SlideShare una empresa de Scribd logo
1 de 6
Descargar para leer sin conexión
56
5) Con los datos del problema calculamos el resto de variables
En el ejemplo y =
32000
60
= 60
6) Expresamos la solución
Solución : La parcela debe de ser cuadrada de lado 60 m
Regla de L ’ Hôpital
Supongamos dos funciones f , g : [ a , b ] −→ R que cumplen las siguientes condiciones
1. f(x) y g(x) derivables en x0
2. lı́m
x→x0
f(x) = lı́m
x→x0
g(x) = 0 , es decir , lı́m
x→x0
f(x)
g(x)
=
!
0
0
"
entonces
lı́m
x→x0
f(x)
g(x)
= lı́m
x→x0
f "
(x)
g "(x)
Ampliación de la Regla de L ’ Hôpital
1. Se pueden aplicar la misma fórmula de la regla de L ’ Hôpital a indeterminaciones del tipo
!
± ∞
± ∞
"
2. También se puede aplicar en lı́m
x→±∞
f(x)
3. Para las indeterminaciones del tipo 0 · ∞ se puede hacer el siguiente cambio :
lı́m
x→x0
f(x) · g(x) = lı́m
x→x0
f(x)
1
g(x)
=
!
0
0
"
ó lı́m
x→x0
f(x) · g(x) = lı́m
x→x0
g(x)
1
f(x)
=
!
0
0
"
4. Para las indeterminaciones del tipo 1∞
se puede hacer el siguiente cambio :
Llamamos H = lı́m
x→x0
[ f(x) ]g(x)
Tomamos logaritmo neperiano en ambas igualdades :
ln H = ln [ lı́m
x→x0
[ f(x) ]g(x)
] = lı́m
x→x0
ln [ f(x) ]g(x)
= lı́m
x→x0
[ g(x) · ln f(x) ] = [ ∞ · 0 ] = M
si ln H = M ⇒ H = eM
5. Para las indeterminaciones del tipo 00
, 0∞
e ∞0
se realiza el mismo procedimiento de apartado anterior
EJERCICIOS DE LÍMITES
57
EJERCICIOS Resueltos de REGLA DE L ’ HÔPITAL
Indeterminaciones


0
0


lı́m
x→0
sen x
x
=
%
0
0
&
= lı́m
x→0
cos x
1
=
cos 0
1
=
1
1
= 1
lı́m
x→0
ex
− 1
x
=
%
0
0
&
= lı́m
x→0
ex
1
=
e0
1
=
1
1
= 1
lı́m
x→1
ln x
x2 + x − 2
=
%
0
0
&
= lı́m
x→1
1
x
2x + 1
= lı́m
x→1
1
2x2 + x
=
1
2 · 12 + 1
=
1
3
lı́m
x→0
x − sen x
x3
=
%
0
0
&
= lı́m
x→0
1 − cos x
3x2
=
%
0
0
&
= lı́m
x→0
sen x
6x
=
%
0
0
&
= lı́m
x→0
cos x
6
=
1
6
lı́m
x→0
tg 3x
tg x
=
%
0
0
&
= lı́m
x→0
3
cos2 x
1
cos2 x
=
3
1
1
1
= 3
lı́m
x→0
sen 3x
x − 3
2 sen 2x
=
%
0
0
&
= lı́m
x→0
3 · cos 3x
1 −
3
2
· cos 2x · 2
= lı́m
x→0
3 · cos 3x
1 − 3 cos 2x
=
3 · 1
1 − 3 · 1
=
−
3
2
lı́m
x→0
sen x − x cos x
sen3 x
=
%
0
0
&
= lı́m
x→0
cos x − ( cos x − x sen x )
3 sen2 x cos x
= lı́m
x→0
x sen x
3 sen
2
x cos x
=
= lı́m
x→0
x
3 sen x cos x
sen 2x=2 sen x cos x
= lı́m
x→0
x
3
2 sen 2x
=
%
0
0
&
=
= lı́m
x→0
1
3
2
· 2 cos 2x
= lı́m
x→0
x
3 cos 2x
=
2
3 · cos 0
=
2
3 · 1
=
2
3
58
lı́m
x→0
x arc sen x
sen x cos x
=
!
0
0
"
sen 2x=2 sen x cos x
= lı́m
x→0
x arc sen x
1
2 sen 2x
= lı́m
x→0
2x arc sen x
sen 2x
=
!
0
0
"
=
= lı́m
x→0
2 · arc sen x + 2x
1 + x2
2 · cos 2x
=
2 · arc sen 0 + 2·0
1 + 02
2 · cos 0
=
2 · 0 + 2·0
1 + 02
2 · 1
= 0
lı́m
x→0
ax
− bx
x
=
!
0
0
"
= lı́m
x→0
ax
· ln a − bx
· ln b
1
= ln a − ln b
lı́m
x→0+
x − 1
xn − 1
=
!
0
0
"
= lı́m
x→0+
x − 1
xn − 1
= lı́m
x→0+
1
n · xn−1
=
!
1
0+
"
= + ∞
Indeterminaciones


∞
∞

 e Inteterminaciones 0 · ∞
lı́m
x→+∞
3x2
+ 2x − 1
4x2 + 6
=
!
∞
∞
"
= lı́m
x→+∞
6x + 2
8x
=
!
∞
∞
"
= lı́m
x→+∞
6
8
=
3
4
lı́m
x→+∞
ex
x2
=
!
∞
∞
"
= lı́m
x→+∞
ex
2x
=
!
∞
∞
"
= lı́m
x→+∞
ex
2
=
!
+ ∞
2
"
= + ∞
lı́m
x→+∞
2x
x
= lı́m
x→+∞
2x
· ln 2
1
=
!
+ ∞
1
"
= + ∞
lı́m
x→+∞
ln2
x
√
x
=
!
∞
∞
"
= lı́m
x→+∞
2 · ln x · 1
x
1
2
√
x
= lı́m
x→+∞
4 ·
√
x · ln x
x
=
!
∞
∞
"
=
= lı́m
x→+∞
4 · 1
2
√
x
· ln x + 1
x ·
√
x
1
= lı́m
x→+∞
'
2 · ln x
x
+
√
x
x
( √
x
x = 1
√
x
=
√
x
x = 1
√
x
= lı́m
x→+∞
'
2 · ln x
√
x
+
1
√
x
(
= lı́m
x→+∞
2 · ln x + 1
√
x
=
!
+ ∞
∞
"
=
= lı́m
x→+∞
2 · 1
x
1
2
√
x
= lı́m
x→+∞
4 ·
√
x
x
√
x
x = 1
√
x
= = lı́m
x→+∞
4
√
x
=
!
4
∞
"
= 0
59
lı́m
x→π
[ ( x − π ) ] · tg
x
2
= [ 0 · ∞ ] = lı́m
x→π
tg
x
2
1
x − π
=
!
∞
∞
"
= lı́m
x→π
1
2
·
1
cos2 x
2
− 1
( x − π)2
=
= lı́m
x→π
− ( x − π)2
2 · cos2 x
2
=
!
0
0
"
= lı́m
x→π
− 2 · ( x − π )
2 · 2 · cos x
2 ·
#
− sen x
2
$
· 1
2
2 sen x
2 cos x
2 =sen x
=
2 sen x
2 cos x
2 =sen x
= lı́m
x→π
− 2 · ( x − π )
− sen x
=
!
0
0
"
= lı́m
x→π
− 2
cos x
=
− 2
− cos π
=
− 2
−1
= −2
lı́m
x→ π
2
( sec x − tg x ) = [ ∞ − ∞ ] = lı́m
x→ π
2
%
1
cos x
−
sen x
cos x
&
= lı́m
x→ π
2
1 − sen x
cos x
=
!
∞
∞
"
=
= lı́m
x→ π
2
− cos x
− sen x
=
− cos π
2
− sen π
2
=
0
−1
= 0
lı́m
x→1
%
e
ex − e
−
1
x − 1
&
= [ ∞ − ∞ ] = lı́m
x→1
e · x − e − ex
+ e
( ex − e ) · ( x − 1 )
= lı́m
x→1
e · x − e
x · ex − e · x + ex + e
=
=
e − e
e + e − e − e
=
!
0
0
"
= lı́m
x→1
− ex
ex
+ ex + x · ex − ex
=
!
0
0
"
=
= lı́m
x→1
e − ex
ex + x · ex − e − − ex
= lı́m
x→1
− ex
ex + x · ex
=
− e
e + e
=
=
− e
2 e
= −
1
2
60
Indeterminaciones 1∞
, 00
, ∞0
· · ·
lı́m
x→0
!
2x
+ 3x
2
"1
x
=
#
∞0
$
= M
Tomando logaritmo neperiano en ambos miembros:
ln M = ln

 lı́m
x→∞
!
2x
+ 3x
2
"1
x

 = lı́m
x→0
ln


!
2x
+ 3x
2
"1
x

 = lı́m
x→0
1
x
· ln
!
2x
+ 3x
2
"
=
= [ 0 · ∞ ] = lı́m
x→0
ln
!
2x
+ 3x
2
"
x
=
)
0
0
*
= lı́m
x→0
2
2x + 3x · 2x
·ln 2 + 3x
·ln 3
2
2
=
ln 2 + ln 3
20 + 30
2
=
=
ln 2 + ln 3
4
⇒ M = e
ln 2 + ln 3
4
lı́m
x→+∞
+
x + ex
+ e2x
,1
x
= [ 1∞
] = M
Tomando logaritmo neperiano en ambos miembros:
ln M = ln
+
x + ex
+ e2x
,1
x
= lı́m
x→+∞
ln
+
x + ex
+ e2x
,1
x
= lı́m
x→+∞
ln
+
x + ex
+ e2x
,
x
=
=
)
∞
∞
*
= lı́m
x→+∞
1 + ex
+ 2 · ex
x + ex + e2x
=
)
∞
∞
*
= lı́m
x→∞
ex
+ 4 · ex
1 + ex + 2 · e2x
=
=
)
∞
∞
*
= lı́m
x→+∞
ex
+ 8 · ex
ex + 4 · e2x
=
)
∞
∞
*
= lı́m
x→∞
ex
e2x
+
8 · e2x
e2x
ex
e2x
+
4 · e2x
e2x
=
= lı́m
x→+∞
e−x
+ 8
e−x + 4
=
0 + 8
0 + 4
= 2 ⇒ M = e2
61
lı́m
x→ π
2
( sen x )tg x
= [ 1 ∞
] = M
Tomando logaritmo neperiano en ambos miembros:
ln M = ln lı́m
x→ π
2
( sen x )tg x
= lı́m
x→ π
2
ln ( sen x )tg x
= lı́m
x→ π
2
tg x · ln ( sen x ) = lı́m
x→ π
2
ln ( sen x )
1
tg x
=
= lı́m
x→ π
2
ln ( sen x )
cotg x
=
!
0
0
"
= lı́m
x→ π
2
cos x
sen x
− 1
sen2 x
= lı́m
x→ π
2
sen
2
x · cos x
− sen x
=
= lı́m
x→ π
2
−
1
2
· sen 2x = 0 ⇒ M = 1
lı́m
x→+∞
#
e2x
+ 1
$1
x
=
%
∞ 0
&
= M
Tomando logaritmo neperiano en ambos miembros:
ln M = ln lı́m
x→+∞
#
e2x
+ 1
$1
x
= lı́m
x→+∞
ln
#
e2x
+ 1
$1
x
= lı́m
x→+∞
1
x
· ln
#
e2x
+ 1
$
=
= lı́m
x→+∞
ln
#
e2x
+ 1
$
x
=
!
∞
∞
"
= lı́m
x→+∞
2 · e2x
e2x + 1
=
!
∞
∞
"
= lı́m
x→+∞
4 · e2x
2 · e2x
=
4
2
= 2 ⇒ M = e2

Más contenido relacionado

Destacado

Social Media Marketing Trends 2024 // The Global Indie Insights
Social Media Marketing Trends 2024 // The Global Indie InsightsSocial Media Marketing Trends 2024 // The Global Indie Insights
Social Media Marketing Trends 2024 // The Global Indie Insights
Kurio // The Social Media Age(ncy)
 
Good Stuff Happens in 1:1 Meetings: Why you need them and how to do them well
Good Stuff Happens in 1:1 Meetings: Why you need them and how to do them wellGood Stuff Happens in 1:1 Meetings: Why you need them and how to do them well
Good Stuff Happens in 1:1 Meetings: Why you need them and how to do them well
Saba Software
 

Destacado (20)

Content Methodology: A Best Practices Report (Webinar)
Content Methodology: A Best Practices Report (Webinar)Content Methodology: A Best Practices Report (Webinar)
Content Methodology: A Best Practices Report (Webinar)
 
How to Prepare For a Successful Job Search for 2024
How to Prepare For a Successful Job Search for 2024How to Prepare For a Successful Job Search for 2024
How to Prepare For a Successful Job Search for 2024
 
Social Media Marketing Trends 2024 // The Global Indie Insights
Social Media Marketing Trends 2024 // The Global Indie InsightsSocial Media Marketing Trends 2024 // The Global Indie Insights
Social Media Marketing Trends 2024 // The Global Indie Insights
 
Trends In Paid Search: Navigating The Digital Landscape In 2024
Trends In Paid Search: Navigating The Digital Landscape In 2024Trends In Paid Search: Navigating The Digital Landscape In 2024
Trends In Paid Search: Navigating The Digital Landscape In 2024
 
5 Public speaking tips from TED - Visualized summary
5 Public speaking tips from TED - Visualized summary5 Public speaking tips from TED - Visualized summary
5 Public speaking tips from TED - Visualized summary
 
ChatGPT and the Future of Work - Clark Boyd
ChatGPT and the Future of Work - Clark Boyd ChatGPT and the Future of Work - Clark Boyd
ChatGPT and the Future of Work - Clark Boyd
 
Getting into the tech field. what next
Getting into the tech field. what next Getting into the tech field. what next
Getting into the tech field. what next
 
Google's Just Not That Into You: Understanding Core Updates & Search Intent
Google's Just Not That Into You: Understanding Core Updates & Search IntentGoogle's Just Not That Into You: Understanding Core Updates & Search Intent
Google's Just Not That Into You: Understanding Core Updates & Search Intent
 
How to have difficult conversations
How to have difficult conversations How to have difficult conversations
How to have difficult conversations
 
Introduction to Data Science
Introduction to Data ScienceIntroduction to Data Science
Introduction to Data Science
 
Time Management & Productivity - Best Practices
Time Management & Productivity -  Best PracticesTime Management & Productivity -  Best Practices
Time Management & Productivity - Best Practices
 
The six step guide to practical project management
The six step guide to practical project managementThe six step guide to practical project management
The six step guide to practical project management
 
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...
 
Unlocking the Power of ChatGPT and AI in Testing - A Real-World Look, present...
Unlocking the Power of ChatGPT and AI in Testing - A Real-World Look, present...Unlocking the Power of ChatGPT and AI in Testing - A Real-World Look, present...
Unlocking the Power of ChatGPT and AI in Testing - A Real-World Look, present...
 
12 Ways to Increase Your Influence at Work
12 Ways to Increase Your Influence at Work12 Ways to Increase Your Influence at Work
12 Ways to Increase Your Influence at Work
 
ChatGPT webinar slides
ChatGPT webinar slidesChatGPT webinar slides
ChatGPT webinar slides
 
More than Just Lines on a Map: Best Practices for U.S Bike Routes
More than Just Lines on a Map: Best Practices for U.S Bike RoutesMore than Just Lines on a Map: Best Practices for U.S Bike Routes
More than Just Lines on a Map: Best Practices for U.S Bike Routes
 
Ride the Storm: Navigating Through Unstable Periods / Katerina Rudko (Belka G...
Ride the Storm: Navigating Through Unstable Periods / Katerina Rudko (Belka G...Ride the Storm: Navigating Through Unstable Periods / Katerina Rudko (Belka G...
Ride the Storm: Navigating Through Unstable Periods / Katerina Rudko (Belka G...
 
Barbie - Brand Strategy Presentation
Barbie - Brand Strategy PresentationBarbie - Brand Strategy Presentation
Barbie - Brand Strategy Presentation
 
Good Stuff Happens in 1:1 Meetings: Why you need them and how to do them well
Good Stuff Happens in 1:1 Meetings: Why you need them and how to do them wellGood Stuff Happens in 1:1 Meetings: Why you need them and how to do them well
Good Stuff Happens in 1:1 Meetings: Why you need them and how to do them well
 

EJERCICIOS_RESUELTOS_LIMITEScon neperianos.pdf

  • 1. 56 5) Con los datos del problema calculamos el resto de variables En el ejemplo y = 32000 60 = 60 6) Expresamos la solución Solución : La parcela debe de ser cuadrada de lado 60 m Regla de L ’ Hôpital Supongamos dos funciones f , g : [ a , b ] −→ R que cumplen las siguientes condiciones 1. f(x) y g(x) derivables en x0 2. lı́m x→x0 f(x) = lı́m x→x0 g(x) = 0 , es decir , lı́m x→x0 f(x) g(x) = ! 0 0 " entonces lı́m x→x0 f(x) g(x) = lı́m x→x0 f " (x) g "(x) Ampliación de la Regla de L ’ Hôpital 1. Se pueden aplicar la misma fórmula de la regla de L ’ Hôpital a indeterminaciones del tipo ! ± ∞ ± ∞ " 2. También se puede aplicar en lı́m x→±∞ f(x) 3. Para las indeterminaciones del tipo 0 · ∞ se puede hacer el siguiente cambio : lı́m x→x0 f(x) · g(x) = lı́m x→x0 f(x) 1 g(x) = ! 0 0 " ó lı́m x→x0 f(x) · g(x) = lı́m x→x0 g(x) 1 f(x) = ! 0 0 " 4. Para las indeterminaciones del tipo 1∞ se puede hacer el siguiente cambio : Llamamos H = lı́m x→x0 [ f(x) ]g(x) Tomamos logaritmo neperiano en ambas igualdades : ln H = ln [ lı́m x→x0 [ f(x) ]g(x) ] = lı́m x→x0 ln [ f(x) ]g(x) = lı́m x→x0 [ g(x) · ln f(x) ] = [ ∞ · 0 ] = M si ln H = M ⇒ H = eM 5. Para las indeterminaciones del tipo 00 , 0∞ e ∞0 se realiza el mismo procedimiento de apartado anterior EJERCICIOS DE LÍMITES
  • 2. 57 EJERCICIOS Resueltos de REGLA DE L ’ HÔPITAL Indeterminaciones   0 0   lı́m x→0 sen x x = % 0 0 & = lı́m x→0 cos x 1 = cos 0 1 = 1 1 = 1 lı́m x→0 ex − 1 x = % 0 0 & = lı́m x→0 ex 1 = e0 1 = 1 1 = 1 lı́m x→1 ln x x2 + x − 2 = % 0 0 & = lı́m x→1 1 x 2x + 1 = lı́m x→1 1 2x2 + x = 1 2 · 12 + 1 = 1 3 lı́m x→0 x − sen x x3 = % 0 0 & = lı́m x→0 1 − cos x 3x2 = % 0 0 & = lı́m x→0 sen x 6x = % 0 0 & = lı́m x→0 cos x 6 = 1 6 lı́m x→0 tg 3x tg x = % 0 0 & = lı́m x→0 3 cos2 x 1 cos2 x = 3 1 1 1 = 3 lı́m x→0 sen 3x x − 3 2 sen 2x = % 0 0 & = lı́m x→0 3 · cos 3x 1 − 3 2 · cos 2x · 2 = lı́m x→0 3 · cos 3x 1 − 3 cos 2x = 3 · 1 1 − 3 · 1 = − 3 2 lı́m x→0 sen x − x cos x sen3 x = % 0 0 & = lı́m x→0 cos x − ( cos x − x sen x ) 3 sen2 x cos x = lı́m x→0 x sen x 3 sen 2 x cos x = = lı́m x→0 x 3 sen x cos x sen 2x=2 sen x cos x = lı́m x→0 x 3 2 sen 2x = % 0 0 & = = lı́m x→0 1 3 2 · 2 cos 2x = lı́m x→0 x 3 cos 2x = 2 3 · cos 0 = 2 3 · 1 = 2 3
  • 3. 58 lı́m x→0 x arc sen x sen x cos x = ! 0 0 " sen 2x=2 sen x cos x = lı́m x→0 x arc sen x 1 2 sen 2x = lı́m x→0 2x arc sen x sen 2x = ! 0 0 " = = lı́m x→0 2 · arc sen x + 2x 1 + x2 2 · cos 2x = 2 · arc sen 0 + 2·0 1 + 02 2 · cos 0 = 2 · 0 + 2·0 1 + 02 2 · 1 = 0 lı́m x→0 ax − bx x = ! 0 0 " = lı́m x→0 ax · ln a − bx · ln b 1 = ln a − ln b lı́m x→0+ x − 1 xn − 1 = ! 0 0 " = lı́m x→0+ x − 1 xn − 1 = lı́m x→0+ 1 n · xn−1 = ! 1 0+ " = + ∞ Indeterminaciones   ∞ ∞   e Inteterminaciones 0 · ∞ lı́m x→+∞ 3x2 + 2x − 1 4x2 + 6 = ! ∞ ∞ " = lı́m x→+∞ 6x + 2 8x = ! ∞ ∞ " = lı́m x→+∞ 6 8 = 3 4 lı́m x→+∞ ex x2 = ! ∞ ∞ " = lı́m x→+∞ ex 2x = ! ∞ ∞ " = lı́m x→+∞ ex 2 = ! + ∞ 2 " = + ∞ lı́m x→+∞ 2x x = lı́m x→+∞ 2x · ln 2 1 = ! + ∞ 1 " = + ∞ lı́m x→+∞ ln2 x √ x = ! ∞ ∞ " = lı́m x→+∞ 2 · ln x · 1 x 1 2 √ x = lı́m x→+∞ 4 · √ x · ln x x = ! ∞ ∞ " = = lı́m x→+∞ 4 · 1 2 √ x · ln x + 1 x · √ x 1 = lı́m x→+∞ ' 2 · ln x x + √ x x ( √ x x = 1 √ x = √ x x = 1 √ x = lı́m x→+∞ ' 2 · ln x √ x + 1 √ x ( = lı́m x→+∞ 2 · ln x + 1 √ x = ! + ∞ ∞ " = = lı́m x→+∞ 2 · 1 x 1 2 √ x = lı́m x→+∞ 4 · √ x x √ x x = 1 √ x = = lı́m x→+∞ 4 √ x = ! 4 ∞ " = 0
  • 4. 59 lı́m x→π [ ( x − π ) ] · tg x 2 = [ 0 · ∞ ] = lı́m x→π tg x 2 1 x − π = ! ∞ ∞ " = lı́m x→π 1 2 · 1 cos2 x 2 − 1 ( x − π)2 = = lı́m x→π − ( x − π)2 2 · cos2 x 2 = ! 0 0 " = lı́m x→π − 2 · ( x − π ) 2 · 2 · cos x 2 · # − sen x 2 $ · 1 2 2 sen x 2 cos x 2 =sen x = 2 sen x 2 cos x 2 =sen x = lı́m x→π − 2 · ( x − π ) − sen x = ! 0 0 " = lı́m x→π − 2 cos x = − 2 − cos π = − 2 −1 = −2 lı́m x→ π 2 ( sec x − tg x ) = [ ∞ − ∞ ] = lı́m x→ π 2 % 1 cos x − sen x cos x & = lı́m x→ π 2 1 − sen x cos x = ! ∞ ∞ " = = lı́m x→ π 2 − cos x − sen x = − cos π 2 − sen π 2 = 0 −1 = 0 lı́m x→1 % e ex − e − 1 x − 1 & = [ ∞ − ∞ ] = lı́m x→1 e · x − e − ex + e ( ex − e ) · ( x − 1 ) = lı́m x→1 e · x − e x · ex − e · x + ex + e = = e − e e + e − e − e = ! 0 0 " = lı́m x→1 − ex ex + ex + x · ex − ex = ! 0 0 " = = lı́m x→1 e − ex ex + x · ex − e − − ex = lı́m x→1 − ex ex + x · ex = − e e + e = = − e 2 e = − 1 2
  • 5. 60 Indeterminaciones 1∞ , 00 , ∞0 · · · lı́m x→0 ! 2x + 3x 2 "1 x = # ∞0 $ = M Tomando logaritmo neperiano en ambos miembros: ln M = ln   lı́m x→∞ ! 2x + 3x 2 "1 x   = lı́m x→0 ln   ! 2x + 3x 2 "1 x   = lı́m x→0 1 x · ln ! 2x + 3x 2 " = = [ 0 · ∞ ] = lı́m x→0 ln ! 2x + 3x 2 " x = ) 0 0 * = lı́m x→0 2 2x + 3x · 2x ·ln 2 + 3x ·ln 3 2 2 = ln 2 + ln 3 20 + 30 2 = = ln 2 + ln 3 4 ⇒ M = e ln 2 + ln 3 4 lı́m x→+∞ + x + ex + e2x ,1 x = [ 1∞ ] = M Tomando logaritmo neperiano en ambos miembros: ln M = ln + x + ex + e2x ,1 x = lı́m x→+∞ ln + x + ex + e2x ,1 x = lı́m x→+∞ ln + x + ex + e2x , x = = ) ∞ ∞ * = lı́m x→+∞ 1 + ex + 2 · ex x + ex + e2x = ) ∞ ∞ * = lı́m x→∞ ex + 4 · ex 1 + ex + 2 · e2x = = ) ∞ ∞ * = lı́m x→+∞ ex + 8 · ex ex + 4 · e2x = ) ∞ ∞ * = lı́m x→∞ ex e2x + 8 · e2x e2x ex e2x + 4 · e2x e2x = = lı́m x→+∞ e−x + 8 e−x + 4 = 0 + 8 0 + 4 = 2 ⇒ M = e2
  • 6. 61 lı́m x→ π 2 ( sen x )tg x = [ 1 ∞ ] = M Tomando logaritmo neperiano en ambos miembros: ln M = ln lı́m x→ π 2 ( sen x )tg x = lı́m x→ π 2 ln ( sen x )tg x = lı́m x→ π 2 tg x · ln ( sen x ) = lı́m x→ π 2 ln ( sen x ) 1 tg x = = lı́m x→ π 2 ln ( sen x ) cotg x = ! 0 0 " = lı́m x→ π 2 cos x sen x − 1 sen2 x = lı́m x→ π 2 sen 2 x · cos x − sen x = = lı́m x→ π 2 − 1 2 · sen 2x = 0 ⇒ M = 1 lı́m x→+∞ # e2x + 1 $1 x = % ∞ 0 & = M Tomando logaritmo neperiano en ambos miembros: ln M = ln lı́m x→+∞ # e2x + 1 $1 x = lı́m x→+∞ ln # e2x + 1 $1 x = lı́m x→+∞ 1 x · ln # e2x + 1 $ = = lı́m x→+∞ ln # e2x + 1 $ x = ! ∞ ∞ " = lı́m x→+∞ 2 · e2x e2x + 1 = ! ∞ ∞ " = lı́m x→+∞ 4 · e2x 2 · e2x = 4 2 = 2 ⇒ M = e2