SlideShare una empresa de Scribd logo
Determination of Thermodynamic Parameters of Borax
Objective: The relationship between Ksp, Gibb's Free Energy, Enthalpy and Entropy will be
explored by using titration to quantify the solubility of Borax at two different temperatures.
In this laboratory exercise, we will measure the
three chemically important thermodynamic
parameters,
Δ Go , Δ Ho and Δ So for the dissolution of Borax
into Borate ion in water:
Na2B4O5(OH)4•8H2O(s) → 2 Na+(aq) + B4O5(OH)42-(aq) + 8 H2O(l)
(Borax) (Borate)
Historically, thermodynamics comes to us from
studies by physicists concerning the efficiency of
steam engines. These physicists soon discovered
a dissymmetry exists in nature; Work can be
converted with 100% efficiency into heat, but the
reverse is not true. This observation led to the
definition of the Entropy and a Second Law of
Thermodynamics:
Natural processes are accompanied by an increase in the Entropy of the universe.
The application of the Laws of Thermodynamics to chemical reactions did not occur
quickly. Lavoisier studied Heat output during respiration in the late eighteenth
century, but it was not until 1852 before systematic studies of Heats of Reaction
(ΔH) were carried out by Julius Thomsen and Macellin Berthelot. They initially thought
“chemical forces” were driven by the magnitude of the heat output of the chemical
reaction.
However, it was soon realized this could not account for endothermic reactions.
Another driving force for these reactions had to be found and it was soon identified
as the entropy change for a reaction. A fully consistent treatment of the
thermodynamics of chemical equilibria was finally provided by the physicist Josiah
Willard Gibbs in a paper entitled On the Equilibrium of Heterogeneous Systems
published in 1876-1878.
In our experiment, we will measure the Equilibrium Constant for our solvation reaction:
Ksp = [Na+]2 [borate] (Eq. 1)
which will allow us to determine the Std. Gibb’s Free Energy change for the reaction:
Δ Go = -RT ln(Ksp) (Eq. 2)
It is the Gibb’s Free Energy change which, besides telling us the maximum Work which
can be obtained from the process, tells us how the driving forces of Entropy and
Enthalpy are balanced for the reaction.
Δ Go = Δ Ho - T Δ So (Eq. 3)
If the Equilibrium Constant (Ksp) is determined at two different temperatures, T1 and T2,
we can apply van't Hoff' s formulation for the dependence of the equilibrium constant
K on temperature and determine the Std. Enthalpy change for this reaction as well:
ln (Ksp2 / Ksp1) = – (Δ Ho / R) x (1/T2 - 1/T1) (Eq. 4)
This formulation assumes Δ Ho is temperature independent; a good assumption
provided the temperature difference is not too great in our experiment.
Thus, by measuring the Ksp for this reaction at two different temperatures, we can
determine Δ Ho from (Eq. 4), Δ Go at each temperature from (Eq. 2) and Δ So at
each temperature from (Eq. 3).
All we need now is a method of measuring the amount of borate ion (B4O5(OH)42-) and
sodium ion (Na2+) concentrations in the equilibrium solution.
We will take advantage of the basic nature of the borate ion and titrate it with a
standard hydrochloric acid solution:
B4O5(OH)42-(aq) + 2 HCl(aq) + 3 H2O → 4 H3BO3(aq) + 2 Cl-(aq)
By taking an aliquot of the saturated Borax solution and titrating it with standardized
HCl, we can determine the concentration of the borate ion, [borate], needed to
calculate Ksp. The concentration of the sodium ion is then determined via the
reaction stoichiometry:
[Na+] = 2 [borate] (Eq. 5)
Borax, or Sodium Tetraborate Decahydrate, is an example of a class of compounds
named Borates, which contain polyanions composed of trigonal BO3 and/or BO4
units linked by bridging oxygen atoms to form chain or ring structures. The tetraborate
anion illustrates these features:
Borax occurs naturally in dry lake beds in the Southwest and California. These beds
have long been important sources of this valuable mineral. An early use of Borax was
in soap and other cleaning products. These products continue to be used today.
Borax is also used as a flux for solder, in the manufacture of glass, and as a
preservative.
Procedure
Very important: Begin the preparation of the solutions at the beginning of class, before
lecture or problem solving because the solutions have to stir for about an hour.
Preparation of Sat'd Sodium Borate Solutions
To two separate 500mL Erlenmeyer Flasks add about 20g of Borax and 400mL of distilled
water. Add a magnetic stir bar to each flask. Allow one to stir at Room
Temperature for at least 30 minutes. Place the other in an ice-water bath and
allow to stir for at least 30 minutes.
Once the stirring is complete, and the solution has
been saturated, turn off the magnetic stirrer and
allow the excess Borax to settle. (If there is no excess
Borax solid present, the solution may not be
saturated. Add an additional gram of Borax and stir
for another 30 minutes.) Add a thermometer. The
solution should become clear in a few minutes.
Keep the flasks undisturbed until you are ready to
perform the titrations.
Determination of the Borate Concentration
1. Record the temperature of the room temperature saturated Borax
solution.
2. Without disturbing the solid at the bottom, carefully decant about 60mL of the
solution into a clean and dry beaker. Filter this solution to remove any fine
particles of undissolved borax.
3. Pipet a 10.0 mL aliquot of the filtered solution
into a 125mL Erlenmeyer flask using a 10 mL
volumetric pipet. Add about 20 mL of
deionized water. Add a few drops of
Bromthymol Blue indicator.
4. Using 0.200 M HCl, titrate the aliquot to the
Yellow-Green endpoint.
5. Repeat the titration on two additional
aliquots.
6. Repeat this procedure for the cold
saturated borax solution. Keep the solution
on ice during the filtration.
Data Analysis
1. Determine the molarity of the borate ion at T1 (ice-water) and at T2 (room
temperature).
2. Calculate the Ksp at T1 (ice-water) and at T2 (room temperature).
3. Calculate ΔGo at T1 (ice-water) and at T2 (room temperature)
4. Cal cul ate ΔHo .
5. Calculate Δ So at T1 (ice-water) and at T2 (room temperature).
6. Record your data and results in tables in your laboratory notebook.
Questions to Answer in Your Reflections / Conclusions
1. Is the solvation reaction endothermic or exothermic? Is this reaction
spontaneous? Does this agree with your expectations? Explain any
discrepancies.
2. Identify the boron atoms in the borate ion pictured in
this model. What is the geometry about each Boron atom?
3. What are sources of error in this experiment?
4. Can these thermodynamic quantities be
calculated from a standard thermodynamic
table? If so then compare your results to
literature values.
Preparation Information for Laboratory Assistant
Students will work in pairs. Maximum number of pairs is 16.
45 grams of borax per student pair
(prepare 4 jars approximately 200 grams borax - one per laboratory station)
2 Erlenmeyer Flasks per student pair (32 - 500 mL Erlenmeyer Flasks)
15 Liters of distilled water for entire class
1 dropper bottle per laboratory stations (4 bottles total)
1 - 10 mL volumetric pipet per student pair
4 1L bottles 0.200 M HCl standardized solution
4 boxes student grade filter paper
8 plastic buckets (as shown in photograph) with ice [2 per laboratory station]
1 standard size buret per student pair
1 ring stand with clamp per student pair
1 hot plate with stirring action per student pair (already in room)
2 magnetic stir bars per student pair
1- 500 mL beaker per student pair (already in room)
1 Pasco thermometer (already in room)
3 - 125 mL Erlenmeyer Flasks per student pair (already in room)
16 pipet bulbs and 16 pipet pumps (so students can have a choice)
Note: students will use the PASCO devices to measure temperature but we made
need thermometers if something goes wrong with the computers.

Más contenido relacionado

La actualidad más candente

Solutions and electrochemistry
Solutions and electrochemistrySolutions and electrochemistry
Solutions and electrochemistryFateh Eltaboni
 
Analytical chemistry gravimetric analysis
Analytical chemistry gravimetric analysisAnalytical chemistry gravimetric analysis
Analytical chemistry gravimetric analysisVishal Naik
 
Dc,pulse,ac and square wave polarographic techniques new
Dc,pulse,ac and square wave polarographic techniques newDc,pulse,ac and square wave polarographic techniques new
Dc,pulse,ac and square wave polarographic techniques newBiji Saro
 
Cascade reactions
Cascade reactionsCascade reactions
Cascade reactionsasheq2016
 
Structural determination of alkaloids
Structural determination of alkaloidsStructural determination of alkaloids
Structural determination of alkaloidsDr Duggirala Mahendra
 
To estimate aluminium by back titration using zinc sulphate
To estimate aluminium by back titration using zinc sulphateTo estimate aluminium by back titration using zinc sulphate
To estimate aluminium by back titration using zinc sulphateMithil Fal Desai
 
Molecular orbitals diagrams of [Co(NH3)6]3+
Molecular orbitals diagrams of [Co(NH3)6]3+ Molecular orbitals diagrams of [Co(NH3)6]3+
Molecular orbitals diagrams of [Co(NH3)6]3+ Mithil Fal Desai
 
Molecular orbital diagram of CO and NO
Molecular orbital diagram of CO and NOMolecular orbital diagram of CO and NO
Molecular orbital diagram of CO and NOMithil Fal Desai
 
Solvent system definition of acids and bases
Solvent system definition of acids and basesSolvent system definition of acids and bases
Solvent system definition of acids and basesSourovPaul6
 
Estimate the amount Ni by EDTA
Estimate the amount Ni by EDTAEstimate the amount Ni by EDTA
Estimate the amount Ni by EDTAMithil Fal Desai
 
To estimate the amount of nitrite present in the given sodium nitrite solutio...
To estimate the amount of nitrite present in the given sodium nitrite solutio...To estimate the amount of nitrite present in the given sodium nitrite solutio...
To estimate the amount of nitrite present in the given sodium nitrite solutio...Mithil Fal Desai
 
Flow injection analysis
Flow injection analysisFlow injection analysis
Flow injection analysisMuhammad Zahid
 
M.sc. laboratory manual organic chemistry binary mixture seprations
M.sc. laboratory manual organic chemistry binary mixture seprationsM.sc. laboratory manual organic chemistry binary mixture seprations
M.sc. laboratory manual organic chemistry binary mixture seprationsDrSSreenivasa
 

La actualidad más candente (20)

Solutions and electrochemistry
Solutions and electrochemistrySolutions and electrochemistry
Solutions and electrochemistry
 
Gravimetric analysis
Gravimetric analysisGravimetric analysis
Gravimetric analysis
 
Adsorption isotherm
Adsorption isothermAdsorption isotherm
Adsorption isotherm
 
Carboranes
CarboranesCarboranes
Carboranes
 
ELECTROGRAVIMETRY
ELECTROGRAVIMETRYELECTROGRAVIMETRY
ELECTROGRAVIMETRY
 
voltammetry basics.pptx
voltammetry basics.pptxvoltammetry basics.pptx
voltammetry basics.pptx
 
Polarography[1]
Polarography[1]Polarography[1]
Polarography[1]
 
Analytical chemistry gravimetric analysis
Analytical chemistry gravimetric analysisAnalytical chemistry gravimetric analysis
Analytical chemistry gravimetric analysis
 
Dc,pulse,ac and square wave polarographic techniques new
Dc,pulse,ac and square wave polarographic techniques newDc,pulse,ac and square wave polarographic techniques new
Dc,pulse,ac and square wave polarographic techniques new
 
Cascade reactions
Cascade reactionsCascade reactions
Cascade reactions
 
Structural determination of alkaloids
Structural determination of alkaloidsStructural determination of alkaloids
Structural determination of alkaloids
 
To estimate aluminium by back titration using zinc sulphate
To estimate aluminium by back titration using zinc sulphateTo estimate aluminium by back titration using zinc sulphate
To estimate aluminium by back titration using zinc sulphate
 
Molecular orbitals diagrams of [Co(NH3)6]3+
Molecular orbitals diagrams of [Co(NH3)6]3+ Molecular orbitals diagrams of [Co(NH3)6]3+
Molecular orbitals diagrams of [Co(NH3)6]3+
 
Redox titration
Redox titration Redox titration
Redox titration
 
Molecular orbital diagram of CO and NO
Molecular orbital diagram of CO and NOMolecular orbital diagram of CO and NO
Molecular orbital diagram of CO and NO
 
Solvent system definition of acids and bases
Solvent system definition of acids and basesSolvent system definition of acids and bases
Solvent system definition of acids and bases
 
Estimate the amount Ni by EDTA
Estimate the amount Ni by EDTAEstimate the amount Ni by EDTA
Estimate the amount Ni by EDTA
 
To estimate the amount of nitrite present in the given sodium nitrite solutio...
To estimate the amount of nitrite present in the given sodium nitrite solutio...To estimate the amount of nitrite present in the given sodium nitrite solutio...
To estimate the amount of nitrite present in the given sodium nitrite solutio...
 
Flow injection analysis
Flow injection analysisFlow injection analysis
Flow injection analysis
 
M.sc. laboratory manual organic chemistry binary mixture seprations
M.sc. laboratory manual organic chemistry binary mixture seprationsM.sc. laboratory manual organic chemistry binary mixture seprations
M.sc. laboratory manual organic chemistry binary mixture seprations
 

Similar a Borax

Arizona State University 1 School of Molecular Sciences .docx
Arizona State University 1 School of Molecular Sciences  .docxArizona State University 1 School of Molecular Sciences  .docx
Arizona State University 1 School of Molecular Sciences .docxjustine1simpson78276
 
LabQuest 18 Chemistry with Vernier 18 - 1 Additi.docx
 LabQuest  18 Chemistry with Vernier 18 - 1 Additi.docx LabQuest  18 Chemistry with Vernier 18 - 1 Additi.docx
LabQuest 18 Chemistry with Vernier 18 - 1 Additi.docxMARRY7
 
Catalyst Education 2020Enthalpy of Dissolution and Neutr
Catalyst Education 2020Enthalpy of Dissolution and NeutrCatalyst Education 2020Enthalpy of Dissolution and Neutr
Catalyst Education 2020Enthalpy of Dissolution and NeutrMaximaSheffield592
 
Chemistry M4 Energetics
Chemistry M4 EnergeticsChemistry M4 Energetics
Chemistry M4 EnergeticseLearningJa
 
14 titration of h2 o2
14 titration of h2 o214 titration of h2 o2
14 titration of h2 o2Student
 
Green Crystal Lab
Green Crystal LabGreen Crystal Lab
Green Crystal LabAshley
 
Chapter 4 Thermochemistry
Chapter 4 ThermochemistryChapter 4 Thermochemistry
Chapter 4 ThermochemistryM BR
 
Chemistry 201 Laboratory- Harold Washington College Reac
Chemistry 201 Laboratory- Harold Washington College ReacChemistry 201 Laboratory- Harold Washington College Reac
Chemistry 201 Laboratory- Harold Washington College ReacJinElias52
 
Chemistry - Chp 12 - Stoichiometry - Notes
Chemistry - Chp 12 - Stoichiometry - NotesChemistry - Chp 12 - Stoichiometry - Notes
Chemistry - Chp 12 - Stoichiometry - NotesMr. Walajtys
 
Another client, Ms. Dunham, has asked you to help her understand h.docx
Another client, Ms. Dunham, has asked you to help her understand h.docxAnother client, Ms. Dunham, has asked you to help her understand h.docx
Another client, Ms. Dunham, has asked you to help her understand h.docxjustine1simpson78276
 
AP Chemistry Chapter 11 Sample Exercises
AP Chemistry Chapter 11 Sample ExercisesAP Chemistry Chapter 11 Sample Exercises
AP Chemistry Chapter 11 Sample ExercisesJane Hamze
 
Chemistry - Chp 12 - Stoichiometry - PowerPoint
Chemistry - Chp 12 - Stoichiometry - PowerPointChemistry - Chp 12 - Stoichiometry - PowerPoint
Chemistry - Chp 12 - Stoichiometry - PowerPointMr. Walajtys
 
Thermochemistry ok1294993378
Thermochemistry   ok1294993378Thermochemistry   ok1294993378
Thermochemistry ok1294993378Navin Joshi
 
5th international olympiad metropolises
5th   international olympiad metropolises5th   international olympiad metropolises
5th international olympiad metropoliseskhivang10
 
Chemistry zimsec chapter 6 chemical energetics
Chemistry zimsec chapter 6 chemical energeticsChemistry zimsec chapter 6 chemical energetics
Chemistry zimsec chapter 6 chemical energeticsalproelearning
 
Ch11 z5e solutions
Ch11 z5e solutionsCh11 z5e solutions
Ch11 z5e solutionsblachman
 
Experiment 1 Calorimetry .docx
                             Experiment 1 Calorimetry  .docx                             Experiment 1 Calorimetry  .docx
Experiment 1 Calorimetry .docxhallettfaustina
 
Chem 105 final review
Chem 105 final reviewChem 105 final review
Chem 105 final reviewJoAnna Brown
 

Similar a Borax (20)

Arizona State University 1 School of Molecular Sciences .docx
Arizona State University 1 School of Molecular Sciences  .docxArizona State University 1 School of Molecular Sciences  .docx
Arizona State University 1 School of Molecular Sciences .docx
 
LabQuest 18 Chemistry with Vernier 18 - 1 Additi.docx
 LabQuest  18 Chemistry with Vernier 18 - 1 Additi.docx LabQuest  18 Chemistry with Vernier 18 - 1 Additi.docx
LabQuest 18 Chemistry with Vernier 18 - 1 Additi.docx
 
Catalyst Education 2020Enthalpy of Dissolution and Neutr
Catalyst Education 2020Enthalpy of Dissolution and NeutrCatalyst Education 2020Enthalpy of Dissolution and Neutr
Catalyst Education 2020Enthalpy of Dissolution and Neutr
 
Chemistry M4 Energetics
Chemistry M4 EnergeticsChemistry M4 Energetics
Chemistry M4 Energetics
 
14 titration of h2 o2
14 titration of h2 o214 titration of h2 o2
14 titration of h2 o2
 
Green Crystal Lab
Green Crystal LabGreen Crystal Lab
Green Crystal Lab
 
Chapter 4 Thermochemistry
Chapter 4 ThermochemistryChapter 4 Thermochemistry
Chapter 4 Thermochemistry
 
Chemistry 201 Laboratory- Harold Washington College Reac
Chemistry 201 Laboratory- Harold Washington College ReacChemistry 201 Laboratory- Harold Washington College Reac
Chemistry 201 Laboratory- Harold Washington College Reac
 
Chemistry - Chp 12 - Stoichiometry - Notes
Chemistry - Chp 12 - Stoichiometry - NotesChemistry - Chp 12 - Stoichiometry - Notes
Chemistry - Chp 12 - Stoichiometry - Notes
 
Another client, Ms. Dunham, has asked you to help her understand h.docx
Another client, Ms. Dunham, has asked you to help her understand h.docxAnother client, Ms. Dunham, has asked you to help her understand h.docx
Another client, Ms. Dunham, has asked you to help her understand h.docx
 
D
DD
D
 
AP Chemistry Chapter 11 Sample Exercises
AP Chemistry Chapter 11 Sample ExercisesAP Chemistry Chapter 11 Sample Exercises
AP Chemistry Chapter 11 Sample Exercises
 
Chemistry - Chp 12 - Stoichiometry - PowerPoint
Chemistry - Chp 12 - Stoichiometry - PowerPointChemistry - Chp 12 - Stoichiometry - PowerPoint
Chemistry - Chp 12 - Stoichiometry - PowerPoint
 
Thermochemistry ok1294993378
Thermochemistry   ok1294993378Thermochemistry   ok1294993378
Thermochemistry ok1294993378
 
5th international olympiad metropolises
5th   international olympiad metropolises5th   international olympiad metropolises
5th international olympiad metropolises
 
Chemistry zimsec chapter 6 chemical energetics
Chemistry zimsec chapter 6 chemical energeticsChemistry zimsec chapter 6 chemical energetics
Chemistry zimsec chapter 6 chemical energetics
 
Ch11 z5e solutions
Ch11 z5e solutionsCh11 z5e solutions
Ch11 z5e solutions
 
Experiment 1 Calorimetry .docx
                             Experiment 1 Calorimetry  .docx                             Experiment 1 Calorimetry  .docx
Experiment 1 Calorimetry .docx
 
Chem 105 final review
Chem 105 final reviewChem 105 final review
Chem 105 final review
 
Stoichiometry 2nd Tri 0910
Stoichiometry 2nd Tri 0910Stoichiometry 2nd Tri 0910
Stoichiometry 2nd Tri 0910
 

Más de Dr Robert Craig PhD

Hofstra Living environment Dr Rob
Hofstra Living environment Dr RobHofstra Living environment Dr Rob
Hofstra Living environment Dr RobDr Robert Craig PhD
 
Chapter 2-Your text book ves 5.pptx
Chapter 2-Your text book ves 5.pptxChapter 2-Your text book ves 5.pptx
Chapter 2-Your text book ves 5.pptxDr Robert Craig PhD
 
Brown dwarfs and planets jaslyn.pdf
Brown dwarfs and planets jaslyn.pdfBrown dwarfs and planets jaslyn.pdf
Brown dwarfs and planets jaslyn.pdfDr Robert Craig PhD
 
Day 1 Martin file from syllabus ves 5.pptx
Day 1 Martin file from syllabus ves 5.pptxDay 1 Martin file from syllabus ves 5.pptx
Day 1 Martin file from syllabus ves 5.pptxDr Robert Craig PhD
 
Astronomy chapter 1 power point.pptx
Astronomy chapter 1 power point.pptxAstronomy chapter 1 power point.pptx
Astronomy chapter 1 power point.pptxDr Robert Craig PhD
 
5Page43 how to classify stars parkslope heard from Annie.pdf
5Page43 how to classify stars parkslope  heard from Annie.pdf5Page43 how to classify stars parkslope  heard from Annie.pdf
5Page43 how to classify stars parkslope heard from Annie.pdfDr Robert Craig PhD
 
1-D Kinematics AP Lab Graphing.docx
1-D Kinematics AP Lab Graphing.docx1-D Kinematics AP Lab Graphing.docx
1-D Kinematics AP Lab Graphing.docxDr Robert Craig PhD
 
03 - Average Rates of Changec Cameron 1 Sara Hill.pdf
03 - Average Rates of Changec Cameron 1 Sara Hill.pdf03 - Average Rates of Changec Cameron 1 Sara Hill.pdf
03 - Average Rates of Changec Cameron 1 Sara Hill.pdfDr Robert Craig PhD
 
5.4- Measuring the Earth with Eratosthenes. Ves 2.pdf
5.4- Measuring the Earth with Eratosthenes. Ves 2.pdf5.4- Measuring the Earth with Eratosthenes. Ves 2.pdf
5.4- Measuring the Earth with Eratosthenes. Ves 2.pdfDr Robert Craig PhD
 
chapter 2 redone parkslope ves 4.pdf
chapter 2 redone parkslope ves 4.pdfchapter 2 redone parkslope ves 4.pdf
chapter 2 redone parkslope ves 4.pdfDr Robert Craig PhD
 
season_path_of_the_sun_and_latitude.pdf
season_path_of_the_sun_and_latitude.pdfseason_path_of_the_sun_and_latitude.pdf
season_path_of_the_sun_and_latitude.pdfDr Robert Craig PhD
 

Más de Dr Robert Craig PhD (20)

Hofstra Living environment Dr Rob
Hofstra Living environment Dr RobHofstra Living environment Dr Rob
Hofstra Living environment Dr Rob
 
pdf (4) 4.pdf
pdf (4) 4.pdfpdf (4) 4.pdf
pdf (4) 4.pdf
 
Mastering_Assignments.pdf.pdf
Mastering_Assignments.pdf.pdfMastering_Assignments.pdf.pdf
Mastering_Assignments.pdf.pdf
 
Lecture3.pdf
Lecture3.pdfLecture3.pdf
Lecture3.pdf
 
Lecture2.pdf
Lecture2.pdfLecture2.pdf
Lecture2.pdf
 
Lecture0.pdf
Lecture0.pdfLecture0.pdf
Lecture0.pdf
 
lecture 11 of 12 ves 1.pptx
lecture 11 of 12 ves 1.pptxlecture 11 of 12 ves 1.pptx
lecture 11 of 12 ves 1.pptx
 
Chapter 2-Your text book ves 5.pptx
Chapter 2-Your text book ves 5.pptxChapter 2-Your text book ves 5.pptx
Chapter 2-Your text book ves 5.pptx
 
Brown dwarfs and planets jaslyn.pdf
Brown dwarfs and planets jaslyn.pdfBrown dwarfs and planets jaslyn.pdf
Brown dwarfs and planets jaslyn.pdf
 
Day 1 Martin file from syllabus ves 5.pptx
Day 1 Martin file from syllabus ves 5.pptxDay 1 Martin file from syllabus ves 5.pptx
Day 1 Martin file from syllabus ves 5.pptx
 
Astronomy chapter 1 power point.pptx
Astronomy chapter 1 power point.pptxAstronomy chapter 1 power point.pptx
Astronomy chapter 1 power point.pptx
 
5Page43 how to classify stars parkslope heard from Annie.pdf
5Page43 how to classify stars parkslope  heard from Annie.pdf5Page43 how to classify stars parkslope  heard from Annie.pdf
5Page43 how to classify stars parkslope heard from Annie.pdf
 
1-D Kinematics AP Lab Graphing.docx
1-D Kinematics AP Lab Graphing.docx1-D Kinematics AP Lab Graphing.docx
1-D Kinematics AP Lab Graphing.docx
 
03 - Average Rates of Changec Cameron 1 Sara Hill.pdf
03 - Average Rates of Changec Cameron 1 Sara Hill.pdf03 - Average Rates of Changec Cameron 1 Sara Hill.pdf
03 - Average Rates of Changec Cameron 1 Sara Hill.pdf
 
5.4- Measuring the Earth with Eratosthenes. Ves 2.pdf
5.4- Measuring the Earth with Eratosthenes. Ves 2.pdf5.4- Measuring the Earth with Eratosthenes. Ves 2.pdf
5.4- Measuring the Earth with Eratosthenes. Ves 2.pdf
 
4.6- The Wanderers ves 7.pptx
4.6- The Wanderers ves 7.pptx4.6- The Wanderers ves 7.pptx
4.6- The Wanderers ves 7.pptx
 
Physics chapter 1.docx
Physics chapter 1.docxPhysics chapter 1.docx
Physics chapter 1.docx
 
chapter 2 redone parkslope ves 4.pdf
chapter 2 redone parkslope ves 4.pdfchapter 2 redone parkslope ves 4.pdf
chapter 2 redone parkslope ves 4.pdf
 
4.6- The Wanderers ves 7.pptx
4.6- The Wanderers ves 7.pptx4.6- The Wanderers ves 7.pptx
4.6- The Wanderers ves 7.pptx
 
season_path_of_the_sun_and_latitude.pdf
season_path_of_the_sun_and_latitude.pdfseason_path_of_the_sun_and_latitude.pdf
season_path_of_the_sun_and_latitude.pdf
 

Último

Optimizing NoSQL Performance Through Observability
Optimizing NoSQL Performance Through ObservabilityOptimizing NoSQL Performance Through Observability
Optimizing NoSQL Performance Through ObservabilityScyllaDB
 
Powerful Start- the Key to Project Success, Barbara Laskowska
Powerful Start- the Key to Project Success, Barbara LaskowskaPowerful Start- the Key to Project Success, Barbara Laskowska
Powerful Start- the Key to Project Success, Barbara LaskowskaCzechDreamin
 
Free and Effective: Making Flows Publicly Accessible, Yumi Ibrahimzade
Free and Effective: Making Flows Publicly Accessible, Yumi IbrahimzadeFree and Effective: Making Flows Publicly Accessible, Yumi Ibrahimzade
Free and Effective: Making Flows Publicly Accessible, Yumi IbrahimzadeCzechDreamin
 
WSO2CONMay2024OpenSourceConferenceDebrief.pptx
WSO2CONMay2024OpenSourceConferenceDebrief.pptxWSO2CONMay2024OpenSourceConferenceDebrief.pptx
WSO2CONMay2024OpenSourceConferenceDebrief.pptxJennifer Lim
 
Behind the Scenes From the Manager's Chair: Decoding the Secrets of Successfu...
Behind the Scenes From the Manager's Chair: Decoding the Secrets of Successfu...Behind the Scenes From the Manager's Chair: Decoding the Secrets of Successfu...
Behind the Scenes From the Manager's Chair: Decoding the Secrets of Successfu...CzechDreamin
 
Salesforce Adoption – Metrics, Methods, and Motivation, Antone Kom
Salesforce Adoption – Metrics, Methods, and Motivation, Antone KomSalesforce Adoption – Metrics, Methods, and Motivation, Antone Kom
Salesforce Adoption – Metrics, Methods, and Motivation, Antone KomCzechDreamin
 
The Value of Certifying Products for FDO _ Paul at FIDO Alliance.pdf
The Value of Certifying Products for FDO _ Paul at FIDO Alliance.pdfThe Value of Certifying Products for FDO _ Paul at FIDO Alliance.pdf
The Value of Certifying Products for FDO _ Paul at FIDO Alliance.pdfFIDO Alliance
 
Buy Epson EcoTank L3210 Colour Printer Online.pptx
Buy Epson EcoTank L3210 Colour Printer Online.pptxBuy Epson EcoTank L3210 Colour Printer Online.pptx
Buy Epson EcoTank L3210 Colour Printer Online.pptxEasyPrinterHelp
 
IoT Analytics Company Presentation May 2024
IoT Analytics Company Presentation May 2024IoT Analytics Company Presentation May 2024
IoT Analytics Company Presentation May 2024IoTAnalytics
 
Choosing the Right FDO Deployment Model for Your Application _ Geoffrey at In...
Choosing the Right FDO Deployment Model for Your Application _ Geoffrey at In...Choosing the Right FDO Deployment Model for Your Application _ Geoffrey at In...
Choosing the Right FDO Deployment Model for Your Application _ Geoffrey at In...FIDO Alliance
 
UiPath Test Automation using UiPath Test Suite series, part 1
UiPath Test Automation using UiPath Test Suite series, part 1UiPath Test Automation using UiPath Test Suite series, part 1
UiPath Test Automation using UiPath Test Suite series, part 1DianaGray10
 
The Metaverse: Are We There Yet?
The  Metaverse:    Are   We  There  Yet?The  Metaverse:    Are   We  There  Yet?
The Metaverse: Are We There Yet?Mark Billinghurst
 
Custom Approval Process: A New Perspective, Pavel Hrbacek & Anindya Halder
Custom Approval Process: A New Perspective, Pavel Hrbacek & Anindya HalderCustom Approval Process: A New Perspective, Pavel Hrbacek & Anindya Halder
Custom Approval Process: A New Perspective, Pavel Hrbacek & Anindya HalderCzechDreamin
 
Introduction to FDO and How It works Applications _ Richard at FIDO Alliance.pdf
Introduction to FDO and How It works Applications _ Richard at FIDO Alliance.pdfIntroduction to FDO and How It works Applications _ Richard at FIDO Alliance.pdf
Introduction to FDO and How It works Applications _ Richard at FIDO Alliance.pdfFIDO Alliance
 
PLAI - Acceleration Program for Generative A.I. Startups
PLAI - Acceleration Program for Generative A.I. StartupsPLAI - Acceleration Program for Generative A.I. Startups
PLAI - Acceleration Program for Generative A.I. StartupsStefano
 
Connecting the Dots in Product Design at KAYAK
Connecting the Dots in Product Design at KAYAKConnecting the Dots in Product Design at KAYAK
Connecting the Dots in Product Design at KAYAKUXDXConf
 
Linux Foundation Edge _ Overview of FDO Software Components _ Randy at Intel.pdf
Linux Foundation Edge _ Overview of FDO Software Components _ Randy at Intel.pdfLinux Foundation Edge _ Overview of FDO Software Components _ Randy at Intel.pdf
Linux Foundation Edge _ Overview of FDO Software Components _ Randy at Intel.pdfFIDO Alliance
 
Top 10 Symfony Development Companies 2024
Top 10 Symfony Development Companies 2024Top 10 Symfony Development Companies 2024
Top 10 Symfony Development Companies 2024TopCSSGallery
 
Extensible Python: Robustness through Addition - PyCon 2024
Extensible Python: Robustness through Addition - PyCon 2024Extensible Python: Robustness through Addition - PyCon 2024
Extensible Python: Robustness through Addition - PyCon 2024Patrick Viafore
 
Unpacking Value Delivery - Agile Oxford Meetup - May 2024.pptx
Unpacking Value Delivery - Agile Oxford Meetup - May 2024.pptxUnpacking Value Delivery - Agile Oxford Meetup - May 2024.pptx
Unpacking Value Delivery - Agile Oxford Meetup - May 2024.pptxDavid Michel
 

Último (20)

Optimizing NoSQL Performance Through Observability
Optimizing NoSQL Performance Through ObservabilityOptimizing NoSQL Performance Through Observability
Optimizing NoSQL Performance Through Observability
 
Powerful Start- the Key to Project Success, Barbara Laskowska
Powerful Start- the Key to Project Success, Barbara LaskowskaPowerful Start- the Key to Project Success, Barbara Laskowska
Powerful Start- the Key to Project Success, Barbara Laskowska
 
Free and Effective: Making Flows Publicly Accessible, Yumi Ibrahimzade
Free and Effective: Making Flows Publicly Accessible, Yumi IbrahimzadeFree and Effective: Making Flows Publicly Accessible, Yumi Ibrahimzade
Free and Effective: Making Flows Publicly Accessible, Yumi Ibrahimzade
 
WSO2CONMay2024OpenSourceConferenceDebrief.pptx
WSO2CONMay2024OpenSourceConferenceDebrief.pptxWSO2CONMay2024OpenSourceConferenceDebrief.pptx
WSO2CONMay2024OpenSourceConferenceDebrief.pptx
 
Behind the Scenes From the Manager's Chair: Decoding the Secrets of Successfu...
Behind the Scenes From the Manager's Chair: Decoding the Secrets of Successfu...Behind the Scenes From the Manager's Chair: Decoding the Secrets of Successfu...
Behind the Scenes From the Manager's Chair: Decoding the Secrets of Successfu...
 
Salesforce Adoption – Metrics, Methods, and Motivation, Antone Kom
Salesforce Adoption – Metrics, Methods, and Motivation, Antone KomSalesforce Adoption – Metrics, Methods, and Motivation, Antone Kom
Salesforce Adoption – Metrics, Methods, and Motivation, Antone Kom
 
The Value of Certifying Products for FDO _ Paul at FIDO Alliance.pdf
The Value of Certifying Products for FDO _ Paul at FIDO Alliance.pdfThe Value of Certifying Products for FDO _ Paul at FIDO Alliance.pdf
The Value of Certifying Products for FDO _ Paul at FIDO Alliance.pdf
 
Buy Epson EcoTank L3210 Colour Printer Online.pptx
Buy Epson EcoTank L3210 Colour Printer Online.pptxBuy Epson EcoTank L3210 Colour Printer Online.pptx
Buy Epson EcoTank L3210 Colour Printer Online.pptx
 
IoT Analytics Company Presentation May 2024
IoT Analytics Company Presentation May 2024IoT Analytics Company Presentation May 2024
IoT Analytics Company Presentation May 2024
 
Choosing the Right FDO Deployment Model for Your Application _ Geoffrey at In...
Choosing the Right FDO Deployment Model for Your Application _ Geoffrey at In...Choosing the Right FDO Deployment Model for Your Application _ Geoffrey at In...
Choosing the Right FDO Deployment Model for Your Application _ Geoffrey at In...
 
UiPath Test Automation using UiPath Test Suite series, part 1
UiPath Test Automation using UiPath Test Suite series, part 1UiPath Test Automation using UiPath Test Suite series, part 1
UiPath Test Automation using UiPath Test Suite series, part 1
 
The Metaverse: Are We There Yet?
The  Metaverse:    Are   We  There  Yet?The  Metaverse:    Are   We  There  Yet?
The Metaverse: Are We There Yet?
 
Custom Approval Process: A New Perspective, Pavel Hrbacek & Anindya Halder
Custom Approval Process: A New Perspective, Pavel Hrbacek & Anindya HalderCustom Approval Process: A New Perspective, Pavel Hrbacek & Anindya Halder
Custom Approval Process: A New Perspective, Pavel Hrbacek & Anindya Halder
 
Introduction to FDO and How It works Applications _ Richard at FIDO Alliance.pdf
Introduction to FDO and How It works Applications _ Richard at FIDO Alliance.pdfIntroduction to FDO and How It works Applications _ Richard at FIDO Alliance.pdf
Introduction to FDO and How It works Applications _ Richard at FIDO Alliance.pdf
 
PLAI - Acceleration Program for Generative A.I. Startups
PLAI - Acceleration Program for Generative A.I. StartupsPLAI - Acceleration Program for Generative A.I. Startups
PLAI - Acceleration Program for Generative A.I. Startups
 
Connecting the Dots in Product Design at KAYAK
Connecting the Dots in Product Design at KAYAKConnecting the Dots in Product Design at KAYAK
Connecting the Dots in Product Design at KAYAK
 
Linux Foundation Edge _ Overview of FDO Software Components _ Randy at Intel.pdf
Linux Foundation Edge _ Overview of FDO Software Components _ Randy at Intel.pdfLinux Foundation Edge _ Overview of FDO Software Components _ Randy at Intel.pdf
Linux Foundation Edge _ Overview of FDO Software Components _ Randy at Intel.pdf
 
Top 10 Symfony Development Companies 2024
Top 10 Symfony Development Companies 2024Top 10 Symfony Development Companies 2024
Top 10 Symfony Development Companies 2024
 
Extensible Python: Robustness through Addition - PyCon 2024
Extensible Python: Robustness through Addition - PyCon 2024Extensible Python: Robustness through Addition - PyCon 2024
Extensible Python: Robustness through Addition - PyCon 2024
 
Unpacking Value Delivery - Agile Oxford Meetup - May 2024.pptx
Unpacking Value Delivery - Agile Oxford Meetup - May 2024.pptxUnpacking Value Delivery - Agile Oxford Meetup - May 2024.pptx
Unpacking Value Delivery - Agile Oxford Meetup - May 2024.pptx
 

Borax

  • 1. Determination of Thermodynamic Parameters of Borax Objective: The relationship between Ksp, Gibb's Free Energy, Enthalpy and Entropy will be explored by using titration to quantify the solubility of Borax at two different temperatures. In this laboratory exercise, we will measure the three chemically important thermodynamic parameters, Δ Go , Δ Ho and Δ So for the dissolution of Borax into Borate ion in water: Na2B4O5(OH)4•8H2O(s) → 2 Na+(aq) + B4O5(OH)42-(aq) + 8 H2O(l) (Borax) (Borate) Historically, thermodynamics comes to us from studies by physicists concerning the efficiency of steam engines. These physicists soon discovered a dissymmetry exists in nature; Work can be converted with 100% efficiency into heat, but the reverse is not true. This observation led to the definition of the Entropy and a Second Law of Thermodynamics: Natural processes are accompanied by an increase in the Entropy of the universe. The application of the Laws of Thermodynamics to chemical reactions did not occur quickly. Lavoisier studied Heat output during respiration in the late eighteenth century, but it was not until 1852 before systematic studies of Heats of Reaction (ΔH) were carried out by Julius Thomsen and Macellin Berthelot. They initially thought “chemical forces” were driven by the magnitude of the heat output of the chemical reaction. However, it was soon realized this could not account for endothermic reactions. Another driving force for these reactions had to be found and it was soon identified as the entropy change for a reaction. A fully consistent treatment of the thermodynamics of chemical equilibria was finally provided by the physicist Josiah Willard Gibbs in a paper entitled On the Equilibrium of Heterogeneous Systems published in 1876-1878. In our experiment, we will measure the Equilibrium Constant for our solvation reaction: Ksp = [Na+]2 [borate] (Eq. 1) which will allow us to determine the Std. Gibb’s Free Energy change for the reaction:
  • 2. Δ Go = -RT ln(Ksp) (Eq. 2) It is the Gibb’s Free Energy change which, besides telling us the maximum Work which can be obtained from the process, tells us how the driving forces of Entropy and Enthalpy are balanced for the reaction. Δ Go = Δ Ho - T Δ So (Eq. 3) If the Equilibrium Constant (Ksp) is determined at two different temperatures, T1 and T2, we can apply van't Hoff' s formulation for the dependence of the equilibrium constant K on temperature and determine the Std. Enthalpy change for this reaction as well: ln (Ksp2 / Ksp1) = – (Δ Ho / R) x (1/T2 - 1/T1) (Eq. 4) This formulation assumes Δ Ho is temperature independent; a good assumption provided the temperature difference is not too great in our experiment. Thus, by measuring the Ksp for this reaction at two different temperatures, we can determine Δ Ho from (Eq. 4), Δ Go at each temperature from (Eq. 2) and Δ So at each temperature from (Eq. 3). All we need now is a method of measuring the amount of borate ion (B4O5(OH)42-) and sodium ion (Na2+) concentrations in the equilibrium solution. We will take advantage of the basic nature of the borate ion and titrate it with a standard hydrochloric acid solution: B4O5(OH)42-(aq) + 2 HCl(aq) + 3 H2O → 4 H3BO3(aq) + 2 Cl-(aq) By taking an aliquot of the saturated Borax solution and titrating it with standardized HCl, we can determine the concentration of the borate ion, [borate], needed to calculate Ksp. The concentration of the sodium ion is then determined via the reaction stoichiometry: [Na+] = 2 [borate] (Eq. 5) Borax, or Sodium Tetraborate Decahydrate, is an example of a class of compounds named Borates, which contain polyanions composed of trigonal BO3 and/or BO4 units linked by bridging oxygen atoms to form chain or ring structures. The tetraborate anion illustrates these features:
  • 3. Borax occurs naturally in dry lake beds in the Southwest and California. These beds have long been important sources of this valuable mineral. An early use of Borax was in soap and other cleaning products. These products continue to be used today. Borax is also used as a flux for solder, in the manufacture of glass, and as a preservative. Procedure Very important: Begin the preparation of the solutions at the beginning of class, before lecture or problem solving because the solutions have to stir for about an hour. Preparation of Sat'd Sodium Borate Solutions To two separate 500mL Erlenmeyer Flasks add about 20g of Borax and 400mL of distilled water. Add a magnetic stir bar to each flask. Allow one to stir at Room Temperature for at least 30 minutes. Place the other in an ice-water bath and allow to stir for at least 30 minutes. Once the stirring is complete, and the solution has been saturated, turn off the magnetic stirrer and allow the excess Borax to settle. (If there is no excess Borax solid present, the solution may not be saturated. Add an additional gram of Borax and stir for another 30 minutes.) Add a thermometer. The solution should become clear in a few minutes. Keep the flasks undisturbed until you are ready to perform the titrations.
  • 4. Determination of the Borate Concentration 1. Record the temperature of the room temperature saturated Borax solution. 2. Without disturbing the solid at the bottom, carefully decant about 60mL of the solution into a clean and dry beaker. Filter this solution to remove any fine particles of undissolved borax. 3. Pipet a 10.0 mL aliquot of the filtered solution into a 125mL Erlenmeyer flask using a 10 mL volumetric pipet. Add about 20 mL of deionized water. Add a few drops of Bromthymol Blue indicator. 4. Using 0.200 M HCl, titrate the aliquot to the Yellow-Green endpoint. 5. Repeat the titration on two additional aliquots. 6. Repeat this procedure for the cold saturated borax solution. Keep the solution on ice during the filtration. Data Analysis 1. Determine the molarity of the borate ion at T1 (ice-water) and at T2 (room temperature). 2. Calculate the Ksp at T1 (ice-water) and at T2 (room temperature). 3. Calculate ΔGo at T1 (ice-water) and at T2 (room temperature) 4. Cal cul ate ΔHo . 5. Calculate Δ So at T1 (ice-water) and at T2 (room temperature). 6. Record your data and results in tables in your laboratory notebook.
  • 5. Questions to Answer in Your Reflections / Conclusions 1. Is the solvation reaction endothermic or exothermic? Is this reaction spontaneous? Does this agree with your expectations? Explain any discrepancies. 2. Identify the boron atoms in the borate ion pictured in this model. What is the geometry about each Boron atom? 3. What are sources of error in this experiment? 4. Can these thermodynamic quantities be calculated from a standard thermodynamic table? If so then compare your results to literature values.
  • 6. Preparation Information for Laboratory Assistant Students will work in pairs. Maximum number of pairs is 16. 45 grams of borax per student pair (prepare 4 jars approximately 200 grams borax - one per laboratory station) 2 Erlenmeyer Flasks per student pair (32 - 500 mL Erlenmeyer Flasks) 15 Liters of distilled water for entire class 1 dropper bottle per laboratory stations (4 bottles total) 1 - 10 mL volumetric pipet per student pair 4 1L bottles 0.200 M HCl standardized solution 4 boxes student grade filter paper 8 plastic buckets (as shown in photograph) with ice [2 per laboratory station] 1 standard size buret per student pair 1 ring stand with clamp per student pair 1 hot plate with stirring action per student pair (already in room) 2 magnetic stir bars per student pair 1- 500 mL beaker per student pair (already in room) 1 Pasco thermometer (already in room) 3 - 125 mL Erlenmeyer Flasks per student pair (already in room) 16 pipet bulbs and 16 pipet pumps (so students can have a choice) Note: students will use the PASCO devices to measure temperature but we made need thermometers if something goes wrong with the computers.