SlideShare una empresa de Scribd logo
1 de 168
LECTURE PRESENTATIONS
For CAMPBELL BIOLOGY, NINTH EDITION
Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson
© 2011 Pearson Education, Inc.
Lectures by
Erin Barley
Kathleen Fitzpatrick
Circulation and Gas Exchange
Chapter 42
Overview: Trading Places
• Every organism must exchange materials with its
environment
• Exchanges ultimately occur at the cellular level by
crossing the plasma membrane
• In unicellular organisms, these exchanges occur
directly with the environment
© 2011 Pearson Education, Inc.
• For most cells making up multicellular organisms,
direct exchange with the environment is not
possible
• Gills are an example of a specialized exchange
system in animals
– O2 diffuses from the water into blood vessels
– CO2 diffuses from blood into the water
• Internal transport and gas exchange are
functionally related in most animals
© 2011 Pearson Education, Inc.
Figure 42.1
Concept 42.1: Circulatory systems link
exchange surfaces with cells throughout
the body
• Diffusion time is proportional to the square of the
distance
• Diffusion is only efficient over small distances
• In small and/or thin animals, cells can exchange
materials directly with the surrounding medium
• In most animals, cells exchange materials with the
environment via a fluid-filled circulatory system
© 2011 Pearson Education, Inc.
Gastrovascular Cavities
• Some animals lack a circulatory system
• Some cnidarians, such as jellies, have elaborate
gastrovascular cavities
• A gastrovascular cavity functions in both digestion
and distribution of substances throughout the body
• The body wall that encloses the gastrovascular
cavity is only two cells thick
• Flatworms have a gastrovascular cavity and a
large surface area to volume ratio
© 2011 Pearson Education, Inc.
Figure 42.2
Circular
canal
Mouth
Radial canals 5 cm
(a) The moon jelly Aurelia, a cnidarian (b) The planarian Dugesia, a flatworm
Gastrovascular
cavity
Mouth
Pharynx
2 mm
Figure 42.2a
Circular
canal
Mouth
Radial canals 5 cm
(a) The moon jelly Aurelia, a cnidarian
Figure 42.2b
(b) The planarian Dugesia, a flatworm
Gastrovascular
cavity
Mouth
Pharynx
2 mm
Evolutionary Variation in Circulatory
Systems
• A circulatory system minimizes the diffusion
distance in animals with many cell layers
© 2011 Pearson Education, Inc.
General Properties of Circulatory Systems
• A circulatory system has
– A circulatory fluid
– A set of interconnecting vessels
– A muscular pump, the heart
• The circulatory system connects the fluid that
surrounds cells with the organs that exchange
gases, absorb nutrients, and dispose of wastes
• Circulatory systems can be open or closed, and
vary in the number of circuits in the body
© 2011 Pearson Education, Inc.
Open and Closed Circulatory Systems
• In insects, other arthropods, and most molluscs,
blood bathes the organs directly in an open
circulatory system
• In an open circulatory system, there is no
distinction between blood and interstitial fluid, and
this general body fluid is called hemolymph
© 2011 Pearson Education, Inc.
Figure 42.3
(a) An open circulatory system
Heart
Hemolymph in sinuses
surrounding organs
Pores
Tubular heart
Dorsal
vessel
(main heart)
Auxiliary
hearts
Small branch
vessels in
each organ
Ventral vessels
Blood
Interstitial fluid
Heart
(b) A closed circulatory system
Figure 42.3a
(a) An open circulatory system
Heart
Hemolymph in sinuses
surrounding organs
Pores
Tubular heart
• In a closed circulatory system, blood is
confined to vessels and is distinct from the
interstitial fluid
• Closed systems are more efficient at transporting
circulatory fluids to tissues and cells
• Annelids, cephalopods, and vertebrates have
closed circulatory systems
© 2011 Pearson Education, Inc.
Figure 42.3b
(b) A closed circulatory system
Dorsal
vessel
(main heart)
Auxiliary
hearts
Small branch
vessels in
each organ
Ventral vessels
Blood
Interstitial fluid
Heart
Organization of Vertebrate Circulatory
Systems
• Humans and other vertebrates have a closed
circulatory system called the cardiovascular
system
• The three main types of blood vessels are arteries,
veins, and capillaries
• Blood flow is one way in these vessels
© 2011 Pearson Education, Inc.
• Arteries branch into arterioles and carry blood
away from the heart to capillaries
• Networks of capillaries called capillary beds are
the sites of chemical exchange between the blood
and interstitial fluid
• Venules converge into veins and return blood
from capillaries to the heart
© 2011 Pearson Education, Inc.© 2011 Pearson Education, Inc.
• Arteries and veins are distinguished by the
direction of blood flow, not by O2 content
• Vertebrate hearts contain two or more chambers
• Blood enters through an atrium and is pumped
out through a ventricle
© 2011 Pearson Education, Inc.
Single Circulation
• Bony fishes, rays, and sharks have single
circulation with a two-chambered heart
• In single circulation, blood leaving the heart
passes through two capillary beds before returning
© 2011 Pearson Education, Inc.
Figure 42.4
(a) Single circulation (b) Double circulation
Artery
Heart:
Atrium (A)
Ventricle (V)
Vein
Gill
capillaries
Body
capillaries
Key
Oxygen-rich blood
Oxygen-poor blood
Systemic circuit
Systemic
capillaries
Right Left
A A
VV
Lung
capillaries
Pulmonary circuit
Figure 42.4a
(a) Single circulation
Artery
Heart:
Atrium (A)
Ventricle (V)
Vein
Gill
capillaries
Body
capillaries
Key
Oxygen-rich blood
Oxygen-poor blood
Double Circulation
• Amphibian, reptiles, and mammals have double
circulation
• Oxygen-poor and oxygen-rich blood are pumped
separately from the right and left sides of the heart
© 2011 Pearson Education, Inc.
Figure 42.4b
(b) Double circulation
Systemic circuit
Systemic
capillaries
Right Left
A A
VV
Lung
capillaries
Pulmonary circuit
Key
Oxygen-rich blood
Oxygen-poor blood
• In reptiles and mammals, oxygen-poor blood flows
through the pulmonary circuit to pick up oxygen
through the lungs
• In amphibians, oxygen-poor blood flows through a
pulmocutaneous circuit to pick up oxygen
through the lungs and skin
• Oxygen-rich blood delivers oxygen through the
systemic circuit
• Double circulation maintains higher blood pressure
in the organs than does single circulation
© 2011 Pearson Education, Inc.
Adaptations of Double Circulatory Systems
• Hearts vary in different vertebrate groups
© 2011 Pearson Education, Inc.
Amphibians
• Frogs and other amphibians have a three-
chambered heart: two atria and one ventricle
• The ventricle pumps blood into a forked artery that
splits the ventricle’s output into the
pulmocutaneous circuit and the systemic circuit
• When underwater, blood flow to the lungs is nearly
shut off
© 2011 Pearson Education, Inc.
Amphibians
Pulmocutaneous circuit
Lung
and skin
capillaries
Atrium
(A)
Atrium
(A)
LeftRight
Ventricle (V)
Systemic
capillaries
Systemic circuit
Key
Oxygen-rich blood
Oxygen-poor blood
Figure 42.5a
Reptiles (Except Birds)
• Turtles, snakes, and lizards have a three-
chambered heart: two atria and one ventricle
• In alligators, caimans, and other crocodilians a
septum divides the ventricle
• Reptiles have double circulation, with a pulmonary
circuit (lungs) and a systemic circuit
© 2011 Pearson Education, Inc.
Figure 42.5b
Reptiles (Except Birds)
Pulmonary circuit
Systemic circuit
Systemic
capillaries
Incomplete
septum
Left
systemic
aorta
LeftRight
Right
systemic
aorta
A
V
Lung
capillaries
Atrium
(A)
Ventricle
(V)
Key
Oxygen-rich blood
Oxygen-poor blood
Mammals and Birds
• Mammals and birds have a four-chambered heart
with two atria and two ventricles
• The left side of the heart pumps and receives only
oxygen-rich blood, while the right side receives
and pumps only oxygen-poor blood
• Mammals and birds are endotherms and require
more O2 than ectotherms
© 2011 Pearson Education, Inc.
Systemic circuit
Lung
capillaries
Pulmonary circuit
A
V
LeftRight
Systemic
capillaries
Mammals and Birds
Atrium
(A)
Ventricle
(V)
Key
Oxygen-rich blood
Oxygen-poor blood
Figure 42.5c
Figure 42.5
Amphibians Reptiles (Except Birds)
Pulmocutaneous circuit Pulmonary circuit
Lung
and skin
capillaries
Atrium
(A)
Atrium
(A)
LeftRight
Ventricle (V)
Systemic
capillaries
Systemic circuit Systemic circuit Systemic circuit
Systemic
capillaries
Incomplete
septum
Incomplete
septum
Left
systemic
aorta
LeftRight
Right
systemic
aorta
A A
V V
Lung
capillaries
Lung
capillaries
Pulmonary circuit
A A
V V
LeftRight
Systemic
capillaries
Key
Oxygen-rich blood
Oxygen-poor blood
Mammals and Birds
Concept 42.2: Coordinated cycles of heart
contraction drive double circulation in
mammals
• The mammalian cardiovascular system meets the
body’s continuous demand for O2
© 2011 Pearson Education, Inc.
Mammalian Circulation
• Blood begins its flow with the right ventricle
pumping blood to the lungs
• In the lungs, the blood loads O2 and unloads CO2
• Oxygen-rich blood from the lungs enters the heart
at the left atrium and is pumped through the aorta
to the body tissues by the left ventricle
• The aorta provides blood to the heart through the
coronary arteries
© 2011 Pearson Education, Inc.
• Blood returns to the heart through the superior
vena cava (blood from head, neck, and forelimbs)
and inferior vena cava (blood from trunk and hind
limbs)
• The superior vena cava and inferior vena cava
flow into the right atrium
© 2011 Pearson Education, Inc.
Animation: Path of Blood Flow in Mammals
© 2011 Pearson Education, Inc.
Animation: Path of Blood Flow in Mammals
Right-click slide / select “Play”
Superior vena cava
Pulmonary
artery
Capillaries
of right lung
Pulmonary
vein
Aorta
Inferior
vena cava
Right ventricle
Capillaries of
abdominal organs
and hind limbs
Right atrium
Aorta
Left ventricle
Left atrium
Pulmonary vein
Pulmonary
artery
Capillaries
of left lung
Capillaries of
head and forelimbs
Figure 42.6
The Mammalian Heart: A Closer Look
• A closer look at the mammalian heart provides a
better understanding of double circulation
© 2011 Pearson Education, Inc.
Figure 42.7
Pulmonary artery
Right
atrium
Semilunar
valve
Atrioventricular
valve
Right
ventricle
Left
ventricle
Atrioventricular
valve
Semilunar
valve
Left
atrium
Pulmonary
artery
Aorta
• The heart contracts and relaxes in a rhythmic
cycle called the cardiac cycle
• The contraction, or pumping, phase is called
systole
• The relaxation, or filling, phase is called diastole
© 2011 Pearson Education, Inc.
Figure 42.8-1
Atrial and
ventricular diastole
0.4
sec
1
Figure 42.8-2
Atrial and
ventricular diastole
Atrial systole and ventricular
diastole
0.1
sec
0.4
sec
2
1
Figure 42.8-3
Atrial and
ventricular diastole
Atrial systole and ventricular
diastole
Ventricular systole and atrial
diastole
0.1
sec
0.4
sec
0.3 sec
2
1
3
• The heart rate, also called the pulse, is the
number of beats per minute
• The stroke volume is the amount of blood
pumped in a single contraction
• The cardiac output is the volume of blood
pumped into the systemic circulation per minute
and depends on both the heart rate and stroke
volume
© 2011 Pearson Education, Inc.
• Four valves prevent backflow of blood in the heart
• The atrioventricular (AV) valves separate each
atrium and ventricle
• The semilunar valves control blood flow to the
aorta and the pulmonary artery
© 2011 Pearson Education, Inc.
• The “lub-dup” sound of a heart beat is caused by
the recoil of blood against the AV valves (lub) then
against the semilunar (dup) valves
• Backflow of blood through a defective valve
causes a heart murmur
© 2011 Pearson Education, Inc.
Maintaining the Heart’s Rhythmic Beat
• Some cardiac muscle cells are self-excitable,
meaning they contract without any signal from the
nervous system
• The sinoatrial (SA) node, or pacemaker, sets the
rate and timing at which cardiac muscle cells
contract
• Impulses that travel during the cardiac cycle can
be recorded as an electrocardiogram (ECG or
EKG)
© 2011 Pearson Education, Inc.
Figure 42.9-1
SA node
(pacemaker)
ECG
1
Figure 42.9-2
SA node
(pacemaker)
AV
node
ECG
1 2
Figure 42.9-3
SA node
(pacemaker)
AV
node Bundle
branches Heart
apex
ECG
1 2 3
Figure 42.9-4
SA node
(pacemaker)
AV
node Bundle
branches Heart
apex
Purkinje
fibers
ECG
1 2 3 4
• Impulses from the SA node travel to the
atrioventricular (AV) node
• At the AV node, the impulses are delayed and
then travel to the Purkinje fibers that make the
ventricles contract
© 2011 Pearson Education, Inc.
• The pacemaker is regulated by two portions of the
nervous system: the sympathetic and
parasympathetic divisions
• The sympathetic division speeds up the
pacemaker
• The parasympathetic division slows down the
pacemaker
• The pacemaker is also regulated by hormones
and temperature
© 2011 Pearson Education, Inc.
Concept 42.3: Patterns of blood pressure and
flow reflect the structure and arrangement
of blood vessels
• The physical principles that govern
movement of water in plumbing systems also
influence the functioning of animal circulatory
systems
© 2011 Pearson Education, Inc.
Blood Vessel Structure and Function
• A vessel’s cavity is called the central lumen
• The epithelial layer that lines blood vessels is
called the endothelium
• The endothelium is smooth and minimizes
resistance
© 2011 Pearson Education, Inc.
Figure 42.10
Artery
Red blood cells
Endothelium
Artery
Smooth
muscle
Connective
tissue
Capillary
Valve
Vein
Vein
Basal lamina
Endothelium
Smooth
muscle
Connective
tissue
100 µm
LM
Venule
15µm
LM
Arteriole
Red blood cell
Capillary
Figure 42.10a
Endothelium
Artery
Smooth
muscle
Connective
tissue
Capillary
Valve
Vein
Basal lamina
Endothelium
Smooth
muscle
Connective
tissue
VenuleArteriole
Figure 42.10b
Artery
Red blood cells
Vein
100 µm
LM
Figure 42.10c
15µm
LM
Red blood cell
Capillary
• Capillaries have thin walls, the endothelium plus
its basal lamina, to facilitate the exchange of
materials
• Arteries and veins have an endothelium, smooth
muscle, and connective tissue
• Arteries have thicker walls than veins to
accommodate the high pressure of blood pumped
from the heart
• In the thinner-walled veins, blood flows back to the
heart mainly as a result of muscle action
© 2011 Pearson Education, Inc.
Blood Flow Velocity
• Physical laws governing movement of fluids
through pipes affect blood flow and blood pressure
• Velocity of blood flow is slowest in the capillary
beds, as a result of the high resistance and large
total cross-sectional area
• Blood flow in capillaries is necessarily slow for
exchange of materials
© 2011 Pearson Education, Inc.
Figure 42.11
Aorta
ArteriesArterioles
C
apillaries
Venules
Veins
Venae
cavae
Systolic
pressure
Diastolic
pressure
0
20
40
60
80
100
120
0
10
20
30
40
50
Pressure
(mmHg)
Velocity
(cm/sec)Area(cm2
)
0
1,000
2,000
3,000
4,000
5,000
Blood Pressure
• Blood flows from areas of higher pressure to areas
of lower pressure
• Blood pressure is the pressure that blood exerts
against the wall of a vessel
• In rigid vessels blood pressure is maintained; less
rigid vessels deform and blood pressure is lost
© 2011 Pearson Education, Inc.
Changes in Blood Pressure During the
Cardiac Cycle
• Systolic pressure is the pressure in the arteries
during ventricular systole; it is the highest pressure
in the arteries
• Diastolic pressure is the pressure in the arteries
during diastole; it is lower than systolic pressure
• A pulse is the rhythmic bulging of artery walls with
each heartbeat
© 2011 Pearson Education, Inc.
Regulation of Blood Pressure
• Blood pressure is determined by cardiac output
and peripheral resistance due to constriction of
arterioles
• Vasoconstriction is the contraction of smooth
muscle in arteriole walls; it increases blood
pressure
• Vasodilation is the relaxation of smooth muscles
in the arterioles; it causes blood pressure to fall
© 2011 Pearson Education, Inc.
• Vasoconstriction and vasodilation help maintain
adequate blood flow as the body’s demands
change
• Nitric oxide is a major inducer of vasodilation
• The peptide endothelin is an important inducer of
vasoconstriction
© 2011 Pearson Education, Inc.
Blood Pressure and Gravity
• Blood pressure is generally measured for an artery
in the arm at the same height as the heart
• Blood pressure for a healthy 20 year old at rest is
120 mm Hg at systole and 70 mm Hg at diastole
© 2011 Pearson Education, Inc.
Blood pressure reading: 120/70
120
70
Sounds
stop
Sounds
audible in
stethoscope
120
Artery
closed
1 2 3
Figure 42.12
• Fainting is caused by inadequate blood flow to the
head
• Animals with longer necks require a higher systolic
pressure to pump blood a greater distance against
gravity
• Blood is moved through veins by smooth muscle
contraction, skeletal muscle contraction, and
expansion of the vena cava with inhalation
• One-way valves in veins prevent backflow of blood
© 2011 Pearson Education, Inc.
Direction of blood flow
in vein (toward heart) Valve (open)
Skeletal muscle
Valve (closed)
Figure 42.13
Capillary Function
• Blood flows through only 5−10% of the body’s
capillaries at a time
• Capillaries in major organs are usually filled to
capacity
• Blood supply varies in many other sites
© 2011 Pearson Education, Inc.
• Two mechanisms regulate distribution of blood in
capillary beds
– Contraction of the smooth muscle layer in the wall
of an arteriole constricts the vessel
– Precapillary sphincters control flow of blood
between arterioles and venules
• Blood flow is regulated by nerve impulses,
hormones, and other chemicals
© 2011 Pearson Education, Inc.
Figure 42.14
Precapillary
sphincters
Thoroughfare
channel
Arteriole
Capillaries
Venule
(a) Sphincters relaxed
Arteriole Venule
(b) Sphincters contracted
• The exchange of substances between the blood
and interstitial fluid takes place across the thin
endothelial walls of the capillaries
• The difference between blood pressure and
osmotic pressure drives fluids out of capillaries at
the arteriole end and into capillaries at the venule
end
• Most blood proteins and all blood cells are too
large to pass through the endothelium
© 2011 Pearson Education, Inc.
Figure 42.15
INTERSTITIAL
FLUID Net fluid movement out
Blood
pressure
Osmotic
pressure
Arterial end
of capillary Direction of blood flow
Venous end
of capillary
Body cell
Fluid Return by the Lymphatic System
• The lymphatic system returns fluid that leaks out
from the capillary beds
• Fluid, called lymph, reenters the circulation
directly at the venous end of the capillary bed and
indirectly through the lymphatic system
• The lymphatic system drains into veins in the neck
• Valves in lymph vessels prevent the backflow of
fluid
© 2011 Pearson Education, Inc.
• Lymph nodes are organs that filter lymph and
play an important role in the body’s defense
• Edema is swelling caused by disruptions in the
flow of lymph
© 2011 Pearson Education, Inc.
Figure 42.16
Concept 42.4: Blood components contribute
to exchange, transport, and defense
• With open circulation, the fluid that is pumped
comes into direct contact with all cells
• The closed circulatory systems of vertebrates
contain blood, a specialized connective tissue
© 2011 Pearson Education, Inc.
Blood Composition and Function
• Blood consists of several kinds of cells suspended
in a liquid matrix called plasma
• The cellular elements occupy about 45% of the
volume of blood
© 2011 Pearson Education, Inc.
Figure 42.17
Plasma 55%
Constituent Major functions
Water
Ions (blood
electrolytes)
Sodium
Potassium
Calcium
Magnesium
Chloride
Bicarbonate
Solvent for
carrying other
substances
Osmotic balance,
pH buffering,
and regulation
of membrane
permeablity
Plasma proteins
Osmotic balance,
pH buffering
Albumin
Fibrinogen
Immunoglobulins
(antibodies)
Clotting
Defense
Substances transported by blood
Nutrients
Waste products
Respiratory gases
Hormones
Separated
blood
elements
Basophils
Neutrophils Monocytes
Lymphocytes
Eosinophils
Platelets
Erythrocytes (red blood cells) 5–6 million
250,000–400,000 Blood
clotting
Transport
of O2 and
some CO2
Defense and
immunity
FunctionsNumber per µL
(mm3
) of blood
Cell type
Cellular elements 45%
Leukocytes (white blood cells) 5,000–10,000
Plasma 55%
Constituent Major functions
Water
Ions (blood
electrolytes)
Sodium
Potassium
Calcium
Magnesium
Chloride
Bicarbonate
Solvent for
carrying other
substances
Osmotic balance,
pH buffering,
and regulation
of membrane
permeablity
Plasma proteins
Osmotic balance, pH bufferingAlbumin
Fibrinogen
Immunoglobulins (antibodies)
Clotting
Defense
Substances transported by blood
Nutrients
Waste products
Separated
blood
elements
Respiratory gases
Hormones
Figure 42.17a
Separated
blood
elements
Basophils
Neutrophils
Monocytes
Lymphocytes
Eosinophils
Platelets
Erythrocytes (red blood cells) 5–6 million
250,000–400,000 Blood
clotting
Transport
of O2 and
some CO2
Defense and
immunity
FunctionsNumber per µL
(mm3
) of blood
Cell type
Cellular elements 45%
Leukocytes (white blood cells) 5,000–10,000
Figure 42.17b
Plasma
• Blood plasma is about 90% water
• Among its solutes are inorganic salts in the form of
dissolved ions, sometimes called electrolytes
• Another important class of solutes is the plasma
proteins, which influence blood pH, osmotic
pressure, and viscosity
• Various plasma proteins function in lipid transport,
immunity, and blood clotting
© 2011 Pearson Education, Inc.
Cellular Elements
• Suspended in blood plasma are two types of cells
– Red blood cells (erythrocytes) transport oxygen O2
– White blood cells (leukocytes) function in defense
• Platelets, a third cellular element, are fragments of
cells that are involved in clotting
© 2011 Pearson Education, Inc.© 2011 Pearson Education, Inc.
• Red blood cells, or erythrocytes, are by far the
most numerous blood cells
• They contain hemoglobin, the iron-containing
protein that transports O2
• Each molecule of hemoglobin binds up to four
molecules of O2
• In mammals, mature erythrocytes lack nuclei and
mitochondria
Erythrocytes
© 2011 Pearson Education, Inc.
• Sickle-cell disease is caused by abnormal
hemoglobin proteins that form aggregates
• The aggregates can deform an erythrocyte into a
sickle shape
• Sickled cells can rupture, or block blood vessels
© 2011 Pearson Education, Inc.
Leukocytes
• There are five major types of white blood cells, or
leukocytes: monocytes, neutrophils, basophils,
eosinophils, and lymphocytes
• They function in defense by phagocytizing bacteria
and debris or by producing antibodies
• They are found both in and outside of the
circulatory system
© 2011 Pearson Education, Inc.
Platelets
• Platelets are fragments of cells and function in
blood clotting
© 2011 Pearson Education, Inc.
Blood Clotting
• Coagulation is the formation of a solid clot from
liquid blood
• A cascade of complex reactions converts inactive
fibrinogen to fibrin, forming a clot
• A blood clot formed within a blood vessel is called
a thrombus and can block blood flow
© 2011 Pearson Education, Inc.
Figure 42.18
Collagen fibers
1 2 3
Platelet
Platelet
plug
Fibrin
clot
Fibrin clot formation
Red blood cell 5 µm
Clotting factors from:
Platelets
Damaged cells
Plasma (factors include calcium, vitamin K)
Enzymatic cascade
Prothrombin Thrombin
Fibrinogen Fibrin
+
Collagen fibers
1
Platelet
Platelet
plug
Fibrin
clot
Clotting factors from:
Platelets
Damaged cells
Plasma (factors include calcium, vitamin K)
Enzymatic cascade
Prothrombin Thrombin
Fibrinogen Fibrin
+
Fibrin clot
formation
2 3
Figure 42.18a
Figure 42.18b
Fibrin
clot Red blood cell 5 µm
Stem Cells and the Replacement of Cellular
Elements
• The cellular elements of blood wear out and are
being replaced constantly
• Erythrocytes, leukocytes, and platelets all develop
from a common source of stem cells in the red
marrow of bones, especially ribs, vertebrae,
sternum, and pelvis
• The hormone erythropoietin (EPO) stimulates
erythrocyte production when O2 delivery is low
© 2011 Pearson Education, Inc.
Stem cells
(in bone marrow)
Myeloid
stem cells
Lymphoid
stem cells
B cells T cells
Lymphocytes
Erythrocytes
Neutrophils
Basophils
EosinophilsPlatelets
Monocytes
Figure 42.19
Cardiovascular Disease
• Cardiovascular diseases are disorders of the heart
and the blood vessels
• Cardiovascular diseases account for more than
half the deaths in the United States
• Cholesterol, a steroid, helps maintain membrane
fluidity
© 2011 Pearson Education, Inc.
• Low-density lipoprotein (LDL) delivers
cholesterol to cells for membrane production
• High-density lipoprotein (HDL) scavenges
cholesterol for return to the liver
• Risk for heart disease increases with a high LDL
to HDL ratio
• Inflammation is also a factor in cardiovascular
disease
© 2011 Pearson Education, Inc.
Atherosclerosis, Heart Attacks, and Stroke
• One type of cardiovascular disease,
atherosclerosis, is caused by the buildup of
plaque deposits within arteries
© 2011 Pearson Education, Inc.
Lumen of artery
Smooth
muscle
Endothelium
Plaque
Smooth
muscle
cell
T lymphocyte
Extra-
cellular
matrix
Foam cell
Macrophage
Plaque rupture
LDL
CholesterolFibrous cap
1 2
43
Figure 42.20
• A heart attack, or myocardial infarction, is the
death of cardiac muscle tissue resulting from
blockage of one or more coronary arteries
• Coronary arteries supply oxygen-rich blood to the
heart muscle
• A stroke is the death of nervous tissue in the
brain, usually resulting from rupture or blockage of
arteries in the head
• Angina pectoris is caused by partial blockage of
the coronary arteries and results in chest pains
© 2011 Pearson Education, Inc.
Risk Factors and Treatment of
Cardiovascular Disease
• A high LDL to HDL ratio increases the risk of
cardiovascular disease
• The proportion of LDL relative to HDL can be
decreased by exercise, not smoking, and avoiding
foods with trans fats
• Drugs called statins reduce LDL levels and risk of
heart attacks
© 2011 Pearson Education, Inc.
Figure 42.21
Individuals with two functional copies of
PCSK9 gene (control group)
Plasma LDL cholesterol (mg/dL)
Individuals with an inactivating mutation in
one copy of PCSK9 gene
Plasma LDL cholesterol (mg/dL)
Average = 63 mg/dLAverage = 105 mg/dL
30
20
10
0
0 50 100 150 200 250 300 0
0
10
20
30
50 100 150 200 250 300
Percentofindividuals
RESULTS
Percentofindividuals
• Inflammation plays a role in atherosclerosis and
thrombus formation
• Aspirin inhibits inflammation and reduces the risk
of heart attacks and stroke
• Hypertension, or high blood pressure, promotes
atherosclerosis and increases the risk of heart
attack and stroke
• Hypertension can be reduced by dietary changes,
exercise, and/or medication
© 2011 Pearson Education, Inc.
Concept 42.5: Gas exchange occurs across
specialized respiratory surfaces
• Gas exchange supplies O2 for cellular respiration
and disposes of CO2
© 2011 Pearson Education, Inc.
Partial Pressure Gradients in Gas Exchange
• A gas diffuses from a region of higher partial
pressure to a region of lower partial pressure
• Partial pressure is the pressure exerted by a
particular gas in a mixture of gases
• Gases diffuse down pressure gradients in the
lungs and other organs as a result of differences in
partial pressure
© 2011 Pearson Education, Inc.
Respiratory Media
• Animals can use air or water as a source of O2, or
respiratory medium
• In a given volume, there is less O2 available in
water than in air
• Obtaining O2 from water requires greater efficiency
than air breathing
© 2011 Pearson Education, Inc.
Respiratory Surfaces
• Animals require large, moist respiratory surfaces
for exchange of gases between their cells and the
respiratory medium, either air or water
• Gas exchange across respiratory surfaces takes
place by diffusion
• Respiratory surfaces vary by animal and can
include the outer surface, skin, gills, tracheae, and
lungs
© 2011 Pearson Education, Inc.
Gills in Aquatic Animals
• Gills are outfoldings of the body that create a large
surface area for gas exchange
© 2011 Pearson Education, Inc.
Figure 42.22
Parapodium
(functions as gill)
(a) Marine worm (b) Crayfish
Gills
Gills
Tube foot
(c) Sea star
Coelom
Figure 42.22a
Parapodium (functions as gill)
(a) Marine worm
Figure 42.22b
(b) Crayfish
Gills
Figure 42.22c
Gills
Tube foot
(c) Sea star
Coelom
• Ventilation moves the respiratory medium over
the respiratory surface
• Aquatic animals move through water or move
water over their gills for ventilation
• Fish gills use a countercurrent exchange
system, where blood flows in the opposite
direction to water passing over the gills; blood is
always less saturated with O2 than the water it
meets
© 2011 Pearson Education, Inc.
Figure 42.23
Gill
arch
O2-poor blood
O2-rich blood
Blood
vessels
Gill arch
Operculum
Water
flow
Water flow
Blood flow
Countercurrent exchange
PO (mm Hg) in water
2
150
PO (mm Hg)
in blood
2
120 90 60 30
140 110 80 50 20
Net diffu-
sion of O2
Lamella
Gill filaments
Gill
arch
Operculum
Water
flow
Blood
vessels
Gill arch
Gill filaments
Figure 42.23a
O2-poor blood
Water flow
Blood flow
Countercurrent exchange
PO (mm Hg) in water
2
150
PO (mm Hg)
in blood
2
140
Net diffu-
sion of O2
Lamella
O2-rich blood
120 90 60 30
110 80 50 20
Figure 42.23b
Tracheal Systems in Insects
• The tracheal system of insects consists of tiny
branching tubes that penetrate the body
• The tracheal tubes supply O2 directly to body cells
• The respiratory and circulatory systems are
separate
• Larger insects must ventilate their tracheal system
to meet O2 demands
© 2011 Pearson Education, Inc.
Tracheoles Mitochondria Muscle fiber
2.5µm
Tracheae
Air sacs
External opening
Trachea
Air
sac Tracheole
Body
cell
Air
Figure 42.24
Figure 42.24a
Tracheoles Mitochondria Muscle fiber
2.5µm
Lungs
• Lungs are an infolding of the body surface
• The circulatory system (open or closed) transports
gases between the lungs and the rest of the body
• The size and complexity of lungs correlate with an
animal’s metabolic rate
© 2011 Pearson Education, Inc.
Mammalian Respiratory Systems: A Closer
Look
• A system of branching ducts conveys air to the
lungs
• Air inhaled through the nostrils is warmed,
humidified, and sampled for odors
• The pharynx directs air to the lungs and food to
the stomach
• Swallowing tips the epiglottis over the glottis in the
pharynx to prevent food from entering the trachea
© 2011 Pearson Education, Inc.
Figure 42.25
Pharynx
Larynx
(Esophagus)
Trachea
Right lung
Bronchus
Bronchiole
Diaphragm
(Heart)
Capillaries
Left
lung
Dense capillary bed
enveloping alveoli (SEM)
50 µm
Alveoli
Branch of
pulmonary artery
(oxygen-poor
blood)
Branch of
pulmonary vein
(oxygen-rich
blood)
Terminal
bronchiole
Nasal
cavity
Pharynx
Larynx
(Esophagus)
Trachea
Right lung
Bronchus
Bronchiole
Diaphragm
(Heart)
Left
lung
Nasal
cavity
Figure 42.25a
Capillaries
Alveoli
Branch of
pulmonary artery
(oxygen-poor
blood)
Branch of
pulmonary vein
(oxygen-rich
blood)
Terminal
bronchiole
Figure 42.25b
Figure 42.25c
Dense capillary bed
enveloping alveoli (SEM)
50 µm
• Air passes through the pharynx, larynx, trachea,
bronchi, and bronchioles to the alveoli, where
gas exchange occurs
• Exhaled air passes over the vocal cords in the
larynx to create sounds
• Cilia and mucus line the epithelium of the air ducts
and move particles up to the pharynx
• This “mucus escalator” cleans the respiratory
system and allows particles to be swallowed into
the esophagus
© 2011 Pearson Education, Inc.
• Gas exchange takes place in alveoli, air sacs at
the tips of bronchioles
• Oxygen diffuses through the moist film of the
epithelium and into capillaries
• Carbon dioxide diffuses from the capillaries across
the epithelium and into the air space
© 2011 Pearson Education, Inc.
• Alveoli lack cilia and are susceptible to
contamination
• Secretions called surfactants coat the surface of
the alveoli
• Preterm babies lack surfactant and are vulnerable
to respiratory distress syndrome; treatment is
provided by artificial surfactants
© 2011 Pearson Education, Inc.
RDS deaths Deaths from other causesRESULTS
40
30
20
10
0
0 800 1,600 2,400 3,200 4,000
Body mass of infant (g)
Surfacetension(dynes/cm)
Figure 42.26
Concept 42.6: Breathing ventilates the lungs
• The process that ventilates the lungs is breathing,
the alternate inhalation and exhalation of air
© 2011 Pearson Education, Inc.
How an Amphibian Breathes
• An amphibian such as a frog ventilates its lungs by
positive pressure breathing, which forces air
down the trachea
© 2011 Pearson Education, Inc.
How a Bird Breathes
• Birds have eight or nine air sacs that function as
bellows that keep air flowing through the lungs
• Air passes through the lungs in one direction only
• Every exhalation completely renews the air in the
lungs
© 2011 Pearson Education, Inc.
Anterior
air sacs
Posterior
air sacs
Lungs
1 mm
Airflow
Air tubes
(parabronchi)
in lung
Anterior
air sacs
Lungs
Second inhalationFirst inhalation
Posterior
air sacs 3
2
4
1
4
31
2 Second exhalationFirst exhalation
Figure 42.27
Figure 42.27a
1 mm
Airflow
Air tubes
(parabronchi)
in lung
How a Mammal Breathes
• Mammals ventilate their lungs by negative
pressure breathing, which pulls air into the lungs
• Lung volume increases as the rib muscles and
diaphragm contract
• The tidal volume is the volume of air inhaled with
each breath
© 2011 Pearson Education, Inc.
Figure 42.28
Rib cage
expands.
Air
inhaled.
Air
exhaled.
Rib cage gets
smaller.
1 2
Lung
Diaphragm
• The maximum tidal volume is the vital capacity
• After exhalation, a residual volume of air remains
in the lungs
© 2011 Pearson Education, Inc.
Control of Breathing in Humans
• In humans, the main breathing control centers
are in two regions of the brain, the medulla
oblongata and the pons
• The medulla regulates the rate and depth of
breathing in response to pH changes in the
cerebrospinal fluid
• The medulla adjusts breathing rate and depth to
match metabolic demands
• The pons regulates the tempo
© 2011 Pearson Education, Inc.
• Sensors in the aorta and carotid arteries monitor
O2 and CO2 concentrations in the blood
• These sensors exert secondary control over
breathing
© 2011 Pearson Education, Inc.
Homeostasis:
Blood pH of about 7.4
CO2 level
decreases. Stimulus:
Rising level of
CO2 in tissues
lowers blood pH.
Response:
Rib muscles
and diaphragm
increase rate
and depth of
ventilation.
Carotid
arteries
AortaSensor/control center:
Cerebrospinal fluid
Medulla
oblongata
Figure 42.29
Concept 42.7: Adaptations for gas exchange
include pigments that bind and transport
gases
• The metabolic demands of many organisms
require that the blood transport large quantities of
O2 and CO2
© 2011 Pearson Education, Inc.
Coordination of Circulation and Gas
Exchange
• Blood arriving in the lungs has a low partial
pressure of O2 and a high partial pressure of CO2
relative to air in the alveoli
• In the alveoli, O2 diffuses into the blood and CO2
diffuses into the air
• In tissue capillaries, partial pressure gradients
favor diffusion of O2 into the interstitial fluids and
CO2 into the blood
© 2011 Pearson Education, Inc.
Exhaled air Inhaled air
Pulmonary
arteries
Systemic
veins
Systemic
arteries
Pulmonary
veins
Alveolar
capillaries
Alveolar
spacesAlveolar
epithelial
cells
Inhaled
air
160
120
80
40
0Heart
8 1
2
3
46
7
CO2 O2
Systemic
capillariesCO2 O2
Body tissue5
a) The path of respiratory gases in the circulatory
system
(b) Partial pressure of O2 and CO2 at different points in the
circulatory system numbered in (a)
4321 5 6 7
Exhaled
air
Partialpressure(mmHg)
PO2
PCO 2
8
Figure 42.30
Figure 42.30a
Exhaled air Inhaled air
Pulmonary
arteries
Systemic
veins
Systemic
arteries
Pulmonary
veins
Alveolar
capillaries
Alveolar
spacesAlveolar
epithelial
cells
Heart
Systemic
capillariesCO2 O2
Body tissue
(a) The path of respiratory gases in the circulatory
system
CO2 O2
8 1
2
37
6 4
5
Inhaled
air
160
(b) Partial pressure of O2 and CO2 at different points in the
circulatory system numbered in (a)
1
Exhaled
air
Partialpressure(mmHg) PO2
120
80
40
0
2 3 4 5 6 7 8
PCO 2
Figure 42.30b
Respiratory Pigments
• Respiratory pigments, proteins that transport
oxygen, greatly increase the amount of oxygen
that blood can carry
• Arthropods and many molluscs have hemocyanin
with copper as the oxygen-binding component
• Most vertebrates and some invertebrates use
hemoglobin
• In vertebrates, hemoglobin is contained within
erythrocytes
© 2011 Pearson Education, Inc.
Hemoglobin
• A single hemoglobin molecule can carry four
molecules of O2, one molecule for each iron
containing heme group
• The hemoglobin dissociation curve shows that a
small change in the partial pressure of oxygen can
result in a large change in delivery of O2
• CO2 produced during cellular respiration lowers
blood pH and decreases the affinity of hemoglobin
for O2; this is called the Bohr shift
© 2011 Pearson Education, Inc.© 2011 Pearson Education, Inc.
Figure 42.UN01
Iron
Heme
Hemoglobin
Figure 42.31
2
(a) PO and hemoglobin dissociation at pH 7.4
Tissues during
exercise
Tissues
at rest
Lungs
PO (mm Hg)
2
(b) pH and hemoglobin dissociation
PO (mm Hg)
2
0 20 40 60 80 100
0
20
40
60
80
100
0 20 40 60 80 100
0
20
40
60
80
100
Hemoglobin
retains less
O2 at lower pH
(higher CO2
concentration)
pH 7.2
pH 7.4
O2 unloaded
to tissues
during exercise
O2saturationofhemoglobin(%)
O2 unloaded
to tissues
at rest
O2saturationofhemoglobin(%)
Figure 42.31a
2
(a) PO and hemoglobin dissociation at pH 7.4
Tissues during
exercise
Tissues
at rest
Lungs
PO (mm Hg)
2
0 20 40 60 80 100
0
20
40
60
80
100
O2 unloaded
to tissues
during exercise
O2 unloaded
to tissues
at rest
O2saturationofhemoglobin(%)
(b) pH and hemoglobin dissociation
PO (mm Hg)
2
0 20 40 60 80 100
0
20
40
60
80
100
Hemoglobin
retains less
O2 at lower pH
(higher CO2
concentration)
pH 7.2
pH 7.4
O2saturationofhemoglobin(%)
Figure 42.31b
Carbon Dioxide Transport
• Hemoglobin also helps transport CO2 and assists
in buffering the blood
• CO2 from respiring cells diffuses into the blood and
is transported either in blood plasma, bound to
hemoglobin, or as bicarbonate ions (HCO3
–
)
© 2011 Pearson Education, Inc.
Animation: O2 from Lungs to Blood
Animation: CO2 from Blood to Lungs
Animation: CO2 from Tissues to Blood
Animation: O2 from Blood to Tissues
© 2011 Pearson Education, Inc.
Animation: O2 from Blood to Tissues
Right-click slide / select “Play”
© 2011 Pearson Education, Inc.
Animation: CO2 from Tissues to Blood
Right-click slide / select “Play”
© 2011 Pearson Education, Inc.
Animation: CO2 from Blood to Lungs
Right-click slide / select “Play”
© 2011 Pearson Education, Inc.
Animation: O2 from Lungs to Blood
Right-click slide / select “Play”
Figure 42.32 Body tissue
Capillary
wall
Interstitial
fluid
Plasma
within capillary
CO2 transport
from tissuesCO2 produced
CO2
CO2
CO2
H2O
H2CO3 Hb
Red
blood
cell Carbonic
acid
Hemoglobin (Hb)
picks up
CO2 and H+
.
H+
HCO3
−
Bicarbonate
+
HCO3
−
HCO3
−
To lungs
CO2 transport
to lungs
HCO3
−
H2CO3
H2O
CO2
H++
Hb
Hemoglobin
releases
CO2 and H+
.
CO2
CO2
CO2
Alveolar space in lung
Figure 42.32a
Body tissue
Capillary
wall
Interstitial
fluid
Plasma
within capillary
CO2 transport
from tissuesCO2 produced
CO2
H2O
H2CO3 Hb
Red
blood
cell Carbonic
acid
Hemoglobin (Hb)
picks up
CO2 and H+
.
H+HCO3
−
Bicarbonate
+
HCO3
−
To lungs
CO2
CO2
Figure 42.32b
HCO3
− CO2 transport
to lungs
H2CO3
H2O
H++
Hb
Hemoglobin
releases
CO2 and H+
.
CO2
Alveolar space in lung
To lungs
HCO3
−
CO2
CO2
CO2
Respiratory Adaptations of Diving Mammals
• Diving mammals have evolutionary adaptations
that allow them to perform extraordinary feats
– For example, Weddell seals in Antarctica can
remain underwater for 20 minutes to an hour
– For example, elephant seals can dive to 1,500 m
and remain underwater for 2 hours
• These animals have a high blood to body volume
ratio
© 2011 Pearson Education, Inc.
• Deep-diving air breathers stockpile O2 and deplete
it slowly
• Diving mammals can store oxygen in their
muscles in myoglobin proteins
• Diving mammals also conserve oxygen by
– Changing their buoyancy to glide passively
– Decreasing blood supply to muscles
– Deriving ATP in muscles from fermentation once
oxygen is depleted
© 2011 Pearson Education, Inc.
Figure 42.UN02
Exhaled air
Alveolar
epithelial
cells
Pulmonary
arteries
Systemic
veins
Heart
CO2 O2
Body tissue
Systemic
capillaries
Systemic
arteries
Pulmonary
veins
Alveolar
capillaries
Alveolar
spaces
Inhaled air
CO2 O2
Figure 42.UN03
Fetus
Mother
PO (mm Hg)
2
0 20 40 60 80 100
100
80
60
40
20
0
O2saturationof
hemoglobin(%)
Figure 42.UN04

Más contenido relacionado

La actualidad más candente

13 meiosis and sexual life cycles
13 meiosis and sexual life cycles13 meiosis and sexual life cycles
13 meiosis and sexual life cycles
kindarspirit
 
23 the evolution of populations
23 the evolution of populations23 the evolution of populations
23 the evolution of populations
kindarspirit
 
02 the chemical context of life
02 the chemical context of life02 the chemical context of life
02 the chemical context of life
kindarspirit
 
Ch 16: The Molecular Basis of Inheritance
Ch 16: The Molecular Basis of Inheritance Ch 16: The Molecular Basis of Inheritance
Ch 16: The Molecular Basis of Inheritance
veneethmathew
 
24 lecture origin_of_species
24 lecture origin_of_species24 lecture origin_of_species
24 lecture origin_of_species
veneethmathew
 
25 lecture history_of_life
25 lecture history_of_life25 lecture history_of_life
25 lecture history_of_life
veneethmathew
 
14 mendel and the gene idea
14 mendel and the gene idea14 mendel and the gene idea
14 mendel and the gene idea
kindarspirit
 

La actualidad más candente (20)

Ch 3: Water and Life
Ch 3: Water and LifeCh 3: Water and Life
Ch 3: Water and Life
 
13 meiosis and sexual life cycles
13 meiosis and sexual life cycles13 meiosis and sexual life cycles
13 meiosis and sexual life cycles
 
23 the evolution of populations
23 the evolution of populations23 the evolution of populations
23 the evolution of populations
 
Biology in Focus - Chapter 35
Biology in Focus - Chapter 35Biology in Focus - Chapter 35
Biology in Focus - Chapter 35
 
Ch 10: Photosynthesis
Ch 10: PhotosynthesisCh 10: Photosynthesis
Ch 10: Photosynthesis
 
02 the chemical context of life
02 the chemical context of life02 the chemical context of life
02 the chemical context of life
 
AP Biology-Ch.6 A Tour of the Cell
AP Biology-Ch.6 A Tour of the CellAP Biology-Ch.6 A Tour of the Cell
AP Biology-Ch.6 A Tour of the Cell
 
Ch 12: Cell Cycle
Ch 12: Cell CycleCh 12: Cell Cycle
Ch 12: Cell Cycle
 
Ch 16: The Molecular Basis of Inheritance
Ch 16: The Molecular Basis of Inheritance Ch 16: The Molecular Basis of Inheritance
Ch 16: The Molecular Basis of Inheritance
 
Ch 2: The Chemical Context of Life
Ch 2: The Chemical Context of LifeCh 2: The Chemical Context of Life
Ch 2: The Chemical Context of Life
 
Ch 5: The Structure and Function of Large Biological Molecules
Ch 5: The Structure and Function of Large Biological MoleculesCh 5: The Structure and Function of Large Biological Molecules
Ch 5: The Structure and Function of Large Biological Molecules
 
24 lecture origin_of_species
24 lecture origin_of_species24 lecture origin_of_species
24 lecture origin_of_species
 
Ch 11: Cell Communication
Ch 11: Cell CommunicationCh 11: Cell Communication
Ch 11: Cell Communication
 
25 lecture history_of_life
25 lecture history_of_life25 lecture history_of_life
25 lecture history_of_life
 
Ch 13: Meiosis and Sexual Life Cycles
Ch 13: Meiosis and Sexual Life CyclesCh 13: Meiosis and Sexual Life Cycles
Ch 13: Meiosis and Sexual Life Cycles
 
Ch 4: Carbon and Diversity
Ch 4: Carbon and DiversityCh 4: Carbon and Diversity
Ch 4: Carbon and Diversity
 
14 mendel and the gene idea
14 mendel and the gene idea14 mendel and the gene idea
14 mendel and the gene idea
 
Biology in Focus - Chapter 34
Biology in Focus - Chapter 34Biology in Focus - Chapter 34
Biology in Focus - Chapter 34
 
45lecturepresentation 101204060035-phpapp01
45lecturepresentation 101204060035-phpapp0145lecturepresentation 101204060035-phpapp01
45lecturepresentation 101204060035-phpapp01
 
Biology in Focus - Chapter 33
Biology in Focus - Chapter 33Biology in Focus - Chapter 33
Biology in Focus - Chapter 33
 

Destacado

Aquatic Biodiversity
Aquatic BiodiversityAquatic Biodiversity
Aquatic Biodiversity
bill_wallace
 

Destacado (20)

Ch43
Ch43Ch43
Ch43
 
04 17-06
04 17-0604 17-06
04 17-06
 
Circulatory system - Blood Vessels and Lymph fluid
Circulatory system - Blood Vessels and Lymph fluid Circulatory system - Blood Vessels and Lymph fluid
Circulatory system - Blood Vessels and Lymph fluid
 
Fishing in the Firth of Clyde
Fishing in the Firth of ClydeFishing in the Firth of Clyde
Fishing in the Firth of Clyde
 
New Cases - Depletion of marine life - Lisa Mead
New Cases - Depletion of marine life - Lisa MeadNew Cases - Depletion of marine life - Lisa Mead
New Cases - Depletion of marine life - Lisa Mead
 
Biology in Focus - Chapter 38
Biology in Focus - Chapter 38Biology in Focus - Chapter 38
Biology in Focus - Chapter 38
 
Fish biodiversity and food supply: Species numbers in the wild and exploited;...
Fish biodiversity and food supply: Species numbers in the wild and exploited;...Fish biodiversity and food supply: Species numbers in the wild and exploited;...
Fish biodiversity and food supply: Species numbers in the wild and exploited;...
 
Stunted seed production & culture practices
Stunted seed production & culture practicesStunted seed production & culture practices
Stunted seed production & culture practices
 
Square codend mesh
Square codend mesh Square codend mesh
Square codend mesh
 
Ccrf
CcrfCcrf
Ccrf
 
Threats to marine biodiversity
Threats to marine biodiversityThreats to marine biodiversity
Threats to marine biodiversity
 
Biology in Focus - Chapter 42
Biology in Focus - Chapter 42Biology in Focus - Chapter 42
Biology in Focus - Chapter 42
 
Aquatic Biodiversity
Aquatic BiodiversityAquatic Biodiversity
Aquatic Biodiversity
 
Chapter 21&22
Chapter 21&22Chapter 21&22
Chapter 21&22
 
Biology in Focus - Chapter 40
Biology in Focus - Chapter 40Biology in Focus - Chapter 40
Biology in Focus - Chapter 40
 
Threats to biodiversity
Threats to biodiversity   Threats to biodiversity
Threats to biodiversity
 
Cardiovascular Histology
Cardiovascular HistologyCardiovascular Histology
Cardiovascular Histology
 
Water Pollution
Water PollutionWater Pollution
Water Pollution
 
Chapter 5 water quality
Chapter 5 water qualityChapter 5 water quality
Chapter 5 water quality
 
Water sampling methods and tools
Water sampling methods and toolsWater sampling methods and tools
Water sampling methods and tools
 

Similar a Biology "B" / Ch42

Circulatory sysem of vertebrates
Circulatory sysem of vertebratesCirculatory sysem of vertebrates
Circulatory sysem of vertebrates
Govt.college,Nagda, ujjain.M.P
 
13 fluid flow 2010
13 fluid flow 201013 fluid flow 2010
13 fluid flow 2010
setherin
 

Similar a Biology "B" / Ch42 (20)

42_lecture_presentation_0.ppt
42_lecture_presentation_0.ppt42_lecture_presentation_0.ppt
42_lecture_presentation_0.ppt
 
42 CIRCULACION.ppt
42 CIRCULACION.ppt42 CIRCULACION.ppt
42 CIRCULACION.ppt
 
Transport systems in animals
Transport systems in animalsTransport systems in animals
Transport systems in animals
 
Chapter 42
Chapter 42Chapter 42
Chapter 42
 
AP Biology Circulation and Gas Exchange
AP Biology Circulation and Gas ExchangeAP Biology Circulation and Gas Exchange
AP Biology Circulation and Gas Exchange
 
Circulatory systems in the living world-1.pptx
Circulatory systems in the living world-1.pptxCirculatory systems in the living world-1.pptx
Circulatory systems in the living world-1.pptx
 
42-circulation-text-and gas exchange
42-circulation-text-and gas exchange42-circulation-text-and gas exchange
42-circulation-text-and gas exchange
 
Ncert class 10 - science - chapter 6 -l ife processes
Ncert   class 10 - science - chapter 6 -l ife processesNcert   class 10 - science - chapter 6 -l ife processes
Ncert class 10 - science - chapter 6 -l ife processes
 
Lecture_Unit1_ Transport systems in Animals complete.pptx
Lecture_Unit1_ Transport systems in Animals complete.pptxLecture_Unit1_ Transport systems in Animals complete.pptx
Lecture_Unit1_ Transport systems in Animals complete.pptx
 
Topic 3 Circulatory System part 1
Topic 3  Circulatory System part 1Topic 3  Circulatory System part 1
Topic 3 Circulatory System part 1
 
Circulatory sysem of vertebrates
Circulatory sysem of vertebratesCirculatory sysem of vertebrates
Circulatory sysem of vertebrates
 
Day 4
Day 4Day 4
Day 4
 
13 fluid flow 2010
13 fluid flow 201013 fluid flow 2010
13 fluid flow 2010
 
Circulatory system
Circulatory systemCirculatory system
Circulatory system
 
Cardiovascular_and_Respiratory_System.ppt
Cardiovascular_and_Respiratory_System.pptCardiovascular_and_Respiratory_System.ppt
Cardiovascular_and_Respiratory_System.ppt
 
Cardiovascular_and_Respiratory_System.ppt
Cardiovascular_and_Respiratory_System.pptCardiovascular_and_Respiratory_System.ppt
Cardiovascular_and_Respiratory_System.ppt
 
Cardiovascular_and_Respiratory_System.ppt
Cardiovascular_and_Respiratory_System.pptCardiovascular_and_Respiratory_System.ppt
Cardiovascular_and_Respiratory_System.ppt
 
Science project
Science projectScience project
Science project
 
Ch_34_Circulation__Gas_Exchange.pptx
Ch_34_Circulation__Gas_Exchange.pptxCh_34_Circulation__Gas_Exchange.pptx
Ch_34_Circulation__Gas_Exchange.pptx
 
Comparative anatomy
Comparative anatomyComparative anatomy
Comparative anatomy
 

Último

Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
kauryashika82
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
QucHHunhnh
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global Impact
PECB
 
Seal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptxSeal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptx
negromaestrong
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
QucHHunhnh
 

Último (20)

Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17  How to Extend Models Using Mixin ClassesMixin Classes in Odoo 17  How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
 
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
 
Application orientated numerical on hev.ppt
Application orientated numerical on hev.pptApplication orientated numerical on hev.ppt
Application orientated numerical on hev.ppt
 
Unit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxUnit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptx
 
Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdf
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy Consulting
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activity
 
fourth grading exam for kindergarten in writing
fourth grading exam for kindergarten in writingfourth grading exam for kindergarten in writing
fourth grading exam for kindergarten in writing
 
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global Impact
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdf
 
Seal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptxSeal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptx
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
 
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
 
SECOND SEMESTER TOPIC COVERAGE SY 2023-2024 Trends, Networks, and Critical Th...
SECOND SEMESTER TOPIC COVERAGE SY 2023-2024 Trends, Networks, and Critical Th...SECOND SEMESTER TOPIC COVERAGE SY 2023-2024 Trends, Networks, and Critical Th...
SECOND SEMESTER TOPIC COVERAGE SY 2023-2024 Trends, Networks, and Critical Th...
 
How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17
 
Unit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptxUnit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptx
 

Biology "B" / Ch42

  • 1. LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson © 2011 Pearson Education, Inc. Lectures by Erin Barley Kathleen Fitzpatrick Circulation and Gas Exchange Chapter 42
  • 2. Overview: Trading Places • Every organism must exchange materials with its environment • Exchanges ultimately occur at the cellular level by crossing the plasma membrane • In unicellular organisms, these exchanges occur directly with the environment © 2011 Pearson Education, Inc.
  • 3. • For most cells making up multicellular organisms, direct exchange with the environment is not possible • Gills are an example of a specialized exchange system in animals – O2 diffuses from the water into blood vessels – CO2 diffuses from blood into the water • Internal transport and gas exchange are functionally related in most animals © 2011 Pearson Education, Inc.
  • 5. Concept 42.1: Circulatory systems link exchange surfaces with cells throughout the body • Diffusion time is proportional to the square of the distance • Diffusion is only efficient over small distances • In small and/or thin animals, cells can exchange materials directly with the surrounding medium • In most animals, cells exchange materials with the environment via a fluid-filled circulatory system © 2011 Pearson Education, Inc.
  • 6. Gastrovascular Cavities • Some animals lack a circulatory system • Some cnidarians, such as jellies, have elaborate gastrovascular cavities • A gastrovascular cavity functions in both digestion and distribution of substances throughout the body • The body wall that encloses the gastrovascular cavity is only two cells thick • Flatworms have a gastrovascular cavity and a large surface area to volume ratio © 2011 Pearson Education, Inc.
  • 7. Figure 42.2 Circular canal Mouth Radial canals 5 cm (a) The moon jelly Aurelia, a cnidarian (b) The planarian Dugesia, a flatworm Gastrovascular cavity Mouth Pharynx 2 mm
  • 8. Figure 42.2a Circular canal Mouth Radial canals 5 cm (a) The moon jelly Aurelia, a cnidarian
  • 9. Figure 42.2b (b) The planarian Dugesia, a flatworm Gastrovascular cavity Mouth Pharynx 2 mm
  • 10. Evolutionary Variation in Circulatory Systems • A circulatory system minimizes the diffusion distance in animals with many cell layers © 2011 Pearson Education, Inc.
  • 11. General Properties of Circulatory Systems • A circulatory system has – A circulatory fluid – A set of interconnecting vessels – A muscular pump, the heart • The circulatory system connects the fluid that surrounds cells with the organs that exchange gases, absorb nutrients, and dispose of wastes • Circulatory systems can be open or closed, and vary in the number of circuits in the body © 2011 Pearson Education, Inc.
  • 12. Open and Closed Circulatory Systems • In insects, other arthropods, and most molluscs, blood bathes the organs directly in an open circulatory system • In an open circulatory system, there is no distinction between blood and interstitial fluid, and this general body fluid is called hemolymph © 2011 Pearson Education, Inc.
  • 13. Figure 42.3 (a) An open circulatory system Heart Hemolymph in sinuses surrounding organs Pores Tubular heart Dorsal vessel (main heart) Auxiliary hearts Small branch vessels in each organ Ventral vessels Blood Interstitial fluid Heart (b) A closed circulatory system
  • 14. Figure 42.3a (a) An open circulatory system Heart Hemolymph in sinuses surrounding organs Pores Tubular heart
  • 15. • In a closed circulatory system, blood is confined to vessels and is distinct from the interstitial fluid • Closed systems are more efficient at transporting circulatory fluids to tissues and cells • Annelids, cephalopods, and vertebrates have closed circulatory systems © 2011 Pearson Education, Inc.
  • 16. Figure 42.3b (b) A closed circulatory system Dorsal vessel (main heart) Auxiliary hearts Small branch vessels in each organ Ventral vessels Blood Interstitial fluid Heart
  • 17. Organization of Vertebrate Circulatory Systems • Humans and other vertebrates have a closed circulatory system called the cardiovascular system • The three main types of blood vessels are arteries, veins, and capillaries • Blood flow is one way in these vessels © 2011 Pearson Education, Inc.
  • 18. • Arteries branch into arterioles and carry blood away from the heart to capillaries • Networks of capillaries called capillary beds are the sites of chemical exchange between the blood and interstitial fluid • Venules converge into veins and return blood from capillaries to the heart © 2011 Pearson Education, Inc.© 2011 Pearson Education, Inc.
  • 19. • Arteries and veins are distinguished by the direction of blood flow, not by O2 content • Vertebrate hearts contain two or more chambers • Blood enters through an atrium and is pumped out through a ventricle © 2011 Pearson Education, Inc.
  • 20. Single Circulation • Bony fishes, rays, and sharks have single circulation with a two-chambered heart • In single circulation, blood leaving the heart passes through two capillary beds before returning © 2011 Pearson Education, Inc.
  • 21. Figure 42.4 (a) Single circulation (b) Double circulation Artery Heart: Atrium (A) Ventricle (V) Vein Gill capillaries Body capillaries Key Oxygen-rich blood Oxygen-poor blood Systemic circuit Systemic capillaries Right Left A A VV Lung capillaries Pulmonary circuit
  • 22. Figure 42.4a (a) Single circulation Artery Heart: Atrium (A) Ventricle (V) Vein Gill capillaries Body capillaries Key Oxygen-rich blood Oxygen-poor blood
  • 23. Double Circulation • Amphibian, reptiles, and mammals have double circulation • Oxygen-poor and oxygen-rich blood are pumped separately from the right and left sides of the heart © 2011 Pearson Education, Inc.
  • 24. Figure 42.4b (b) Double circulation Systemic circuit Systemic capillaries Right Left A A VV Lung capillaries Pulmonary circuit Key Oxygen-rich blood Oxygen-poor blood
  • 25. • In reptiles and mammals, oxygen-poor blood flows through the pulmonary circuit to pick up oxygen through the lungs • In amphibians, oxygen-poor blood flows through a pulmocutaneous circuit to pick up oxygen through the lungs and skin • Oxygen-rich blood delivers oxygen through the systemic circuit • Double circulation maintains higher blood pressure in the organs than does single circulation © 2011 Pearson Education, Inc.
  • 26. Adaptations of Double Circulatory Systems • Hearts vary in different vertebrate groups © 2011 Pearson Education, Inc.
  • 27. Amphibians • Frogs and other amphibians have a three- chambered heart: two atria and one ventricle • The ventricle pumps blood into a forked artery that splits the ventricle’s output into the pulmocutaneous circuit and the systemic circuit • When underwater, blood flow to the lungs is nearly shut off © 2011 Pearson Education, Inc.
  • 28. Amphibians Pulmocutaneous circuit Lung and skin capillaries Atrium (A) Atrium (A) LeftRight Ventricle (V) Systemic capillaries Systemic circuit Key Oxygen-rich blood Oxygen-poor blood Figure 42.5a
  • 29. Reptiles (Except Birds) • Turtles, snakes, and lizards have a three- chambered heart: two atria and one ventricle • In alligators, caimans, and other crocodilians a septum divides the ventricle • Reptiles have double circulation, with a pulmonary circuit (lungs) and a systemic circuit © 2011 Pearson Education, Inc.
  • 30. Figure 42.5b Reptiles (Except Birds) Pulmonary circuit Systemic circuit Systemic capillaries Incomplete septum Left systemic aorta LeftRight Right systemic aorta A V Lung capillaries Atrium (A) Ventricle (V) Key Oxygen-rich blood Oxygen-poor blood
  • 31. Mammals and Birds • Mammals and birds have a four-chambered heart with two atria and two ventricles • The left side of the heart pumps and receives only oxygen-rich blood, while the right side receives and pumps only oxygen-poor blood • Mammals and birds are endotherms and require more O2 than ectotherms © 2011 Pearson Education, Inc.
  • 32. Systemic circuit Lung capillaries Pulmonary circuit A V LeftRight Systemic capillaries Mammals and Birds Atrium (A) Ventricle (V) Key Oxygen-rich blood Oxygen-poor blood Figure 42.5c
  • 33. Figure 42.5 Amphibians Reptiles (Except Birds) Pulmocutaneous circuit Pulmonary circuit Lung and skin capillaries Atrium (A) Atrium (A) LeftRight Ventricle (V) Systemic capillaries Systemic circuit Systemic circuit Systemic circuit Systemic capillaries Incomplete septum Incomplete septum Left systemic aorta LeftRight Right systemic aorta A A V V Lung capillaries Lung capillaries Pulmonary circuit A A V V LeftRight Systemic capillaries Key Oxygen-rich blood Oxygen-poor blood Mammals and Birds
  • 34. Concept 42.2: Coordinated cycles of heart contraction drive double circulation in mammals • The mammalian cardiovascular system meets the body’s continuous demand for O2 © 2011 Pearson Education, Inc.
  • 35. Mammalian Circulation • Blood begins its flow with the right ventricle pumping blood to the lungs • In the lungs, the blood loads O2 and unloads CO2 • Oxygen-rich blood from the lungs enters the heart at the left atrium and is pumped through the aorta to the body tissues by the left ventricle • The aorta provides blood to the heart through the coronary arteries © 2011 Pearson Education, Inc.
  • 36. • Blood returns to the heart through the superior vena cava (blood from head, neck, and forelimbs) and inferior vena cava (blood from trunk and hind limbs) • The superior vena cava and inferior vena cava flow into the right atrium © 2011 Pearson Education, Inc. Animation: Path of Blood Flow in Mammals
  • 37. © 2011 Pearson Education, Inc. Animation: Path of Blood Flow in Mammals Right-click slide / select “Play”
  • 38. Superior vena cava Pulmonary artery Capillaries of right lung Pulmonary vein Aorta Inferior vena cava Right ventricle Capillaries of abdominal organs and hind limbs Right atrium Aorta Left ventricle Left atrium Pulmonary vein Pulmonary artery Capillaries of left lung Capillaries of head and forelimbs Figure 42.6
  • 39. The Mammalian Heart: A Closer Look • A closer look at the mammalian heart provides a better understanding of double circulation © 2011 Pearson Education, Inc.
  • 41. • The heart contracts and relaxes in a rhythmic cycle called the cardiac cycle • The contraction, or pumping, phase is called systole • The relaxation, or filling, phase is called diastole © 2011 Pearson Education, Inc.
  • 43. Figure 42.8-2 Atrial and ventricular diastole Atrial systole and ventricular diastole 0.1 sec 0.4 sec 2 1
  • 44. Figure 42.8-3 Atrial and ventricular diastole Atrial systole and ventricular diastole Ventricular systole and atrial diastole 0.1 sec 0.4 sec 0.3 sec 2 1 3
  • 45. • The heart rate, also called the pulse, is the number of beats per minute • The stroke volume is the amount of blood pumped in a single contraction • The cardiac output is the volume of blood pumped into the systemic circulation per minute and depends on both the heart rate and stroke volume © 2011 Pearson Education, Inc.
  • 46. • Four valves prevent backflow of blood in the heart • The atrioventricular (AV) valves separate each atrium and ventricle • The semilunar valves control blood flow to the aorta and the pulmonary artery © 2011 Pearson Education, Inc.
  • 47. • The “lub-dup” sound of a heart beat is caused by the recoil of blood against the AV valves (lub) then against the semilunar (dup) valves • Backflow of blood through a defective valve causes a heart murmur © 2011 Pearson Education, Inc.
  • 48. Maintaining the Heart’s Rhythmic Beat • Some cardiac muscle cells are self-excitable, meaning they contract without any signal from the nervous system • The sinoatrial (SA) node, or pacemaker, sets the rate and timing at which cardiac muscle cells contract • Impulses that travel during the cardiac cycle can be recorded as an electrocardiogram (ECG or EKG) © 2011 Pearson Education, Inc.
  • 51. Figure 42.9-3 SA node (pacemaker) AV node Bundle branches Heart apex ECG 1 2 3
  • 52. Figure 42.9-4 SA node (pacemaker) AV node Bundle branches Heart apex Purkinje fibers ECG 1 2 3 4
  • 53. • Impulses from the SA node travel to the atrioventricular (AV) node • At the AV node, the impulses are delayed and then travel to the Purkinje fibers that make the ventricles contract © 2011 Pearson Education, Inc.
  • 54. • The pacemaker is regulated by two portions of the nervous system: the sympathetic and parasympathetic divisions • The sympathetic division speeds up the pacemaker • The parasympathetic division slows down the pacemaker • The pacemaker is also regulated by hormones and temperature © 2011 Pearson Education, Inc.
  • 55. Concept 42.3: Patterns of blood pressure and flow reflect the structure and arrangement of blood vessels • The physical principles that govern movement of water in plumbing systems also influence the functioning of animal circulatory systems © 2011 Pearson Education, Inc.
  • 56. Blood Vessel Structure and Function • A vessel’s cavity is called the central lumen • The epithelial layer that lines blood vessels is called the endothelium • The endothelium is smooth and minimizes resistance © 2011 Pearson Education, Inc.
  • 57. Figure 42.10 Artery Red blood cells Endothelium Artery Smooth muscle Connective tissue Capillary Valve Vein Vein Basal lamina Endothelium Smooth muscle Connective tissue 100 µm LM Venule 15µm LM Arteriole Red blood cell Capillary
  • 59. Figure 42.10b Artery Red blood cells Vein 100 µm LM
  • 61. • Capillaries have thin walls, the endothelium plus its basal lamina, to facilitate the exchange of materials • Arteries and veins have an endothelium, smooth muscle, and connective tissue • Arteries have thicker walls than veins to accommodate the high pressure of blood pumped from the heart • In the thinner-walled veins, blood flows back to the heart mainly as a result of muscle action © 2011 Pearson Education, Inc.
  • 62. Blood Flow Velocity • Physical laws governing movement of fluids through pipes affect blood flow and blood pressure • Velocity of blood flow is slowest in the capillary beds, as a result of the high resistance and large total cross-sectional area • Blood flow in capillaries is necessarily slow for exchange of materials © 2011 Pearson Education, Inc.
  • 64. Blood Pressure • Blood flows from areas of higher pressure to areas of lower pressure • Blood pressure is the pressure that blood exerts against the wall of a vessel • In rigid vessels blood pressure is maintained; less rigid vessels deform and blood pressure is lost © 2011 Pearson Education, Inc.
  • 65. Changes in Blood Pressure During the Cardiac Cycle • Systolic pressure is the pressure in the arteries during ventricular systole; it is the highest pressure in the arteries • Diastolic pressure is the pressure in the arteries during diastole; it is lower than systolic pressure • A pulse is the rhythmic bulging of artery walls with each heartbeat © 2011 Pearson Education, Inc.
  • 66. Regulation of Blood Pressure • Blood pressure is determined by cardiac output and peripheral resistance due to constriction of arterioles • Vasoconstriction is the contraction of smooth muscle in arteriole walls; it increases blood pressure • Vasodilation is the relaxation of smooth muscles in the arterioles; it causes blood pressure to fall © 2011 Pearson Education, Inc.
  • 67. • Vasoconstriction and vasodilation help maintain adequate blood flow as the body’s demands change • Nitric oxide is a major inducer of vasodilation • The peptide endothelin is an important inducer of vasoconstriction © 2011 Pearson Education, Inc.
  • 68. Blood Pressure and Gravity • Blood pressure is generally measured for an artery in the arm at the same height as the heart • Blood pressure for a healthy 20 year old at rest is 120 mm Hg at systole and 70 mm Hg at diastole © 2011 Pearson Education, Inc.
  • 69. Blood pressure reading: 120/70 120 70 Sounds stop Sounds audible in stethoscope 120 Artery closed 1 2 3 Figure 42.12
  • 70. • Fainting is caused by inadequate blood flow to the head • Animals with longer necks require a higher systolic pressure to pump blood a greater distance against gravity • Blood is moved through veins by smooth muscle contraction, skeletal muscle contraction, and expansion of the vena cava with inhalation • One-way valves in veins prevent backflow of blood © 2011 Pearson Education, Inc.
  • 71. Direction of blood flow in vein (toward heart) Valve (open) Skeletal muscle Valve (closed) Figure 42.13
  • 72. Capillary Function • Blood flows through only 5−10% of the body’s capillaries at a time • Capillaries in major organs are usually filled to capacity • Blood supply varies in many other sites © 2011 Pearson Education, Inc.
  • 73. • Two mechanisms regulate distribution of blood in capillary beds – Contraction of the smooth muscle layer in the wall of an arteriole constricts the vessel – Precapillary sphincters control flow of blood between arterioles and venules • Blood flow is regulated by nerve impulses, hormones, and other chemicals © 2011 Pearson Education, Inc.
  • 75. • The exchange of substances between the blood and interstitial fluid takes place across the thin endothelial walls of the capillaries • The difference between blood pressure and osmotic pressure drives fluids out of capillaries at the arteriole end and into capillaries at the venule end • Most blood proteins and all blood cells are too large to pass through the endothelium © 2011 Pearson Education, Inc.
  • 76. Figure 42.15 INTERSTITIAL FLUID Net fluid movement out Blood pressure Osmotic pressure Arterial end of capillary Direction of blood flow Venous end of capillary Body cell
  • 77. Fluid Return by the Lymphatic System • The lymphatic system returns fluid that leaks out from the capillary beds • Fluid, called lymph, reenters the circulation directly at the venous end of the capillary bed and indirectly through the lymphatic system • The lymphatic system drains into veins in the neck • Valves in lymph vessels prevent the backflow of fluid © 2011 Pearson Education, Inc.
  • 78. • Lymph nodes are organs that filter lymph and play an important role in the body’s defense • Edema is swelling caused by disruptions in the flow of lymph © 2011 Pearson Education, Inc.
  • 80. Concept 42.4: Blood components contribute to exchange, transport, and defense • With open circulation, the fluid that is pumped comes into direct contact with all cells • The closed circulatory systems of vertebrates contain blood, a specialized connective tissue © 2011 Pearson Education, Inc.
  • 81. Blood Composition and Function • Blood consists of several kinds of cells suspended in a liquid matrix called plasma • The cellular elements occupy about 45% of the volume of blood © 2011 Pearson Education, Inc.
  • 82. Figure 42.17 Plasma 55% Constituent Major functions Water Ions (blood electrolytes) Sodium Potassium Calcium Magnesium Chloride Bicarbonate Solvent for carrying other substances Osmotic balance, pH buffering, and regulation of membrane permeablity Plasma proteins Osmotic balance, pH buffering Albumin Fibrinogen Immunoglobulins (antibodies) Clotting Defense Substances transported by blood Nutrients Waste products Respiratory gases Hormones Separated blood elements Basophils Neutrophils Monocytes Lymphocytes Eosinophils Platelets Erythrocytes (red blood cells) 5–6 million 250,000–400,000 Blood clotting Transport of O2 and some CO2 Defense and immunity FunctionsNumber per µL (mm3 ) of blood Cell type Cellular elements 45% Leukocytes (white blood cells) 5,000–10,000
  • 83. Plasma 55% Constituent Major functions Water Ions (blood electrolytes) Sodium Potassium Calcium Magnesium Chloride Bicarbonate Solvent for carrying other substances Osmotic balance, pH buffering, and regulation of membrane permeablity Plasma proteins Osmotic balance, pH bufferingAlbumin Fibrinogen Immunoglobulins (antibodies) Clotting Defense Substances transported by blood Nutrients Waste products Separated blood elements Respiratory gases Hormones Figure 42.17a
  • 84. Separated blood elements Basophils Neutrophils Monocytes Lymphocytes Eosinophils Platelets Erythrocytes (red blood cells) 5–6 million 250,000–400,000 Blood clotting Transport of O2 and some CO2 Defense and immunity FunctionsNumber per µL (mm3 ) of blood Cell type Cellular elements 45% Leukocytes (white blood cells) 5,000–10,000 Figure 42.17b
  • 85. Plasma • Blood plasma is about 90% water • Among its solutes are inorganic salts in the form of dissolved ions, sometimes called electrolytes • Another important class of solutes is the plasma proteins, which influence blood pH, osmotic pressure, and viscosity • Various plasma proteins function in lipid transport, immunity, and blood clotting © 2011 Pearson Education, Inc.
  • 86. Cellular Elements • Suspended in blood plasma are two types of cells – Red blood cells (erythrocytes) transport oxygen O2 – White blood cells (leukocytes) function in defense • Platelets, a third cellular element, are fragments of cells that are involved in clotting © 2011 Pearson Education, Inc.© 2011 Pearson Education, Inc.
  • 87. • Red blood cells, or erythrocytes, are by far the most numerous blood cells • They contain hemoglobin, the iron-containing protein that transports O2 • Each molecule of hemoglobin binds up to four molecules of O2 • In mammals, mature erythrocytes lack nuclei and mitochondria Erythrocytes © 2011 Pearson Education, Inc.
  • 88. • Sickle-cell disease is caused by abnormal hemoglobin proteins that form aggregates • The aggregates can deform an erythrocyte into a sickle shape • Sickled cells can rupture, or block blood vessels © 2011 Pearson Education, Inc.
  • 89. Leukocytes • There are five major types of white blood cells, or leukocytes: monocytes, neutrophils, basophils, eosinophils, and lymphocytes • They function in defense by phagocytizing bacteria and debris or by producing antibodies • They are found both in and outside of the circulatory system © 2011 Pearson Education, Inc.
  • 90. Platelets • Platelets are fragments of cells and function in blood clotting © 2011 Pearson Education, Inc.
  • 91. Blood Clotting • Coagulation is the formation of a solid clot from liquid blood • A cascade of complex reactions converts inactive fibrinogen to fibrin, forming a clot • A blood clot formed within a blood vessel is called a thrombus and can block blood flow © 2011 Pearson Education, Inc.
  • 92. Figure 42.18 Collagen fibers 1 2 3 Platelet Platelet plug Fibrin clot Fibrin clot formation Red blood cell 5 µm Clotting factors from: Platelets Damaged cells Plasma (factors include calcium, vitamin K) Enzymatic cascade Prothrombin Thrombin Fibrinogen Fibrin +
  • 93. Collagen fibers 1 Platelet Platelet plug Fibrin clot Clotting factors from: Platelets Damaged cells Plasma (factors include calcium, vitamin K) Enzymatic cascade Prothrombin Thrombin Fibrinogen Fibrin + Fibrin clot formation 2 3 Figure 42.18a
  • 94. Figure 42.18b Fibrin clot Red blood cell 5 µm
  • 95. Stem Cells and the Replacement of Cellular Elements • The cellular elements of blood wear out and are being replaced constantly • Erythrocytes, leukocytes, and platelets all develop from a common source of stem cells in the red marrow of bones, especially ribs, vertebrae, sternum, and pelvis • The hormone erythropoietin (EPO) stimulates erythrocyte production when O2 delivery is low © 2011 Pearson Education, Inc.
  • 96. Stem cells (in bone marrow) Myeloid stem cells Lymphoid stem cells B cells T cells Lymphocytes Erythrocytes Neutrophils Basophils EosinophilsPlatelets Monocytes Figure 42.19
  • 97. Cardiovascular Disease • Cardiovascular diseases are disorders of the heart and the blood vessels • Cardiovascular diseases account for more than half the deaths in the United States • Cholesterol, a steroid, helps maintain membrane fluidity © 2011 Pearson Education, Inc.
  • 98. • Low-density lipoprotein (LDL) delivers cholesterol to cells for membrane production • High-density lipoprotein (HDL) scavenges cholesterol for return to the liver • Risk for heart disease increases with a high LDL to HDL ratio • Inflammation is also a factor in cardiovascular disease © 2011 Pearson Education, Inc.
  • 99. Atherosclerosis, Heart Attacks, and Stroke • One type of cardiovascular disease, atherosclerosis, is caused by the buildup of plaque deposits within arteries © 2011 Pearson Education, Inc.
  • 100. Lumen of artery Smooth muscle Endothelium Plaque Smooth muscle cell T lymphocyte Extra- cellular matrix Foam cell Macrophage Plaque rupture LDL CholesterolFibrous cap 1 2 43 Figure 42.20
  • 101. • A heart attack, or myocardial infarction, is the death of cardiac muscle tissue resulting from blockage of one or more coronary arteries • Coronary arteries supply oxygen-rich blood to the heart muscle • A stroke is the death of nervous tissue in the brain, usually resulting from rupture or blockage of arteries in the head • Angina pectoris is caused by partial blockage of the coronary arteries and results in chest pains © 2011 Pearson Education, Inc.
  • 102. Risk Factors and Treatment of Cardiovascular Disease • A high LDL to HDL ratio increases the risk of cardiovascular disease • The proportion of LDL relative to HDL can be decreased by exercise, not smoking, and avoiding foods with trans fats • Drugs called statins reduce LDL levels and risk of heart attacks © 2011 Pearson Education, Inc.
  • 103. Figure 42.21 Individuals with two functional copies of PCSK9 gene (control group) Plasma LDL cholesterol (mg/dL) Individuals with an inactivating mutation in one copy of PCSK9 gene Plasma LDL cholesterol (mg/dL) Average = 63 mg/dLAverage = 105 mg/dL 30 20 10 0 0 50 100 150 200 250 300 0 0 10 20 30 50 100 150 200 250 300 Percentofindividuals RESULTS Percentofindividuals
  • 104. • Inflammation plays a role in atherosclerosis and thrombus formation • Aspirin inhibits inflammation and reduces the risk of heart attacks and stroke • Hypertension, or high blood pressure, promotes atherosclerosis and increases the risk of heart attack and stroke • Hypertension can be reduced by dietary changes, exercise, and/or medication © 2011 Pearson Education, Inc.
  • 105. Concept 42.5: Gas exchange occurs across specialized respiratory surfaces • Gas exchange supplies O2 for cellular respiration and disposes of CO2 © 2011 Pearson Education, Inc.
  • 106. Partial Pressure Gradients in Gas Exchange • A gas diffuses from a region of higher partial pressure to a region of lower partial pressure • Partial pressure is the pressure exerted by a particular gas in a mixture of gases • Gases diffuse down pressure gradients in the lungs and other organs as a result of differences in partial pressure © 2011 Pearson Education, Inc.
  • 107. Respiratory Media • Animals can use air or water as a source of O2, or respiratory medium • In a given volume, there is less O2 available in water than in air • Obtaining O2 from water requires greater efficiency than air breathing © 2011 Pearson Education, Inc.
  • 108. Respiratory Surfaces • Animals require large, moist respiratory surfaces for exchange of gases between their cells and the respiratory medium, either air or water • Gas exchange across respiratory surfaces takes place by diffusion • Respiratory surfaces vary by animal and can include the outer surface, skin, gills, tracheae, and lungs © 2011 Pearson Education, Inc.
  • 109. Gills in Aquatic Animals • Gills are outfoldings of the body that create a large surface area for gas exchange © 2011 Pearson Education, Inc.
  • 110. Figure 42.22 Parapodium (functions as gill) (a) Marine worm (b) Crayfish Gills Gills Tube foot (c) Sea star Coelom
  • 111. Figure 42.22a Parapodium (functions as gill) (a) Marine worm
  • 114. • Ventilation moves the respiratory medium over the respiratory surface • Aquatic animals move through water or move water over their gills for ventilation • Fish gills use a countercurrent exchange system, where blood flows in the opposite direction to water passing over the gills; blood is always less saturated with O2 than the water it meets © 2011 Pearson Education, Inc.
  • 115. Figure 42.23 Gill arch O2-poor blood O2-rich blood Blood vessels Gill arch Operculum Water flow Water flow Blood flow Countercurrent exchange PO (mm Hg) in water 2 150 PO (mm Hg) in blood 2 120 90 60 30 140 110 80 50 20 Net diffu- sion of O2 Lamella Gill filaments
  • 117. O2-poor blood Water flow Blood flow Countercurrent exchange PO (mm Hg) in water 2 150 PO (mm Hg) in blood 2 140 Net diffu- sion of O2 Lamella O2-rich blood 120 90 60 30 110 80 50 20 Figure 42.23b
  • 118. Tracheal Systems in Insects • The tracheal system of insects consists of tiny branching tubes that penetrate the body • The tracheal tubes supply O2 directly to body cells • The respiratory and circulatory systems are separate • Larger insects must ventilate their tracheal system to meet O2 demands © 2011 Pearson Education, Inc.
  • 119. Tracheoles Mitochondria Muscle fiber 2.5µm Tracheae Air sacs External opening Trachea Air sac Tracheole Body cell Air Figure 42.24
  • 121. Lungs • Lungs are an infolding of the body surface • The circulatory system (open or closed) transports gases between the lungs and the rest of the body • The size and complexity of lungs correlate with an animal’s metabolic rate © 2011 Pearson Education, Inc.
  • 122. Mammalian Respiratory Systems: A Closer Look • A system of branching ducts conveys air to the lungs • Air inhaled through the nostrils is warmed, humidified, and sampled for odors • The pharynx directs air to the lungs and food to the stomach • Swallowing tips the epiglottis over the glottis in the pharynx to prevent food from entering the trachea © 2011 Pearson Education, Inc.
  • 123. Figure 42.25 Pharynx Larynx (Esophagus) Trachea Right lung Bronchus Bronchiole Diaphragm (Heart) Capillaries Left lung Dense capillary bed enveloping alveoli (SEM) 50 µm Alveoli Branch of pulmonary artery (oxygen-poor blood) Branch of pulmonary vein (oxygen-rich blood) Terminal bronchiole Nasal cavity
  • 125. Capillaries Alveoli Branch of pulmonary artery (oxygen-poor blood) Branch of pulmonary vein (oxygen-rich blood) Terminal bronchiole Figure 42.25b
  • 126. Figure 42.25c Dense capillary bed enveloping alveoli (SEM) 50 µm
  • 127. • Air passes through the pharynx, larynx, trachea, bronchi, and bronchioles to the alveoli, where gas exchange occurs • Exhaled air passes over the vocal cords in the larynx to create sounds • Cilia and mucus line the epithelium of the air ducts and move particles up to the pharynx • This “mucus escalator” cleans the respiratory system and allows particles to be swallowed into the esophagus © 2011 Pearson Education, Inc.
  • 128. • Gas exchange takes place in alveoli, air sacs at the tips of bronchioles • Oxygen diffuses through the moist film of the epithelium and into capillaries • Carbon dioxide diffuses from the capillaries across the epithelium and into the air space © 2011 Pearson Education, Inc.
  • 129. • Alveoli lack cilia and are susceptible to contamination • Secretions called surfactants coat the surface of the alveoli • Preterm babies lack surfactant and are vulnerable to respiratory distress syndrome; treatment is provided by artificial surfactants © 2011 Pearson Education, Inc.
  • 130. RDS deaths Deaths from other causesRESULTS 40 30 20 10 0 0 800 1,600 2,400 3,200 4,000 Body mass of infant (g) Surfacetension(dynes/cm) Figure 42.26
  • 131. Concept 42.6: Breathing ventilates the lungs • The process that ventilates the lungs is breathing, the alternate inhalation and exhalation of air © 2011 Pearson Education, Inc.
  • 132. How an Amphibian Breathes • An amphibian such as a frog ventilates its lungs by positive pressure breathing, which forces air down the trachea © 2011 Pearson Education, Inc.
  • 133. How a Bird Breathes • Birds have eight or nine air sacs that function as bellows that keep air flowing through the lungs • Air passes through the lungs in one direction only • Every exhalation completely renews the air in the lungs © 2011 Pearson Education, Inc.
  • 134. Anterior air sacs Posterior air sacs Lungs 1 mm Airflow Air tubes (parabronchi) in lung Anterior air sacs Lungs Second inhalationFirst inhalation Posterior air sacs 3 2 4 1 4 31 2 Second exhalationFirst exhalation Figure 42.27
  • 135. Figure 42.27a 1 mm Airflow Air tubes (parabronchi) in lung
  • 136. How a Mammal Breathes • Mammals ventilate their lungs by negative pressure breathing, which pulls air into the lungs • Lung volume increases as the rib muscles and diaphragm contract • The tidal volume is the volume of air inhaled with each breath © 2011 Pearson Education, Inc.
  • 137. Figure 42.28 Rib cage expands. Air inhaled. Air exhaled. Rib cage gets smaller. 1 2 Lung Diaphragm
  • 138. • The maximum tidal volume is the vital capacity • After exhalation, a residual volume of air remains in the lungs © 2011 Pearson Education, Inc.
  • 139. Control of Breathing in Humans • In humans, the main breathing control centers are in two regions of the brain, the medulla oblongata and the pons • The medulla regulates the rate and depth of breathing in response to pH changes in the cerebrospinal fluid • The medulla adjusts breathing rate and depth to match metabolic demands • The pons regulates the tempo © 2011 Pearson Education, Inc.
  • 140. • Sensors in the aorta and carotid arteries monitor O2 and CO2 concentrations in the blood • These sensors exert secondary control over breathing © 2011 Pearson Education, Inc.
  • 141. Homeostasis: Blood pH of about 7.4 CO2 level decreases. Stimulus: Rising level of CO2 in tissues lowers blood pH. Response: Rib muscles and diaphragm increase rate and depth of ventilation. Carotid arteries AortaSensor/control center: Cerebrospinal fluid Medulla oblongata Figure 42.29
  • 142. Concept 42.7: Adaptations for gas exchange include pigments that bind and transport gases • The metabolic demands of many organisms require that the blood transport large quantities of O2 and CO2 © 2011 Pearson Education, Inc.
  • 143. Coordination of Circulation and Gas Exchange • Blood arriving in the lungs has a low partial pressure of O2 and a high partial pressure of CO2 relative to air in the alveoli • In the alveoli, O2 diffuses into the blood and CO2 diffuses into the air • In tissue capillaries, partial pressure gradients favor diffusion of O2 into the interstitial fluids and CO2 into the blood © 2011 Pearson Education, Inc.
  • 144. Exhaled air Inhaled air Pulmonary arteries Systemic veins Systemic arteries Pulmonary veins Alveolar capillaries Alveolar spacesAlveolar epithelial cells Inhaled air 160 120 80 40 0Heart 8 1 2 3 46 7 CO2 O2 Systemic capillariesCO2 O2 Body tissue5 a) The path of respiratory gases in the circulatory system (b) Partial pressure of O2 and CO2 at different points in the circulatory system numbered in (a) 4321 5 6 7 Exhaled air Partialpressure(mmHg) PO2 PCO 2 8 Figure 42.30
  • 145. Figure 42.30a Exhaled air Inhaled air Pulmonary arteries Systemic veins Systemic arteries Pulmonary veins Alveolar capillaries Alveolar spacesAlveolar epithelial cells Heart Systemic capillariesCO2 O2 Body tissue (a) The path of respiratory gases in the circulatory system CO2 O2 8 1 2 37 6 4 5
  • 146. Inhaled air 160 (b) Partial pressure of O2 and CO2 at different points in the circulatory system numbered in (a) 1 Exhaled air Partialpressure(mmHg) PO2 120 80 40 0 2 3 4 5 6 7 8 PCO 2 Figure 42.30b
  • 147.
  • 148. Respiratory Pigments • Respiratory pigments, proteins that transport oxygen, greatly increase the amount of oxygen that blood can carry • Arthropods and many molluscs have hemocyanin with copper as the oxygen-binding component • Most vertebrates and some invertebrates use hemoglobin • In vertebrates, hemoglobin is contained within erythrocytes © 2011 Pearson Education, Inc.
  • 149. Hemoglobin • A single hemoglobin molecule can carry four molecules of O2, one molecule for each iron containing heme group • The hemoglobin dissociation curve shows that a small change in the partial pressure of oxygen can result in a large change in delivery of O2 • CO2 produced during cellular respiration lowers blood pH and decreases the affinity of hemoglobin for O2; this is called the Bohr shift © 2011 Pearson Education, Inc.© 2011 Pearson Education, Inc.
  • 151. Figure 42.31 2 (a) PO and hemoglobin dissociation at pH 7.4 Tissues during exercise Tissues at rest Lungs PO (mm Hg) 2 (b) pH and hemoglobin dissociation PO (mm Hg) 2 0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100 Hemoglobin retains less O2 at lower pH (higher CO2 concentration) pH 7.2 pH 7.4 O2 unloaded to tissues during exercise O2saturationofhemoglobin(%) O2 unloaded to tissues at rest O2saturationofhemoglobin(%)
  • 152. Figure 42.31a 2 (a) PO and hemoglobin dissociation at pH 7.4 Tissues during exercise Tissues at rest Lungs PO (mm Hg) 2 0 20 40 60 80 100 0 20 40 60 80 100 O2 unloaded to tissues during exercise O2 unloaded to tissues at rest O2saturationofhemoglobin(%)
  • 153. (b) pH and hemoglobin dissociation PO (mm Hg) 2 0 20 40 60 80 100 0 20 40 60 80 100 Hemoglobin retains less O2 at lower pH (higher CO2 concentration) pH 7.2 pH 7.4 O2saturationofhemoglobin(%) Figure 42.31b
  • 154.
  • 155.
  • 156. Carbon Dioxide Transport • Hemoglobin also helps transport CO2 and assists in buffering the blood • CO2 from respiring cells diffuses into the blood and is transported either in blood plasma, bound to hemoglobin, or as bicarbonate ions (HCO3 – ) © 2011 Pearson Education, Inc. Animation: O2 from Lungs to Blood Animation: CO2 from Blood to Lungs Animation: CO2 from Tissues to Blood Animation: O2 from Blood to Tissues
  • 157. © 2011 Pearson Education, Inc. Animation: O2 from Blood to Tissues Right-click slide / select “Play”
  • 158. © 2011 Pearson Education, Inc. Animation: CO2 from Tissues to Blood Right-click slide / select “Play”
  • 159. © 2011 Pearson Education, Inc. Animation: CO2 from Blood to Lungs Right-click slide / select “Play”
  • 160. © 2011 Pearson Education, Inc. Animation: O2 from Lungs to Blood Right-click slide / select “Play”
  • 161. Figure 42.32 Body tissue Capillary wall Interstitial fluid Plasma within capillary CO2 transport from tissuesCO2 produced CO2 CO2 CO2 H2O H2CO3 Hb Red blood cell Carbonic acid Hemoglobin (Hb) picks up CO2 and H+ . H+ HCO3 − Bicarbonate + HCO3 − HCO3 − To lungs CO2 transport to lungs HCO3 − H2CO3 H2O CO2 H++ Hb Hemoglobin releases CO2 and H+ . CO2 CO2 CO2 Alveolar space in lung
  • 162. Figure 42.32a Body tissue Capillary wall Interstitial fluid Plasma within capillary CO2 transport from tissuesCO2 produced CO2 H2O H2CO3 Hb Red blood cell Carbonic acid Hemoglobin (Hb) picks up CO2 and H+ . H+HCO3 − Bicarbonate + HCO3 − To lungs CO2 CO2
  • 163. Figure 42.32b HCO3 − CO2 transport to lungs H2CO3 H2O H++ Hb Hemoglobin releases CO2 and H+ . CO2 Alveolar space in lung To lungs HCO3 − CO2 CO2 CO2
  • 164. Respiratory Adaptations of Diving Mammals • Diving mammals have evolutionary adaptations that allow them to perform extraordinary feats – For example, Weddell seals in Antarctica can remain underwater for 20 minutes to an hour – For example, elephant seals can dive to 1,500 m and remain underwater for 2 hours • These animals have a high blood to body volume ratio © 2011 Pearson Education, Inc.
  • 165. • Deep-diving air breathers stockpile O2 and deplete it slowly • Diving mammals can store oxygen in their muscles in myoglobin proteins • Diving mammals also conserve oxygen by – Changing their buoyancy to glide passively – Decreasing blood supply to muscles – Deriving ATP in muscles from fermentation once oxygen is depleted © 2011 Pearson Education, Inc.
  • 166. Figure 42.UN02 Exhaled air Alveolar epithelial cells Pulmonary arteries Systemic veins Heart CO2 O2 Body tissue Systemic capillaries Systemic arteries Pulmonary veins Alveolar capillaries Alveolar spaces Inhaled air CO2 O2
  • 167. Figure 42.UN03 Fetus Mother PO (mm Hg) 2 0 20 40 60 80 100 100 80 60 40 20 0 O2saturationof hemoglobin(%)

Notas del editor

  1. Figure 42.1 How does a feathery fringe help this animal survive?
  2. Figure 42.2 Internal transport in gastrovascular cavities.
  3. Figure 42.2 Internal transport in gastrovascular cavities.
  4. Figure 42.2 Internal transport in gastrovascular cavities.
  5. Figure 42.3 Open and closed circulatory systems.
  6. Figure 42.3 Open and closed circulatory systems.
  7. Figure 42.3 Open and closed circulatory systems.
  8. Figure 42.4 Single and double circulation in vertebrates.
  9. Figure 42.4 Single and double circulation in vertebrates.
  10. Figure 42.4 Single and double circulation in vertebrates.
  11. Figure 42.5 Exploring: Double Circulation in Vertebrates
  12. Figure 42.5 Exploring: Double Circulation in Vertebrates
  13. Figure 42.5 Exploring: Double Circulation in Vertebrates
  14. Figure 42.5 Exploring: Double Circulation in Vertebrates
  15. Figure 42.6 The mammalian cardiovascular system: an overview.
  16. Figure 42.7 The mammalian heart: a closer look.
  17. Figure 42.8 The cardiac cycle.
  18. Figure 42.8 The cardiac cycle.
  19. Figure 42.8 The cardiac cycle.
  20. Figure 42.9 The control of heart rhythm.
  21. Figure 42.9 The control of heart rhythm.
  22. Figure 42.9 The control of heart rhythm.
  23. Figure 42.9 The control of heart rhythm.
  24. Figure 42.10 The structure of blood vessels.
  25. Figure 42.10 The structure of blood vessels.
  26. Figure 42.10 The structure of blood vessels.
  27. Figure 42.10 The structure of blood vessels.
  28. Figure 42.11 The interrelationship of cross-sectional area of blood vessels, blood flow velocity, and blood pressure.
  29. Figure 42.12 Measurement of blood pressure.
  30. Figure 42.13 Blood flow in veins.
  31. Figure 42.14 Blood flow in capillary beds.
  32. Figure 42.15 Fluid exchange between capillaries and the interstitial fluid.
  33. Figure 42.16 Human lymph nodes and vessels.
  34. Figure 42.17 The composition of mammalian blood.
  35. Figure 42.17 The composition of mammalian blood.
  36. Figure 42.17 The composition of mammalian blood.
  37. Figure 42.18 Blood clotting.
  38. Figure 42.18 Blood clotting.
  39. Figure 42.18 Blood clotting.
  40. Figure 42.19 Differentiation of blood cells.
  41. Figure 42.20 Atherosclerosis.
  42. Figure 42.21 Inquiry: Can inactivating a liver enzyme lower plasma LDL levels?
  43. Figure 42.22 Diversity in the structure of gills, external body surfaces that function in gas exchange.
  44. Figure 42.22 Diversity in the structure of gills, external body surfaces that function in gas exchange.
  45. Figure 42.22 Diversity in the structure of gills, external body surfaces that function in gas exchange.
  46. Figure 42.22 Diversity in the structure of gills, external body surfaces that function in gas exchange.
  47. Figure 42.23 The structure and function of fish gills.
  48. Figure 42.23 The structure and function of fish gills.
  49. Figure 42.23 The structure and function of fish gills.
  50. Figure 42.24 Tracheal systems.
  51. Figure 42.24 Tracheal systems.
  52. Figure 42.25 The mammalian respiratory system.
  53. Figure 42.25 The mammalian respiratory system.
  54. Figure 42.25 The mammalian respiratory system.
  55. Figure 42.25 The mammalian respiratory system.
  56. Figure 42.26 Inquiry: What causes respiratory distress syndrome?
  57. Figure 42.27 The avian respiratory system.
  58. Figure 42.27 The avian respiratory system.
  59. Figure 42.28 Negative pressure breathing.
  60. Figure 42.29 Homeostatic control of breathing.
  61. Figure 42.30 Loading and unloading of respiratory gases.
  62. Figure 42.30 Loading and unloading of respiratory gases.
  63. Figure 42.30 Loading and unloading of respiratory gases.
  64. Figure 42.UN01 In-text figure, p. 924
  65. Figure 42.31 Dissociation curves for hemoglobin at 37°C.
  66. Figure 42.31 Dissociation curves for hemoglobin at 37°C.
  67. Figure 42.31 Dissociation curves for hemoglobin at 37°C.
  68. Figure 42.32 Carbon dioxide transport in the blood.
  69. Figure 42.32 Carbon dioxide transport in the blood.
  70. Figure 42.32 Carbon dioxide transport in the blood.
  71. Figure 42.UN02 Summary figure, Concept 42.2
  72. Figure 42.UN03 Test Your Understanding, question 11
  73. Figure 42.UN04 Appendix A: answer to Test Your Understanding, question 11