SlideShare una empresa de Scribd logo
1 de 33
n=2                        n=4                         n=3                      E-272




                      Euler’s Proof of
                   Fermat’s Last Theorem
                        (for n = 3)

                                 Lee Stemkoski
                                  Adelphi Univeristy


                            December 5, 2012


 Lee Stemkoski (Adelphi)    Euler on Fermat’s Last Theorem   December 5, 2012   1 / 33
n=2                        n=4                         n=3                      E-272



Outline

      1   n=2

      2   n=4

      3   n=3

      4   E-272



 Lee Stemkoski (Adelphi)    Euler on Fermat’s Last Theorem   December 5, 2012   2 / 33
n=2                        n=4                         n=3                      E-272



Fun Algebra to Check Thoroughly

           If p is prime and p | ab,
              then p | a or p | b. (Euclid’s Lemma)
           If gcd(r, s) = 1 and r · s = tn ,
              then r = un and s = v n .
           The set S = {x2 + ny 2 | x, y ∈ Z}
              is closed under multiplication.
           (a +nb2 )(c2 +nd2 ) = (ac±nbd)2 +n(ad bc)2
             2

           (Later in this talk, we will consider n = 3.)


 Lee Stemkoski (Adelphi)    Euler on Fermat’s Last Theorem   December 5, 2012   3 / 33
n=2                        n=4                         n=3                      E-272



A Babylonian Tablet




                            Figure: Plimpton 322


      Also see:
      Euclid, Book X, Lemma 1 - Proposition XXIX
 Lee Stemkoski (Adelphi)    Euler on Fermat’s Last Theorem   December 5, 2012   4 / 33
n=2                        n=4                         n=3                      E-272



Proving a Pythagorean Parameterization

      Assume a solution exists: x2 + y 2 = z 2 ,
        with x, y, z ∈ Z+ , relatively prime.
      Some cases to consider:
         odd + odd = even
         ////// +////// = even
         even/// even//////////
         even + odd = odd
         ///// +////// =/////
         odd/// even//// odd


 Lee Stemkoski (Adelphi)    Euler on Fermat’s Last Theorem   December 5, 2012   5 / 33
n=2                        n=4                         n=3                      E-272



(odd)2 + (odd)2 = (even)2



                      This equation is impossible!

                    (2m + 1)2 + (2n + 1)2 = (2p)2
                    4(m2 + m + n2 + n) + 2 = 4p2




 Lee Stemkoski (Adelphi)    Euler on Fermat’s Last Theorem   December 5, 2012   6 / 33
n=2                        n=4                         n=3                      E-272



(even)2 + (odd)2 = (odd)2

                                 x2 + y 2 = z 2
                                 x2 = z 2 − y 2
                           x2 = (z + y)(z − y)
                            z + y = even = 2p
                            z − y = even = 2q
                    x = 2r, y = p − q, z = p + q

          p and q: relatively prime, opposite parity

 Lee Stemkoski (Adelphi)    Euler on Fermat’s Last Theorem   December 5, 2012   7 / 33
n=2                        n=4                          n=3                      E-272



Finishing it up...

                           x2 = (z + y)(z − y)
                                    r2 = p · q

          gcd(p, q) = 1 implies p = a2 and q = b2

      Putting it all together:
                                     √
                           x = 2r = 2 pq = 2ab

                           y = p − q = a2 − b 2
                            z = p + q = a2 + b 2
 Lee Stemkoski (Adelphi)     Euler on Fermat’s Last Theorem   December 5, 2012   8 / 33
n=2                        n=4                         n=3                      E-272



The Pythagorean Parameterization

      Theorem
      If x2 + y 2 = z 2 , with x, y, z relatively prime,
      then there exist integers a and b,
      relatively prime and with opposite parity,
      such that
                               x = 2ab
                                 y = a2 − b2
                                 z = a2 + b2


 Lee Stemkoski (Adelphi)    Euler on Fermat’s Last Theorem   December 5, 2012   9 / 33
n=2                        n=4                         n=3                      E-272



Fermat




                    Figure: Pierre de Fermat, 1601-1665


 Lee Stemkoski (Adelphi)    Euler on Fermat’s Last Theorem   December 5, 2012   10 / 33
n=2                        n=4                         n=3                      E-272



Method of Infinite Descent
           Prove: if P (x) is true, then there exists
           y < x with P (y) true, where x, y ∈ Z+ .
           Obtain an infinite sequence of strictly
           decreasing positive integers.
           Contradicts the Well Ordering Principle:
           S ⊆ Z+ has a smallest element.
           Conclude: initial assumption is false.
      Useful for showing solutions do not exist.
      Fermat’s account of this method: “Relation des
      nouvelles d´couvertes en la science des nombres”
                  e
      letter to Pierre de Carcavi, 1659.
 Lee Stemkoski (Adelphi)    Euler on Fermat’s Last Theorem   December 5, 2012   11 / 33
n=2                        n=4                         n=3                      E-272



Wanted: Larger Margins




      Fermat’s annotation of Bachet’s translation
        of Diophantus’ Arithmetica
 Lee Stemkoski (Adelphi)    Euler on Fermat’s Last Theorem   December 5, 2012   12 / 33
n=2                        n=4                         n=3                      E-272



A proof

      Assume a solution exists: x4 + y 4 = z 4 ,
        with x, y, z ∈ Z+ , relatively prime.
      Let X = x2 , Y = y 2 , Z = z 2 , then:

                                 X2 + Y 2 = Z2

               X = 2ab, Y = a2 − b2 , Z = a2 + b2

          a and b: relatively prime, opposite parity


 Lee Stemkoski (Adelphi)    Euler on Fermat’s Last Theorem   December 5, 2012   13 / 33
n=2                         n=4                          n=3                      E-272



The descent

                 Y = a2 − b2 implies b2 + y 2 = a2
                 b = 2cd, y = c2 − d2 , a = c2 + d2
      c and d: relatively prime, opposite parity

               X = 2ab implies x2 = 4cd(c2 + d2 )

      cd and (c2 + d2 ): relatively prime

                           cd = e2 and c2 + d2 = f 2

      and c = g 2 , d = h2 ... let the descent begin...
 Lee Stemkoski (Adelphi)      Euler on Fermat’s Last Theorem   December 5, 2012   14 / 33
n=2                        n=4                         n=3                      E-272



Recap

           Assume there are positive integers such that
           X 2 + Y 2 = Z 2 , where X = x2 and Y = y 2
           Obtain positive integers such that
           c2 + d2 = f 2 , where c = g 2 and d = h2
           f is strictly smaller than Z
           We obtain an infinite sequence of strictly
           decreasing positive integers, which is
           impossible; the original assumption was false.


 Lee Stemkoski (Adelphi)    Euler on Fermat’s Last Theorem   December 5, 2012   15 / 33
n=2                        n=4                         n=3                      E-272



Euler




                     Figure: Leonhard Euler, 1707-1783


 Lee Stemkoski (Adelphi)    Euler on Fermat’s Last Theorem   December 5, 2012   16 / 33
n=2                        n=4                         n=3                      E-272



Correspondence with Goldbach


           196 letters from 1729 to 1764
           Goldbach motivates Euler to examine
           Fermat’s work
           1748 - Euler first mentions Fermat’s Last
           Theorem
           1753 - Euler announces proof for n = 3



 Lee Stemkoski (Adelphi)    Euler on Fermat’s Last Theorem   December 5, 2012   17 / 33
n=2                        n=4                         n=3                      E-272



Euler to Goldbach, 13 February 1748




 Lee Stemkoski (Adelphi)    Euler on Fermat’s Last Theorem   December 5, 2012   18 / 33
n=2                        n=4                         n=3                      E-272



Euler to Goldbach, 04 August 1753




 Lee Stemkoski (Adelphi)    Euler on Fermat’s Last Theorem   December 5, 2012   19 / 33
n=2                        n=4                         n=3                      E-272



Euler’s Algebra (1770)
      Assume a solution exists: x3 + y 3 = z 3 ,
        with x, y, z ∈ Z+ , relatively prime.
      Exactly one of these three numbers are even.
          Case 1: x, y are odd and z is even.
          Case 2: y, z are odd and x is even.
      Proof of Case 1. Assume that x > y.

         x + y = even = 2p and x − y = even = 2q
                  x = p + q and y = p − q
      p and q: positive, relatively prime, opposite parity

 Lee Stemkoski (Adelphi)    Euler on Fermat’s Last Theorem   December 5, 2012   20 / 33
n=2                        n=4                         n=3                      E-272



The proof continues


                 z 3 = x3 + y 3 = (p + q)3 + (p − q)3
                                = 2p3 + 6pq
                                = 2p(p2 + 3q 2 )

      Note: p2 + 3q 2 is odd.
      If g = gcd(2p, p2 + 3q 2 ) > 1 then g is odd;
      g | p, so g | 3q 2 ; since g q, we have g = 3.

      Therefore, gcd(2p, p2 + 3q 2 ) = 1 or 3.
      (Two subcases to consider.)
 Lee Stemkoski (Adelphi)    Euler on Fermat’s Last Theorem   December 5, 2012   21 / 33
n=2                        n=4                         n=3                      E-272



gcd(2p, p2 + 3q 2) = 1

                            2p(p2 + 3q 2 ) = z 3
      By earlier fact: 2p = u3 and (p2 + 3q 2 ) = v 3 .
      Know: v ∈ S → v 3 ∈ S.
      Also: v 3 ∈ S → v ∈ S

                       p2 + 3q 2 = v 3 = (a2 + 3b2 )3
      Since gcd(p, q) = 1, we have:
      p = a3 − 9ab2 , q = 3a2 b − 3b3 , gcd(a, b) = 1.

                     2p = 2a(a + 3b)(a − 3b) = u3
 Lee Stemkoski (Adelphi)    Euler on Fermat’s Last Theorem   December 5, 2012   22 / 33
n=2                        n=4                         n=3                      E-272



A descent appears!

                     2p = 2a(a + 3b)(a − 3b) = u3
      2a, (a + 3b), (a − 3b) are relatively prime, so:

             2a = α3 , (a + 3b) = β 3 , (a − 3b) = γ 3

                                 α3 = β 3 + γ 3
      Move terms if necessary so all terms are positive.
      α, β, γ < z, since α3 β 3 γ 3 = 2p < 2p(p2 + 3q 2 ) = z 3
      ...a smaller positive solution to FLT, n = 3.

 Lee Stemkoski (Adelphi)    Euler on Fermat’s Last Theorem   December 5, 2012   23 / 33
n=2                        n=4                         n=3                      E-272



Excerpt #1, Euler’s Algebra




 Lee Stemkoski (Adelphi)    Euler on Fermat’s Last Theorem   December 5, 2012   24 / 33
n=2                        n=4                         n=3                      E-272



Excerpt #2, Euler’s Algebra




 Lee Stemkoski (Adelphi)    Euler on Fermat’s Last Theorem   December 5, 2012   25 / 33
n=2                        n=4                         n=3                      E-272



Commentarii...

           Euler proved FLT(3) in 1770.
           Euler proved FLT(3) in 1770, but key steps
           were unjustified.
           Euler proved FLT(3) in 1770, but key steps
           were justified in 1759/1763 (E-272).
           The results of E-272 are insufficient to prove
           FLT(3).
           Euler had a proof of FLT(3) by 1753, but
           waited to publish a more polished version.

 Lee Stemkoski (Adelphi)    Euler on Fermat’s Last Theorem   December 5, 2012   26 / 33
n=2                        n=4                         n=3                      E-272



Red Flags Revisited


      Need to fully justify:
       1  If p2 + 3q 2 = v 3
          (also gcd(p, q) = 1, and v 3 is odd)
          then v = a2 + 3b2 .
       2  In this situation, p2 + 3q 2 = (a2 + 3b2 )3
          ⇒ p = a3 − 9ab2
          ⇒ q = 3a2 b − 3b2



 Lee Stemkoski (Adelphi)    Euler on Fermat’s Last Theorem   December 5, 2012   27 / 33
n=2                        n=4                         n=3                      E-272



The missing link?
      E272: Supplementum quorundam theorematum
      arithmeticorum... (1759/1763)
      Proves properties of numbers of the form x2 + 3y 2 .
      Quick tour:
        1   If gcd(a, b) = m, then m2 |(a2 + 3b2 )
                                    2   2
        2   If 3|(a2 + 3b2 ), then a +3b = n2 + 3m2 .
                                      3
                                            2      2
        3   If 4|(a2 + 3b2 ), then a +3b = n2 + 3m2 .
                                     4
        4   If P = p + 3q is prime and P |(a2 + 3b2 ),
                      2      2
                   2    2
            then a +3b = n2 + 3m2 .
                     P
                   Corollary: a = 3mq ± np and b = mp ± nq

 Lee Stemkoski (Adelphi)    Euler on Fermat’s Last Theorem   December 5, 2012   28 / 33
n=2                        n=4                         n=3                      E-272




       5   If Pi = (pi )2 + 3(qi )2 is prime and
                                   2     2
           Pi |(a2 + 3b2 ), then a 1+3bk = n2 + 3m2 .
                                  P ...P
       6   If A = p2 + 3q 2 is prime and A|(a2 + 3b2 ),
           then there exists a similar B < A.
       7   All odd prime factors of a2 + 3b2 , when
           gcd(a, b) = 1, have the form p2 + 3q 2 .
       8   Primes of the form p2 + 3q 2 (except 3)
           have the form 6n + 1.
       9   Primes of the form 6n + 1
           have the form p2 + 3q 2 .


 Lee Stemkoski (Adelphi)    Euler on Fermat’s Last Theorem   December 5, 2012   29 / 33
n=2                        n=4                         n=3                      E-272



Red Flag # 1


      “If p2 + 3q 2 = v 3
      (also gcd(p, q) = 1, and v 3 is odd)
      then v = a2 + 3b2 .”

      Fully justified by Euler’s Proposition 7.




 Lee Stemkoski (Adelphi)    Euler on Fermat’s Last Theorem   December 5, 2012   30 / 33
n=2                        n=4                         n=3                      E-272



Red Flag # 2

      “In this situation, p2 + 3q 2 = (v)3 = (a2 + 3b2 )3
      ⇒ p = a3 − 9ab2 and q = 3a2 b − 3b2 ”

      Can be addressed by Cor. to Euler’s Prop. 4:
          Applied to a prime a2 + 3b2 , yields
          uniqueness of representation.

                     (p2 + 3q 2 )(12 + 3 · 02 ) = (a2 + 3b2 )

                 a = 3 · 0 · q ± 1 · p and b = 0 · p ± 1 · q


 Lee Stemkoski (Adelphi)    Euler on Fermat’s Last Theorem   December 5, 2012   31 / 33
n=2                        n=4                         n=3                      E-272




      “In this situation, p2 + 3q 2 = (v)3 = (a2 + 3b2 )3
      ⇒ p = a3 − 9ab2 and q = 3a2 b − 3b2 ”
           Repeat for each prime power factor of v;
           only one of the two methods of composition
           will preserve gcd(a, b) = 1.
           Combine prime power factors; many
           representations of v.
           Must use the same representation to
           calculating v 3 to preserve gcd(p, q) = 1.



 Lee Stemkoski (Adelphi)    Euler on Fermat’s Last Theorem   December 5, 2012   32 / 33
n=2                        n=4                         n=3                      E-272



Did Euler consider this?

           Similar work on sums of two squares
           Unusual for Euler to not publish refutation
           of FLT for n = 3?
           E-255, x3 + y 3 = z 3 + v 3 (pres. 1754)
           (one year after letter to Goldbach)
           E-256, x2 + cy 2 conjectures (pres. 1753/4)
           1755 letter to Goldbach: convinced Fermat
           was correct, searching for FLT n = 5 proof
           E-272, x2 + 3y 2 (pres. 1759)

 Lee Stemkoski (Adelphi)    Euler on Fermat’s Last Theorem   December 5, 2012   33 / 33

Más contenido relacionado

La actualidad más candente

Complex Numbers
Complex NumbersComplex Numbers
Complex Numbers
itutor
 
Inverse of functions
Inverse of functionsInverse of functions
Inverse of functions
Leo Crisologo
 
8 - using linear equations to solve word problems
8  - using linear equations to solve word problems8  - using linear equations to solve word problems
8 - using linear equations to solve word problems
Anthony_Maiorano
 
8.1 intro to functions
8.1 intro to functions8.1 intro to functions
8.1 intro to functions
Barbara Knab
 
Fermat's Last Theorem (Final Copy)
Fermat's Last Theorem (Final Copy)Fermat's Last Theorem (Final Copy)
Fermat's Last Theorem (Final Copy)
Yogesh Karunavannan
 

La actualidad más candente (20)

LESSON-LOG-ABOUT-ILLUSTRATION-OF CIRCLE.docx
LESSON-LOG-ABOUT-ILLUSTRATION-OF CIRCLE.docxLESSON-LOG-ABOUT-ILLUSTRATION-OF CIRCLE.docx
LESSON-LOG-ABOUT-ILLUSTRATION-OF CIRCLE.docx
 
Quadratic Equation
Quadratic EquationQuadratic Equation
Quadratic Equation
 
Lesson 2b - scalar multiplication
Lesson 2b - scalar multiplicationLesson 2b - scalar multiplication
Lesson 2b - scalar multiplication
 
number theory
number theorynumber theory
number theory
 
Complex Numbers
Complex NumbersComplex Numbers
Complex Numbers
 
Inverse of functions
Inverse of functionsInverse of functions
Inverse of functions
 
COT - RADICALS.pptx
COT - RADICALS.pptxCOT - RADICALS.pptx
COT - RADICALS.pptx
 
Cartesian product of two sets
Cartesian product of two setsCartesian product of two sets
Cartesian product of two sets
 
8 - using linear equations to solve word problems
8  - using linear equations to solve word problems8  - using linear equations to solve word problems
8 - using linear equations to solve word problems
 
Orthogonal Vector Spaces
Orthogonal Vector Spaces Orthogonal Vector Spaces
Orthogonal Vector Spaces
 
6.2 volume of solid of revolution
6.2  volume of solid of revolution6.2  volume of solid of revolution
6.2 volume of solid of revolution
 
Ppp module 7
Ppp module 7Ppp module 7
Ppp module 7
 
Module 4 geometry of shape and size
Module 4  geometry of shape and sizeModule 4  geometry of shape and size
Module 4 geometry of shape and size
 
Lesson Plan on Basic concept of probability
Lesson Plan on Basic concept of probabilityLesson Plan on Basic concept of probability
Lesson Plan on Basic concept of probability
 
Finite Geometric Series dlp
Finite Geometric Series dlpFinite Geometric Series dlp
Finite Geometric Series dlp
 
Polynomials (Algebra) - Class 10
Polynomials (Algebra) - Class 10 Polynomials (Algebra) - Class 10
Polynomials (Algebra) - Class 10
 
Domain and range of a RELATION
Domain and range of a RELATIONDomain and range of a RELATION
Domain and range of a RELATION
 
8.1 intro to functions
8.1 intro to functions8.1 intro to functions
8.1 intro to functions
 
Multiple integrals
Multiple integralsMultiple integrals
Multiple integrals
 
Fermat's Last Theorem (Final Copy)
Fermat's Last Theorem (Final Copy)Fermat's Last Theorem (Final Copy)
Fermat's Last Theorem (Final Copy)
 

Destacado (7)

EULER AND FERMAT THEOREM
EULER AND FERMAT THEOREMEULER AND FERMAT THEOREM
EULER AND FERMAT THEOREM
 
Mathematician Recognized for Proof of Fermat’s Last Theorem
Mathematician Recognized for Proof of Fermat’s Last TheoremMathematician Recognized for Proof of Fermat’s Last Theorem
Mathematician Recognized for Proof of Fermat’s Last Theorem
 
euler theorm
euler theormeuler theorm
euler theorm
 
euler's theorem
euler's theoremeuler's theorem
euler's theorem
 
Euler formula
Euler formulaEuler formula
Euler formula
 
Ch08
Ch08Ch08
Ch08
 
Famous mathematicians of all time
Famous mathematicians of all timeFamous mathematicians of all time
Famous mathematicians of all time
 

Similar a Euler's work on Fermat's Last Theorem

mit 演算法 Lec2
mit 演算法 Lec2 mit 演算法 Lec2
mit 演算法 Lec2
Henry Chang
 
02 asymptotic-notation-and-recurrences
02 asymptotic-notation-and-recurrences02 asymptotic-notation-and-recurrences
02 asymptotic-notation-and-recurrences
Noushadur Shoukhin
 
8th alg -l4.2--nov29
8th alg -l4.2--nov298th alg -l4.2--nov29
8th alg -l4.2--nov29
jdurst65
 

Similar a Euler's work on Fermat's Last Theorem (8)

Rational points on elliptic curves
Rational points on elliptic curvesRational points on elliptic curves
Rational points on elliptic curves
 
V. Dragovic: Geometrization and Generalization of the Kowalevski top
V. Dragovic: Geometrization and Generalization of the Kowalevski topV. Dragovic: Geometrization and Generalization of the Kowalevski top
V. Dragovic: Geometrization and Generalization of the Kowalevski top
 
Lec3 Algott
Lec3 AlgottLec3 Algott
Lec3 Algott
 
mit 演算法 Lec2
mit 演算法 Lec2 mit 演算法 Lec2
mit 演算法 Lec2
 
02 asymptotic-notation-and-recurrences
02 asymptotic-notation-and-recurrences02 asymptotic-notation-and-recurrences
02 asymptotic-notation-and-recurrences
 
8th alg -l4.2--nov29
8th alg -l4.2--nov298th alg -l4.2--nov29
8th alg -l4.2--nov29
 
International Journal of Engineering and Science Invention (IJESI)
International Journal of Engineering and Science Invention (IJESI)International Journal of Engineering and Science Invention (IJESI)
International Journal of Engineering and Science Invention (IJESI)
 
10.5
10.510.5
10.5
 

Último

1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
QucHHunhnh
 
Salient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functionsSalient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functions
KarakKing
 

Último (20)

Google Gemini An AI Revolution in Education.pptx
Google Gemini An AI Revolution in Education.pptxGoogle Gemini An AI Revolution in Education.pptx
Google Gemini An AI Revolution in Education.pptx
 
Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024
 
Unit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptxUnit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptx
 
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptxHMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
 
Dyslexia AI Workshop for Slideshare.pptx
Dyslexia AI Workshop for Slideshare.pptxDyslexia AI Workshop for Slideshare.pptx
Dyslexia AI Workshop for Slideshare.pptx
 
Towards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptxTowards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptx
 
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
 
Understanding Accommodations and Modifications
Understanding  Accommodations and ModificationsUnderstanding  Accommodations and Modifications
Understanding Accommodations and Modifications
 
SOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning PresentationSOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning Presentation
 
On National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsOn National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan Fellows
 
Sociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning ExhibitSociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning Exhibit
 
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxBasic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
 
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
 
ComPTIA Overview | Comptia Security+ Book SY0-701
ComPTIA Overview | Comptia Security+ Book SY0-701ComPTIA Overview | Comptia Security+ Book SY0-701
ComPTIA Overview | Comptia Security+ Book SY0-701
 
Python Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxPython Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docx
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
 
How to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POSHow to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POS
 
Salient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functionsSalient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functions
 
Graduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - EnglishGraduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - English
 
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdfUGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
 

Euler's work on Fermat's Last Theorem

  • 1. n=2 n=4 n=3 E-272 Euler’s Proof of Fermat’s Last Theorem (for n = 3) Lee Stemkoski Adelphi Univeristy December 5, 2012 Lee Stemkoski (Adelphi) Euler on Fermat’s Last Theorem December 5, 2012 1 / 33
  • 2. n=2 n=4 n=3 E-272 Outline 1 n=2 2 n=4 3 n=3 4 E-272 Lee Stemkoski (Adelphi) Euler on Fermat’s Last Theorem December 5, 2012 2 / 33
  • 3. n=2 n=4 n=3 E-272 Fun Algebra to Check Thoroughly If p is prime and p | ab, then p | a or p | b. (Euclid’s Lemma) If gcd(r, s) = 1 and r · s = tn , then r = un and s = v n . The set S = {x2 + ny 2 | x, y ∈ Z} is closed under multiplication. (a +nb2 )(c2 +nd2 ) = (ac±nbd)2 +n(ad bc)2 2 (Later in this talk, we will consider n = 3.) Lee Stemkoski (Adelphi) Euler on Fermat’s Last Theorem December 5, 2012 3 / 33
  • 4. n=2 n=4 n=3 E-272 A Babylonian Tablet Figure: Plimpton 322 Also see: Euclid, Book X, Lemma 1 - Proposition XXIX Lee Stemkoski (Adelphi) Euler on Fermat’s Last Theorem December 5, 2012 4 / 33
  • 5. n=2 n=4 n=3 E-272 Proving a Pythagorean Parameterization Assume a solution exists: x2 + y 2 = z 2 , with x, y, z ∈ Z+ , relatively prime. Some cases to consider: odd + odd = even ////// +////// = even even/// even////////// even + odd = odd ///// +////// =///// odd/// even//// odd Lee Stemkoski (Adelphi) Euler on Fermat’s Last Theorem December 5, 2012 5 / 33
  • 6. n=2 n=4 n=3 E-272 (odd)2 + (odd)2 = (even)2 This equation is impossible! (2m + 1)2 + (2n + 1)2 = (2p)2 4(m2 + m + n2 + n) + 2 = 4p2 Lee Stemkoski (Adelphi) Euler on Fermat’s Last Theorem December 5, 2012 6 / 33
  • 7. n=2 n=4 n=3 E-272 (even)2 + (odd)2 = (odd)2 x2 + y 2 = z 2 x2 = z 2 − y 2 x2 = (z + y)(z − y) z + y = even = 2p z − y = even = 2q x = 2r, y = p − q, z = p + q p and q: relatively prime, opposite parity Lee Stemkoski (Adelphi) Euler on Fermat’s Last Theorem December 5, 2012 7 / 33
  • 8. n=2 n=4 n=3 E-272 Finishing it up... x2 = (z + y)(z − y) r2 = p · q gcd(p, q) = 1 implies p = a2 and q = b2 Putting it all together: √ x = 2r = 2 pq = 2ab y = p − q = a2 − b 2 z = p + q = a2 + b 2 Lee Stemkoski (Adelphi) Euler on Fermat’s Last Theorem December 5, 2012 8 / 33
  • 9. n=2 n=4 n=3 E-272 The Pythagorean Parameterization Theorem If x2 + y 2 = z 2 , with x, y, z relatively prime, then there exist integers a and b, relatively prime and with opposite parity, such that x = 2ab y = a2 − b2 z = a2 + b2 Lee Stemkoski (Adelphi) Euler on Fermat’s Last Theorem December 5, 2012 9 / 33
  • 10. n=2 n=4 n=3 E-272 Fermat Figure: Pierre de Fermat, 1601-1665 Lee Stemkoski (Adelphi) Euler on Fermat’s Last Theorem December 5, 2012 10 / 33
  • 11. n=2 n=4 n=3 E-272 Method of Infinite Descent Prove: if P (x) is true, then there exists y < x with P (y) true, where x, y ∈ Z+ . Obtain an infinite sequence of strictly decreasing positive integers. Contradicts the Well Ordering Principle: S ⊆ Z+ has a smallest element. Conclude: initial assumption is false. Useful for showing solutions do not exist. Fermat’s account of this method: “Relation des nouvelles d´couvertes en la science des nombres” e letter to Pierre de Carcavi, 1659. Lee Stemkoski (Adelphi) Euler on Fermat’s Last Theorem December 5, 2012 11 / 33
  • 12. n=2 n=4 n=3 E-272 Wanted: Larger Margins Fermat’s annotation of Bachet’s translation of Diophantus’ Arithmetica Lee Stemkoski (Adelphi) Euler on Fermat’s Last Theorem December 5, 2012 12 / 33
  • 13. n=2 n=4 n=3 E-272 A proof Assume a solution exists: x4 + y 4 = z 4 , with x, y, z ∈ Z+ , relatively prime. Let X = x2 , Y = y 2 , Z = z 2 , then: X2 + Y 2 = Z2 X = 2ab, Y = a2 − b2 , Z = a2 + b2 a and b: relatively prime, opposite parity Lee Stemkoski (Adelphi) Euler on Fermat’s Last Theorem December 5, 2012 13 / 33
  • 14. n=2 n=4 n=3 E-272 The descent Y = a2 − b2 implies b2 + y 2 = a2 b = 2cd, y = c2 − d2 , a = c2 + d2 c and d: relatively prime, opposite parity X = 2ab implies x2 = 4cd(c2 + d2 ) cd and (c2 + d2 ): relatively prime cd = e2 and c2 + d2 = f 2 and c = g 2 , d = h2 ... let the descent begin... Lee Stemkoski (Adelphi) Euler on Fermat’s Last Theorem December 5, 2012 14 / 33
  • 15. n=2 n=4 n=3 E-272 Recap Assume there are positive integers such that X 2 + Y 2 = Z 2 , where X = x2 and Y = y 2 Obtain positive integers such that c2 + d2 = f 2 , where c = g 2 and d = h2 f is strictly smaller than Z We obtain an infinite sequence of strictly decreasing positive integers, which is impossible; the original assumption was false. Lee Stemkoski (Adelphi) Euler on Fermat’s Last Theorem December 5, 2012 15 / 33
  • 16. n=2 n=4 n=3 E-272 Euler Figure: Leonhard Euler, 1707-1783 Lee Stemkoski (Adelphi) Euler on Fermat’s Last Theorem December 5, 2012 16 / 33
  • 17. n=2 n=4 n=3 E-272 Correspondence with Goldbach 196 letters from 1729 to 1764 Goldbach motivates Euler to examine Fermat’s work 1748 - Euler first mentions Fermat’s Last Theorem 1753 - Euler announces proof for n = 3 Lee Stemkoski (Adelphi) Euler on Fermat’s Last Theorem December 5, 2012 17 / 33
  • 18. n=2 n=4 n=3 E-272 Euler to Goldbach, 13 February 1748 Lee Stemkoski (Adelphi) Euler on Fermat’s Last Theorem December 5, 2012 18 / 33
  • 19. n=2 n=4 n=3 E-272 Euler to Goldbach, 04 August 1753 Lee Stemkoski (Adelphi) Euler on Fermat’s Last Theorem December 5, 2012 19 / 33
  • 20. n=2 n=4 n=3 E-272 Euler’s Algebra (1770) Assume a solution exists: x3 + y 3 = z 3 , with x, y, z ∈ Z+ , relatively prime. Exactly one of these three numbers are even. Case 1: x, y are odd and z is even. Case 2: y, z are odd and x is even. Proof of Case 1. Assume that x > y. x + y = even = 2p and x − y = even = 2q x = p + q and y = p − q p and q: positive, relatively prime, opposite parity Lee Stemkoski (Adelphi) Euler on Fermat’s Last Theorem December 5, 2012 20 / 33
  • 21. n=2 n=4 n=3 E-272 The proof continues z 3 = x3 + y 3 = (p + q)3 + (p − q)3 = 2p3 + 6pq = 2p(p2 + 3q 2 ) Note: p2 + 3q 2 is odd. If g = gcd(2p, p2 + 3q 2 ) > 1 then g is odd; g | p, so g | 3q 2 ; since g q, we have g = 3. Therefore, gcd(2p, p2 + 3q 2 ) = 1 or 3. (Two subcases to consider.) Lee Stemkoski (Adelphi) Euler on Fermat’s Last Theorem December 5, 2012 21 / 33
  • 22. n=2 n=4 n=3 E-272 gcd(2p, p2 + 3q 2) = 1 2p(p2 + 3q 2 ) = z 3 By earlier fact: 2p = u3 and (p2 + 3q 2 ) = v 3 . Know: v ∈ S → v 3 ∈ S. Also: v 3 ∈ S → v ∈ S p2 + 3q 2 = v 3 = (a2 + 3b2 )3 Since gcd(p, q) = 1, we have: p = a3 − 9ab2 , q = 3a2 b − 3b3 , gcd(a, b) = 1. 2p = 2a(a + 3b)(a − 3b) = u3 Lee Stemkoski (Adelphi) Euler on Fermat’s Last Theorem December 5, 2012 22 / 33
  • 23. n=2 n=4 n=3 E-272 A descent appears! 2p = 2a(a + 3b)(a − 3b) = u3 2a, (a + 3b), (a − 3b) are relatively prime, so: 2a = α3 , (a + 3b) = β 3 , (a − 3b) = γ 3 α3 = β 3 + γ 3 Move terms if necessary so all terms are positive. α, β, γ < z, since α3 β 3 γ 3 = 2p < 2p(p2 + 3q 2 ) = z 3 ...a smaller positive solution to FLT, n = 3. Lee Stemkoski (Adelphi) Euler on Fermat’s Last Theorem December 5, 2012 23 / 33
  • 24. n=2 n=4 n=3 E-272 Excerpt #1, Euler’s Algebra Lee Stemkoski (Adelphi) Euler on Fermat’s Last Theorem December 5, 2012 24 / 33
  • 25. n=2 n=4 n=3 E-272 Excerpt #2, Euler’s Algebra Lee Stemkoski (Adelphi) Euler on Fermat’s Last Theorem December 5, 2012 25 / 33
  • 26. n=2 n=4 n=3 E-272 Commentarii... Euler proved FLT(3) in 1770. Euler proved FLT(3) in 1770, but key steps were unjustified. Euler proved FLT(3) in 1770, but key steps were justified in 1759/1763 (E-272). The results of E-272 are insufficient to prove FLT(3). Euler had a proof of FLT(3) by 1753, but waited to publish a more polished version. Lee Stemkoski (Adelphi) Euler on Fermat’s Last Theorem December 5, 2012 26 / 33
  • 27. n=2 n=4 n=3 E-272 Red Flags Revisited Need to fully justify: 1 If p2 + 3q 2 = v 3 (also gcd(p, q) = 1, and v 3 is odd) then v = a2 + 3b2 . 2 In this situation, p2 + 3q 2 = (a2 + 3b2 )3 ⇒ p = a3 − 9ab2 ⇒ q = 3a2 b − 3b2 Lee Stemkoski (Adelphi) Euler on Fermat’s Last Theorem December 5, 2012 27 / 33
  • 28. n=2 n=4 n=3 E-272 The missing link? E272: Supplementum quorundam theorematum arithmeticorum... (1759/1763) Proves properties of numbers of the form x2 + 3y 2 . Quick tour: 1 If gcd(a, b) = m, then m2 |(a2 + 3b2 ) 2 2 2 If 3|(a2 + 3b2 ), then a +3b = n2 + 3m2 . 3 2 2 3 If 4|(a2 + 3b2 ), then a +3b = n2 + 3m2 . 4 4 If P = p + 3q is prime and P |(a2 + 3b2 ), 2 2 2 2 then a +3b = n2 + 3m2 . P Corollary: a = 3mq ± np and b = mp ± nq Lee Stemkoski (Adelphi) Euler on Fermat’s Last Theorem December 5, 2012 28 / 33
  • 29. n=2 n=4 n=3 E-272 5 If Pi = (pi )2 + 3(qi )2 is prime and 2 2 Pi |(a2 + 3b2 ), then a 1+3bk = n2 + 3m2 . P ...P 6 If A = p2 + 3q 2 is prime and A|(a2 + 3b2 ), then there exists a similar B < A. 7 All odd prime factors of a2 + 3b2 , when gcd(a, b) = 1, have the form p2 + 3q 2 . 8 Primes of the form p2 + 3q 2 (except 3) have the form 6n + 1. 9 Primes of the form 6n + 1 have the form p2 + 3q 2 . Lee Stemkoski (Adelphi) Euler on Fermat’s Last Theorem December 5, 2012 29 / 33
  • 30. n=2 n=4 n=3 E-272 Red Flag # 1 “If p2 + 3q 2 = v 3 (also gcd(p, q) = 1, and v 3 is odd) then v = a2 + 3b2 .” Fully justified by Euler’s Proposition 7. Lee Stemkoski (Adelphi) Euler on Fermat’s Last Theorem December 5, 2012 30 / 33
  • 31. n=2 n=4 n=3 E-272 Red Flag # 2 “In this situation, p2 + 3q 2 = (v)3 = (a2 + 3b2 )3 ⇒ p = a3 − 9ab2 and q = 3a2 b − 3b2 ” Can be addressed by Cor. to Euler’s Prop. 4: Applied to a prime a2 + 3b2 , yields uniqueness of representation. (p2 + 3q 2 )(12 + 3 · 02 ) = (a2 + 3b2 ) a = 3 · 0 · q ± 1 · p and b = 0 · p ± 1 · q Lee Stemkoski (Adelphi) Euler on Fermat’s Last Theorem December 5, 2012 31 / 33
  • 32. n=2 n=4 n=3 E-272 “In this situation, p2 + 3q 2 = (v)3 = (a2 + 3b2 )3 ⇒ p = a3 − 9ab2 and q = 3a2 b − 3b2 ” Repeat for each prime power factor of v; only one of the two methods of composition will preserve gcd(a, b) = 1. Combine prime power factors; many representations of v. Must use the same representation to calculating v 3 to preserve gcd(p, q) = 1. Lee Stemkoski (Adelphi) Euler on Fermat’s Last Theorem December 5, 2012 32 / 33
  • 33. n=2 n=4 n=3 E-272 Did Euler consider this? Similar work on sums of two squares Unusual for Euler to not publish refutation of FLT for n = 3? E-255, x3 + y 3 = z 3 + v 3 (pres. 1754) (one year after letter to Goldbach) E-256, x2 + cy 2 conjectures (pres. 1753/4) 1755 letter to Goldbach: convinced Fermat was correct, searching for FLT n = 5 proof E-272, x2 + 3y 2 (pres. 1759) Lee Stemkoski (Adelphi) Euler on Fermat’s Last Theorem December 5, 2012 33 / 33