SlideShare una empresa de Scribd logo
1 de 1
Descargar para leer sin conexión
Cavity optomechanics with variable polarizability mirrors
1
Max Planck Institute for the Science of Light, Erlangen, Germany
2
Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark
Ondřej Černotík,1
Aurélien Dantan,2
and Claudiu Genes1
Variable reflectivity
Motivation
The sideband ratio is one of the most crucial parameters of optomechanical
systems. Especially with microcavities, it is challenging to reach the resolved-
sideband regime—characterized by the cavity linewidth being smaller than
the mechanical frequency—owing to short roundtrip time for the cavity field.
We show that the sideband resolution can be improved by using mirrors with
internal resonances. The internal resonance (caused by, for example, an
array of emitters inside the reflector) results in strongly frequency-dependent
reflection which leads to a drastically improved cavity linewidth.
[1] R. Bettles et al., Phys. Rev. Lett. 116, 103602 (2016);
E. Shahmoon et al., Phys. Rev. Lett. 118, 113601 (2017).
[2] S. Fan and J. Joannopoulos, Phys. Rev. B 65, 235112 (2002).
[3] SEM image of a high-contrast grating (50 μm2
) patterned on a
500 μm2
suspended SiN membrane from Aarhus University.
[4] R. Lang et al., Phys. Rev. A 7, 1788 (1973).
Future directions
Description of cavities with lossy mirrors
Dispersive and dissipative optomechanical effects
Non-Markovian dynamics in optomechanical systems
We consider a one-sided cavity and quantize the electromagnetic field using
the modes of the universe [4]. We write the positive-frequency component of
the electric field as
with field modes . The mode functions satisfy the Helmholtz
equation
where is the dielectric function. We can now use the electric
field to recover the total Hamiltonian,
Modes of the universe
Cavity and external fields
We can separate the integration into three regions—inside the cavity,
outside, and at the boundary between them. We can then identify the cavity
and external fields and their coupling
From the input–output relation, we can obtain the linewidth for the cavity
modes, , which agrees with the spectral properties of the mode
functions inside the cavity.
Optomechanical interaction
We can repeat the analysis for a
cavity with a displaced input
mirror. The mode functions will
be modified but one can still find
the cavity and external fields
and their coupling.
The dispersive and dissipative optomechanical effects are captured by the
Heisenberg–Langevin equation for the cavity field,
where is the optical frequency shift per displacement.
We consider structured membranes [2] in which dispersion does not lead to
loss. The coupling rates and are not independent since the coupling of
the resonance to the modes of the universe on both sides is symmetric. The
dynamics of the cavity field can be obtained by eliminating the external field
and the guided resonance from the equations of motion.
Internal resonances
Internal resonances occur when a mirror is doped
(or formed) by regularly spaced quantum emitters
[1] or when it is structured by a periodic grating
[2,3]. The reflectivity around such a resonance is
strongly enhanced by interference. Using such
reflectors in optical cavities can lead to narrow,
non-Lorentzian lineshapes.
How can such systems be described?
What optomechancial properties do they have?
Detuning
Cavity
transmission
Normal cavity
With internal resonance
Mechanical sidebands
Displacement
Description of strongly dispersive membranes is more difficult. Dispersion
and absorption are related via the Kramers–Kronig relations; loss must be
accompanied by noise. These effects have to be included in any rigorous
model.
[2,3]. The reflectivity around
such a resonance is strongly
enhanced by interference.
Using such reflectors in optical
cavities can lead to narrow,
non-Lorentzian lineshapes.

Más contenido relacionado

La actualidad más candente

Optical properties of nanoparticles
Optical properties of nanoparticlesOptical properties of nanoparticles
Optical properties of nanoparticlesAchal Bhardwaj
 
Transmission electron microscope (TEM) Likhith K
Transmission electron microscope  (TEM) Likhith KTransmission electron microscope  (TEM) Likhith K
Transmission electron microscope (TEM) Likhith KLIKHITHK1
 
Electron diffraction and Neutron diffraction
Electron diffraction and Neutron diffractionElectron diffraction and Neutron diffraction
Electron diffraction and Neutron diffractiondeepika paranjothi
 
X ray crystallography for mpharm
X ray crystallography for mpharm X ray crystallography for mpharm
X ray crystallography for mpharm Martin Jacob
 
Surface plasmon resonance
Surface plasmon resonanceSurface plasmon resonance
Surface plasmon resonanceMdDanish102
 
surface plasmon resonance
surface plasmon resonancesurface plasmon resonance
surface plasmon resonanceHemant Thawkar
 
Laser therapy in surgery
Laser therapy in surgeryLaser therapy in surgery
Laser therapy in surgeryYouttam Laudari
 
Laser in Ophthalmology
Laser in Ophthalmology Laser in Ophthalmology
Laser in Ophthalmology Gazy Khatmi
 
Laser characteristics as applied to medicine and biology
Laser characteristics as applied to medicine and biologyLaser characteristics as applied to medicine and biology
Laser characteristics as applied to medicine and biologykaroline Enoch
 
UCSF Hyperpolarized MR #1: Introduction to Hyperpolarized MR (2019)
UCSF Hyperpolarized MR #1: Introduction to Hyperpolarized MR (2019)UCSF Hyperpolarized MR #1: Introduction to Hyperpolarized MR (2019)
UCSF Hyperpolarized MR #1: Introduction to Hyperpolarized MR (2019)Peder Larson
 
x-ray crystallography,bragg's law,different x-ray diffraction technique,laue ...
x-ray crystallography,bragg's law,different x-ray diffraction technique,laue ...x-ray crystallography,bragg's law,different x-ray diffraction technique,laue ...
x-ray crystallography,bragg's law,different x-ray diffraction technique,laue ...Siddhapura Pratik
 

La actualidad más candente (20)

Shiv shankar nair
Shiv shankar nairShiv shankar nair
Shiv shankar nair
 
Lasers
LasersLasers
Lasers
 
X- ray crystallography
X- ray crystallographyX- ray crystallography
X- ray crystallography
 
NIRS
NIRSNIRS
NIRS
 
Optical properties of nanoparticles
Optical properties of nanoparticlesOptical properties of nanoparticles
Optical properties of nanoparticles
 
Ammu
AmmuAmmu
Ammu
 
Transmission electron microscope (TEM) Likhith K
Transmission electron microscope  (TEM) Likhith KTransmission electron microscope  (TEM) Likhith K
Transmission electron microscope (TEM) Likhith K
 
Electron diffraction and Neutron diffraction
Electron diffraction and Neutron diffractionElectron diffraction and Neutron diffraction
Electron diffraction and Neutron diffraction
 
X ray crystallography for mpharm
X ray crystallography for mpharm X ray crystallography for mpharm
X ray crystallography for mpharm
 
Absorption spectroscopy
Absorption spectroscopyAbsorption spectroscopy
Absorption spectroscopy
 
Surface plasmon resonance
Surface plasmon resonanceSurface plasmon resonance
Surface plasmon resonance
 
surface plasmon resonance
surface plasmon resonancesurface plasmon resonance
surface plasmon resonance
 
Magneto optic devices
Magneto optic devicesMagneto optic devices
Magneto optic devices
 
neutron diffraction
neutron diffractionneutron diffraction
neutron diffraction
 
Laser therapy in surgery
Laser therapy in surgeryLaser therapy in surgery
Laser therapy in surgery
 
Laser in Ophthalmology
Laser in Ophthalmology Laser in Ophthalmology
Laser in Ophthalmology
 
Laser characteristics as applied to medicine and biology
Laser characteristics as applied to medicine and biologyLaser characteristics as applied to medicine and biology
Laser characteristics as applied to medicine and biology
 
UCSF Hyperpolarized MR #1: Introduction to Hyperpolarized MR (2019)
UCSF Hyperpolarized MR #1: Introduction to Hyperpolarized MR (2019)UCSF Hyperpolarized MR #1: Introduction to Hyperpolarized MR (2019)
UCSF Hyperpolarized MR #1: Introduction to Hyperpolarized MR (2019)
 
X ray Crystallography
X ray CrystallographyX ray Crystallography
X ray Crystallography
 
x-ray crystallography,bragg's law,different x-ray diffraction technique,laue ...
x-ray crystallography,bragg's law,different x-ray diffraction technique,laue ...x-ray crystallography,bragg's law,different x-ray diffraction technique,laue ...
x-ray crystallography,bragg's law,different x-ray diffraction technique,laue ...
 

Similar a Cavity optomechanics with variable polarizability mirrors

Spatially adiabatic frequency conversion in opto-electro-mechanical arrays
Spatially adiabatic frequency conversion in opto-electro-mechanical arraysSpatially adiabatic frequency conversion in opto-electro-mechanical arrays
Spatially adiabatic frequency conversion in opto-electro-mechanical arraysOndrej Cernotik
 
Optical control of resonant light transmission for an atom-cavity system_Arij...
Optical control of resonant light transmission for an atom-cavity system_Arij...Optical control of resonant light transmission for an atom-cavity system_Arij...
Optical control of resonant light transmission for an atom-cavity system_Arij...Arijit Sharma
 
Biomolecular andcellularresearchdevices fin
Biomolecular andcellularresearchdevices finBiomolecular andcellularresearchdevices fin
Biomolecular andcellularresearchdevices finMUBOSScz
 
Nenopartical optical sensors
Nenopartical optical sensorsNenopartical optical sensors
Nenopartical optical sensorsRam Niwas Bajiya
 
Studying photnic crystals in linear and nonlinear media
Studying photnic crystals in linear and nonlinear mediaStudying photnic crystals in linear and nonlinear media
Studying photnic crystals in linear and nonlinear mediaIslam Kotb Ismail
 
Aip pg book of abstracts
Aip pg book of abstractsAip pg book of abstracts
Aip pg book of abstractsSiddartha Verma
 
2D NMR ORGANIC SPECTROSCOPY by DR ANTHONY CRASTO
2D NMR ORGANIC SPECTROSCOPY by DR ANTHONY CRASTO2D NMR ORGANIC SPECTROSCOPY by DR ANTHONY CRASTO
2D NMR ORGANIC SPECTROSCOPY by DR ANTHONY CRASTOAnthony Melvin Crasto Ph.D
 
Optical Properties of Mesoscopic Systems of Coupled Microspheres
Optical Properties of Mesoscopic Systems of Coupled MicrospheresOptical Properties of Mesoscopic Systems of Coupled Microspheres
Optical Properties of Mesoscopic Systems of Coupled MicrospheresShashaanka Ashili
 
Basic concepts of organic spectroscopy
Basic concepts of organic spectroscopyBasic concepts of organic spectroscopy
Basic concepts of organic spectroscopyDrBasavarajaiahSm
 
11.the optical constants of highly absorbing films using the spectral reflect...
11.the optical constants of highly absorbing films using the spectral reflect...11.the optical constants of highly absorbing films using the spectral reflect...
11.the optical constants of highly absorbing films using the spectral reflect...Alexander Decker
 
Spectroscopic Techniques
Spectroscopic TechniquesSpectroscopic Techniques
Spectroscopic TechniquesPalakAgrawal97
 
X-RAY POWDER DIFFRACTION (XRPD).pptx
X-RAY POWDER DIFFRACTION (XRPD).pptxX-RAY POWDER DIFFRACTION (XRPD).pptx
X-RAY POWDER DIFFRACTION (XRPD).pptxChandra Prakash Singh
 
Dynamic light scattering
Dynamic light scatteringDynamic light scattering
Dynamic light scatteringVishalSingh1328
 
Electron Diffraction Using Transmission Electron Microscopy
Electron Diffraction Using Transmission Electron MicroscopyElectron Diffraction Using Transmission Electron Microscopy
Electron Diffraction Using Transmission Electron MicroscopyLe Scienze Web News
 
STED_Priority_1986_Eng_Transl
STED_Priority_1986_Eng_TranslSTED_Priority_1986_Eng_Transl
STED_Priority_1986_Eng_Translvictor okhonine
 

Similar a Cavity optomechanics with variable polarizability mirrors (20)

Ijetcas14 318
Ijetcas14 318Ijetcas14 318
Ijetcas14 318
 
Spatially adiabatic frequency conversion in opto-electro-mechanical arrays
Spatially adiabatic frequency conversion in opto-electro-mechanical arraysSpatially adiabatic frequency conversion in opto-electro-mechanical arrays
Spatially adiabatic frequency conversion in opto-electro-mechanical arrays
 
Optical control of resonant light transmission for an atom-cavity system_Arij...
Optical control of resonant light transmission for an atom-cavity system_Arij...Optical control of resonant light transmission for an atom-cavity system_Arij...
Optical control of resonant light transmission for an atom-cavity system_Arij...
 
Ophthalmic_Laser_Therapy.pdf
Ophthalmic_Laser_Therapy.pdfOphthalmic_Laser_Therapy.pdf
Ophthalmic_Laser_Therapy.pdf
 
Biomolecular andcellularresearchdevices fin
Biomolecular andcellularresearchdevices finBiomolecular andcellularresearchdevices fin
Biomolecular andcellularresearchdevices fin
 
Nenopartical optical sensors
Nenopartical optical sensorsNenopartical optical sensors
Nenopartical optical sensors
 
Studying photnic crystals in linear and nonlinear media
Studying photnic crystals in linear and nonlinear mediaStudying photnic crystals in linear and nonlinear media
Studying photnic crystals in linear and nonlinear media
 
Aip pg book of abstracts
Aip pg book of abstractsAip pg book of abstracts
Aip pg book of abstracts
 
2D NMR ORGANIC SPECTROSCOPY by DR ANTHONY CRASTO
2D NMR ORGANIC SPECTROSCOPY by DR ANTHONY CRASTO2D NMR ORGANIC SPECTROSCOPY by DR ANTHONY CRASTO
2D NMR ORGANIC SPECTROSCOPY by DR ANTHONY CRASTO
 
Swi seminar final
Swi seminar finalSwi seminar final
Swi seminar final
 
Optical Properties of Mesoscopic Systems of Coupled Microspheres
Optical Properties of Mesoscopic Systems of Coupled MicrospheresOptical Properties of Mesoscopic Systems of Coupled Microspheres
Optical Properties of Mesoscopic Systems of Coupled Microspheres
 
Basic concepts of organic spectroscopy
Basic concepts of organic spectroscopyBasic concepts of organic spectroscopy
Basic concepts of organic spectroscopy
 
FINAL Poster
FINAL PosterFINAL Poster
FINAL Poster
 
11.the optical constants of highly absorbing films using the spectral reflect...
11.the optical constants of highly absorbing films using the spectral reflect...11.the optical constants of highly absorbing films using the spectral reflect...
11.the optical constants of highly absorbing films using the spectral reflect...
 
Spectroscopic Techniques
Spectroscopic TechniquesSpectroscopic Techniques
Spectroscopic Techniques
 
X-RAY POWDER DIFFRACTION (XRPD).pptx
X-RAY POWDER DIFFRACTION (XRPD).pptxX-RAY POWDER DIFFRACTION (XRPD).pptx
X-RAY POWDER DIFFRACTION (XRPD).pptx
 
Dynamic light scattering
Dynamic light scatteringDynamic light scattering
Dynamic light scattering
 
Electron Diffraction Using Transmission Electron Microscopy
Electron Diffraction Using Transmission Electron MicroscopyElectron Diffraction Using Transmission Electron Microscopy
Electron Diffraction Using Transmission Electron Microscopy
 
STED_Priority_1986_Eng_Transl
STED_Priority_1986_Eng_TranslSTED_Priority_1986_Eng_Transl
STED_Priority_1986_Eng_Transl
 
2 d nmr
2 d nmr2 d nmr
2 d nmr
 

Más de Ondrej Cernotik

Ancilla-error-transparent swap tests in circuit quantum electrodynamics
Ancilla-error-transparent swap tests in circuit quantum electrodynamicsAncilla-error-transparent swap tests in circuit quantum electrodynamics
Ancilla-error-transparent swap tests in circuit quantum electrodynamicsOndrej Cernotik
 
Gaussian control and readout of levitated nanoparticles via coherent scattering
Gaussian control and readout of levitated nanoparticles via coherent scatteringGaussian control and readout of levitated nanoparticles via coherent scattering
Gaussian control and readout of levitated nanoparticles via coherent scatteringOndrej Cernotik
 
Microwave entanglement created using swap tests with biased noise
Microwave entanglement created using swap tests with biased noiseMicrowave entanglement created using swap tests with biased noise
Microwave entanglement created using swap tests with biased noiseOndrej Cernotik
 
Controlling the motion of levitated particles by coherent scattering
Controlling the motion of levitated particles by coherent scatteringControlling the motion of levitated particles by coherent scattering
Controlling the motion of levitated particles by coherent scatteringOndrej Cernotik
 
Transformations of continuous-variable entangled states of light
Transformations of continuous-variable entangled states of lightTransformations of continuous-variable entangled states of light
Transformations of continuous-variable entangled states of lightOndrej Cernotik
 
Measurement-induced long-distance entanglement with optomechanical transducers
Measurement-induced long-distance entanglement with optomechanical transducersMeasurement-induced long-distance entanglement with optomechanical transducers
Measurement-induced long-distance entanglement with optomechanical transducersOndrej Cernotik
 
Quantum force sensing with optomechanical transducers
Quantum force sensing with optomechanical transducersQuantum force sensing with optomechanical transducers
Quantum force sensing with optomechanical transducersOndrej Cernotik
 
Quantum networks with superconducting circuits and optomechanical transducers
Quantum networks with superconducting circuits and optomechanical transducersQuantum networks with superconducting circuits and optomechanical transducers
Quantum networks with superconducting circuits and optomechanical transducersOndrej Cernotik
 
Novel approaches to optomechanical transduction
Novel approaches to optomechanical transductionNovel approaches to optomechanical transduction
Novel approaches to optomechanical transductionOndrej Cernotik
 
Improved optomechanical interactions for quantum technologies
Improved optomechanical interactions for quantum technologiesImproved optomechanical interactions for quantum technologies
Improved optomechanical interactions for quantum technologiesOndrej Cernotik
 
Improved optomechanical interactions for quantum technologies
Improved optomechanical interactions for quantum technologiesImproved optomechanical interactions for quantum technologies
Improved optomechanical interactions for quantum technologiesOndrej Cernotik
 
Entangling distant superconducting qubits using nanomechanical transducers
Entangling distant superconducting qubits using nanomechanical transducersEntangling distant superconducting qubits using nanomechanical transducers
Entangling distant superconducting qubits using nanomechanical transducersOndrej Cernotik
 
Measurement-induced long-distance entanglement of superconducting qubits usin...
Measurement-induced long-distance entanglement of superconducting qubits usin...Measurement-induced long-distance entanglement of superconducting qubits usin...
Measurement-induced long-distance entanglement of superconducting qubits usin...Ondrej Cernotik
 
Measurement-induced long-distance entanglement of superconducting qubits usin...
Measurement-induced long-distance entanglement of superconducting qubits usin...Measurement-induced long-distance entanglement of superconducting qubits usin...
Measurement-induced long-distance entanglement of superconducting qubits usin...Ondrej Cernotik
 
Measurement-induced long-distance entanglement of superconducting qubits usin...
Measurement-induced long-distance entanglement of superconducting qubits usin...Measurement-induced long-distance entanglement of superconducting qubits usin...
Measurement-induced long-distance entanglement of superconducting qubits usin...Ondrej Cernotik
 
Measurement-induced long-distance entanglement of superconducting qubits usin...
Measurement-induced long-distance entanglement of superconducting qubits usin...Measurement-induced long-distance entanglement of superconducting qubits usin...
Measurement-induced long-distance entanglement of superconducting qubits usin...Ondrej Cernotik
 
Novel approaches to optomechanical transduction
Novel approaches to optomechanical transductionNovel approaches to optomechanical transduction
Novel approaches to optomechanical transductionOndrej Cernotik
 
Interference effects in cavity optomechanics with hybridized membranes
Interference effects in cavity optomechanics with hybridized membranesInterference effects in cavity optomechanics with hybridized membranes
Interference effects in cavity optomechanics with hybridized membranesOndrej Cernotik
 
Displacement-enhanced continuous-variable entanglement concentration
Displacement-enhanced continuous-variable entanglement concentrationDisplacement-enhanced continuous-variable entanglement concentration
Displacement-enhanced continuous-variable entanglement concentrationOndrej Cernotik
 

Más de Ondrej Cernotik (20)

Ancilla-error-transparent swap tests in circuit quantum electrodynamics
Ancilla-error-transparent swap tests in circuit quantum electrodynamicsAncilla-error-transparent swap tests in circuit quantum electrodynamics
Ancilla-error-transparent swap tests in circuit quantum electrodynamics
 
Gaussian control and readout of levitated nanoparticles via coherent scattering
Gaussian control and readout of levitated nanoparticles via coherent scatteringGaussian control and readout of levitated nanoparticles via coherent scattering
Gaussian control and readout of levitated nanoparticles via coherent scattering
 
Microwave entanglement created using swap tests with biased noise
Microwave entanglement created using swap tests with biased noiseMicrowave entanglement created using swap tests with biased noise
Microwave entanglement created using swap tests with biased noise
 
Controlling the motion of levitated particles by coherent scattering
Controlling the motion of levitated particles by coherent scatteringControlling the motion of levitated particles by coherent scattering
Controlling the motion of levitated particles by coherent scattering
 
Transformations of continuous-variable entangled states of light
Transformations of continuous-variable entangled states of lightTransformations of continuous-variable entangled states of light
Transformations of continuous-variable entangled states of light
 
Hybrid quantum systems
Hybrid quantum systemsHybrid quantum systems
Hybrid quantum systems
 
Measurement-induced long-distance entanglement with optomechanical transducers
Measurement-induced long-distance entanglement with optomechanical transducersMeasurement-induced long-distance entanglement with optomechanical transducers
Measurement-induced long-distance entanglement with optomechanical transducers
 
Quantum force sensing with optomechanical transducers
Quantum force sensing with optomechanical transducersQuantum force sensing with optomechanical transducers
Quantum force sensing with optomechanical transducers
 
Quantum networks with superconducting circuits and optomechanical transducers
Quantum networks with superconducting circuits and optomechanical transducersQuantum networks with superconducting circuits and optomechanical transducers
Quantum networks with superconducting circuits and optomechanical transducers
 
Novel approaches to optomechanical transduction
Novel approaches to optomechanical transductionNovel approaches to optomechanical transduction
Novel approaches to optomechanical transduction
 
Improved optomechanical interactions for quantum technologies
Improved optomechanical interactions for quantum technologiesImproved optomechanical interactions for quantum technologies
Improved optomechanical interactions for quantum technologies
 
Improved optomechanical interactions for quantum technologies
Improved optomechanical interactions for quantum technologiesImproved optomechanical interactions for quantum technologies
Improved optomechanical interactions for quantum technologies
 
Entangling distant superconducting qubits using nanomechanical transducers
Entangling distant superconducting qubits using nanomechanical transducersEntangling distant superconducting qubits using nanomechanical transducers
Entangling distant superconducting qubits using nanomechanical transducers
 
Measurement-induced long-distance entanglement of superconducting qubits usin...
Measurement-induced long-distance entanglement of superconducting qubits usin...Measurement-induced long-distance entanglement of superconducting qubits usin...
Measurement-induced long-distance entanglement of superconducting qubits usin...
 
Measurement-induced long-distance entanglement of superconducting qubits usin...
Measurement-induced long-distance entanglement of superconducting qubits usin...Measurement-induced long-distance entanglement of superconducting qubits usin...
Measurement-induced long-distance entanglement of superconducting qubits usin...
 
Measurement-induced long-distance entanglement of superconducting qubits usin...
Measurement-induced long-distance entanglement of superconducting qubits usin...Measurement-induced long-distance entanglement of superconducting qubits usin...
Measurement-induced long-distance entanglement of superconducting qubits usin...
 
Measurement-induced long-distance entanglement of superconducting qubits usin...
Measurement-induced long-distance entanglement of superconducting qubits usin...Measurement-induced long-distance entanglement of superconducting qubits usin...
Measurement-induced long-distance entanglement of superconducting qubits usin...
 
Novel approaches to optomechanical transduction
Novel approaches to optomechanical transductionNovel approaches to optomechanical transduction
Novel approaches to optomechanical transduction
 
Interference effects in cavity optomechanics with hybridized membranes
Interference effects in cavity optomechanics with hybridized membranesInterference effects in cavity optomechanics with hybridized membranes
Interference effects in cavity optomechanics with hybridized membranes
 
Displacement-enhanced continuous-variable entanglement concentration
Displacement-enhanced continuous-variable entanglement concentrationDisplacement-enhanced continuous-variable entanglement concentration
Displacement-enhanced continuous-variable entanglement concentration
 

Último

Disha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdfDisha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdfchloefrazer622
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxiammrhaywood
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13Steve Thomason
 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphThiyagu K
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityGeoBlogs
 
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...fonyou31
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsTechSoup
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeThiyagu K
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)eniolaolutunde
 
APM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAPM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAssociation for Project Management
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactPECB
 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationnomboosow
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptxVS Mahajan Coaching Centre
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdfSoniaTolstoy
 
9548086042 for call girls in Indira Nagar with room service
9548086042  for call girls in Indira Nagar  with room service9548086042  for call girls in Indira Nagar  with room service
9548086042 for call girls in Indira Nagar with room servicediscovermytutordmt
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Krashi Coaching
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactdawncurless
 
Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..Disha Kariya
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingTechSoup
 

Último (20)

Disha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdfDisha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdf
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13
 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot Graph
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activity
 
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The Basics
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and Mode
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)
 
APM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAPM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across Sectors
 
Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global Impact
 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communication
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
 
9548086042 for call girls in Indira Nagar with room service
9548086042  for call girls in Indira Nagar  with room service9548086042  for call girls in Indira Nagar  with room service
9548086042 for call girls in Indira Nagar with room service
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impact
 
Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy Consulting
 

Cavity optomechanics with variable polarizability mirrors

  • 1. Cavity optomechanics with variable polarizability mirrors 1 Max Planck Institute for the Science of Light, Erlangen, Germany 2 Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark Ondřej Černotík,1 Aurélien Dantan,2 and Claudiu Genes1 Variable reflectivity Motivation The sideband ratio is one of the most crucial parameters of optomechanical systems. Especially with microcavities, it is challenging to reach the resolved- sideband regime—characterized by the cavity linewidth being smaller than the mechanical frequency—owing to short roundtrip time for the cavity field. We show that the sideband resolution can be improved by using mirrors with internal resonances. The internal resonance (caused by, for example, an array of emitters inside the reflector) results in strongly frequency-dependent reflection which leads to a drastically improved cavity linewidth. [1] R. Bettles et al., Phys. Rev. Lett. 116, 103602 (2016); E. Shahmoon et al., Phys. Rev. Lett. 118, 113601 (2017). [2] S. Fan and J. Joannopoulos, Phys. Rev. B 65, 235112 (2002). [3] SEM image of a high-contrast grating (50 μm2 ) patterned on a 500 μm2 suspended SiN membrane from Aarhus University. [4] R. Lang et al., Phys. Rev. A 7, 1788 (1973). Future directions Description of cavities with lossy mirrors Dispersive and dissipative optomechanical effects Non-Markovian dynamics in optomechanical systems We consider a one-sided cavity and quantize the electromagnetic field using the modes of the universe [4]. We write the positive-frequency component of the electric field as with field modes . The mode functions satisfy the Helmholtz equation where is the dielectric function. We can now use the electric field to recover the total Hamiltonian, Modes of the universe Cavity and external fields We can separate the integration into three regions—inside the cavity, outside, and at the boundary between them. We can then identify the cavity and external fields and their coupling From the input–output relation, we can obtain the linewidth for the cavity modes, , which agrees with the spectral properties of the mode functions inside the cavity. Optomechanical interaction We can repeat the analysis for a cavity with a displaced input mirror. The mode functions will be modified but one can still find the cavity and external fields and their coupling. The dispersive and dissipative optomechanical effects are captured by the Heisenberg–Langevin equation for the cavity field, where is the optical frequency shift per displacement. We consider structured membranes [2] in which dispersion does not lead to loss. The coupling rates and are not independent since the coupling of the resonance to the modes of the universe on both sides is symmetric. The dynamics of the cavity field can be obtained by eliminating the external field and the guided resonance from the equations of motion. Internal resonances Internal resonances occur when a mirror is doped (or formed) by regularly spaced quantum emitters [1] or when it is structured by a periodic grating [2,3]. The reflectivity around such a resonance is strongly enhanced by interference. Using such reflectors in optical cavities can lead to narrow, non-Lorentzian lineshapes. How can such systems be described? What optomechancial properties do they have? Detuning Cavity transmission Normal cavity With internal resonance Mechanical sidebands Displacement Description of strongly dispersive membranes is more difficult. Dispersion and absorption are related via the Kramers–Kronig relations; loss must be accompanied by noise. These effects have to be included in any rigorous model. [2,3]. The reflectivity around such a resonance is strongly enhanced by interference. Using such reflectors in optical cavities can lead to narrow, non-Lorentzian lineshapes.