SlideShare una empresa de Scribd logo
1 de 36
Fracture Gradients 1.11- 1
1.11
Fracture Gradients
Fracture Gradients 1.11- 2
Prediction of Fracture Gradients
Well Planning
Theoretical Fracture Gradient Determination
Hubbert & Willis
Matthews & Kelly
Ben Eaton
Comparison of Results
Experimental Frac. Grad. Determination
Leak-off Tests
Fracture Gradients 1.11- 3
Well Planning
Safe drilling practices require that the
following be considered when
planning a well:
 Pore pressure determination
 Fracture gradient determination
 Casing setting depth selection
 Casing design
Fracture Gradients 1.11- 4
Formation Pressure and Matrix Stress
Given: Well depth is 14,000 ft.
Formation pore pressure expressed
in equivalent mud weight is 9.2 lb/gal.
Overburden stress is 1.00 psi/ft.
Calculate:
1. Pore pressure, psi/ft , at 14,000 ft
2. Pore pressure, psi, at 14,000 ft
3. Matrix stress, psi/ft
4. Matrix stress, psi
Fracture Gradients 1.11- 5
Formation Pressure and Matrix Stress
 PS
overburden pore matrix
stress = pressure + stress
(psi) (psi) (psi)
S = P + 
Fracture Gradients 1.11- 6
Formation Pressure and Matrix Stress
Calculations:
1. Pore pressure gradient
= 0.433 psi/ft * 9.2/8.33 = 0.052 * 9.2
= 0.478 psi/ft
2. Pore pressure at 14,000 ft
= 0.478 psi/ft * 14,000 ft
= 6,692 psig
Depth = 14,000 ft.
Pore Pressure = 9.2 lb/gal equivalent
Overburden stress = 1.00 psi/ft.
Fracture Gradients 1.11- 7
Formation Pressure and Matrix Stress
Calculations:
3. Matrix stress gradient,
psi
psi/ft
 / D = 0.522 psi/ft
 PS
DD
P
D
S
or


  ft/psi478.0000.1
D
P
D
S
D
.,e.i 

Fracture Gradients 1.11- 8
Formation Pressure and Matrix Stress
Calculations:
4. Matrix stress at 14,000 ft
= 0.522 psi/ft * 14,000 ft
 = 7,308 psi
Fracture Gradients 1.11- 9
Fracture Gradient Determination
In order to avoid lost circulation while
drilling it is important to know the variation
of fracture gradient with depth.
Leak-off tests represent an experimental
approach to fracture gradient determination.
Below are listed and discussed three
approaches to calculating the fracture
gradient.
Fracture Gradients 1.11- 10
Fracture Gradient Determination
1. Hubbert & Willis:
where F = fracture gradient, psi/ft
= pore pressure gradient, psi/ft
D
P







D
P2
1
3
1
Fmin







D
P
1
2
1
Fmax
Fracture Gradients 1.11- 11
Fracture Gradient Determination
2. Matthews & Kelly:
where Ki = matrix stress coefficient
 = vertical matrix stress, psi
D
P
D
K
F i



Fracture Gradients 1.11- 12
Fracture Gradient Determination
3. Ben Eaton:
where S = overburden stress, psi
g = Poisson’s ratio
D
P
1
*
D
PS
F 





g
g





 

Fracture Gradients 1.11- 13
Example
A Texas Gulf Coast well has a pore pressure
gradient of 0.735 psi/ft. Well depth = 11,000 ft.
Calculate the fracture gradient in units of lb/gal
using each of the above three methods.
Summarize the results in tabular form, showing
answers, in units of lb/gal and also in psi/ft.
Fracture Gradients 1.11- 14
1. Hubbert & Willis:
The pore pressure gradient,
 F
1
3
1 2*0.735 0.823
psi
ft
min   







D
2P
1
3
1
Fmin
P
D
0.735
psi
ft

Example - Hubbert and Willis
Fracture Gradients 1.11- 15
Also,







lb/gal
psi/ft
0.052
psi/ft0.823
Fmin
lb/gal15.83Fmin 
Example - Hubbert and Willis
Fracture Gradients 1.11- 16
Example - Hubbert and Willis







D
P
1
2
1
Fmax  735.01
2
1

= 0.8675 psi/ft
Fmax = 16.68 lb/gal
Fracture Gradients 1.11- 17
2. Matthews & Kelly
In this case P and D are known, may be
calculated, and is determined graphically.
(i) First, determine the pore pressure gradient.
D
K
D
P
F i


iK
Example
)given(ft/psi735.0
D
P

Fracture Gradients 1.11- 18
Example - Matthews and Kelly
(ii) Next, calculate the matrix stress.


















ft,depthD
psi,pressureporeP
psi,stressmatrix
psi,overburdenS

S = P + 
 = S - P
= 1.00 * D - 0.735 * D
= 0.265 * D
= 0.265 * 11,000
 = 2,915 psi
Fracture Gradients 1.11- 19
Example - Matthews and Kelly
(iii) Now determine the depth, , where,
under normally pressured conditions, the
rock matrix stress,  would be 2,915 psi.
iD
Sn = Pn + n n = “normal”
1.00 * Di = 0.465 * Di + 2,915
Di * (1 - 0.465) = 2,915
ft449,5
535.0
915,2
Di 
Fracture Gradients 1.11- 20
Example -
Matthews and
Kelly
(iv) Find Ki from
the plot on the
right, for
For a south Texas
Gulf Coast well,
Di = 5,449 ft
Ki = 0.685
Fracture Gradients 1.11- 21
Example - Matthews and Kelly
(v) Now calculate F:
D
P
D
K
F i



735.0
000,11
915,2*685.0
F 
ft/psi9165.0
gal/lb63.17
052.0
9165.0
F 
Fracture Gradients 1.11- 22
0.685
5,449
Ki
Depth,Di
Fracture Gradients 1.11- 23
Example
Ben Eaton:
D
P
1
*
D
PS
F 





g
g





 

??
D
S
g
Fracture Gradients 1.11- 24
Variable Overburden Stress by
Eaton
At 11,000 ft
S/D = 0.96 psi/ft
Fracture Gradients 1.11- 25
Fig. 5-5
At 11,000 ft
g = 0.46
Fracture Gradients 1.11- 26
Example - Ben Eaton
From above graphs,
at 11,000 ft.:
D
P
1D
P
D
S
F 













g
g
46.0;ft/psi96.0
D
S
g
  735.0
46.01
46.0
735.096.0F 







F = 0.9267 psi/ft
= 17.82 lb/gal
Fracture Gradients 1.11- 27
Summary of Results
Fracture Gradient
psi.ft lb/gal
Hubbert & Willis minimum: 0.823 15.83
Hubbert & Willis maximum: 0.868 16.68
Mathews & Kelly: 0.917 17.63
Ben Eaton: 0.927 17.82
Fracture Gradients 1.11- 28
Summary of Results
 Note that all the methods take into
consideration the pore pressure gradient.
As the pore pressure increases, so does
the fracture gradient.
 In the above equations, Hubbert & Willis
apparently consider only the variation in
pore pressure gradient. Matthews &
Kelly also consider the changes in rock
matrix stress coefficient, and in the
matrix stress ( Ki and i ).
Fracture Gradients 1.11- 29
Summary of Results
 Ben Eaton considers
variation in pore pressure gradient,
overburden stress and
Poisson’s ratio,
and is probably the most accurate of
the three methods. The last two
methods are actually quite similar, and
usually yield similar results.
Fracture Gradients 1.11- 30
Similarities
Ben Eaton:
D
P
1
*
D
PS
F 





g
g





 

Matthews and Kelly:
D
P
D
K
F i



Fracture Gradients 1.11- 31
Fracture Gradients 1.11- 32
Experimental Determination of
Fracture Gradient
The leak-off test
 Run and cement casing
 Drill out ~ 10 ft
below the casing seat
 Close the BOPs
 Pump slowly and
monitor the pressure
Fracture Gradients 1.11- 33
Fracture Gradients 1.11- 34
Fracture Gradients 1.11- 35
Fracture Gradients 1.11- 36

Más contenido relacionado

La actualidad más candente

Q922+de2+l07 v1
Q922+de2+l07 v1Q922+de2+l07 v1
Q922+de2+l07 v1
AFATous
 
Formation Damage Presentation Group F
Formation Damage Presentation Group FFormation Damage Presentation Group F
Formation Damage Presentation Group F
Shaho Mohamedali
 
Water coning in oil wells and DWS technology
Water coning in oil wells and DWS technologyWater coning in oil wells and DWS technology
Water coning in oil wells and DWS technology
shubhamsaxena2329
 

La actualidad más candente (20)

Geomechanical Study of Wellbore Stability
Geomechanical Study of Wellbore StabilityGeomechanical Study of Wellbore Stability
Geomechanical Study of Wellbore Stability
 
Well test analysis
Well test analysisWell test analysis
Well test analysis
 
Drilling Mannual
Drilling MannualDrilling Mannual
Drilling Mannual
 
Factors effecting vertical lift performance
Factors effecting vertical lift performanceFactors effecting vertical lift performance
Factors effecting vertical lift performance
 
Q922+de2+l07 v1
Q922+de2+l07 v1Q922+de2+l07 v1
Q922+de2+l07 v1
 
Formation pressure (PPFG) based on HW
Formation pressure (PPFG) based on HWFormation pressure (PPFG) based on HW
Formation pressure (PPFG) based on HW
 
Skin Factor and Formation Damage
Skin Factor and Formation DamageSkin Factor and Formation Damage
Skin Factor and Formation Damage
 
well control (1)
 well control (1) well control (1)
well control (1)
 
Presentation 6 casing design
Presentation 6 casing designPresentation 6 casing design
Presentation 6 casing design
 
Formation Damage Presentation Group F
Formation Damage Presentation Group FFormation Damage Presentation Group F
Formation Damage Presentation Group F
 
Casing design
Casing designCasing design
Casing design
 
Drill stem test (mtm)
Drill stem test (mtm)Drill stem test (mtm)
Drill stem test (mtm)
 
Introduction to Reservoir Rock & Fluid Properties
Introduction to Reservoir Rock & Fluid PropertiesIntroduction to Reservoir Rock & Fluid Properties
Introduction to Reservoir Rock & Fluid Properties
 
Water coning in oil wells and DWS technology
Water coning in oil wells and DWS technologyWater coning in oil wells and DWS technology
Water coning in oil wells and DWS technology
 
Drilling Fluids Mud
Drilling Fluids MudDrilling Fluids Mud
Drilling Fluids Mud
 
Water Base Muds
Water Base MudsWater Base Muds
Water Base Muds
 
Formation pressure in oil and gas drilling wells
Formation pressure in oil and gas drilling wellsFormation pressure in oil and gas drilling wells
Formation pressure in oil and gas drilling wells
 
MEB and Wellbore Performance
MEB and Wellbore PerformanceMEB and Wellbore Performance
MEB and Wellbore Performance
 
Drillstring & BHA Design
Drillstring & BHA DesignDrillstring & BHA Design
Drillstring & BHA Design
 
Kick t1
Kick t1Kick t1
Kick t1
 

Similar a 1.11 fracture gradients (9)

Settlement
SettlementSettlement
Settlement
 
Design and detailing_of_retaining_walls counter fort.تصميم الجدران الاستنادية...
Design and detailing_of_retaining_walls counter fort.تصميم الجدران الاستنادية...Design and detailing_of_retaining_walls counter fort.تصميم الجدران الاستنادية...
Design and detailing_of_retaining_walls counter fort.تصميم الجدران الاستنادية...
 
90 mm pipe 45 deg
90 mm pipe 45 deg90 mm pipe 45 deg
90 mm pipe 45 deg
 
[Braja m. das]_principles_of_foundation_engineerin(book_fi.org)
[Braja m. das]_principles_of_foundation_engineerin(book_fi.org)[Braja m. das]_principles_of_foundation_engineerin(book_fi.org)
[Braja m. das]_principles_of_foundation_engineerin(book_fi.org)
 
BEARING CAPACITY OF SOIL.pptx
BEARING CAPACITY OF SOIL.pptxBEARING CAPACITY OF SOIL.pptx
BEARING CAPACITY OF SOIL.pptx
 
Intro fluids
Intro fluidsIntro fluids
Intro fluids
 
Wait and weight vs. driller
Wait and weight vs. drillerWait and weight vs. driller
Wait and weight vs. driller
 
Bearing-Capacity-part
Bearing-Capacity-partBearing-Capacity-part
Bearing-Capacity-part
 
materi mekanika fluida terakhir yagsyaaa
materi mekanika fluida terakhir yagsyaaamateri mekanika fluida terakhir yagsyaaa
materi mekanika fluida terakhir yagsyaaa
 

Último

Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Dr.Costas Sachpazis
 
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort ServiceCall Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
9953056974 Low Rate Call Girls In Saket, Delhi NCR
 
result management system report for college project
result management system report for college projectresult management system report for college project
result management system report for college project
Tonystark477637
 
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Christo Ananth
 
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
dharasingh5698
 

Último (20)

Call for Papers - International Journal of Intelligent Systems and Applicatio...
Call for Papers - International Journal of Intelligent Systems and Applicatio...Call for Papers - International Journal of Intelligent Systems and Applicatio...
Call for Papers - International Journal of Intelligent Systems and Applicatio...
 
data_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdfdata_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdf
 
Call Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance BookingCall Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance Booking
 
Thermal Engineering Unit - I & II . ppt
Thermal Engineering  Unit - I & II . pptThermal Engineering  Unit - I & II . ppt
Thermal Engineering Unit - I & II . ppt
 
UNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its PerformanceUNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its Performance
 
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
 
Coefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxCoefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptx
 
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdfONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
 
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort ServiceCall Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
 
result management system report for college project
result management system report for college projectresult management system report for college project
result management system report for college project
 
Double rodded leveling 1 pdf activity 01
Double rodded leveling 1 pdf activity 01Double rodded leveling 1 pdf activity 01
Double rodded leveling 1 pdf activity 01
 
Water Industry Process Automation & Control Monthly - April 2024
Water Industry Process Automation & Control Monthly - April 2024Water Industry Process Automation & Control Monthly - April 2024
Water Industry Process Automation & Control Monthly - April 2024
 
Extrusion Processes and Their Limitations
Extrusion Processes and Their LimitationsExtrusion Processes and Their Limitations
Extrusion Processes and Their Limitations
 
NFPA 5000 2024 standard .
NFPA 5000 2024 standard                                  .NFPA 5000 2024 standard                                  .
NFPA 5000 2024 standard .
 
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete RecordCCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
 
Thermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - VThermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - V
 
Generative AI or GenAI technology based PPT
Generative AI or GenAI technology based PPTGenerative AI or GenAI technology based PPT
Generative AI or GenAI technology based PPT
 
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
 
UNIT-III FMM. DIMENSIONAL ANALYSIS
UNIT-III FMM.        DIMENSIONAL ANALYSISUNIT-III FMM.        DIMENSIONAL ANALYSIS
UNIT-III FMM. DIMENSIONAL ANALYSIS
 
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
 

1.11 fracture gradients

  • 1. Fracture Gradients 1.11- 1 1.11 Fracture Gradients
  • 2. Fracture Gradients 1.11- 2 Prediction of Fracture Gradients Well Planning Theoretical Fracture Gradient Determination Hubbert & Willis Matthews & Kelly Ben Eaton Comparison of Results Experimental Frac. Grad. Determination Leak-off Tests
  • 3. Fracture Gradients 1.11- 3 Well Planning Safe drilling practices require that the following be considered when planning a well:  Pore pressure determination  Fracture gradient determination  Casing setting depth selection  Casing design
  • 4. Fracture Gradients 1.11- 4 Formation Pressure and Matrix Stress Given: Well depth is 14,000 ft. Formation pore pressure expressed in equivalent mud weight is 9.2 lb/gal. Overburden stress is 1.00 psi/ft. Calculate: 1. Pore pressure, psi/ft , at 14,000 ft 2. Pore pressure, psi, at 14,000 ft 3. Matrix stress, psi/ft 4. Matrix stress, psi
  • 5. Fracture Gradients 1.11- 5 Formation Pressure and Matrix Stress  PS overburden pore matrix stress = pressure + stress (psi) (psi) (psi) S = P + 
  • 6. Fracture Gradients 1.11- 6 Formation Pressure and Matrix Stress Calculations: 1. Pore pressure gradient = 0.433 psi/ft * 9.2/8.33 = 0.052 * 9.2 = 0.478 psi/ft 2. Pore pressure at 14,000 ft = 0.478 psi/ft * 14,000 ft = 6,692 psig Depth = 14,000 ft. Pore Pressure = 9.2 lb/gal equivalent Overburden stress = 1.00 psi/ft.
  • 7. Fracture Gradients 1.11- 7 Formation Pressure and Matrix Stress Calculations: 3. Matrix stress gradient, psi psi/ft  / D = 0.522 psi/ft  PS DD P D S or     ft/psi478.0000.1 D P D S D .,e.i  
  • 8. Fracture Gradients 1.11- 8 Formation Pressure and Matrix Stress Calculations: 4. Matrix stress at 14,000 ft = 0.522 psi/ft * 14,000 ft  = 7,308 psi
  • 9. Fracture Gradients 1.11- 9 Fracture Gradient Determination In order to avoid lost circulation while drilling it is important to know the variation of fracture gradient with depth. Leak-off tests represent an experimental approach to fracture gradient determination. Below are listed and discussed three approaches to calculating the fracture gradient.
  • 10. Fracture Gradients 1.11- 10 Fracture Gradient Determination 1. Hubbert & Willis: where F = fracture gradient, psi/ft = pore pressure gradient, psi/ft D P        D P2 1 3 1 Fmin        D P 1 2 1 Fmax
  • 11. Fracture Gradients 1.11- 11 Fracture Gradient Determination 2. Matthews & Kelly: where Ki = matrix stress coefficient  = vertical matrix stress, psi D P D K F i   
  • 12. Fracture Gradients 1.11- 12 Fracture Gradient Determination 3. Ben Eaton: where S = overburden stress, psi g = Poisson’s ratio D P 1 * D PS F       g g        
  • 13. Fracture Gradients 1.11- 13 Example A Texas Gulf Coast well has a pore pressure gradient of 0.735 psi/ft. Well depth = 11,000 ft. Calculate the fracture gradient in units of lb/gal using each of the above three methods. Summarize the results in tabular form, showing answers, in units of lb/gal and also in psi/ft.
  • 14. Fracture Gradients 1.11- 14 1. Hubbert & Willis: The pore pressure gradient,  F 1 3 1 2*0.735 0.823 psi ft min           D 2P 1 3 1 Fmin P D 0.735 psi ft  Example - Hubbert and Willis
  • 15. Fracture Gradients 1.11- 15 Also,        lb/gal psi/ft 0.052 psi/ft0.823 Fmin lb/gal15.83Fmin  Example - Hubbert and Willis
  • 16. Fracture Gradients 1.11- 16 Example - Hubbert and Willis        D P 1 2 1 Fmax  735.01 2 1  = 0.8675 psi/ft Fmax = 16.68 lb/gal
  • 17. Fracture Gradients 1.11- 17 2. Matthews & Kelly In this case P and D are known, may be calculated, and is determined graphically. (i) First, determine the pore pressure gradient. D K D P F i   iK Example )given(ft/psi735.0 D P 
  • 18. Fracture Gradients 1.11- 18 Example - Matthews and Kelly (ii) Next, calculate the matrix stress.                   ft,depthD psi,pressureporeP psi,stressmatrix psi,overburdenS  S = P +   = S - P = 1.00 * D - 0.735 * D = 0.265 * D = 0.265 * 11,000  = 2,915 psi
  • 19. Fracture Gradients 1.11- 19 Example - Matthews and Kelly (iii) Now determine the depth, , where, under normally pressured conditions, the rock matrix stress,  would be 2,915 psi. iD Sn = Pn + n n = “normal” 1.00 * Di = 0.465 * Di + 2,915 Di * (1 - 0.465) = 2,915 ft449,5 535.0 915,2 Di 
  • 20. Fracture Gradients 1.11- 20 Example - Matthews and Kelly (iv) Find Ki from the plot on the right, for For a south Texas Gulf Coast well, Di = 5,449 ft Ki = 0.685
  • 21. Fracture Gradients 1.11- 21 Example - Matthews and Kelly (v) Now calculate F: D P D K F i    735.0 000,11 915,2*685.0 F  ft/psi9165.0 gal/lb63.17 052.0 9165.0 F 
  • 22. Fracture Gradients 1.11- 22 0.685 5,449 Ki Depth,Di
  • 23. Fracture Gradients 1.11- 23 Example Ben Eaton: D P 1 * D PS F       g g         ?? D S g
  • 24. Fracture Gradients 1.11- 24 Variable Overburden Stress by Eaton At 11,000 ft S/D = 0.96 psi/ft
  • 25. Fracture Gradients 1.11- 25 Fig. 5-5 At 11,000 ft g = 0.46
  • 26. Fracture Gradients 1.11- 26 Example - Ben Eaton From above graphs, at 11,000 ft.: D P 1D P D S F               g g 46.0;ft/psi96.0 D S g   735.0 46.01 46.0 735.096.0F         F = 0.9267 psi/ft = 17.82 lb/gal
  • 27. Fracture Gradients 1.11- 27 Summary of Results Fracture Gradient psi.ft lb/gal Hubbert & Willis minimum: 0.823 15.83 Hubbert & Willis maximum: 0.868 16.68 Mathews & Kelly: 0.917 17.63 Ben Eaton: 0.927 17.82
  • 28. Fracture Gradients 1.11- 28 Summary of Results  Note that all the methods take into consideration the pore pressure gradient. As the pore pressure increases, so does the fracture gradient.  In the above equations, Hubbert & Willis apparently consider only the variation in pore pressure gradient. Matthews & Kelly also consider the changes in rock matrix stress coefficient, and in the matrix stress ( Ki and i ).
  • 29. Fracture Gradients 1.11- 29 Summary of Results  Ben Eaton considers variation in pore pressure gradient, overburden stress and Poisson’s ratio, and is probably the most accurate of the three methods. The last two methods are actually quite similar, and usually yield similar results.
  • 30. Fracture Gradients 1.11- 30 Similarities Ben Eaton: D P 1 * D PS F       g g         Matthews and Kelly: D P D K F i   
  • 32. Fracture Gradients 1.11- 32 Experimental Determination of Fracture Gradient The leak-off test  Run and cement casing  Drill out ~ 10 ft below the casing seat  Close the BOPs  Pump slowly and monitor the pressure