain B in the absence of paired examples.
Jun-Yan Zhu et al. Unpaired Image-to-Image Translation using Cycle Consistent Adversarial Networks, 2017
52
CycleGAN
• How does it work?
real or fake ? DB
GAB
Real Image in domain A Fake Image in domain B
Real Image in domain B
Discriminator for domain B
The generator GAB should generates a horse
from the zebra to deceive the discriminator DB.
Extensions
53
CycleGAN
• How does it work?
DB
GAB
Discriminator for domain B
GBA
Reconstructed Image
L2 Loss
GBA generates a reconstructed image of domain A.
This makes the shape to be maintained
when GAB generates a horse image from the zebra.real or fake ?
Real Image in domain A
Real Image in domain B
Fake Image in domain B
Extensions
54
CycleGAN Extensions
• Results
Jun-Yan Zhu et al. Unpaired Image-to-Image Translation using Cycle Consistent Adversarial Networks, 2017
55
CycleGAN Extensions
• Results
MNIST-to-SVHNSVHN-to-MNIST
Odd columns contain real images and even columns contain generated images.
https://github.com/yunjey/mnist-svhn-transfer
56
StackGAN
Han Zhang et al. StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks, 2016
• StackGAN:Text to Photo-realistic Image Synthesis
Extensions
57
StackGAN
Fake image
(128x128)
Real image
(128x128)
D
G
Z
(100)
‘real’
or
‘fake’
Generates a128x128 image from scratch (not guarantee good result)
Discriminator for 128x128 image
• Generating 128x128 from scratch
Extensions
58
StackGAN Extensions
D1 D2
G1 G2
Fake image
(64x64)
Real image
(64x64)
Fake image
(128x128)
Real image
(128x128)
‘real’
or
‘fake’
Generates a 64x64 image
Upscales a 64x64 image to 128x128 (Easier than generating from scratch).
Discriminator for 64x64 image Discriminator for 128x128 image
• Generating 128x128 from 64x64
‘real’
or
‘fake’
Z
(100)
59
Latest Work
Jing Liao et al. Visual Attribute Transfer through Deep Image Analogy, 2017
Extensions
• Visual Attribute Transfer
60
Latest Work
Richard Zhang et al. Real-Time User-Guided Image Colorization with Learned Deep Prioirs, 2017
Extensions
• User-Interactive Image Colorization
Future of GAN
05
62
Convergence Measure
• Boundary Equilibrium GAN (BEGAN)
Extensions
David Berthelot et al. BEGAN: Boundary Equilibrium Generative Adversarial Networks, 2017
63
Convergence Measure
• Reconstruction Loss
Extensions
Sitao Xiang. On the effect of Batch Normalization and Weight Normalization in Generative Adversarial Network, 2017
Gz
G(z) x
Test images
64
Better Upsampling
• Deconvolution Checkboard Artifacts
Extensions
http://distill.pub/2016/deconv-checkerboard/
65
Better Upsampling
• Deconvolution vs Resize-Convolution
Extensions
http://distill.pub/2016/deconv-checkerboard/
66
GAN in Supervised Learning
• Machine Translation (Seq2Seq)
Extensions
A B C D
Y
X Y Z<start>
Z <end>X
Should ‘ABCD’ be translated to ‘XYZ’?
Tackling the supervised learning
67
GAN in Supervised Learning
• Machine Translation (GANs)
Extensions
D
G
D
Training with real sentences
Training with fake sentences
A
(English)
B
(Korean)
Does A and B have the same meaning?
The discriminator should say ‘yes’.
Does A and B have the same meaning?
The discriminator should say ‘no’.
A
(English)
B
(Fake Korean)
Lijun Wu et al. Adversarial Neural Machine Translation, 2017
The generator should generate B
that has the same meaning as
A to deceive the discriminator.
Thank you
Appendix
06
70
𝑚𝑖𝑛 𝑚𝑎𝑥 𝑉 𝐷, 𝐺 = 𝐸 𝑥~𝑝 𝑑𝑎𝑡𝑎(𝑥) log 𝐷 𝑥 + 𝐸𝑧~𝑝 𝑧(𝑧) log(1 − 𝐷(𝐺 𝑧 )
𝐺 𝐷
Theory in GAN GANs
𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝐺𝐴𝑁𝑠 𝑟𝑒𝑎𝑙 𝑑𝑎𝑡𝑎 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛
ℎ𝑖𝑔ℎ 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑎𝑙 𝑣𝑒𝑐𝑡𝑜𝑟 (𝑒. 𝑔. 64 × 64) l𝑜𝑤 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑎𝑙 𝑣𝑒𝑐𝑡𝑜𝑟 (𝑒. 𝑔. 100)
71
𝑚𝑖𝑛 𝑚𝑎𝑥 𝑉 𝐷, 𝐺 = 𝐸 𝑥~𝑝 𝑑𝑎𝑡𝑎(𝑥) log 𝐷 𝑥 + 𝐸𝑧~𝑝 𝑧(𝑧) log(1 − 𝐷(𝐺 𝑧 )
𝐺 𝐷
Theory in GAN GANs
𝐷∗(𝑥) = 𝑎𝑟𝑔 𝑚𝑎𝑥 𝑉 𝐷 = 𝐸 𝑥~𝑝 𝑑𝑎𝑡𝑎(𝑥) log 𝐷 𝑥 + 𝐸𝑧~𝑝 𝑧(𝑧) log(1 − 𝐷(𝐺 𝑧 )
𝐹𝑖𝑥 𝐺 𝑡𝑜 𝑚𝑎𝑘𝑒 𝑖𝑡 𝑡𝑜 𝑎 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝐷
𝑂𝑝𝑡𝑖𝑚𝑎𝑙 𝐷
𝐷
𝐺𝑒𝑡 𝐷 𝑤ℎ𝑒𝑛 𝑉 𝐷 𝑖𝑠 𝑚𝑎𝑥𝑖𝑚𝑢𝑚
72
𝑚𝑖𝑛 𝑚𝑎𝑥 𝑉 𝐷, 𝐺 = 𝐸 𝑥~𝑝 𝑑𝑎𝑡𝑎(𝑥) log 𝐷 𝑥 + 𝐸𝑧~𝑝 𝑧(𝑧) log(1 − 𝐷(𝐺 𝑧 )
𝐺 𝐷
Theory in GAN GANs
𝐷∗(𝑥) = 𝑎𝑟𝑔 𝑚𝑎𝑥 𝑉 𝐷 = 𝐸 𝑥~𝑝 𝑑𝑎𝑡𝑎(𝑥) log 𝐷 𝑥 + 𝐸𝑧~𝑝 𝑧(𝑧) log(1 − 𝐷(𝐺 𝑧 )
= 𝐸 𝑥~𝑝 𝑑𝑎𝑡𝑎(𝑥) log 𝐷 𝑥 + 𝐸 𝑥~𝑝 𝑔(𝑥) log(1 − 𝐷(𝑥))
𝐹𝑖𝑥 𝐺 𝑡𝑜 𝑚𝑎𝑘𝑒 𝑖𝑡 𝑡𝑜 𝑎 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝐷
𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝑥 𝑓𝑟𝑜𝑚 𝑝 𝑔
𝑖𝑛𝑠𝑡𝑒𝑎𝑑 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝑧 𝑓𝑟𝑜𝑚 𝑝𝑧
𝑣𝑒𝑐𝑡𝑜𝑟 𝑜𝑓 64 × 64 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛
𝑣𝑒𝑐𝑡𝑜𝑟 𝑜𝑓 100 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛
𝑚𝑜𝑑𝑒𝑙 𝐺 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 ℎ𝑖𝑔ℎ 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑎𝑙 𝑣𝑒𝑐𝑡𝑜𝑟 (𝑒. 𝑔. 64 × 64)
𝐷
73
𝑚𝑖𝑛 𝑚𝑎𝑥 𝑉 𝐷, 𝐺 = 𝐸 𝑥~𝑝 𝑑𝑎𝑡𝑎(𝑥) log 𝐷 𝑥 + 𝐸𝑧~𝑝 𝑧(𝑧) log(1 − 𝐷(𝐺 𝑧 )
𝐺 𝐷
Theory in GAN GANs
𝐷∗(𝑥) = 𝑎𝑟𝑔 𝑚𝑎𝑥 𝑉 𝐷 = 𝐸 𝑥~𝑝 𝑑𝑎𝑡𝑎(𝑥) log 𝐷 𝑥 + 𝐸𝑧~𝑝 𝑧(𝑧) log(1 − 𝐷(𝐺 𝑧 )
= 𝐸 𝑥~𝑝 𝑑𝑎𝑡𝑎(𝑥) log 𝐷 𝑥 + 𝐸 𝑥~𝑝 𝑔(𝑥) log(1 − 𝐷(𝑥))
= න 𝑝 𝑑𝑎𝑡𝑎 𝑥 log 𝐷(𝑥) 𝑑𝑥 + න 𝑝 𝑔 𝑥 log 1 − 𝐷 𝑥 𝑑𝑥
𝑥 𝑥
𝐹𝑖𝑥 𝐺 𝑡𝑜 𝑚𝑎𝑘𝑒 𝑖𝑡 𝑡𝑜 𝑎 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝐷
𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝑥 𝑓𝑟𝑜𝑚 𝑝 𝑔
𝑖𝑛𝑠𝑡𝑒𝑎𝑑 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝑧 𝑓𝑟𝑜𝑚 𝑝𝑧
= න 𝑝 𝑥 𝑓 𝑥 𝑑𝑥𝐸 𝑥~𝑝(𝑥) 𝑓(𝑥)
𝐷𝑒𝑓𝑖𝑛𝑖𝑡𝑖𝑜𝑛 𝑜𝑓 𝐸𝑥𝑝𝑒𝑐𝑡𝑎𝑡𝑖𝑜𝑛
𝑥
𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑒 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑥
𝐷
74
𝑚𝑖𝑛 𝑚𝑎𝑥 𝑉 𝐷, 𝐺 = 𝐸 𝑥~𝑝 𝑑𝑎𝑡𝑎(𝑥) log 𝐷 𝑥 + 𝐸𝑧~𝑝 𝑧(𝑧) log(1 − 𝐷(𝐺 𝑧 )
𝐺 𝐷
Theory in GAN GANs
𝐷∗(𝑥) = 𝑎𝑟𝑔 𝑚𝑎𝑥 𝑉 𝐷 = 𝐸 𝑥~𝑝 𝑑𝑎𝑡𝑎(𝑥) log 𝐷 𝑥 + 𝐸𝑧~𝑝 𝑧(𝑧) log(1 − 𝐷(𝐺 𝑧 )
= 𝐸 𝑥~𝑝 𝑑𝑎𝑡𝑎(𝑥) log 𝐷 𝑥 + 𝐸 𝑥~𝑝 𝑔(𝑥) log(1 − 𝐷(𝑥))
= න 𝑝 𝑑𝑎𝑡𝑎 𝑥 log 𝐷(𝑥) 𝑑𝑥 + න 𝑝 𝑔 𝑥 log 1 − 𝐷 𝑥 𝑑𝑥
= න 𝑝 𝑑𝑎𝑡𝑎 𝑥 log 𝐷 𝑥 + 𝑝 𝑔 𝑥 log 1 − 𝐷 𝑥 𝑑𝑥
𝑥
𝑥 𝑥
𝐹𝑖𝑥 𝐺 𝑡𝑜 𝑚𝑎𝑘𝑒 𝑖𝑡 𝑡𝑜 𝑎 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝐷
𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝑥 𝑓𝑟𝑜𝑚 𝑝 𝑔
𝑖𝑛𝑠𝑡𝑒𝑎𝑑 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝑧 𝑓𝑟𝑜𝑚 𝑝𝑧
= න 𝑝 𝑥 𝑓 𝑥 𝑑𝑥𝐸 𝑥~𝑝(𝑥) 𝑓(𝑥)
𝐷𝑒𝑓𝑖𝑛𝑖𝑡𝑖𝑜𝑛 𝑜𝑓 𝐸𝑥𝑝𝑒𝑐𝑡𝑎𝑡𝑖𝑜𝑛
𝑥
𝐵𝑎𝑠𝑖𝑐 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦 𝑜𝑓 𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑙
𝐷
75
𝑚𝑖𝑛 𝑚𝑎𝑥 𝑉 𝐷, 𝐺 = 𝐸 𝑥~𝑝 𝑑𝑎𝑡𝑎(𝑥) log 𝐷 𝑥 + 𝐸𝑧~𝑝 𝑧(𝑧) log(1 − 𝐷(𝐺 𝑧 )
𝐺 𝐷
Theory in GAN GANs
𝐷∗(𝑥) = 𝑎𝑟𝑔 𝑚𝑎𝑥 𝑉 𝐷 = 𝐸 𝑥~𝑝 𝑑𝑎𝑡𝑎(𝑥) log 𝐷 𝑥 + 𝐸𝑧~𝑝 𝑧(𝑧) log(1 − 𝐷(𝐺 𝑧 )
= 𝐸 𝑥~𝑝 𝑑𝑎𝑡𝑎(𝑥) log 𝐷 𝑥 + 𝐸 𝑥~𝑝 𝑔(𝑥) log(1 − 𝐷(𝑥))
= න 𝑝 𝑑𝑎𝑡𝑎 𝑥 log 𝐷(𝑥) 𝑑𝑥 + න 𝑝 𝑔 𝑥 log 1 − 𝐷 𝑥 𝑑𝑥
= න 𝑝 𝑑𝑎𝑡𝑎 𝑥 log 𝐷 𝑥 + 𝑝 𝑔 𝑥 log 1 − 𝐷 𝑥 𝑑𝑥
𝑥
𝑥 𝑥
𝐹𝑖𝑥 𝐺 𝑡𝑜 𝑚𝑎𝑘𝑒 𝑖𝑡 𝑡𝑜 𝑎 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝐷
𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝑥 𝑓𝑟𝑜𝑚 𝑝 𝑔
𝑖𝑛𝑠𝑡𝑒𝑎𝑑 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝑧 𝑓𝑟𝑜𝑚 𝑝𝑧
= න 𝑝 𝑥 𝑓 𝑥 𝑑𝑥𝐸 𝑥~𝑝(𝑥) 𝑓(𝑥)
𝐷𝑒𝑓𝑖𝑛𝑖𝑡𝑖𝑜𝑛 𝑜𝑓 𝐸𝑥𝑝𝑒𝑐𝑡𝑎𝑡𝑖𝑜𝑛
𝑥
𝐵𝑎𝑠𝑖𝑐 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦 𝑜𝑓 𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑙
𝑁𝑜𝑤 𝑤𝑒 𝑛𝑒𝑒𝑑 𝑡𝑜 𝑓𝑖𝑛𝑑 𝐷 𝑥 𝑤ℎ𝑖𝑐ℎ 𝑚𝑎𝑘𝑒𝑠 𝑡ℎ𝑒 𝑓𝑢𝑛𝑡𝑖𝑜𝑛 𝑖𝑛𝑠𝑖𝑑𝑒 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑙 𝑚𝑎𝑥𝑖𝑚𝑢𝑚.
𝐷
76
Theoretical Results
= 𝑎𝑟𝑔 𝑚𝑎𝑥 𝑝 𝑑𝑎𝑡𝑎 𝑥 log 𝐷 𝑥 + 𝑝 𝑔 𝑥 log 1 − 𝐷 𝑥
Theory in GAN GANs
𝐷∗(𝑥) = 𝑎𝑟𝑔 𝑚𝑎𝑥 𝑉 𝐷
𝐷
𝐷
𝑇ℎ𝑒 𝑓𝑢𝑛𝑡𝑖𝑜𝑛 𝑖𝑛𝑠𝑖𝑑𝑒 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑙
77
Theoretical Results
= 𝑎𝑟𝑔 𝑚𝑎𝑥 𝑝 𝑑𝑎𝑡𝑎 𝑥 log 𝐷 𝑥 + 𝑝 𝑔 𝑥 log 1 − 𝐷 𝑥
Theory in GAN GANs
𝐷∗(𝑥) = 𝑎𝑟𝑔 𝑚𝑎𝑥 𝑉 𝐷
𝐷
𝐷
𝑎 log 𝑦 + 𝑏 log 1 − 𝑦
𝑆𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑒 𝑎 = 𝑝 𝑑𝑎𝑡𝑎 𝑥 , 𝑦 = 𝐷 𝑥 , 𝑏 = 𝑝 𝑔 𝑥
78
Theoretical Results
= 𝑎𝑟𝑔 𝑚𝑎𝑥 𝑝 𝑑𝑎𝑡𝑎 𝑥 log 𝐷 𝑥 + 𝑝 𝑔 𝑥 log 1 − 𝐷 𝑥
Theory in GAN GANs
𝐷∗(𝑥) = 𝑎𝑟𝑔 𝑚𝑎𝑥 𝑉 𝐷
𝐷
𝐷
𝑎 log 𝑦 + 𝑏 log 1 − 𝑦
𝑎
𝑦
+
−𝑏
1 − 𝑦
=
𝑎 − (𝑎 + 𝑏)𝑦
𝑦(1 − 𝑦)
𝑆𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑒 𝑎 = 𝑝 𝑑𝑎𝑡𝑎 𝑥 , 𝑦 = 𝐷 𝑥 , 𝑏 = 𝑝 𝑔 𝑥
𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝑖𝑎𝑡𝑒 𝑤𝑖𝑡ℎ 𝑟𝑒𝑠𝑝𝑒𝑐𝑡 𝑡𝑜 𝐷 𝑥 𝑢𝑠𝑖𝑛𝑔
𝑁𝑜𝑡𝑒 𝑡ℎ𝑎𝑡 𝐷 𝑥 𝑐𝑎𝑛 𝑛𝑜𝑡 𝑎𝑓𝑓𝑒𝑐𝑡 𝑡𝑜 𝑝 𝑑𝑎𝑡𝑎 𝑥 𝑎𝑛𝑑 𝑝 𝑔 𝑥 .
𝑑
𝑑𝑥
log 𝑓(𝑥) =
𝑓′
(𝑥)
𝑓(𝑥)
79
Theoretical Results
= 𝑎𝑟𝑔 𝑚𝑎𝑥 𝑝 𝑑𝑎𝑡𝑎 𝑥 log 𝐷 𝑥 + 𝑝 𝑔 𝑥 log 1 − 𝐷 𝑥
Theory in GAN GANs
𝐷∗(𝑥) = 𝑎𝑟𝑔 𝑚𝑎𝑥 𝑉 𝐷
𝐷
𝐷
𝑎 log 𝑦 + 𝑏 log 1 − 𝑦
𝑎
𝑦
+
−𝑏
1 − 𝑦
𝑎 − (𝑎 + 𝑏)𝑦
𝑦(1 − 𝑦)
= 0
𝑦 =
𝑎
𝑎 + 𝑏
=
𝑎 − (𝑎 + 𝑏)𝑦
𝑦(1 − 𝑦)
𝑆𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑒 𝑎 = 𝑝 𝑑𝑎𝑡𝑎 𝑥 , 𝑦 = 𝐷 𝑥 , 𝑏 = 𝑝 𝑔 𝑥
𝑁𝑜𝑡𝑒 𝑡ℎ𝑎𝑡 𝐷 𝑥 𝑐𝑎𝑛 𝑛𝑜𝑡 𝑎𝑓𝑓𝑒𝑐𝑡 𝑡𝑜 𝑝 𝑑𝑎𝑡𝑎 𝑥 𝑎𝑛𝑑 𝑝 𝑔 𝑥 .
𝐼𝑡 ℎ𝑎𝑠 𝑎 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑣𝑎𝑙𝑢𝑒 𝑤ℎ𝑒𝑛
𝑁𝑜𝑡𝑒 𝑡ℎ𝑎𝑡 𝑡ℎ𝑒 𝑙𝑜𝑐𝑎𝑙 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑖𝑠 𝑡ℎ𝑒 𝑔𝑙𝑜𝑏𝑎𝑙 𝑚𝑎𝑥𝑖𝑚𝑢𝑚
𝑤ℎ𝑒𝑛 𝑡ℎ𝑒𝑟𝑒 𝑎𝑟𝑒 𝑛𝑜 𝑜𝑡ℎ𝑒𝑟 𝑙𝑜𝑐𝑎𝑙 𝑒𝑥𝑡𝑟𝑒𝑚𝑒𝑠.
𝑑
𝑑𝑥
log 𝑓(𝑥) =
𝑓′
(𝑥)
𝑓(𝑥)
𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝑖𝑎𝑡𝑒 𝑤𝑖𝑡ℎ 𝑟𝑒𝑠𝑝𝑒𝑐𝑡 𝑡𝑜 𝐷 𝑥 𝑢𝑠𝑖𝑛𝑔
𝐹𝑖𝑛𝑑 𝑡ℎ𝑒 𝑝𝑜𝑖𝑛𝑡 𝑤ℎ𝑒𝑟𝑒 𝑡ℎ𝑒 𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒 𝑣𝑎𝑙𝑢𝑒 𝑖𝑠 0 𝑙𝑜𝑐𝑎𝑙 𝑒𝑥𝑡𝑟𝑒𝑚𝑒 .
80
Theoretical Results
= 𝑎𝑟𝑔 𝑚𝑎𝑥 𝑝 𝑑𝑎𝑡𝑎 𝑥 log 𝐷 𝑥 + 𝑝 𝑔 𝑥 log 1 − 𝐷 𝑥
Theory in GAN GANs
𝐷∗(𝑥) = 𝑎𝑟𝑔 𝑚𝑎𝑥 𝑉 𝐷
𝐷
𝐷
𝑎 log 𝑦 + 𝑏 log 1 − 𝑦
𝑎
𝑦
+
−𝑏
1 − 𝑦
𝑎 − (𝑎 + 𝑏)𝑦
𝑦(1 − 𝑦)
= 0
𝑦 =
𝑎
𝑎 + 𝑏
=
𝑎 − (𝑎 + 𝑏)𝑦
𝑦(1 − 𝑦)
𝑆𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑒 𝑎 = 𝑝 𝑑𝑎𝑡𝑎 𝑥 , 𝑦 = 𝐷 𝑥 , 𝑏 = 𝑝 𝑔 𝑥
𝑁𝑜𝑡𝑒 𝑡ℎ𝑎𝑡 𝐷 𝑥 𝑐𝑎𝑛 𝑛𝑜𝑡 𝑎𝑓𝑓𝑒𝑐𝑡 𝑡𝑜 𝑝 𝑑𝑎𝑡𝑎 𝑥 𝑎𝑛𝑑 𝑝 𝑔 𝑥 .
𝐼𝑡 ℎ𝑎𝑠 𝑎 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑣𝑎𝑙𝑢𝑒 𝑤ℎ𝑒𝑛
𝑑
𝑑𝑥
log 𝑓(𝑥) =
𝑓′
(𝑥)
𝑓(𝑥)
𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝑖𝑎𝑡𝑒 𝑤𝑖𝑡ℎ 𝑟𝑒𝑠𝑝𝑒𝑐𝑡 𝑡𝑜 𝐷 𝑥 𝑢𝑠𝑖𝑛𝑔
𝐹𝑖𝑛𝑑 𝑡ℎ𝑒 𝑝𝑜𝑖𝑛𝑡 𝑤ℎ𝑒𝑟𝑒 𝑡ℎ𝑒 𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒 𝑣𝑎𝑙𝑢𝑒 𝑖𝑠 0 𝑙𝑜𝑐𝑎𝑙 𝑒𝑥𝑡𝑟𝑒𝑚𝑒 .
𝐷∗ 𝑥 =
𝑝 𝑑𝑎𝑡𝑎(𝑥)
𝑝 𝑑𝑎𝑡𝑎(𝑥) + 𝑝 𝑔(𝑥)
𝑆𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑒 𝑎 = 𝑝 𝑑𝑎𝑡𝑎 𝑥 , 𝑦 = 𝐷 𝑥 , 𝑏 = 𝑝 𝑔 𝑥
81
Theory in GAN GANs
= 𝐸 𝑥~𝑝 𝑑𝑎𝑡𝑎
log 𝐷∗
𝑥 + 𝐸 𝑥~𝑝 𝑔
log(1 − 𝐷∗
(𝑥))
= න 𝑝 𝑑𝑎𝑡𝑎 𝑥 log
𝑝 𝑑𝑎𝑡𝑎(𝑥)
𝑝 𝑑𝑎𝑡𝑎(𝑥) + 𝑝 𝑔(𝑥)
𝑑𝑥 + න 𝑝 𝑔 𝑥 log
𝑝 𝑔(𝑥)
𝑝 𝑑𝑎𝑡𝑎(𝑥) + 𝑝 𝑔(𝑥)
𝑑𝑥
= −𝑙𝑜𝑔4 + 𝑙𝑜𝑔4 + න 𝑝 𝑑𝑎𝑡𝑎 𝑥 log
𝑝 𝑑𝑎𝑡𝑎(𝑥)
𝑝 𝑑𝑎𝑡𝑎(𝑥) + 𝑝 𝑔(𝑥)
𝑑𝑥 + න 𝑝 𝑔 𝑥 log
𝑝 𝑔(𝑥)
𝑝 𝑑𝑎𝑡𝑎(𝑥) + 𝑝 𝑔(𝑥)
𝑑𝑥
= −𝑙𝑜𝑔4 + න 𝑝 𝑑𝑎𝑡𝑎 𝑥 log
2 ∙ 𝑝 𝑑𝑎𝑡𝑎(𝑥)
𝑝 𝑑𝑎𝑡𝑎(𝑥) + 𝑝 𝑔(𝑥)
𝑑𝑥 + න 𝑝 𝑔 𝑥 log
2 ∙ 𝑝 𝑔(𝑥)
𝑝 𝑑𝑎𝑡𝑎(𝑥) + 𝑝 𝑔(𝑥)
𝑑𝑥
= −𝑙𝑜𝑔4 + 𝐾𝐿(𝑝 𝑑𝑎𝑡𝑎||
𝑝 𝑑𝑎𝑡𝑎 + 𝑝 𝑔
2
) + 𝐾𝐿(𝑝 𝑔||
𝑝 𝑑𝑎𝑡𝑎 + 𝑝 𝑔
2
)
= −𝑙𝑜𝑔4 + 2 ∙ 𝐽𝑆𝐷(𝑝 𝑑𝑎𝑡𝑎||𝑝 𝑔)
𝑥 𝑥
𝑥 𝑥
𝑥𝑥
𝑚𝑖𝑛 𝑚𝑎𝑥 𝑉 𝐷, 𝐺 =
𝐺 𝐷
𝑚𝑖𝑛 𝑉 𝐷∗, 𝐺
𝐺
𝑉 𝐷∗, 𝐺
82
Theory in GAN GANs
= 𝐸 𝑥~𝑝 𝑑𝑎𝑡𝑎
log 𝐷∗
𝑥 + 𝐸 𝑥~𝑝 𝑔
log(1 − 𝐷∗
(𝑥))
= න 𝑝 𝑑𝑎𝑡𝑎 𝑥 log
𝑝 𝑑𝑎𝑡𝑎(𝑥)
𝑝 𝑑𝑎𝑡𝑎(𝑥) + 𝑝 𝑔(𝑥)
𝑑𝑥 + න 𝑝 𝑔 𝑥 log
𝑝 𝑔(𝑥)
𝑝 𝑑𝑎𝑡𝑎(𝑥) + 𝑝 𝑔(𝑥)
𝑑𝑥
= −𝑙𝑜𝑔4 + 𝑙𝑜𝑔4 + න 𝑝 𝑑𝑎𝑡𝑎 𝑥 log
𝑝 𝑑𝑎𝑡𝑎(𝑥)
𝑝 𝑑𝑎𝑡𝑎(𝑥) + 𝑝 𝑔(𝑥)
𝑑𝑥 + න 𝑝 𝑔 𝑥 log
𝑝 𝑔(𝑥)
𝑝 𝑑𝑎𝑡𝑎(𝑥) + 𝑝 𝑔(𝑥)
𝑑𝑥
= −𝑙𝑜𝑔4 + න 𝑝 𝑑𝑎𝑡𝑎 𝑥 log
2 ∙ 𝑝 𝑑𝑎𝑡𝑎(𝑥)
𝑝 𝑑𝑎𝑡𝑎(𝑥) + 𝑝 𝑔(𝑥)
𝑑𝑥 + න 𝑝 𝑔 𝑥 log
2 ∙ 𝑝 𝑔(𝑥)
𝑝 𝑑𝑎𝑡𝑎(𝑥) + 𝑝 𝑔(𝑥)
𝑑𝑥
= −𝑙𝑜𝑔4 + 𝐾𝐿(𝑝 𝑑𝑎𝑡𝑎||
𝑝 𝑑𝑎𝑡𝑎 + 𝑝 𝑔
2
) + 𝐾𝐿(𝑝 𝑔||
𝑝 𝑑𝑎𝑡𝑎 + 𝑝 𝑔
2
)
= −𝑙𝑜𝑔4 + 2 ∙ 𝐽𝑆𝐷(𝑝 𝑑𝑎𝑡𝑎||𝑝 𝑔)
𝑥 𝑥
𝑥 𝑥
𝑥𝑥
𝑚𝑖𝑛 𝑚𝑎𝑥 𝑉 𝐷, 𝐺 =
𝐺 𝐷
𝑚𝑖𝑛 𝑉 𝐷∗, 𝐺
𝐺
𝑉 𝐷∗, 𝐺
𝐺 𝑠ℎ𝑜𝑢𝑙𝑑 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒
𝐺 𝑠ℎ𝑜𝑢𝑙𝑑 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒
𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑖𝑛𝑔 𝑉 𝐷, 𝐺 𝑖𝑠 𝑠𝑎𝑚𝑒 𝑎𝑠 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑖𝑛𝑔 𝐽𝑆𝐷(𝑝 𝑑𝑎𝑡𝑎||𝑝 𝑔)
𝑂𝑝𝑡𝑖𝑚𝑎𝑙 𝐷

Más contenido relacionado

La actualidad más candente

La actualidad más candente (20)

GAN - Theory and Applications
GAN - Theory and ApplicationsGAN - Theory and Applications
GAN - Theory and Applications
 
PR-409: Denoising Diffusion Probabilistic Models
PR-409: Denoising Diffusion Probabilistic ModelsPR-409: Denoising Diffusion Probabilistic Models
PR-409: Denoising Diffusion Probabilistic Models
 
Feature Engineering
Feature EngineeringFeature Engineering
Feature Engineering
 
[기초개념] Graph Convolutional Network (GCN)
[기초개념] Graph Convolutional Network (GCN)[기초개념] Graph Convolutional Network (GCN)
[기초개념] Graph Convolutional Network (GCN)
 
Image-to-Image Translation
Image-to-Image TranslationImage-to-Image Translation
Image-to-Image Translation
 
Applying deep learning to medical data
Applying deep learning to medical dataApplying deep learning to medical data
Applying deep learning to medical data
 
Faster R-CNN: Towards real-time object detection with region proposal network...
Faster R-CNN: Towards real-time object detection with region proposal network...Faster R-CNN: Towards real-time object detection with region proposal network...
Faster R-CNN: Towards real-time object detection with region proposal network...
 
지적 대화를 위한 깊고 넓은 딥러닝 PyCon APAC 2016
지적 대화를 위한 깊고 넓은 딥러닝 PyCon APAC 2016지적 대화를 위한 깊고 넓은 딥러닝 PyCon APAC 2016
지적 대화를 위한 깊고 넓은 딥러닝 PyCon APAC 2016
 
[PR12] You Only Look Once (YOLO): Unified Real-Time Object Detection
[PR12] You Only Look Once (YOLO): Unified Real-Time Object Detection[PR12] You Only Look Once (YOLO): Unified Real-Time Object Detection
[PR12] You Only Look Once (YOLO): Unified Real-Time Object Detection
 
DeepLab V3+: Encoder-Decoder with Atrous Separable Convolution for Semantic I...
DeepLab V3+: Encoder-Decoder with Atrous Separable Convolution for Semantic I...DeepLab V3+: Encoder-Decoder with Atrous Separable Convolution for Semantic I...
DeepLab V3+: Encoder-Decoder with Atrous Separable Convolution for Semantic I...
 
Generative Adversarial Networks and Their Medical Imaging Applications
Generative Adversarial Networks and Their Medical Imaging ApplicationsGenerative Adversarial Networks and Their Medical Imaging Applications
Generative Adversarial Networks and Their Medical Imaging Applications
 
Simple Introduction to AutoEncoder
Simple Introduction to AutoEncoderSimple Introduction to AutoEncoder
Simple Introduction to AutoEncoder
 
Generative adversarial networks
Generative adversarial networksGenerative adversarial networks
Generative adversarial networks
 
Gan 발표자료
Gan 발표자료Gan 발표자료
Gan 발표자료
 
Variational Autoencoder
Variational AutoencoderVariational Autoencoder
Variational Autoencoder
 
Pixel RNN to Pixel CNN++
Pixel RNN to Pixel CNN++Pixel RNN to Pixel CNN++
Pixel RNN to Pixel CNN++
 
YOLOv4: optimal speed and accuracy of object detection review
YOLOv4: optimal speed and accuracy of object detection reviewYOLOv4: optimal speed and accuracy of object detection review
YOLOv4: optimal speed and accuracy of object detection review
 
U-Net (1).pptx
U-Net (1).pptxU-Net (1).pptx
U-Net (1).pptx
 
텐서플로우로 배우는 딥러닝
텐서플로우로 배우는 딥러닝텐서플로우로 배우는 딥러닝
텐서플로우로 배우는 딥러닝
 
그림 그리는 AI
그림 그리는 AI그림 그리는 AI
그림 그리는 AI
 

Destacado

Environmental impact assessment
Environmental impact assessmentEnvironmental impact assessment
Environmental impact assessment
Sayyid Ina
 
Environmental impact assessment m5
Environmental impact assessment m5Environmental impact assessment m5
Environmental impact assessment m5
Bibhabasu Mohanty
 
Environmental impact assessment concept
Environmental impact assessment conceptEnvironmental impact assessment concept
Environmental impact assessment concept
Intan Ayuna
 
Imelda Winters Presentation Environmental Impact Assessment
Imelda Winters Presentation Environmental Impact AssessmentImelda Winters Presentation Environmental Impact Assessment
Imelda Winters Presentation Environmental Impact Assessment
Imelda Winters
 

Destacado (20)

Environmental impact assessment
Environmental impact assessmentEnvironmental impact assessment
Environmental impact assessment
 
Summarization of Environmental Impact Assessment Methodology by Dr. I.M. Mis...
Summarization of Environmental Impact  Assessment Methodology by Dr. I.M. Mis...Summarization of Environmental Impact  Assessment Methodology by Dr. I.M. Mis...
Summarization of Environmental Impact Assessment Methodology by Dr. I.M. Mis...
 
Environmental impact assessment methodology by Dr. I.M. Mishra Professor, Dep...
Environmental impact assessment methodology by Dr. I.M. Mishra Professor, Dep...Environmental impact assessment methodology by Dr. I.M. Mishra Professor, Dep...
Environmental impact assessment methodology by Dr. I.M. Mishra Professor, Dep...
 
Eia - environmental impact assessment
Eia - environmental impact assessmentEia - environmental impact assessment
Eia - environmental impact assessment
 
PyTorch Tutorial for NTU Machine Learing Course 2017
PyTorch Tutorial for NTU Machine Learing Course 2017PyTorch Tutorial for NTU Machine Learing Course 2017
PyTorch Tutorial for NTU Machine Learing Course 2017
 
Developing Guidelines for Public Participation on Environmental Impact Assess...
Developing Guidelines for Public Participation on Environmental Impact Assess...Developing Guidelines for Public Participation on Environmental Impact Assess...
Developing Guidelines for Public Participation on Environmental Impact Assess...
 
Environmental Impact Assessment in Water Resources Projects
Environmental Impact Assessment in Water Resources ProjectsEnvironmental Impact Assessment in Water Resources Projects
Environmental Impact Assessment in Water Resources Projects
 
Methods of eia(environmental impact assessment)
Methods of eia(environmental impact assessment)Methods of eia(environmental impact assessment)
Methods of eia(environmental impact assessment)
 
Environmental impact assessment m5
Environmental impact assessment m5Environmental impact assessment m5
Environmental impact assessment m5
 
Deep Learning with PyTorch
Deep Learning with PyTorchDeep Learning with PyTorch
Deep Learning with PyTorch
 
Environmental impact assessment methodology
Environmental impact assessment methodologyEnvironmental impact assessment methodology
Environmental impact assessment methodology
 
Environmental Impact Assessment - University of Winnipeg
Environmental Impact Assessment - University of WinnipegEnvironmental Impact Assessment - University of Winnipeg
Environmental Impact Assessment - University of Winnipeg
 
Environmental impact assessment concept
Environmental impact assessment conceptEnvironmental impact assessment concept
Environmental impact assessment concept
 
Environmental impact assessment and life cycle assessment and their role in s...
Environmental impact assessment and life cycle assessment and their role in s...Environmental impact assessment and life cycle assessment and their role in s...
Environmental impact assessment and life cycle assessment and their role in s...
 
Environmental impact assessment
Environmental impact assessmentEnvironmental impact assessment
Environmental impact assessment
 
Planning and environmental impact assessment (EIA)
Planning and environmental impact assessment (EIA)Planning and environmental impact assessment (EIA)
Planning and environmental impact assessment (EIA)
 
Environmental impact assessment
Environmental impact assessmentEnvironmental impact assessment
Environmental impact assessment
 
Environmental impact assessment
Environmental impact assessmentEnvironmental impact assessment
Environmental impact assessment
 
Imelda Winters Presentation Environmental Impact Assessment
Imelda Winters Presentation Environmental Impact AssessmentImelda Winters Presentation Environmental Impact Assessment
Imelda Winters Presentation Environmental Impact Assessment
 
ENVIRONMENTAL IMPACT ASSESSMENT - EIA
ENVIRONMENTAL IMPACT ASSESSMENT - EIAENVIRONMENTAL IMPACT ASSESSMENT - EIA
ENVIRONMENTAL IMPACT ASSESSMENT - EIA
 

Similar a 1시간만에 GAN(Generative Adversarial Network) 완전 정복하기

Similar a 1시간만에 GAN(Generative Adversarial Network) 완전 정복하기 (20)

A Walk in the GAN Zoo
A Walk in the GAN ZooA Walk in the GAN Zoo
A Walk in the GAN Zoo
 
Recent Progress on Utilizing Tag Information with GANs - StarGAN & TD-GAN
Recent Progress on Utilizing Tag Information with GANs - StarGAN & TD-GANRecent Progress on Utilizing Tag Information with GANs - StarGAN & TD-GAN
Recent Progress on Utilizing Tag Information with GANs - StarGAN & TD-GAN
 
Generative modeling with Convolutional Neural Networks
Generative modeling with Convolutional Neural NetworksGenerative modeling with Convolutional Neural Networks
Generative modeling with Convolutional Neural Networks
 
Tutorial on Theory and Application of Generative Adversarial Networks
Tutorial on Theory and Application of Generative Adversarial NetworksTutorial on Theory and Application of Generative Adversarial Networks
Tutorial on Theory and Application of Generative Adversarial Networks
 
Lucas Theis - Compressing Images with Neural Networks - Creative AI meetup
Lucas Theis - Compressing Images with Neural Networks - Creative AI meetupLucas Theis - Compressing Images with Neural Networks - Creative AI meetup
Lucas Theis - Compressing Images with Neural Networks - Creative AI meetup
 
Generative adversarial text to image synthesis
Generative adversarial text to image synthesisGenerative adversarial text to image synthesis
Generative adversarial text to image synthesis
 
A Short Introduction to Generative Adversarial Networks
A Short Introduction to Generative Adversarial NetworksA Short Introduction to Generative Adversarial Networks
A Short Introduction to Generative Adversarial Networks
 
Generative Adversarial Networks
Generative Adversarial NetworksGenerative Adversarial Networks
Generative Adversarial Networks
 
Generation of Deepfake images using GAN and Least squares GAN.ppt
Generation of Deepfake images using GAN and Least squares GAN.pptGeneration of Deepfake images using GAN and Least squares GAN.ppt
Generation of Deepfake images using GAN and Least squares GAN.ppt
 
Introduction to Deep Generative Models
Introduction to Deep Generative ModelsIntroduction to Deep Generative Models
Introduction to Deep Generative Models
 
Generative adversarial networks
Generative adversarial networksGenerative adversarial networks
Generative adversarial networks
 
EuroSciPy 2019 - GANs: Theory and Applications
EuroSciPy 2019 - GANs: Theory and ApplicationsEuroSciPy 2019 - GANs: Theory and Applications
EuroSciPy 2019 - GANs: Theory and Applications
 
GAN in medical imaging
GAN in medical imagingGAN in medical imaging
GAN in medical imaging
 
Variational Autoencoded Regression of Visual Data with Generative Adversarial...
Variational Autoencoded Regression of Visual Data with Generative Adversarial...Variational Autoencoded Regression of Visual Data with Generative Adversarial...
Variational Autoencoded Regression of Visual Data with Generative Adversarial...
 
GDC2019 - SEED - Towards Deep Generative Models in Game Development
GDC2019 - SEED - Towards Deep Generative Models in Game DevelopmentGDC2019 - SEED - Towards Deep Generative Models in Game Development
GDC2019 - SEED - Towards Deep Generative Models in Game Development
 
Generative Adversarial Networks (GAN)
Generative Adversarial Networks (GAN)Generative Adversarial Networks (GAN)
Generative Adversarial Networks (GAN)
 
Deep-Learning-2017-Lecture7GAN.ppt
Deep-Learning-2017-Lecture7GAN.pptDeep-Learning-2017-Lecture7GAN.ppt
Deep-Learning-2017-Lecture7GAN.ppt
 
Deep-Learning-2017-Lecture7GAN.ppt
Deep-Learning-2017-Lecture7GAN.pptDeep-Learning-2017-Lecture7GAN.ppt
Deep-Learning-2017-Lecture7GAN.ppt
 
Deep-Learning-2017-Lecture7GAN.ppt
Deep-Learning-2017-Lecture7GAN.pptDeep-Learning-2017-Lecture7GAN.ppt
Deep-Learning-2017-Lecture7GAN.ppt
 
DiscoGAN
DiscoGANDiscoGAN
DiscoGAN
 

Más de NAVER Engineering

Más de NAVER Engineering (20)

React vac pattern
React vac patternReact vac pattern
React vac pattern
 
디자인 시스템에 직방 ZUIX
디자인 시스템에 직방 ZUIX디자인 시스템에 직방 ZUIX
디자인 시스템에 직방 ZUIX
 
진화하는 디자인 시스템(걸음마 편)
진화하는 디자인 시스템(걸음마 편)진화하는 디자인 시스템(걸음마 편)
진화하는 디자인 시스템(걸음마 편)
 
서비스 운영을 위한 디자인시스템 프로젝트
서비스 운영을 위한 디자인시스템 프로젝트서비스 운영을 위한 디자인시스템 프로젝트
서비스 운영을 위한 디자인시스템 프로젝트
 
BPL(Banksalad Product Language) 무야호
BPL(Banksalad Product Language) 무야호BPL(Banksalad Product Language) 무야호
BPL(Banksalad Product Language) 무야호
 
이번 생에 디자인 시스템은 처음이라
이번 생에 디자인 시스템은 처음이라이번 생에 디자인 시스템은 처음이라
이번 생에 디자인 시스템은 처음이라
 
날고 있는 여러 비행기 넘나 들며 정비하기
날고 있는 여러 비행기 넘나 들며 정비하기날고 있는 여러 비행기 넘나 들며 정비하기
날고 있는 여러 비행기 넘나 들며 정비하기
 
쏘카프레임 구축 배경과 과정
 쏘카프레임 구축 배경과 과정 쏘카프레임 구축 배경과 과정
쏘카프레임 구축 배경과 과정
 
플랫폼 디자이너 없이 디자인 시스템을 구축하는 프로덕트 디자이너의 우당탕탕 고통 연대기
플랫폼 디자이너 없이 디자인 시스템을 구축하는 프로덕트 디자이너의 우당탕탕 고통 연대기플랫폼 디자이너 없이 디자인 시스템을 구축하는 프로덕트 디자이너의 우당탕탕 고통 연대기
플랫폼 디자이너 없이 디자인 시스템을 구축하는 프로덕트 디자이너의 우당탕탕 고통 연대기
 
200820 NAVER TECH CONCERT 15_Code Review is Horse(코드리뷰는 말이야)(feat.Latte)
200820 NAVER TECH CONCERT 15_Code Review is Horse(코드리뷰는 말이야)(feat.Latte)200820 NAVER TECH CONCERT 15_Code Review is Horse(코드리뷰는 말이야)(feat.Latte)
200820 NAVER TECH CONCERT 15_Code Review is Horse(코드리뷰는 말이야)(feat.Latte)
 
200819 NAVER TECH CONCERT 03_화려한 코루틴이 내 앱을 감싸네! 코루틴으로 작성해보는 깔끔한 비동기 코드
200819 NAVER TECH CONCERT 03_화려한 코루틴이 내 앱을 감싸네! 코루틴으로 작성해보는 깔끔한 비동기 코드200819 NAVER TECH CONCERT 03_화려한 코루틴이 내 앱을 감싸네! 코루틴으로 작성해보는 깔끔한 비동기 코드
200819 NAVER TECH CONCERT 03_화려한 코루틴이 내 앱을 감싸네! 코루틴으로 작성해보는 깔끔한 비동기 코드
 
200819 NAVER TECH CONCERT 10_맥북에서도 아이맥프로에서 빌드하는 것처럼 빌드 속도 빠르게 하기
200819 NAVER TECH CONCERT 10_맥북에서도 아이맥프로에서 빌드하는 것처럼 빌드 속도 빠르게 하기200819 NAVER TECH CONCERT 10_맥북에서도 아이맥프로에서 빌드하는 것처럼 빌드 속도 빠르게 하기
200819 NAVER TECH CONCERT 10_맥북에서도 아이맥프로에서 빌드하는 것처럼 빌드 속도 빠르게 하기
 
200819 NAVER TECH CONCERT 08_성능을 고민하는 슬기로운 개발자 생활
200819 NAVER TECH CONCERT 08_성능을 고민하는 슬기로운 개발자 생활200819 NAVER TECH CONCERT 08_성능을 고민하는 슬기로운 개발자 생활
200819 NAVER TECH CONCERT 08_성능을 고민하는 슬기로운 개발자 생활
 
200819 NAVER TECH CONCERT 05_모르면 손해보는 Android 디버깅/분석 꿀팁 대방출
200819 NAVER TECH CONCERT 05_모르면 손해보는 Android 디버깅/분석 꿀팁 대방출200819 NAVER TECH CONCERT 05_모르면 손해보는 Android 디버깅/분석 꿀팁 대방출
200819 NAVER TECH CONCERT 05_모르면 손해보는 Android 디버깅/분석 꿀팁 대방출
 
200819 NAVER TECH CONCERT 09_Case.xcodeproj - 좋은 동료로 거듭나기 위한 노하우
200819 NAVER TECH CONCERT 09_Case.xcodeproj - 좋은 동료로 거듭나기 위한 노하우200819 NAVER TECH CONCERT 09_Case.xcodeproj - 좋은 동료로 거듭나기 위한 노하우
200819 NAVER TECH CONCERT 09_Case.xcodeproj - 좋은 동료로 거듭나기 위한 노하우
 
200820 NAVER TECH CONCERT 14_야 너두 할 수 있어. 비전공자, COBOL 개발자를 거쳐 네이버에서 FE 개발하게 된...
200820 NAVER TECH CONCERT 14_야 너두 할 수 있어. 비전공자, COBOL 개발자를 거쳐 네이버에서 FE 개발하게 된...200820 NAVER TECH CONCERT 14_야 너두 할 수 있어. 비전공자, COBOL 개발자를 거쳐 네이버에서 FE 개발하게 된...
200820 NAVER TECH CONCERT 14_야 너두 할 수 있어. 비전공자, COBOL 개발자를 거쳐 네이버에서 FE 개발하게 된...
 
200820 NAVER TECH CONCERT 13_네이버에서 오픈 소스 개발을 통해 성장하는 방법
200820 NAVER TECH CONCERT 13_네이버에서 오픈 소스 개발을 통해 성장하는 방법200820 NAVER TECH CONCERT 13_네이버에서 오픈 소스 개발을 통해 성장하는 방법
200820 NAVER TECH CONCERT 13_네이버에서 오픈 소스 개발을 통해 성장하는 방법
 
200820 NAVER TECH CONCERT 12_상반기 네이버 인턴을 돌아보며
200820 NAVER TECH CONCERT 12_상반기 네이버 인턴을 돌아보며200820 NAVER TECH CONCERT 12_상반기 네이버 인턴을 돌아보며
200820 NAVER TECH CONCERT 12_상반기 네이버 인턴을 돌아보며
 
200820 NAVER TECH CONCERT 11_빠르게 성장하는 슈퍼루키로 거듭나기
200820 NAVER TECH CONCERT 11_빠르게 성장하는 슈퍼루키로 거듭나기200820 NAVER TECH CONCERT 11_빠르게 성장하는 슈퍼루키로 거듭나기
200820 NAVER TECH CONCERT 11_빠르게 성장하는 슈퍼루키로 거듭나기
 
200819 NAVER TECH CONCERT 07_신입 iOS 개발자 개발업무 적응기
200819 NAVER TECH CONCERT 07_신입 iOS 개발자 개발업무 적응기200819 NAVER TECH CONCERT 07_신입 iOS 개발자 개발업무 적응기
200819 NAVER TECH CONCERT 07_신입 iOS 개발자 개발업무 적응기
 

Último

+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
?#DUbAI#??##{{(☎️+971_581248768%)**%*]'#abortion pills for sale in dubai@
 
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Safe Software
 
Architecting Cloud Native Applications
Architecting Cloud Native ApplicationsArchitecting Cloud Native Applications
Architecting Cloud Native Applications
WSO2
 
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Victor Rentea
 
Finding Java's Hidden Performance Traps @ DevoxxUK 2024
Finding Java's Hidden Performance Traps @ DevoxxUK 2024Finding Java's Hidden Performance Traps @ DevoxxUK 2024
Finding Java's Hidden Performance Traps @ DevoxxUK 2024
Victor Rentea
 

Último (20)

AWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of TerraformAWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of Terraform
 
Manulife - Insurer Transformation Award 2024
Manulife - Insurer Transformation Award 2024Manulife - Insurer Transformation Award 2024
Manulife - Insurer Transformation Award 2024
 
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
 
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
 
DBX First Quarter 2024 Investor Presentation
DBX First Quarter 2024 Investor PresentationDBX First Quarter 2024 Investor Presentation
DBX First Quarter 2024 Investor Presentation
 
Apidays New York 2024 - Passkeys: Developing APIs to enable passwordless auth...
Apidays New York 2024 - Passkeys: Developing APIs to enable passwordless auth...Apidays New York 2024 - Passkeys: Developing APIs to enable passwordless auth...
Apidays New York 2024 - Passkeys: Developing APIs to enable passwordless auth...
 
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost SavingRepurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
 
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, AdobeApidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
 
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot TakeoffStrategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
 
Spring Boot vs Quarkus the ultimate battle - DevoxxUK
Spring Boot vs Quarkus the ultimate battle - DevoxxUKSpring Boot vs Quarkus the ultimate battle - DevoxxUK
Spring Boot vs Quarkus the ultimate battle - DevoxxUK
 
Architecting Cloud Native Applications
Architecting Cloud Native ApplicationsArchitecting Cloud Native Applications
Architecting Cloud Native Applications
 
TrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data DiscoveryTrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
 
FWD Group - Insurer Innovation Award 2024
FWD Group - Insurer Innovation Award 2024FWD Group - Insurer Innovation Award 2024
FWD Group - Insurer Innovation Award 2024
 
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
 
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
 
Finding Java's Hidden Performance Traps @ DevoxxUK 2024
Finding Java's Hidden Performance Traps @ DevoxxUK 2024Finding Java's Hidden Performance Traps @ DevoxxUK 2024
Finding Java's Hidden Performance Traps @ DevoxxUK 2024
 
Artificial Intelligence Chap.5 : Uncertainty
Artificial Intelligence Chap.5 : UncertaintyArtificial Intelligence Chap.5 : Uncertainty
Artificial Intelligence Chap.5 : Uncertainty
 
Apidays New York 2024 - APIs in 2030: The Risk of Technological Sleepwalk by ...
Apidays New York 2024 - APIs in 2030: The Risk of Technological Sleepwalk by ...Apidays New York 2024 - APIs in 2030: The Risk of Technological Sleepwalk by ...
Apidays New York 2024 - APIs in 2030: The Risk of Technological Sleepwalk by ...
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected Worker
 
DEV meet-up UiPath Document Understanding May 7 2024 Amsterdam
DEV meet-up UiPath Document Understanding May 7 2024 AmsterdamDEV meet-up UiPath Document Understanding May 7 2024 Amsterdam
DEV meet-up UiPath Document Understanding May 7 2024 Amsterdam
 

1시간만에 GAN(Generative Adversarial Network) 완전 정복하기

  • 2. 2 Speaker Introduction Introduction B.S. in Computer Science & Engineering at Korea University M.S. Student in Computer Science & Engineering at Korea University (Current) Interest: Deep Learning,TensorFlow, PyTorch GitHub Link: https://github.com/yunjey
  • 3. 3 Referenced Slides Introduction • Namju Kim. Generative Adversarial Networks (GAN) https://www.slideshare.net/ssuser77ee21/generative-adversarial-networks-70896091 • Taehoon Kim. 지적 대화를 위한 깊고 넓은 딥러닝 https://www.slideshare.net/carpedm20/ss-63116251
  • 5. 5 Branches of ML Introduction Semi-supervised Learning Unsupervised Learning Supervised Learning Reinforcement Learning Machine Learning No labeled data No feedback “find hidden structure” Labeled data Direct feedback No labeled data Delayed feedback Reward signal
  • 6. 6 Supervised Learning Introduction Discriminative Model woman The discriminative model learns how to classify input to its class. man (1) (1) (2) (2) Input image (64x64x3)
  • 7. 7 Unsupervised Learning Introduction Generative Model Latent code The generative model learns the distribution of training data. (100) Image (64x64x3)
  • 8. 8 Generative Model 𝑋 1 2 3 4 5 6 𝑃 𝑋 1 6 1 6 1 6 0 6 1 6 2 6 1 2 3 4 5 6 1 6 2 6 𝑝 𝑥 𝑥 Probability Distribution Introduction Random variable Probability Basics (Review) Probability mass function
  • 9. 9 Generative Model What if 𝑥 is actual images in the training data? At this point, 𝑥 can be represented as a (for example) 64x64x3 dimensional vector. Probability Distribution Introduction
  • 10. 10 Generative Model 𝑥 𝑝 𝑑𝑎𝑡𝑎(𝑥) Probability Distribution Introduction There is a 𝑝 𝑑𝑎𝑡𝑎(𝑥) that represents the distribution of actual images. Probability density function
  • 11. 11 Generative Model 𝑥 𝑝 𝑑𝑎𝑡𝑎(𝑥) Probability Distribution Introduction Let’s take an example with human face image dataset. Our dataset may contain few images of men with glasses. 𝑥1 𝑥2 𝑥3 𝑥4 𝑥1 is a 64x64x3 high dimensional vector representing a man with glasses. The probability density value is low
  • 12. The probability density value is high 12 Generative Model 𝑥 𝑝 𝑑𝑎𝑡𝑎(𝑥) Probability Distribution Introduction Our dataset may contain many images of women with black hair. 𝑥1 𝑥2 𝑥3 𝑥4 𝑥2 is a 64x64x3 high dimensional vector representing a woman with black hair.
  • 13. 13 Generative Model 𝑥 𝑝 𝑑𝑎𝑡𝑎(𝑥) Probability Distribution Introduction Our dataset may contain very many images of women with blonde hair. 𝑥1 𝑥2 𝑥3 𝑥4 𝑥3 is a 64x64x3 high dimensional vector representing a woman with blonde hair. The probability density value is very high
  • 14. 14 Generative Model 𝑥 𝑝 𝑑𝑎𝑡𝑎(𝑥) Probability Distribution Introduction Our dataset may not contain these strange images. 𝑥1 𝑥2 𝑥3 𝑥4 𝑥4 is an 64x64x3 high dimensional vector representing very strange images. The probability density value is almost 0
  • 15. 15 Generative Model 𝑥 Probability Distribution Introduction The goal of the generative model is to find a 𝑝 𝑚𝑜𝑑𝑒𝑙(𝑥) that approximates 𝑝 𝑑𝑎𝑡𝑎(𝑥) well. 𝑥1 𝑥2 𝑥3 𝑥4 𝑝 𝑚𝑜𝑑𝑒𝑙(𝑥) 𝑝 𝑑𝑎𝑡𝑎(𝑥) 𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑜𝑓 𝑎𝑐𝑡𝑢𝑎𝑙 𝑖𝑚𝑎𝑔𝑒𝑠 𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑜𝑓 𝑖𝑚𝑎𝑔𝑒𝑠 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 𝑏𝑦 𝑡ℎ𝑒 𝑚𝑜𝑑𝑒𝑙
  • 17. 17 Intuition in GAN GANs G(z) DGz D(G(z)) D D(x) x Fake image Real image The probability of that x came from the real data (0~1)Discriminator Generator Latent Code May be high May be low Training with real images Training with fake images
  • 18. 18 Intuition in GAN GANs G(z) DGz D(G(z)) D D(x) x Real image (64x64x3) This value should be close to 1.Discriminator (Neural Network) The discriminator should classify a real image as real.
  • 19. 19 Intuition in GAN GANs G(z) Dz D(G(z)) D D(x) x Fake image generated by the generator (64x64x3) Generator This value should be close to 0. The discriminator should classify a fake image as fake.
  • 20. 20 Intuition in GAN GANs G(z) DGz D(G(z)) D D(x) x Generated image (64x64x3) Generator (Neural Network) Latent Code (100) This value should be close to 1. The generator should create an image that is indistinguishable from real to deceive the discriminator
  • 21. 𝑚𝑖𝑛 𝑚𝑎𝑥 𝑉 𝐷, 𝐺 = 𝐸 𝑥~𝑝 𝑑𝑎𝑡𝑎(𝑥) log 𝐷 𝑥 + 𝐸𝑧~𝑝 𝑧(𝑧) log(1 − 𝐷(𝐺(𝑧))) 21 Objective Function of GAN GANs G(z) DGz D(G(z)) D D(x) x 𝐺 𝐷 Training with real images Training with fake images Maximum when 𝐷(𝑥) = 1 Maximum when 𝐷(𝐺(𝑧)) = 0 Sample 𝑥 from real data distribution Sample latent code 𝑧 from Gaussian distribution Train D to classify fake images as fake Train D to classify real images as real 𝐷 should maximize 𝑉(𝐷, 𝐺) Objective function
  • 22. 𝑚𝑖𝑛 𝑚𝑎𝑥 𝑉 𝐷, 𝐺 = 𝐸 𝑥~𝑝 𝑑𝑎𝑡𝑎(𝑥) log 𝐷 𝑥 + 𝐸𝑧~𝑝 𝑧(𝑧) log(1 − 𝐷(𝐺(𝑧))) 𝐺 is independent of this part 22 Objective Function of GAN GANs 𝐺 should minimize 𝑉(𝐷, 𝐺) Minimum when 𝐷(𝐺(𝑧)) = 1 G(z) DGz D(G(z)) D D(x) x Train G to deceive D 𝐺 𝐷 Training with real images Training with fake images Objective function
  • 23. 23 PyTorch Implementation GANs G(z) DGz D(G(z)) D D(x)x Training with real images Training with fake images
  • 24. Define the discriminator input size: 784 hidden size: 128 output size: 1 24 PyTorch Implementation GANs G(z) DGz D(G(z)) D D(x)x Discriminator Assume x is MNIST (784 dimension) Output probability(1 dimension)
  • 25. 25 PyTorch Implementation GANs G(z) DGz D(G(z)) D D(x)x Generator Define the generator input size: 100 hidden size: 128 output size: 784 Latent code (100 dimension) Generated image (784 dimension)
  • 26. 26 PyTorch Implementation GANs G(z) DGz D(G(z)) D D(x)x Binary Cross Entropy Loss (ℎ(𝑥), 𝑦) − 𝑦 log ℎ 𝑥 − (1 − 𝑦) log(1 − ℎ(𝑥))
  • 27. 27 PyTorch Implementation GANs G(z) DGz D(G(z)) D D(x)x Optimizer for D and G
  • 28. 28 PyTorch Implementation GANs G(z) DGz D(G(z)) D D(x)x x is a tensor of shape (batch_size, 784). z is a tensor of shape (batch_size, 100).
  • 29. 29 PyTorch Implementation GANs G(z) DGz D(G(z)) D D(x)x D(x) gets closer to 1. D(G(z)) gets closer to 0 Forward, Backward and Gradient Descent Train the discriminator with real images Train the discriminator with fake images
  • 30. 30 PyTorch Implementation GANs G(z) DGz D(G(z)) D D(x)x Forward, Backward and Gradient Descent D(G(z)) gets closer to 1 Train the generator to deceive the discriminator
  • 31. 31 PyTorch Implementation GANs G(z) DGz D(G(z)) D D(x)x The complete code can be found here https://github.com/yunjey/pytorch-tutorial
  • 32. 32 Objective Function of Generator 𝐺 Objective function of G Non-Saturating Game GANs Images created by the generator at the beginning of training 𝑦 = log(1 − 𝑥) The gradient is relatively small at D(G(z))=0 At the beginning of training, the discriminator can clearly classify the generated image as fake because the quality of the image is very low. This means that D(G(z)) is almost zero at early stages of training. 𝑚𝑖𝑛 𝐸𝑧~𝑝 𝑧(𝑧) log(1 − 𝐷(𝐺 𝑧 )
  • 33. 33 Solution for Poor Gradient 𝐺 𝑚𝑎𝑥 𝐸𝑧~𝑝 𝑧(𝑧) log 𝐷(𝐺 𝑧 ) 𝐺 𝑚𝑖𝑛 𝐸𝑧~𝑝 𝑧(𝑧) log(1 − 𝐷(𝐺 𝑧 ) Non-Saturating Game GANs 𝑦 = log(𝑥) The gradient is very large at D(G(z))=0 Use binary cross entropy loss function with fake label (1) 𝑚𝑖𝑛 𝐸𝑧~𝑝 𝑧(𝑧)[−𝑦 log 𝐷(𝐺 𝑧 ) − 1 − 𝑦 log(1 − 𝐷(𝐺 𝑧 )] 𝑚𝑖𝑛 𝐸𝑧~𝑝 𝑧(𝑧)[− log 𝐷 𝐺 𝑧 ] 𝐺 𝐺 𝑦 = 1 Modification (heuristically motivated) • Practical Usage
  • 34. 34 Theory in GAN GANs 𝐸 𝑥~𝑝 𝑑𝑎𝑡𝑎(𝑥) log 𝐷 𝑥 + 𝐸𝑧~𝑝 𝑧(𝑧) log(1 − 𝐷(𝐺 𝑧 ) 𝑚𝑖𝑛 𝐽𝑆𝐷(𝑝 𝑑𝑎𝑡𝑎||𝑝 𝑔) 𝐺, 𝐷 𝑚𝑖𝑛 𝑚𝑎𝑥 𝑉 𝐷, 𝐺 𝐺 𝐷 𝑥 𝑝 𝑔(𝑥) 𝑝 𝑑𝑎𝑡𝑎(𝑥) 𝐽𝑆𝐷(𝑃||𝑄) = 1 2 𝐾𝐿(𝑃| 𝑀 + 1 2 𝐾𝐿(𝑄| 𝑀 𝑤ℎ𝑒𝑟𝑒 𝑀 = 1 2 (𝑃 + 𝑄) KL Divergence • Why does GANs work? same Please see Appendix for details Because it actually minimizes the distance between the real data distribution and the model distribution. Objective function of GANs Jenson-Shannon divergence
  • 36. 36 DCGAN Variants of GAN Radford et al. Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks, 2015 • Deep Convolutional GAN(DCGAN), 2015 The authors present a model that is still highly preferred.
  • 37. 37 DCGAN Variants of GAN DGz D(G(z)) D D(x) x Use convolution, Leaky ReLU Use deconvolution, ReLU • No pooling layer (Instead strided convolution) • Use batch normalization • Adam optimizer(lr=0.0002, beta1=0.5, beta2=0.999)
  • 38. 38 DCGAN Variants of GAN Radford et al. Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks, 2015 • Latent vector arithmetic
  • 39. 39 LSGAN Variants of GAN Xudong Mao et al. Least Squares Generative Adversarial Networks, 2016 • Least Squares GAN (LSGAN) Proposed a GAN model that adopts the least squares loss function for the discriminator.
  • 40. 40 LSGAN Variants of GAN Vanilla GAN LSGAN Remove sigmoid non-linearity in last layer
  • 41. 41 LSGAN Variants of GAN Vanilla GAN LSGAN Generator is the same as original
  • 42. 42 LSGAN Variants of GAN Vanilla GAN LSGAN Replace cross entropy loss to least squares loss (L2) D(x) gets closer to 1 D(G(z)) gets closer to 0 (same as original)
  • 43. 43 LSGAN Variants of GAN Vanilla GAN LSGAN Replace cross entropy loss to least squares loss (L2) D(G(z)) gets closer to 1 (same as original)
  • 44. 44 LSGAN Variants of GAN • Results (LSUN dataset) Xudong Mao et al. Least Squares Generative Adversarial Networks, 2016
  • 45. 45 LSGAN Variants of GAN • Results (CelebA)
  • 46. 46 SGAN Variants of GAN D G D one-hot vector representing 2 Real image latent vector z fake image (1) FC layer with softmax • Semi-Supervised GAN Training with real images Training with fake images 11 dimension (10 classes + fake) (1) (1) one-hot vector representing a fake label one-hot vector representing 5 Augustus Odena et al. Semi-Supervised Learning with Generative Adversarial Netwoks, 2016
  • 47. 47 SGAN Variants of GAN • Results (Game Character) 1 2 3 4 5 The generator can create an character image that takes a certain pose. one-hot vectors representing class labels The code will be available soon: https://github.com/yunjey
  • 48. 48 ACGAN Variants of GAN Augustus Odena et al. Conditional Image Synthesis with Auxilary Classifier, 2016 • Auxiliary Classifier GAN(ACGAN), 2016 Proposed a new method for improved training of GANs using class labels.
  • 49. 49 ACGAN Variants of GAN real or fake? D G real or fake? D one-hot vector representing 2 Real image one-hot vector representing 5 latent vector z fake image one-hot vector representing 2 (1) FC layer with sigmoid (2) FC layer with softmax (1) (2) Discriminator (multi-task learning) (1) (2) • How does it work? Training with real images Training with fake images
  • 51. 51 CycleGAN Extensions • CycleGAN: Unpaired Image-to-Image Translation presents a GAN model that transfer an image from a source domain A to a target domain B in the absence of paired examples. Jun-Yan Zhu et al. Unpaired Image-to-Image Translation using Cycle Consistent Adversarial Networks, 2017
  • 52. 52 CycleGAN • How does it work? real or fake ? DB GAB Real Image in domain A Fake Image in domain B Real Image in domain B Discriminator for domain B The generator GAB should generates a horse from the zebra to deceive the discriminator DB. Extensions
  • 53. 53 CycleGAN • How does it work? DB GAB Discriminator for domain B GBA Reconstructed Image L2 Loss GBA generates a reconstructed image of domain A. This makes the shape to be maintained when GAB generates a horse image from the zebra.real or fake ? Real Image in domain A Real Image in domain B Fake Image in domain B Extensions
  • 54. 54 CycleGAN Extensions • Results Jun-Yan Zhu et al. Unpaired Image-to-Image Translation using Cycle Consistent Adversarial Networks, 2017
  • 55. 55 CycleGAN Extensions • Results MNIST-to-SVHNSVHN-to-MNIST Odd columns contain real images and even columns contain generated images. https://github.com/yunjey/mnist-svhn-transfer
  • 56. 56 StackGAN Han Zhang et al. StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks, 2016 • StackGAN:Text to Photo-realistic Image Synthesis Extensions
  • 57. 57 StackGAN Fake image (128x128) Real image (128x128) D G Z (100) ‘real’ or ‘fake’ Generates a128x128 image from scratch (not guarantee good result) Discriminator for 128x128 image • Generating 128x128 from scratch Extensions
  • 58. 58 StackGAN Extensions D1 D2 G1 G2 Fake image (64x64) Real image (64x64) Fake image (128x128) Real image (128x128) ‘real’ or ‘fake’ Generates a 64x64 image Upscales a 64x64 image to 128x128 (Easier than generating from scratch). Discriminator for 64x64 image Discriminator for 128x128 image • Generating 128x128 from 64x64 ‘real’ or ‘fake’ Z (100)
  • 59. 59 Latest Work Jing Liao et al. Visual Attribute Transfer through Deep Image Analogy, 2017 Extensions • Visual Attribute Transfer
  • 60. 60 Latest Work Richard Zhang et al. Real-Time User-Guided Image Colorization with Learned Deep Prioirs, 2017 Extensions • User-Interactive Image Colorization
  • 62. 62 Convergence Measure • Boundary Equilibrium GAN (BEGAN) Extensions David Berthelot et al. BEGAN: Boundary Equilibrium Generative Adversarial Networks, 2017
  • 63. 63 Convergence Measure • Reconstruction Loss Extensions Sitao Xiang. On the effect of Batch Normalization and Weight Normalization in Generative Adversarial Network, 2017 Gz G(z) x Test images
  • 64. 64 Better Upsampling • Deconvolution Checkboard Artifacts Extensions http://distill.pub/2016/deconv-checkerboard/
  • 65. 65 Better Upsampling • Deconvolution vs Resize-Convolution Extensions http://distill.pub/2016/deconv-checkerboard/
  • 66. 66 GAN in Supervised Learning • Machine Translation (Seq2Seq) Extensions A B C D Y X Y Z<start> Z <end>X Should ‘ABCD’ be translated to ‘XYZ’? Tackling the supervised learning
  • 67. 67 GAN in Supervised Learning • Machine Translation (GANs) Extensions D G D Training with real sentences Training with fake sentences A (English) B (Korean) Does A and B have the same meaning? The discriminator should say ‘yes’. Does A and B have the same meaning? The discriminator should say ‘no’. A (English) B (Fake Korean) Lijun Wu et al. Adversarial Neural Machine Translation, 2017 The generator should generate B that has the same meaning as A to deceive the discriminator.
  • 70. 70 𝑚𝑖𝑛 𝑚𝑎𝑥 𝑉 𝐷, 𝐺 = 𝐸 𝑥~𝑝 𝑑𝑎𝑡𝑎(𝑥) log 𝐷 𝑥 + 𝐸𝑧~𝑝 𝑧(𝑧) log(1 − 𝐷(𝐺 𝑧 ) 𝐺 𝐷 Theory in GAN GANs 𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝐺𝐴𝑁𝑠 𝑟𝑒𝑎𝑙 𝑑𝑎𝑡𝑎 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 ℎ𝑖𝑔ℎ 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑎𝑙 𝑣𝑒𝑐𝑡𝑜𝑟 (𝑒. 𝑔. 64 × 64) l𝑜𝑤 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑎𝑙 𝑣𝑒𝑐𝑡𝑜𝑟 (𝑒. 𝑔. 100)
  • 71. 71 𝑚𝑖𝑛 𝑚𝑎𝑥 𝑉 𝐷, 𝐺 = 𝐸 𝑥~𝑝 𝑑𝑎𝑡𝑎(𝑥) log 𝐷 𝑥 + 𝐸𝑧~𝑝 𝑧(𝑧) log(1 − 𝐷(𝐺 𝑧 ) 𝐺 𝐷 Theory in GAN GANs 𝐷∗(𝑥) = 𝑎𝑟𝑔 𝑚𝑎𝑥 𝑉 𝐷 = 𝐸 𝑥~𝑝 𝑑𝑎𝑡𝑎(𝑥) log 𝐷 𝑥 + 𝐸𝑧~𝑝 𝑧(𝑧) log(1 − 𝐷(𝐺 𝑧 ) 𝐹𝑖𝑥 𝐺 𝑡𝑜 𝑚𝑎𝑘𝑒 𝑖𝑡 𝑡𝑜 𝑎 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝐷 𝑂𝑝𝑡𝑖𝑚𝑎𝑙 𝐷 𝐷 𝐺𝑒𝑡 𝐷 𝑤ℎ𝑒𝑛 𝑉 𝐷 𝑖𝑠 𝑚𝑎𝑥𝑖𝑚𝑢𝑚
  • 72. 72 𝑚𝑖𝑛 𝑚𝑎𝑥 𝑉 𝐷, 𝐺 = 𝐸 𝑥~𝑝 𝑑𝑎𝑡𝑎(𝑥) log 𝐷 𝑥 + 𝐸𝑧~𝑝 𝑧(𝑧) log(1 − 𝐷(𝐺 𝑧 ) 𝐺 𝐷 Theory in GAN GANs 𝐷∗(𝑥) = 𝑎𝑟𝑔 𝑚𝑎𝑥 𝑉 𝐷 = 𝐸 𝑥~𝑝 𝑑𝑎𝑡𝑎(𝑥) log 𝐷 𝑥 + 𝐸𝑧~𝑝 𝑧(𝑧) log(1 − 𝐷(𝐺 𝑧 ) = 𝐸 𝑥~𝑝 𝑑𝑎𝑡𝑎(𝑥) log 𝐷 𝑥 + 𝐸 𝑥~𝑝 𝑔(𝑥) log(1 − 𝐷(𝑥)) 𝐹𝑖𝑥 𝐺 𝑡𝑜 𝑚𝑎𝑘𝑒 𝑖𝑡 𝑡𝑜 𝑎 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝐷 𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝑥 𝑓𝑟𝑜𝑚 𝑝 𝑔 𝑖𝑛𝑠𝑡𝑒𝑎𝑑 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝑧 𝑓𝑟𝑜𝑚 𝑝𝑧 𝑣𝑒𝑐𝑡𝑜𝑟 𝑜𝑓 64 × 64 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 𝑣𝑒𝑐𝑡𝑜𝑟 𝑜𝑓 100 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 𝑚𝑜𝑑𝑒𝑙 𝐺 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 ℎ𝑖𝑔ℎ 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑎𝑙 𝑣𝑒𝑐𝑡𝑜𝑟 (𝑒. 𝑔. 64 × 64) 𝐷
  • 73. 73 𝑚𝑖𝑛 𝑚𝑎𝑥 𝑉 𝐷, 𝐺 = 𝐸 𝑥~𝑝 𝑑𝑎𝑡𝑎(𝑥) log 𝐷 𝑥 + 𝐸𝑧~𝑝 𝑧(𝑧) log(1 − 𝐷(𝐺 𝑧 ) 𝐺 𝐷 Theory in GAN GANs 𝐷∗(𝑥) = 𝑎𝑟𝑔 𝑚𝑎𝑥 𝑉 𝐷 = 𝐸 𝑥~𝑝 𝑑𝑎𝑡𝑎(𝑥) log 𝐷 𝑥 + 𝐸𝑧~𝑝 𝑧(𝑧) log(1 − 𝐷(𝐺 𝑧 ) = 𝐸 𝑥~𝑝 𝑑𝑎𝑡𝑎(𝑥) log 𝐷 𝑥 + 𝐸 𝑥~𝑝 𝑔(𝑥) log(1 − 𝐷(𝑥)) = න 𝑝 𝑑𝑎𝑡𝑎 𝑥 log 𝐷(𝑥) 𝑑𝑥 + න 𝑝 𝑔 𝑥 log 1 − 𝐷 𝑥 𝑑𝑥 𝑥 𝑥 𝐹𝑖𝑥 𝐺 𝑡𝑜 𝑚𝑎𝑘𝑒 𝑖𝑡 𝑡𝑜 𝑎 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝐷 𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝑥 𝑓𝑟𝑜𝑚 𝑝 𝑔 𝑖𝑛𝑠𝑡𝑒𝑎𝑑 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝑧 𝑓𝑟𝑜𝑚 𝑝𝑧 = න 𝑝 𝑥 𝑓 𝑥 𝑑𝑥𝐸 𝑥~𝑝(𝑥) 𝑓(𝑥) 𝐷𝑒𝑓𝑖𝑛𝑖𝑡𝑖𝑜𝑛 𝑜𝑓 𝐸𝑥𝑝𝑒𝑐𝑡𝑎𝑡𝑖𝑜𝑛 𝑥 𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑒 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑥 𝐷
  • 74. 74 𝑚𝑖𝑛 𝑚𝑎𝑥 𝑉 𝐷, 𝐺 = 𝐸 𝑥~𝑝 𝑑𝑎𝑡𝑎(𝑥) log 𝐷 𝑥 + 𝐸𝑧~𝑝 𝑧(𝑧) log(1 − 𝐷(𝐺 𝑧 ) 𝐺 𝐷 Theory in GAN GANs 𝐷∗(𝑥) = 𝑎𝑟𝑔 𝑚𝑎𝑥 𝑉 𝐷 = 𝐸 𝑥~𝑝 𝑑𝑎𝑡𝑎(𝑥) log 𝐷 𝑥 + 𝐸𝑧~𝑝 𝑧(𝑧) log(1 − 𝐷(𝐺 𝑧 ) = 𝐸 𝑥~𝑝 𝑑𝑎𝑡𝑎(𝑥) log 𝐷 𝑥 + 𝐸 𝑥~𝑝 𝑔(𝑥) log(1 − 𝐷(𝑥)) = න 𝑝 𝑑𝑎𝑡𝑎 𝑥 log 𝐷(𝑥) 𝑑𝑥 + න 𝑝 𝑔 𝑥 log 1 − 𝐷 𝑥 𝑑𝑥 = න 𝑝 𝑑𝑎𝑡𝑎 𝑥 log 𝐷 𝑥 + 𝑝 𝑔 𝑥 log 1 − 𝐷 𝑥 𝑑𝑥 𝑥 𝑥 𝑥 𝐹𝑖𝑥 𝐺 𝑡𝑜 𝑚𝑎𝑘𝑒 𝑖𝑡 𝑡𝑜 𝑎 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝐷 𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝑥 𝑓𝑟𝑜𝑚 𝑝 𝑔 𝑖𝑛𝑠𝑡𝑒𝑎𝑑 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝑧 𝑓𝑟𝑜𝑚 𝑝𝑧 = න 𝑝 𝑥 𝑓 𝑥 𝑑𝑥𝐸 𝑥~𝑝(𝑥) 𝑓(𝑥) 𝐷𝑒𝑓𝑖𝑛𝑖𝑡𝑖𝑜𝑛 𝑜𝑓 𝐸𝑥𝑝𝑒𝑐𝑡𝑎𝑡𝑖𝑜𝑛 𝑥 𝐵𝑎𝑠𝑖𝑐 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦 𝑜𝑓 𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑙 𝐷
  • 75. 75 𝑚𝑖𝑛 𝑚𝑎𝑥 𝑉 𝐷, 𝐺 = 𝐸 𝑥~𝑝 𝑑𝑎𝑡𝑎(𝑥) log 𝐷 𝑥 + 𝐸𝑧~𝑝 𝑧(𝑧) log(1 − 𝐷(𝐺 𝑧 ) 𝐺 𝐷 Theory in GAN GANs 𝐷∗(𝑥) = 𝑎𝑟𝑔 𝑚𝑎𝑥 𝑉 𝐷 = 𝐸 𝑥~𝑝 𝑑𝑎𝑡𝑎(𝑥) log 𝐷 𝑥 + 𝐸𝑧~𝑝 𝑧(𝑧) log(1 − 𝐷(𝐺 𝑧 ) = 𝐸 𝑥~𝑝 𝑑𝑎𝑡𝑎(𝑥) log 𝐷 𝑥 + 𝐸 𝑥~𝑝 𝑔(𝑥) log(1 − 𝐷(𝑥)) = න 𝑝 𝑑𝑎𝑡𝑎 𝑥 log 𝐷(𝑥) 𝑑𝑥 + න 𝑝 𝑔 𝑥 log 1 − 𝐷 𝑥 𝑑𝑥 = න 𝑝 𝑑𝑎𝑡𝑎 𝑥 log 𝐷 𝑥 + 𝑝 𝑔 𝑥 log 1 − 𝐷 𝑥 𝑑𝑥 𝑥 𝑥 𝑥 𝐹𝑖𝑥 𝐺 𝑡𝑜 𝑚𝑎𝑘𝑒 𝑖𝑡 𝑡𝑜 𝑎 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝐷 𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝑥 𝑓𝑟𝑜𝑚 𝑝 𝑔 𝑖𝑛𝑠𝑡𝑒𝑎𝑑 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝑧 𝑓𝑟𝑜𝑚 𝑝𝑧 = න 𝑝 𝑥 𝑓 𝑥 𝑑𝑥𝐸 𝑥~𝑝(𝑥) 𝑓(𝑥) 𝐷𝑒𝑓𝑖𝑛𝑖𝑡𝑖𝑜𝑛 𝑜𝑓 𝐸𝑥𝑝𝑒𝑐𝑡𝑎𝑡𝑖𝑜𝑛 𝑥 𝐵𝑎𝑠𝑖𝑐 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦 𝑜𝑓 𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑙 𝑁𝑜𝑤 𝑤𝑒 𝑛𝑒𝑒𝑑 𝑡𝑜 𝑓𝑖𝑛𝑑 𝐷 𝑥 𝑤ℎ𝑖𝑐ℎ 𝑚𝑎𝑘𝑒𝑠 𝑡ℎ𝑒 𝑓𝑢𝑛𝑡𝑖𝑜𝑛 𝑖𝑛𝑠𝑖𝑑𝑒 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑙 𝑚𝑎𝑥𝑖𝑚𝑢𝑚. 𝐷
  • 76. 76 Theoretical Results = 𝑎𝑟𝑔 𝑚𝑎𝑥 𝑝 𝑑𝑎𝑡𝑎 𝑥 log 𝐷 𝑥 + 𝑝 𝑔 𝑥 log 1 − 𝐷 𝑥 Theory in GAN GANs 𝐷∗(𝑥) = 𝑎𝑟𝑔 𝑚𝑎𝑥 𝑉 𝐷 𝐷 𝐷 𝑇ℎ𝑒 𝑓𝑢𝑛𝑡𝑖𝑜𝑛 𝑖𝑛𝑠𝑖𝑑𝑒 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑙
  • 77. 77 Theoretical Results = 𝑎𝑟𝑔 𝑚𝑎𝑥 𝑝 𝑑𝑎𝑡𝑎 𝑥 log 𝐷 𝑥 + 𝑝 𝑔 𝑥 log 1 − 𝐷 𝑥 Theory in GAN GANs 𝐷∗(𝑥) = 𝑎𝑟𝑔 𝑚𝑎𝑥 𝑉 𝐷 𝐷 𝐷 𝑎 log 𝑦 + 𝑏 log 1 − 𝑦 𝑆𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑒 𝑎 = 𝑝 𝑑𝑎𝑡𝑎 𝑥 , 𝑦 = 𝐷 𝑥 , 𝑏 = 𝑝 𝑔 𝑥
  • 78. 78 Theoretical Results = 𝑎𝑟𝑔 𝑚𝑎𝑥 𝑝 𝑑𝑎𝑡𝑎 𝑥 log 𝐷 𝑥 + 𝑝 𝑔 𝑥 log 1 − 𝐷 𝑥 Theory in GAN GANs 𝐷∗(𝑥) = 𝑎𝑟𝑔 𝑚𝑎𝑥 𝑉 𝐷 𝐷 𝐷 𝑎 log 𝑦 + 𝑏 log 1 − 𝑦 𝑎 𝑦 + −𝑏 1 − 𝑦 = 𝑎 − (𝑎 + 𝑏)𝑦 𝑦(1 − 𝑦) 𝑆𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑒 𝑎 = 𝑝 𝑑𝑎𝑡𝑎 𝑥 , 𝑦 = 𝐷 𝑥 , 𝑏 = 𝑝 𝑔 𝑥 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝑖𝑎𝑡𝑒 𝑤𝑖𝑡ℎ 𝑟𝑒𝑠𝑝𝑒𝑐𝑡 𝑡𝑜 𝐷 𝑥 𝑢𝑠𝑖𝑛𝑔 𝑁𝑜𝑡𝑒 𝑡ℎ𝑎𝑡 𝐷 𝑥 𝑐𝑎𝑛 𝑛𝑜𝑡 𝑎𝑓𝑓𝑒𝑐𝑡 𝑡𝑜 𝑝 𝑑𝑎𝑡𝑎 𝑥 𝑎𝑛𝑑 𝑝 𝑔 𝑥 . 𝑑 𝑑𝑥 log 𝑓(𝑥) = 𝑓′ (𝑥) 𝑓(𝑥)
  • 79. 79 Theoretical Results = 𝑎𝑟𝑔 𝑚𝑎𝑥 𝑝 𝑑𝑎𝑡𝑎 𝑥 log 𝐷 𝑥 + 𝑝 𝑔 𝑥 log 1 − 𝐷 𝑥 Theory in GAN GANs 𝐷∗(𝑥) = 𝑎𝑟𝑔 𝑚𝑎𝑥 𝑉 𝐷 𝐷 𝐷 𝑎 log 𝑦 + 𝑏 log 1 − 𝑦 𝑎 𝑦 + −𝑏 1 − 𝑦 𝑎 − (𝑎 + 𝑏)𝑦 𝑦(1 − 𝑦) = 0 𝑦 = 𝑎 𝑎 + 𝑏 = 𝑎 − (𝑎 + 𝑏)𝑦 𝑦(1 − 𝑦) 𝑆𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑒 𝑎 = 𝑝 𝑑𝑎𝑡𝑎 𝑥 , 𝑦 = 𝐷 𝑥 , 𝑏 = 𝑝 𝑔 𝑥 𝑁𝑜𝑡𝑒 𝑡ℎ𝑎𝑡 𝐷 𝑥 𝑐𝑎𝑛 𝑛𝑜𝑡 𝑎𝑓𝑓𝑒𝑐𝑡 𝑡𝑜 𝑝 𝑑𝑎𝑡𝑎 𝑥 𝑎𝑛𝑑 𝑝 𝑔 𝑥 . 𝐼𝑡 ℎ𝑎𝑠 𝑎 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑣𝑎𝑙𝑢𝑒 𝑤ℎ𝑒𝑛 𝑁𝑜𝑡𝑒 𝑡ℎ𝑎𝑡 𝑡ℎ𝑒 𝑙𝑜𝑐𝑎𝑙 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑖𝑠 𝑡ℎ𝑒 𝑔𝑙𝑜𝑏𝑎𝑙 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑤ℎ𝑒𝑛 𝑡ℎ𝑒𝑟𝑒 𝑎𝑟𝑒 𝑛𝑜 𝑜𝑡ℎ𝑒𝑟 𝑙𝑜𝑐𝑎𝑙 𝑒𝑥𝑡𝑟𝑒𝑚𝑒𝑠. 𝑑 𝑑𝑥 log 𝑓(𝑥) = 𝑓′ (𝑥) 𝑓(𝑥) 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝑖𝑎𝑡𝑒 𝑤𝑖𝑡ℎ 𝑟𝑒𝑠𝑝𝑒𝑐𝑡 𝑡𝑜 𝐷 𝑥 𝑢𝑠𝑖𝑛𝑔 𝐹𝑖𝑛𝑑 𝑡ℎ𝑒 𝑝𝑜𝑖𝑛𝑡 𝑤ℎ𝑒𝑟𝑒 𝑡ℎ𝑒 𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒 𝑣𝑎𝑙𝑢𝑒 𝑖𝑠 0 𝑙𝑜𝑐𝑎𝑙 𝑒𝑥𝑡𝑟𝑒𝑚𝑒 .
  • 80. 80 Theoretical Results = 𝑎𝑟𝑔 𝑚𝑎𝑥 𝑝 𝑑𝑎𝑡𝑎 𝑥 log 𝐷 𝑥 + 𝑝 𝑔 𝑥 log 1 − 𝐷 𝑥 Theory in GAN GANs 𝐷∗(𝑥) = 𝑎𝑟𝑔 𝑚𝑎𝑥 𝑉 𝐷 𝐷 𝐷 𝑎 log 𝑦 + 𝑏 log 1 − 𝑦 𝑎 𝑦 + −𝑏 1 − 𝑦 𝑎 − (𝑎 + 𝑏)𝑦 𝑦(1 − 𝑦) = 0 𝑦 = 𝑎 𝑎 + 𝑏 = 𝑎 − (𝑎 + 𝑏)𝑦 𝑦(1 − 𝑦) 𝑆𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑒 𝑎 = 𝑝 𝑑𝑎𝑡𝑎 𝑥 , 𝑦 = 𝐷 𝑥 , 𝑏 = 𝑝 𝑔 𝑥 𝑁𝑜𝑡𝑒 𝑡ℎ𝑎𝑡 𝐷 𝑥 𝑐𝑎𝑛 𝑛𝑜𝑡 𝑎𝑓𝑓𝑒𝑐𝑡 𝑡𝑜 𝑝 𝑑𝑎𝑡𝑎 𝑥 𝑎𝑛𝑑 𝑝 𝑔 𝑥 . 𝐼𝑡 ℎ𝑎𝑠 𝑎 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑣𝑎𝑙𝑢𝑒 𝑤ℎ𝑒𝑛 𝑑 𝑑𝑥 log 𝑓(𝑥) = 𝑓′ (𝑥) 𝑓(𝑥) 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝑖𝑎𝑡𝑒 𝑤𝑖𝑡ℎ 𝑟𝑒𝑠𝑝𝑒𝑐𝑡 𝑡𝑜 𝐷 𝑥 𝑢𝑠𝑖𝑛𝑔 𝐹𝑖𝑛𝑑 𝑡ℎ𝑒 𝑝𝑜𝑖𝑛𝑡 𝑤ℎ𝑒𝑟𝑒 𝑡ℎ𝑒 𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒 𝑣𝑎𝑙𝑢𝑒 𝑖𝑠 0 𝑙𝑜𝑐𝑎𝑙 𝑒𝑥𝑡𝑟𝑒𝑚𝑒 . 𝐷∗ 𝑥 = 𝑝 𝑑𝑎𝑡𝑎(𝑥) 𝑝 𝑑𝑎𝑡𝑎(𝑥) + 𝑝 𝑔(𝑥) 𝑆𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑒 𝑎 = 𝑝 𝑑𝑎𝑡𝑎 𝑥 , 𝑦 = 𝐷 𝑥 , 𝑏 = 𝑝 𝑔 𝑥
  • 81. 81 Theory in GAN GANs = 𝐸 𝑥~𝑝 𝑑𝑎𝑡𝑎 log 𝐷∗ 𝑥 + 𝐸 𝑥~𝑝 𝑔 log(1 − 𝐷∗ (𝑥)) = න 𝑝 𝑑𝑎𝑡𝑎 𝑥 log 𝑝 𝑑𝑎𝑡𝑎(𝑥) 𝑝 𝑑𝑎𝑡𝑎(𝑥) + 𝑝 𝑔(𝑥) 𝑑𝑥 + න 𝑝 𝑔 𝑥 log 𝑝 𝑔(𝑥) 𝑝 𝑑𝑎𝑡𝑎(𝑥) + 𝑝 𝑔(𝑥) 𝑑𝑥 = −𝑙𝑜𝑔4 + 𝑙𝑜𝑔4 + න 𝑝 𝑑𝑎𝑡𝑎 𝑥 log 𝑝 𝑑𝑎𝑡𝑎(𝑥) 𝑝 𝑑𝑎𝑡𝑎(𝑥) + 𝑝 𝑔(𝑥) 𝑑𝑥 + න 𝑝 𝑔 𝑥 log 𝑝 𝑔(𝑥) 𝑝 𝑑𝑎𝑡𝑎(𝑥) + 𝑝 𝑔(𝑥) 𝑑𝑥 = −𝑙𝑜𝑔4 + න 𝑝 𝑑𝑎𝑡𝑎 𝑥 log 2 ∙ 𝑝 𝑑𝑎𝑡𝑎(𝑥) 𝑝 𝑑𝑎𝑡𝑎(𝑥) + 𝑝 𝑔(𝑥) 𝑑𝑥 + න 𝑝 𝑔 𝑥 log 2 ∙ 𝑝 𝑔(𝑥) 𝑝 𝑑𝑎𝑡𝑎(𝑥) + 𝑝 𝑔(𝑥) 𝑑𝑥 = −𝑙𝑜𝑔4 + 𝐾𝐿(𝑝 𝑑𝑎𝑡𝑎|| 𝑝 𝑑𝑎𝑡𝑎 + 𝑝 𝑔 2 ) + 𝐾𝐿(𝑝 𝑔|| 𝑝 𝑑𝑎𝑡𝑎 + 𝑝 𝑔 2 ) = −𝑙𝑜𝑔4 + 2 ∙ 𝐽𝑆𝐷(𝑝 𝑑𝑎𝑡𝑎||𝑝 𝑔) 𝑥 𝑥 𝑥 𝑥 𝑥𝑥 𝑚𝑖𝑛 𝑚𝑎𝑥 𝑉 𝐷, 𝐺 = 𝐺 𝐷 𝑚𝑖𝑛 𝑉 𝐷∗, 𝐺 𝐺 𝑉 𝐷∗, 𝐺
  • 82. 82 Theory in GAN GANs = 𝐸 𝑥~𝑝 𝑑𝑎𝑡𝑎 log 𝐷∗ 𝑥 + 𝐸 𝑥~𝑝 𝑔 log(1 − 𝐷∗ (𝑥)) = න 𝑝 𝑑𝑎𝑡𝑎 𝑥 log 𝑝 𝑑𝑎𝑡𝑎(𝑥) 𝑝 𝑑𝑎𝑡𝑎(𝑥) + 𝑝 𝑔(𝑥) 𝑑𝑥 + න 𝑝 𝑔 𝑥 log 𝑝 𝑔(𝑥) 𝑝 𝑑𝑎𝑡𝑎(𝑥) + 𝑝 𝑔(𝑥) 𝑑𝑥 = −𝑙𝑜𝑔4 + 𝑙𝑜𝑔4 + න 𝑝 𝑑𝑎𝑡𝑎 𝑥 log 𝑝 𝑑𝑎𝑡𝑎(𝑥) 𝑝 𝑑𝑎𝑡𝑎(𝑥) + 𝑝 𝑔(𝑥) 𝑑𝑥 + න 𝑝 𝑔 𝑥 log 𝑝 𝑔(𝑥) 𝑝 𝑑𝑎𝑡𝑎(𝑥) + 𝑝 𝑔(𝑥) 𝑑𝑥 = −𝑙𝑜𝑔4 + න 𝑝 𝑑𝑎𝑡𝑎 𝑥 log 2 ∙ 𝑝 𝑑𝑎𝑡𝑎(𝑥) 𝑝 𝑑𝑎𝑡𝑎(𝑥) + 𝑝 𝑔(𝑥) 𝑑𝑥 + න 𝑝 𝑔 𝑥 log 2 ∙ 𝑝 𝑔(𝑥) 𝑝 𝑑𝑎𝑡𝑎(𝑥) + 𝑝 𝑔(𝑥) 𝑑𝑥 = −𝑙𝑜𝑔4 + 𝐾𝐿(𝑝 𝑑𝑎𝑡𝑎|| 𝑝 𝑑𝑎𝑡𝑎 + 𝑝 𝑔 2 ) + 𝐾𝐿(𝑝 𝑔|| 𝑝 𝑑𝑎𝑡𝑎 + 𝑝 𝑔 2 ) = −𝑙𝑜𝑔4 + 2 ∙ 𝐽𝑆𝐷(𝑝 𝑑𝑎𝑡𝑎||𝑝 𝑔) 𝑥 𝑥 𝑥 𝑥 𝑥𝑥 𝑚𝑖𝑛 𝑚𝑎𝑥 𝑉 𝐷, 𝐺 = 𝐺 𝐷 𝑚𝑖𝑛 𝑉 𝐷∗, 𝐺 𝐺 𝑉 𝐷∗, 𝐺 𝐺 𝑠ℎ𝑜𝑢𝑙𝑑 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐺 𝑠ℎ𝑜𝑢𝑙𝑑 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑖𝑛𝑔 𝑉 𝐷, 𝐺 𝑖𝑠 𝑠𝑎𝑚𝑒 𝑎𝑠 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑖𝑛𝑔 𝐽𝑆𝐷(𝑝 𝑑𝑎𝑡𝑎||𝑝 𝑔) 𝑂𝑝𝑡𝑖𝑚𝑎𝑙 𝐷