SlideShare una empresa de Scribd logo
1 de 41
Descargar para leer sin conexión
PostgreSQL worst practices
at FOSDEM PGDay Brussels 2017
Ilya Kosmodemiansky
ik@postgresql-consulting.com
Best practices are just boring
• Never follow them, try worst practices
• Only those practices can really help you to screw the things up
most effectively
• PostgreSQL consultants are nice people, so try to make them
happy
How it works?
• I have a list, a little bit more than 100 worst practices
• I do not make this stuff up, all of them are real-life examples
• I reshuffle my list every time before presenting and extract
some amount of examples
• Well, there are some things, which I like more or less, so it is
not a very honest shuffle
0. Do not use indexes (a test one!)
• Basically, there is no difference between full table scan and
index scan
• You can check that. Just insert 10 rows into a test table on
your test server and compare.
• Nobody deals with more than 10 row tables in production!
1. Use ORM
• All databases share the same syntax
• You must write database-independent code
• Are there any benefits, which are based on database specific
features?
• It always good to learn a new complicated technology
2. Move joins to your application
• Just select * a couple of tables into the application written in
your favorite programming language
• Than join them at the application level
2. Move joins to your application
• Just select * a couple of tables into the application written in
your favorite programming language
• Than join them at the application level
• Now you only need to implement nested loop join, hash join
and merge join as well as query optimizer and page cache
3. Be in trend, be schema-less
• You do not need to design the schema
• You need only one table, two columns: id bigserial and extra
jsonb
• JSONB datatype is pretty effective in PostgreSQL, you can
search in it just like in a well-structured table
• Even if you put a 100M of JSON in it
• Even if you have 1000+ tps
4. Be agile, use EAV
• You need only 3 tables: entity, attribute, value
4. Be agile, use EAV
• You need only 3 tables: entity, attribute, value
• At some point add the 4th: attribute_type
4. Be agile, use EAV
• You need only 3 tables: entity, attribute, value
• At some point add the 4th: attribute_type
• Whet it starts to work slow, just call those four tables The
Core and add 1000+ tables with denormalized data
4. Be agile, use EAV
• You need only 3 tables: entity, attribute, value
• At some point add the 4th: attribute_type
• Whet it starts to work slow, just call those four tables The
Core and add 1000+ tables with denormalized data
• If it is not enough, you can always add value_version
5. Try to create as many indexes as you can
• Indexes consume no disk space
• Indexes consume no shared_bufers
• There is no overhead on DML if one and every column in a
table covered with bunch of indexes
• Optimizer will definitely choose your index once you created it
• Keep calm and create more indexes
6. Always keep all your time series data
• Time series data like tables with logs or session history should
be never deleted, aggregated or archived, you always need to
keep it all
6. Always keep all your time series data
• Time series data like tables with logs or session history should
be never deleted, aggregated or archived, you always need to
keep it all
• You will always know where to check, if you run out of disk
space
6. Always keep all your time series data
• Time series data like tables with logs or session history should
be never deleted, aggregated or archived, you always need to
keep it all
• You will always know where to check, if you run out of disk
space
• You can always call that Big Data
6. Always keep all your time series data
• Time series data like tables with logs or session history should
be never deleted, aggregated or archived, you always need to
keep it all
• You will always know where to check, if you run out of disk
space
• You can always call that Big Data
• Solve the problem using partitioning... one partition for an
hour or for a minute
7. Turn autovacuum off
• It is quite auxiliary process, you can easily stop it
• There is no problem at all to have 100Gb data in a database
which is 1Tb in size
• 2-3Tb RAM servers are cheap, IO is a fastest thing in modern
computing
• Besides of that, everyone likes BigData
8. Keep master and slave on different hardware
• That will maximize the possibility of unsuccessful failover
8. Keep master and slave on different hardware
• That will maximize the possibility of unsuccessful failover
• To make things worser, you can change only slave-related
parameters at slave, leaving defaults for shared_buffers etc.
9. Put a synchronous replica to remote DC
• Indeed! That will maximize availability!
9. Put a synchronous replica to remote DC
• Indeed! That will maximize availability!
• Especially, if you put the replica to another continent
10. Reinvent Slony
• If you need some data replication to another database, try to
implement it from scratch
10. Reinvent Slony
• If you need some data replication to another database, try to
implement it from scratch
• That allows you to run into all problems, PostgreSQL have
had since introducing Slony
11. Use as many count(*) as you can
• Figure 301083021830123921 is very informative for the end
user
• If it changes in a second to 30108302894839434020, it is still
informative
• select count(*) from sometable is a quite light-weighted query
• Tuple estimation from pg_catalog can never be precise
enough for you
12. Never use graphical monitoring
• You do not need graphs
• Because it is an easy task to guess what was happened
yesterday at 2 a.m. using command line and grep only
13. Never use Foreign Keys
(Use local produced instead!)
• Consistency control at application level always works as
expected
• You will never get data inconsistency without constraints
• Even if you already have a bullet proof framework to maintain
consistency, could it be good enough reason to use it?
14. Always use text type for all columns
• It is always fun to reimplement date or ip validation in your
code
• You will never mistakenly convert ”12-31-2015 03:01AM” to
”15:01 12 of undef 2015” using text fields
15. Always use improved ”PostgreSQL”
• Postgres is not a perfect database and you are smart
• All that annoying MVCC staff, 32 bit xid and autovacuum
nightmare look like they look because hackers are oldschool
and lazy
• Hack it in a hard way, do not bother yourself with submitting
your patch to the community, just put it into production
• It is easy to maintain such production and keep it compatible
with ”not perfect” PostgreSQL upcoming versions
16. Postgres likes long transactions
• Always call external services from stored procedures (like
sending emails)
16. Postgres likes long transactions
• Always call external services from stored procedures (like
sending emails)
• Oh, it is arguable... It can be, if 100% of developers were
familiar with word timeout
16. Postgres likes long transactions
• Always call external services from stored procedures (like
sending emails)
• Oh, it is arguable... It can be, if 100% of developers were
familiar with word timeout
• Anyway, you can just start transaction and go away for
weekend
17. Load your data to PostgreSQL in a smart manner
• Write your own loader, 100 parallel threads minimum
17. Load your data to PostgreSQL in a smart manner
• Write your own loader, 100 parallel threads minimum
• Never use COPY - it is specially designed for the task
18. Even if you want to backup your database...
• Use replication instead of backup
18. Even if you want to backup your database...
• Use replication instead of backup
• Use pg_dump instead of backup
18. Even if you want to backup your database...
• Use replication instead of backup
• Use pg_dump instead of backup
• Write your own backup script
18. Even if you want to backup your database...
• Use replication instead of backup
• Use pg_dump instead of backup
• Write your own backup script
• As complicated as possible, combine all external tools you
know
18. Even if you want to backup your database...
• Use replication instead of backup
• Use pg_dump instead of backup
• Write your own backup script
• As complicated as possible, combine all external tools you
know
• Never perform a test recovery
Do not forget
That was WORST practice talk
Questions or ideas? Share your story!
ik@postgresql-consulting.com
(I’am preparing this talk to be open sourced)

Más contenido relacionado

La actualidad más candente

PostgreSQL High Availability in a Containerized World
PostgreSQL High Availability in a Containerized WorldPostgreSQL High Availability in a Containerized World
PostgreSQL High Availability in a Containerized WorldJignesh Shah
 
Boost Performance With My S Q L 51 Partitions
Boost Performance With  My S Q L 51 PartitionsBoost Performance With  My S Q L 51 Partitions
Boost Performance With My S Q L 51 PartitionsPerconaPerformance
 
Monitoring Oracle Database Instances with Zabbix
Monitoring Oracle Database Instances with ZabbixMonitoring Oracle Database Instances with Zabbix
Monitoring Oracle Database Instances with ZabbixGerger
 
Innodb에서의 Purge 메커니즘 deep internal (by 이근오)
Innodb에서의 Purge 메커니즘 deep internal (by  이근오)Innodb에서의 Purge 메커니즘 deep internal (by  이근오)
Innodb에서의 Purge 메커니즘 deep internal (by 이근오)I Goo Lee.
 
Redo log improvements MYSQL 8.0
Redo log improvements MYSQL 8.0Redo log improvements MYSQL 8.0
Redo log improvements MYSQL 8.0Mydbops
 
Optimizing Autovacuum: PostgreSQL's vacuum cleaner
Optimizing Autovacuum: PostgreSQL's vacuum cleanerOptimizing Autovacuum: PostgreSQL's vacuum cleaner
Optimizing Autovacuum: PostgreSQL's vacuum cleanerSamaySharma10
 
MySQL Group Replication - HandsOn Tutorial
MySQL Group Replication - HandsOn TutorialMySQL Group Replication - HandsOn Tutorial
MySQL Group Replication - HandsOn TutorialKenny Gryp
 
Ilya Kosmodemiansky - An ultimate guide to upgrading your PostgreSQL installa...
Ilya Kosmodemiansky - An ultimate guide to upgrading your PostgreSQL installa...Ilya Kosmodemiansky - An ultimate guide to upgrading your PostgreSQL installa...
Ilya Kosmodemiansky - An ultimate guide to upgrading your PostgreSQL installa...PostgreSQL-Consulting
 
Getting Started - Ansible Galaxy NG
Getting Started - Ansible Galaxy NGGetting Started - Ansible Galaxy NG
Getting Started - Ansible Galaxy NGHideki Saito
 
[Pgday.Seoul 2018] 이기종 DB에서 PostgreSQL로의 Migration을 위한 DB2PG
[Pgday.Seoul 2018]  이기종 DB에서 PostgreSQL로의 Migration을 위한 DB2PG[Pgday.Seoul 2018]  이기종 DB에서 PostgreSQL로의 Migration을 위한 DB2PG
[Pgday.Seoul 2018] 이기종 DB에서 PostgreSQL로의 Migration을 위한 DB2PGPgDay.Seoul
 
In-memory OLTP storage with persistence and transaction support
In-memory OLTP storage with persistence and transaction supportIn-memory OLTP storage with persistence and transaction support
In-memory OLTP storage with persistence and transaction supportAlexander Korotkov
 
Apache Kafka Nedir?
Apache Kafka Nedir?   Apache Kafka Nedir?
Apache Kafka Nedir? AnkaraCloud
 
Twitter의 snowflake 소개 및 활용
Twitter의 snowflake 소개 및 활용Twitter의 snowflake 소개 및 활용
Twitter의 snowflake 소개 및 활용흥배 최
 
Cassandra Introduction & Features
Cassandra Introduction & FeaturesCassandra Introduction & Features
Cassandra Introduction & FeaturesDataStax Academy
 
Oracle Clusterware Node Management and Voting Disks
Oracle Clusterware Node Management and Voting DisksOracle Clusterware Node Management and Voting Disks
Oracle Clusterware Node Management and Voting DisksMarkus Michalewicz
 
Weblogic 12c installation (oracle linux)
Weblogic 12c installation (oracle linux)Weblogic 12c installation (oracle linux)
Weblogic 12c installation (oracle linux)Osama Mustafa
 

La actualidad más candente (20)

PostgreSQL High Availability in a Containerized World
PostgreSQL High Availability in a Containerized WorldPostgreSQL High Availability in a Containerized World
PostgreSQL High Availability in a Containerized World
 
Boost Performance With My S Q L 51 Partitions
Boost Performance With  My S Q L 51 PartitionsBoost Performance With  My S Q L 51 Partitions
Boost Performance With My S Q L 51 Partitions
 
Monitoring Oracle Database Instances with Zabbix
Monitoring Oracle Database Instances with ZabbixMonitoring Oracle Database Instances with Zabbix
Monitoring Oracle Database Instances with Zabbix
 
Innodb에서의 Purge 메커니즘 deep internal (by 이근오)
Innodb에서의 Purge 메커니즘 deep internal (by  이근오)Innodb에서의 Purge 메커니즘 deep internal (by  이근오)
Innodb에서의 Purge 메커니즘 deep internal (by 이근오)
 
Redo log improvements MYSQL 8.0
Redo log improvements MYSQL 8.0Redo log improvements MYSQL 8.0
Redo log improvements MYSQL 8.0
 
Rac 12c optimization
Rac 12c optimizationRac 12c optimization
Rac 12c optimization
 
Optimizing Autovacuum: PostgreSQL's vacuum cleaner
Optimizing Autovacuum: PostgreSQL's vacuum cleanerOptimizing Autovacuum: PostgreSQL's vacuum cleaner
Optimizing Autovacuum: PostgreSQL's vacuum cleaner
 
Load Data Fast!
Load Data Fast!Load Data Fast!
Load Data Fast!
 
MySQL Group Replication - HandsOn Tutorial
MySQL Group Replication - HandsOn TutorialMySQL Group Replication - HandsOn Tutorial
MySQL Group Replication - HandsOn Tutorial
 
Ilya Kosmodemiansky - An ultimate guide to upgrading your PostgreSQL installa...
Ilya Kosmodemiansky - An ultimate guide to upgrading your PostgreSQL installa...Ilya Kosmodemiansky - An ultimate guide to upgrading your PostgreSQL installa...
Ilya Kosmodemiansky - An ultimate guide to upgrading your PostgreSQL installa...
 
Getting Started - Ansible Galaxy NG
Getting Started - Ansible Galaxy NGGetting Started - Ansible Galaxy NG
Getting Started - Ansible Galaxy NG
 
[Pgday.Seoul 2018] 이기종 DB에서 PostgreSQL로의 Migration을 위한 DB2PG
[Pgday.Seoul 2018]  이기종 DB에서 PostgreSQL로의 Migration을 위한 DB2PG[Pgday.Seoul 2018]  이기종 DB에서 PostgreSQL로의 Migration을 위한 DB2PG
[Pgday.Seoul 2018] 이기종 DB에서 PostgreSQL로의 Migration을 위한 DB2PG
 
In-memory OLTP storage with persistence and transaction support
In-memory OLTP storage with persistence and transaction supportIn-memory OLTP storage with persistence and transaction support
In-memory OLTP storage with persistence and transaction support
 
Apache Kafka Nedir?
Apache Kafka Nedir?   Apache Kafka Nedir?
Apache Kafka Nedir?
 
Twitter의 snowflake 소개 및 활용
Twitter의 snowflake 소개 및 활용Twitter의 snowflake 소개 및 활용
Twitter의 snowflake 소개 및 활용
 
Cassandra Introduction & Features
Cassandra Introduction & FeaturesCassandra Introduction & Features
Cassandra Introduction & Features
 
Galera Cluster 4 for MySQL 8 Release Webinar slides
Galera Cluster 4 for MySQL 8 Release Webinar slidesGalera Cluster 4 for MySQL 8 Release Webinar slides
Galera Cluster 4 for MySQL 8 Release Webinar slides
 
Oracle Clusterware Node Management and Voting Disks
Oracle Clusterware Node Management and Voting DisksOracle Clusterware Node Management and Voting Disks
Oracle Clusterware Node Management and Voting Disks
 
Weblogic 12c installation (oracle linux)
Weblogic 12c installation (oracle linux)Weblogic 12c installation (oracle linux)
Weblogic 12c installation (oracle linux)
 
Ansible 101
Ansible 101Ansible 101
Ansible 101
 

Similar a PostgreSQL worst practices, version FOSDEM PGDay 2017 by Ilya Kosmodemiansky

PostgreSQL worst practices, version PGConf.US 2017 by Ilya Kosmodemiansky
PostgreSQL worst practices, version PGConf.US 2017 by Ilya KosmodemianskyPostgreSQL worst practices, version PGConf.US 2017 by Ilya Kosmodemiansky
PostgreSQL worst practices, version PGConf.US 2017 by Ilya KosmodemianskyPostgreSQL-Consulting
 
Lightening Talk - PostgreSQL Worst Practices
Lightening Talk - PostgreSQL Worst PracticesLightening Talk - PostgreSQL Worst Practices
Lightening Talk - PostgreSQL Worst PracticesPGConf APAC
 
Taming the resource tiger
Taming the resource tigerTaming the resource tiger
Taming the resource tigerElizabeth Smith
 
Taming the resource tiger
Taming the resource tigerTaming the resource tiger
Taming the resource tigerElizabeth Smith
 
Austin Python Learners Meetup - Everything you need to know about programming...
Austin Python Learners Meetup - Everything you need to know about programming...Austin Python Learners Meetup - Everything you need to know about programming...
Austin Python Learners Meetup - Everything you need to know about programming...Danny Mulligan
 
Lessons PostgreSQL learned from commercial databases, and didn’t
Lessons PostgreSQL learned from commercial databases, and didn’tLessons PostgreSQL learned from commercial databases, and didn’t
Lessons PostgreSQL learned from commercial databases, and didn’tPGConf APAC
 
Best practices with development of enterprise-scale SharePoint solutions - Pa...
Best practices with development of enterprise-scale SharePoint solutions - Pa...Best practices with development of enterprise-scale SharePoint solutions - Pa...
Best practices with development of enterprise-scale SharePoint solutions - Pa...SPC Adriatics
 
Keeping MongoDB Data Safe
Keeping MongoDB Data SafeKeeping MongoDB Data Safe
Keeping MongoDB Data SafeTony Tam
 
Neo4j Training Cypher
Neo4j Training CypherNeo4j Training Cypher
Neo4j Training CypherMax De Marzi
 
Geek Sync | Top 5 Tips to Keep Always On Always Humming and Users Happy
Geek Sync | Top 5 Tips to Keep Always On Always Humming and Users HappyGeek Sync | Top 5 Tips to Keep Always On Always Humming and Users Happy
Geek Sync | Top 5 Tips to Keep Always On Always Humming and Users HappyIDERA Software
 
Entity framework advanced
Entity framework advancedEntity framework advanced
Entity framework advancedUsama Nada
 
Building Big Data Streaming Architectures
Building Big Data Streaming ArchitecturesBuilding Big Data Streaming Architectures
Building Big Data Streaming ArchitecturesDavid Martínez Rego
 
The 5 Minute MySQL DBA
The 5 Minute MySQL DBAThe 5 Minute MySQL DBA
The 5 Minute MySQL DBAIrawan Soetomo
 
Generating Sequences with Deep LSTMs & RNNS in julia
Generating Sequences with Deep LSTMs & RNNS in juliaGenerating Sequences with Deep LSTMs & RNNS in julia
Generating Sequences with Deep LSTMs & RNNS in juliaAndre Pemmelaar
 
Internet of Things, TYBSC IT, Semester 5, Unit IV
Internet of Things, TYBSC IT, Semester 5, Unit IVInternet of Things, TYBSC IT, Semester 5, Unit IV
Internet of Things, TYBSC IT, Semester 5, Unit IVArti Parab Academics
 
Reading Notes : the practice of programming
Reading Notes : the practice of programmingReading Notes : the practice of programming
Reading Notes : the practice of programmingJuggernaut Liu
 
Know thy cost (or where performance problems lurk)
Know thy cost (or where performance problems lurk)Know thy cost (or where performance problems lurk)
Know thy cost (or where performance problems lurk)Oren Eini
 
7 Database Mistakes YOU Are Making -- Linuxfest Northwest 2019
7 Database Mistakes YOU Are Making -- Linuxfest Northwest 20197 Database Mistakes YOU Are Making -- Linuxfest Northwest 2019
7 Database Mistakes YOU Are Making -- Linuxfest Northwest 2019Dave Stokes
 

Similar a PostgreSQL worst practices, version FOSDEM PGDay 2017 by Ilya Kosmodemiansky (20)

PostgreSQL worst practices, version PGConf.US 2017 by Ilya Kosmodemiansky
PostgreSQL worst practices, version PGConf.US 2017 by Ilya KosmodemianskyPostgreSQL worst practices, version PGConf.US 2017 by Ilya Kosmodemiansky
PostgreSQL worst practices, version PGConf.US 2017 by Ilya Kosmodemiansky
 
Lightening Talk - PostgreSQL Worst Practices
Lightening Talk - PostgreSQL Worst PracticesLightening Talk - PostgreSQL Worst Practices
Lightening Talk - PostgreSQL Worst Practices
 
Taming the resource tiger
Taming the resource tigerTaming the resource tiger
Taming the resource tiger
 
Taming the resource tiger
Taming the resource tigerTaming the resource tiger
Taming the resource tiger
 
Software + Babies
Software + BabiesSoftware + Babies
Software + Babies
 
Austin Python Learners Meetup - Everything you need to know about programming...
Austin Python Learners Meetup - Everything you need to know about programming...Austin Python Learners Meetup - Everything you need to know about programming...
Austin Python Learners Meetup - Everything you need to know about programming...
 
Lessons PostgreSQL learned from commercial databases, and didn’t
Lessons PostgreSQL learned from commercial databases, and didn’tLessons PostgreSQL learned from commercial databases, and didn’t
Lessons PostgreSQL learned from commercial databases, and didn’t
 
Best practices with development of enterprise-scale SharePoint solutions - Pa...
Best practices with development of enterprise-scale SharePoint solutions - Pa...Best practices with development of enterprise-scale SharePoint solutions - Pa...
Best practices with development of enterprise-scale SharePoint solutions - Pa...
 
Keeping MongoDB Data Safe
Keeping MongoDB Data SafeKeeping MongoDB Data Safe
Keeping MongoDB Data Safe
 
Neo4j Training Cypher
Neo4j Training CypherNeo4j Training Cypher
Neo4j Training Cypher
 
Geek Sync | Top 5 Tips to Keep Always On Always Humming and Users Happy
Geek Sync | Top 5 Tips to Keep Always On Always Humming and Users HappyGeek Sync | Top 5 Tips to Keep Always On Always Humming and Users Happy
Geek Sync | Top 5 Tips to Keep Always On Always Humming and Users Happy
 
Entity framework advanced
Entity framework advancedEntity framework advanced
Entity framework advanced
 
Gpgpu intro
Gpgpu introGpgpu intro
Gpgpu intro
 
Building Big Data Streaming Architectures
Building Big Data Streaming ArchitecturesBuilding Big Data Streaming Architectures
Building Big Data Streaming Architectures
 
The 5 Minute MySQL DBA
The 5 Minute MySQL DBAThe 5 Minute MySQL DBA
The 5 Minute MySQL DBA
 
Generating Sequences with Deep LSTMs & RNNS in julia
Generating Sequences with Deep LSTMs & RNNS in juliaGenerating Sequences with Deep LSTMs & RNNS in julia
Generating Sequences with Deep LSTMs & RNNS in julia
 
Internet of Things, TYBSC IT, Semester 5, Unit IV
Internet of Things, TYBSC IT, Semester 5, Unit IVInternet of Things, TYBSC IT, Semester 5, Unit IV
Internet of Things, TYBSC IT, Semester 5, Unit IV
 
Reading Notes : the practice of programming
Reading Notes : the practice of programmingReading Notes : the practice of programming
Reading Notes : the practice of programming
 
Know thy cost (or where performance problems lurk)
Know thy cost (or where performance problems lurk)Know thy cost (or where performance problems lurk)
Know thy cost (or where performance problems lurk)
 
7 Database Mistakes YOU Are Making -- Linuxfest Northwest 2019
7 Database Mistakes YOU Are Making -- Linuxfest Northwest 20197 Database Mistakes YOU Are Making -- Linuxfest Northwest 2019
7 Database Mistakes YOU Are Making -- Linuxfest Northwest 2019
 

Más de PostgreSQL-Consulting

Linux IO internals for database administrators (SCaLE 2017 and PGDay Nordic 2...
Linux IO internals for database administrators (SCaLE 2017 and PGDay Nordic 2...Linux IO internals for database administrators (SCaLE 2017 and PGDay Nordic 2...
Linux IO internals for database administrators (SCaLE 2017 and PGDay Nordic 2...PostgreSQL-Consulting
 
Linux internals for Database administrators at Linux Piter 2016
Linux internals for Database administrators at Linux Piter 2016Linux internals for Database administrators at Linux Piter 2016
Linux internals for Database administrators at Linux Piter 2016PostgreSQL-Consulting
 
Autovacuum, explained for engineers, new improved version PGConf.eu 2015 Vienna
Autovacuum, explained for engineers, new improved version PGConf.eu 2015 ViennaAutovacuum, explained for engineers, new improved version PGConf.eu 2015 Vienna
Autovacuum, explained for engineers, new improved version PGConf.eu 2015 ViennaPostgreSQL-Consulting
 
PostgreSQL Meetup Berlin at Zalando HQ
PostgreSQL Meetup Berlin at Zalando HQPostgreSQL Meetup Berlin at Zalando HQ
PostgreSQL Meetup Berlin at Zalando HQPostgreSQL-Consulting
 
How does PostgreSQL work with disks: a DBA's checklist in detail. PGConf.US 2015
How does PostgreSQL work with disks: a DBA's checklist in detail. PGConf.US 2015How does PostgreSQL work with disks: a DBA's checklist in detail. PGConf.US 2015
How does PostgreSQL work with disks: a DBA's checklist in detail. PGConf.US 2015PostgreSQL-Consulting
 
Как PostgreSQL работает с диском
Как PostgreSQL работает с дискомКак PostgreSQL работает с диском
Как PostgreSQL работает с дискомPostgreSQL-Consulting
 
Максим Богук. Postgres-XC
Максим Богук. Postgres-XCМаксим Богук. Postgres-XC
Максим Богук. Postgres-XCPostgreSQL-Consulting
 
Илья Космодемьянский. Использование очередей асинхронных сообщений с PostgreSQL
Илья Космодемьянский. Использование очередей асинхронных сообщений с PostgreSQLИлья Космодемьянский. Использование очередей асинхронных сообщений с PostgreSQL
Илья Космодемьянский. Использование очередей асинхронных сообщений с PostgreSQLPostgreSQL-Consulting
 

Más de PostgreSQL-Consulting (11)

Linux IO internals for database administrators (SCaLE 2017 and PGDay Nordic 2...
Linux IO internals for database administrators (SCaLE 2017 and PGDay Nordic 2...Linux IO internals for database administrators (SCaLE 2017 and PGDay Nordic 2...
Linux IO internals for database administrators (SCaLE 2017 and PGDay Nordic 2...
 
Linux internals for Database administrators at Linux Piter 2016
Linux internals for Database administrators at Linux Piter 2016Linux internals for Database administrators at Linux Piter 2016
Linux internals for Database administrators at Linux Piter 2016
 
Autovacuum, explained for engineers, new improved version PGConf.eu 2015 Vienna
Autovacuum, explained for engineers, new improved version PGConf.eu 2015 ViennaAutovacuum, explained for engineers, new improved version PGConf.eu 2015 Vienna
Autovacuum, explained for engineers, new improved version PGConf.eu 2015 Vienna
 
PostgreSQL Meetup Berlin at Zalando HQ
PostgreSQL Meetup Berlin at Zalando HQPostgreSQL Meetup Berlin at Zalando HQ
PostgreSQL Meetup Berlin at Zalando HQ
 
How does PostgreSQL work with disks: a DBA's checklist in detail. PGConf.US 2015
How does PostgreSQL work with disks: a DBA's checklist in detail. PGConf.US 2015How does PostgreSQL work with disks: a DBA's checklist in detail. PGConf.US 2015
How does PostgreSQL work with disks: a DBA's checklist in detail. PGConf.US 2015
 
Pgconfru 2015 kosmodemiansky
Pgconfru 2015 kosmodemianskyPgconfru 2015 kosmodemiansky
Pgconfru 2015 kosmodemiansky
 
Как PostgreSQL работает с диском
Как PostgreSQL работает с дискомКак PostgreSQL работает с диском
Как PostgreSQL работает с диском
 
Kosmodemiansky wr 2013
Kosmodemiansky wr 2013Kosmodemiansky wr 2013
Kosmodemiansky wr 2013
 
Максим Богук. Postgres-XC
Максим Богук. Postgres-XCМаксим Богук. Postgres-XC
Максим Богук. Postgres-XC
 
Иван Фролков. Tricky SQL
Иван Фролков. Tricky SQLИван Фролков. Tricky SQL
Иван Фролков. Tricky SQL
 
Илья Космодемьянский. Использование очередей асинхронных сообщений с PostgreSQL
Илья Космодемьянский. Использование очередей асинхронных сообщений с PostgreSQLИлья Космодемьянский. Использование очередей асинхронных сообщений с PostgreSQL
Илья Космодемьянский. Использование очередей асинхронных сообщений с PostgreSQL
 

Último

main PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidmain PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidNikhilNagaraju
 
Artificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptxArtificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptxbritheesh05
 
Comparative Analysis of Text Summarization Techniques
Comparative Analysis of Text Summarization TechniquesComparative Analysis of Text Summarization Techniques
Comparative Analysis of Text Summarization Techniquesugginaramesh
 
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdfCCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdfAsst.prof M.Gokilavani
 
Electronically Controlled suspensions system .pdf
Electronically Controlled suspensions system .pdfElectronically Controlled suspensions system .pdf
Electronically Controlled suspensions system .pdfme23b1001
 
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETEINFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETEroselinkalist12
 
CCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdf
CCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdfCCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdf
CCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdfAsst.prof M.Gokilavani
 
Instrumentation, measurement and control of bio process parameters ( Temperat...
Instrumentation, measurement and control of bio process parameters ( Temperat...Instrumentation, measurement and control of bio process parameters ( Temperat...
Instrumentation, measurement and control of bio process parameters ( Temperat...121011101441
 
Introduction to Machine Learning Unit-3 for II MECH
Introduction to Machine Learning Unit-3 for II MECHIntroduction to Machine Learning Unit-3 for II MECH
Introduction to Machine Learning Unit-3 for II MECHC Sai Kiran
 
Arduino_CSE ece ppt for working and principal of arduino.ppt
Arduino_CSE ece ppt for working and principal of arduino.pptArduino_CSE ece ppt for working and principal of arduino.ppt
Arduino_CSE ece ppt for working and principal of arduino.pptSAURABHKUMAR892774
 
An introduction to Semiconductor and its types.pptx
An introduction to Semiconductor and its types.pptxAn introduction to Semiconductor and its types.pptx
An introduction to Semiconductor and its types.pptxPurva Nikam
 
complete construction, environmental and economics information of biomass com...
complete construction, environmental and economics information of biomass com...complete construction, environmental and economics information of biomass com...
complete construction, environmental and economics information of biomass com...asadnawaz62
 
computer application and construction management
computer application and construction managementcomputer application and construction management
computer application and construction managementMariconPadriquez1
 
Concrete Mix Design - IS 10262-2019 - .pptx
Concrete Mix Design - IS 10262-2019 - .pptxConcrete Mix Design - IS 10262-2019 - .pptx
Concrete Mix Design - IS 10262-2019 - .pptxKartikeyaDwivedi3
 
Why does (not) Kafka need fsync: Eliminating tail latency spikes caused by fsync
Why does (not) Kafka need fsync: Eliminating tail latency spikes caused by fsyncWhy does (not) Kafka need fsync: Eliminating tail latency spikes caused by fsync
Why does (not) Kafka need fsync: Eliminating tail latency spikes caused by fsyncssuser2ae721
 
Call Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile serviceCall Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile servicerehmti665
 

Último (20)

main PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidmain PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfid
 
Design and analysis of solar grass cutter.pdf
Design and analysis of solar grass cutter.pdfDesign and analysis of solar grass cutter.pdf
Design and analysis of solar grass cutter.pdf
 
Artificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptxArtificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptx
 
Comparative Analysis of Text Summarization Techniques
Comparative Analysis of Text Summarization TechniquesComparative Analysis of Text Summarization Techniques
Comparative Analysis of Text Summarization Techniques
 
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdfCCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
 
🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...
🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...
🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...
 
Electronically Controlled suspensions system .pdf
Electronically Controlled suspensions system .pdfElectronically Controlled suspensions system .pdf
Electronically Controlled suspensions system .pdf
 
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETEINFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
 
CCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdf
CCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdfCCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdf
CCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdf
 
Instrumentation, measurement and control of bio process parameters ( Temperat...
Instrumentation, measurement and control of bio process parameters ( Temperat...Instrumentation, measurement and control of bio process parameters ( Temperat...
Instrumentation, measurement and control of bio process parameters ( Temperat...
 
Introduction to Machine Learning Unit-3 for II MECH
Introduction to Machine Learning Unit-3 for II MECHIntroduction to Machine Learning Unit-3 for II MECH
Introduction to Machine Learning Unit-3 for II MECH
 
Arduino_CSE ece ppt for working and principal of arduino.ppt
Arduino_CSE ece ppt for working and principal of arduino.pptArduino_CSE ece ppt for working and principal of arduino.ppt
Arduino_CSE ece ppt for working and principal of arduino.ppt
 
An introduction to Semiconductor and its types.pptx
An introduction to Semiconductor and its types.pptxAn introduction to Semiconductor and its types.pptx
An introduction to Semiconductor and its types.pptx
 
complete construction, environmental and economics information of biomass com...
complete construction, environmental and economics information of biomass com...complete construction, environmental and economics information of biomass com...
complete construction, environmental and economics information of biomass com...
 
computer application and construction management
computer application and construction managementcomputer application and construction management
computer application and construction management
 
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptxExploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
 
Concrete Mix Design - IS 10262-2019 - .pptx
Concrete Mix Design - IS 10262-2019 - .pptxConcrete Mix Design - IS 10262-2019 - .pptx
Concrete Mix Design - IS 10262-2019 - .pptx
 
Why does (not) Kafka need fsync: Eliminating tail latency spikes caused by fsync
Why does (not) Kafka need fsync: Eliminating tail latency spikes caused by fsyncWhy does (not) Kafka need fsync: Eliminating tail latency spikes caused by fsync
Why does (not) Kafka need fsync: Eliminating tail latency spikes caused by fsync
 
POWER SYSTEMS-1 Complete notes examples
POWER SYSTEMS-1 Complete notes  examplesPOWER SYSTEMS-1 Complete notes  examples
POWER SYSTEMS-1 Complete notes examples
 
Call Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile serviceCall Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile service
 

PostgreSQL worst practices, version FOSDEM PGDay 2017 by Ilya Kosmodemiansky

  • 1. PostgreSQL worst practices at FOSDEM PGDay Brussels 2017 Ilya Kosmodemiansky ik@postgresql-consulting.com
  • 2. Best practices are just boring • Never follow them, try worst practices • Only those practices can really help you to screw the things up most effectively • PostgreSQL consultants are nice people, so try to make them happy
  • 3. How it works? • I have a list, a little bit more than 100 worst practices • I do not make this stuff up, all of them are real-life examples • I reshuffle my list every time before presenting and extract some amount of examples • Well, there are some things, which I like more or less, so it is not a very honest shuffle
  • 4. 0. Do not use indexes (a test one!) • Basically, there is no difference between full table scan and index scan • You can check that. Just insert 10 rows into a test table on your test server and compare. • Nobody deals with more than 10 row tables in production!
  • 5. 1. Use ORM • All databases share the same syntax • You must write database-independent code • Are there any benefits, which are based on database specific features? • It always good to learn a new complicated technology
  • 6. 2. Move joins to your application • Just select * a couple of tables into the application written in your favorite programming language • Than join them at the application level
  • 7. 2. Move joins to your application • Just select * a couple of tables into the application written in your favorite programming language • Than join them at the application level • Now you only need to implement nested loop join, hash join and merge join as well as query optimizer and page cache
  • 8. 3. Be in trend, be schema-less • You do not need to design the schema • You need only one table, two columns: id bigserial and extra jsonb • JSONB datatype is pretty effective in PostgreSQL, you can search in it just like in a well-structured table • Even if you put a 100M of JSON in it • Even if you have 1000+ tps
  • 9. 4. Be agile, use EAV • You need only 3 tables: entity, attribute, value
  • 10. 4. Be agile, use EAV • You need only 3 tables: entity, attribute, value • At some point add the 4th: attribute_type
  • 11. 4. Be agile, use EAV • You need only 3 tables: entity, attribute, value • At some point add the 4th: attribute_type • Whet it starts to work slow, just call those four tables The Core and add 1000+ tables with denormalized data
  • 12. 4. Be agile, use EAV • You need only 3 tables: entity, attribute, value • At some point add the 4th: attribute_type • Whet it starts to work slow, just call those four tables The Core and add 1000+ tables with denormalized data • If it is not enough, you can always add value_version
  • 13. 5. Try to create as many indexes as you can • Indexes consume no disk space • Indexes consume no shared_bufers • There is no overhead on DML if one and every column in a table covered with bunch of indexes • Optimizer will definitely choose your index once you created it • Keep calm and create more indexes
  • 14. 6. Always keep all your time series data • Time series data like tables with logs or session history should be never deleted, aggregated or archived, you always need to keep it all
  • 15. 6. Always keep all your time series data • Time series data like tables with logs or session history should be never deleted, aggregated or archived, you always need to keep it all • You will always know where to check, if you run out of disk space
  • 16. 6. Always keep all your time series data • Time series data like tables with logs or session history should be never deleted, aggregated or archived, you always need to keep it all • You will always know where to check, if you run out of disk space • You can always call that Big Data
  • 17. 6. Always keep all your time series data • Time series data like tables with logs or session history should be never deleted, aggregated or archived, you always need to keep it all • You will always know where to check, if you run out of disk space • You can always call that Big Data • Solve the problem using partitioning... one partition for an hour or for a minute
  • 18. 7. Turn autovacuum off • It is quite auxiliary process, you can easily stop it • There is no problem at all to have 100Gb data in a database which is 1Tb in size • 2-3Tb RAM servers are cheap, IO is a fastest thing in modern computing • Besides of that, everyone likes BigData
  • 19. 8. Keep master and slave on different hardware • That will maximize the possibility of unsuccessful failover
  • 20. 8. Keep master and slave on different hardware • That will maximize the possibility of unsuccessful failover • To make things worser, you can change only slave-related parameters at slave, leaving defaults for shared_buffers etc.
  • 21. 9. Put a synchronous replica to remote DC • Indeed! That will maximize availability!
  • 22. 9. Put a synchronous replica to remote DC • Indeed! That will maximize availability! • Especially, if you put the replica to another continent
  • 23. 10. Reinvent Slony • If you need some data replication to another database, try to implement it from scratch
  • 24. 10. Reinvent Slony • If you need some data replication to another database, try to implement it from scratch • That allows you to run into all problems, PostgreSQL have had since introducing Slony
  • 25. 11. Use as many count(*) as you can • Figure 301083021830123921 is very informative for the end user • If it changes in a second to 30108302894839434020, it is still informative • select count(*) from sometable is a quite light-weighted query • Tuple estimation from pg_catalog can never be precise enough for you
  • 26. 12. Never use graphical monitoring • You do not need graphs • Because it is an easy task to guess what was happened yesterday at 2 a.m. using command line and grep only
  • 27. 13. Never use Foreign Keys (Use local produced instead!) • Consistency control at application level always works as expected • You will never get data inconsistency without constraints • Even if you already have a bullet proof framework to maintain consistency, could it be good enough reason to use it?
  • 28. 14. Always use text type for all columns • It is always fun to reimplement date or ip validation in your code • You will never mistakenly convert ”12-31-2015 03:01AM” to ”15:01 12 of undef 2015” using text fields
  • 29. 15. Always use improved ”PostgreSQL” • Postgres is not a perfect database and you are smart • All that annoying MVCC staff, 32 bit xid and autovacuum nightmare look like they look because hackers are oldschool and lazy • Hack it in a hard way, do not bother yourself with submitting your patch to the community, just put it into production • It is easy to maintain such production and keep it compatible with ”not perfect” PostgreSQL upcoming versions
  • 30. 16. Postgres likes long transactions • Always call external services from stored procedures (like sending emails)
  • 31. 16. Postgres likes long transactions • Always call external services from stored procedures (like sending emails) • Oh, it is arguable... It can be, if 100% of developers were familiar with word timeout
  • 32. 16. Postgres likes long transactions • Always call external services from stored procedures (like sending emails) • Oh, it is arguable... It can be, if 100% of developers were familiar with word timeout • Anyway, you can just start transaction and go away for weekend
  • 33. 17. Load your data to PostgreSQL in a smart manner • Write your own loader, 100 parallel threads minimum
  • 34. 17. Load your data to PostgreSQL in a smart manner • Write your own loader, 100 parallel threads minimum • Never use COPY - it is specially designed for the task
  • 35. 18. Even if you want to backup your database... • Use replication instead of backup
  • 36. 18. Even if you want to backup your database... • Use replication instead of backup • Use pg_dump instead of backup
  • 37. 18. Even if you want to backup your database... • Use replication instead of backup • Use pg_dump instead of backup • Write your own backup script
  • 38. 18. Even if you want to backup your database... • Use replication instead of backup • Use pg_dump instead of backup • Write your own backup script • As complicated as possible, combine all external tools you know
  • 39. 18. Even if you want to backup your database... • Use replication instead of backup • Use pg_dump instead of backup • Write your own backup script • As complicated as possible, combine all external tools you know • Never perform a test recovery
  • 40. Do not forget That was WORST practice talk
  • 41. Questions or ideas? Share your story! ik@postgresql-consulting.com (I’am preparing this talk to be open sourced)