SlideShare una empresa de Scribd logo
1 de 26
PROBABILITY AND RANDOM PROCESS
Random Variables
A random variable is a function that assigns a real number X(s) to every elements s in
S, where S is the sample space corresponding to a random experiment.
Random variables
Discrete Random Variables Continuous Random variables
Dr. S. Kalyani PRP 2
Discrete Random variable:
If X is a random variable which can take a finite number or countably infinite
number of values, X is called a Discrete Random variable.
Eg:
1. The marks obtained by the student in an exam.
2. Number of students absent for a particular class.
Continuous Random variable:
If X is a random variable which can take all values in an interval, then is called
a Continuous Random variable.
Eg:
The length of time during which a vacuum tube installed in a circuit functions is
a continuous RV.
Dr. S. Kalyani PRP 3
Probability Mass Function (or) Probability Function:
If X is a discrete RV with distinct values x1 x2 x3 ,… xn…
then P ( X = xi) = pi, then the function p(x) is called the
Probability Mass Function.
Where p(i = 1, 2, 3, …) satisfy the following conditions:
1. for all i, and
2.
0,
pi
1
i
i
p 

Dr. S. Kalyani PRP 4
PROBABILITY DENSITY FUNCTION FOR CONTINUOUS CASE:
If X is a continuous r.v., then f(x) is defined the probability density
function of X.
Provided f(x) satisfies the following conditions,
1.
2.
3.
( ) 0
f x 
( ) 1
f x dx




( ) ( )
b
a
P a x b f x dx
   
Dr. S. Kalyani PRP 5
CUMULATIVE DISTRIBUTION FUNCTION OF C.R.V.:
The cumulative distribution function of a continuous r.v. X is
( ) ( ) ( ) ,
x
F x P X x f x dx for x

       

CUMULATIVE DISTRIBUTION FUNCTION OF D.R.V.:
The cumulative distribution function F(x) of a discrete r.v. X with
probability distribution p(x) is given by
( ) ( ) ( )
i
i
X x
F x P X x p x for x

      

6
Dr. S. Kalyani PRP
Dr. S. Kalyani PRP 7
Relationship between probability density function and distribution function
𝑖) 𝑓 𝑥 =
𝑑
𝑑𝑥
𝐹 𝑥
𝑖𝑖) 𝐹 𝑥 =
−∞
𝑥
𝑓 𝑥 𝑑𝑥
PROBLEM 1:
The number of telephone calls received in an office during lunch time has the
following probability function given below
No. of calls 0 1 2 3 4 5 6
Probability
p(x)
0.05 0.2 0.25 0.2 0.15 0.1 0.05
i) Verify that it is really a probability function.
ii) Find the probability that there will be 3 or more calls.
iii)Find the probability that there will be odd number of calls.
Dr. S. Kalyani PRP 8
ii) Let X denote the no. of telephone calls
P(X>=3) = P(X=3) + P(X=4) + P(X=5) +P(X=6)
= 0.2 + 0.15 + 0.1 + 0.05
= 0.5
iii) Let X denote the no. of telephone calls
P(X is odd) = P(X=1) + P(X=3) + P(X=5)
= 0.2 + 0.2 + 0.1
= 0.5
i) Probability function p(x) follows 2 properties
i) all probability values lies between 0 and 1
ii) total probability value is 1.
In the given data all probability values are between 0 and 1
And 0.05+0.2+0.25+0.15+0.1+0.05 = 1
So it is a probability function.
Solution:
Dr. S. Kalyani PRP 9
PROBLEM 2:
A r. v. X has the following probability functions
X 0 1 2 3 4 5 6 7
p(x) 0 k 2k 2k 3k k2 2k2 7k2 + k
Find (i) value of k
(ii) P(1.5 < X < 4.5 / X > 2)
(iii) if P(X ≤ a) > ½, find the minimum value of a.
Dr. S. Kalyani PRP 10
Solution:
7
0
2
( ) . . . ( ) 1
10 9 1
(10 1)( 1) 0
1
, 1
10
( ) cannot be negative,
1 is neglected.
1
10
x
i w k t p x
k k
k k
k
p x
k
k


  
   
  
 
 

Dr. S. Kalyani PRP 11
7
3
( ) (1.5 4.5 / 2)
( )
( / )
( )
[(1.5 4.5) ( 2)]
(1.5 4.5 / 2)
( 2)
( 3) ( 4)
( )
5
5
10
=
7 7
10
r
ii P X x
P A B
P A B
P B
P X X
P X X
P X
P X P X
P X r

  


   
   

  




Dr. S. Kalyani PRP 12
0 1 2 3 4 5
( ) By trials,
( 0) 0
1
( 1)
10
3
( 2)
10
5
( 3)
10
8
( 4)
10
1
the minimum value of 'a' satisfying the condition ( ) 4
2
iii
P X
P X
P X
P X
P X
P X a is
 
 
 
 
 
  
X 0 1 2 3 4 5 6 7
p(x) 0 1/10 2/10 2/10 3/10 1/100 2/100 17/100
Dr. S. Kalyani PRP 13
PROBLEM 3
A random Variable X has the following probability distribution.
Find
(i) the value of k
(ii) Evaluate P[X<2] and P[-2<X<2]
(iii)Find the cumulative Distribution of X.
x -2 -1 0 1 2 3
p(x) 0.1 k 0.2 2k 0.3 3k
Dr. S. Kalyani PRP 14
Solution:
Dr. S. Kalyani PRP 15
6
0
( ) . . . ( ) 1
6 0.6 1
6 0.4
1
15
x
i w k t p x
k
k
k


  
 
 

 
     
   
2 2 1
0 1
1 2
0.1 0.2
15 15
3 1
0.3
15 2
ii
P X P X P X
P X P X
      
   
   
  
Dr. S. Kalyani PRP 16
Dr. S. Kalyani PRP 17
( )
[ ]
[ ] [ ] [ ]
2 2
1 0 1
1 2
0.2
15 15
3
= 0.2
15
2
5
ii
P X
P X P X P X
- < <
= = - + = + =
= + +
+
=
(iii) The Cumulative Distribution of X:
X F(x) = P(X ≤ x)
-2 F(-2)=P(X≤-2)=P(X=-2)=0.1=1/10
-1 F(-1)=P(X≤-1)=F(-2)+P(-1)=1/10+k=1/10+1/15=0.17
0 F(0)=P(X≤0)=F(-1)+P(0)=1/6+2/10=1/6+1/5=0.37
1 F(1)=P(X≤1)=F(0)+P(1)=11/30+2/15=15/30=1/2
2 F(2)=P(X≤2)=F(1)+P(2)=1/2+3/10=(5+3)/10=8/10=4/5
3 F(3)=P(X≤3)=F(2)+P(3)=4/5+3/15=(12+3)/15=1
Dr. S. Kalyani PRP 18
Dr. S. Kalyani PRP 19
Problem
If the random variable X takes the values 1,2,3 and 4 such that
2P(X=1) = 3P(X=2) = P(X=3) = 5P(X=4), find the probability distribution and
cumulative distribution function.
Let P(X=3) = k
So P(X=1) = k/2
P(X=2) = k/3
P(X=4) = k/5
By property, 𝑘 +
𝑘
2
+
𝑘
3
+
𝑘
5
= 1
So 𝑘 =
30
61
X 1 2 3 4
P(X) 15/61 10/61 30/61 6/61
Dr. S. Kalyani PRP 20
F(X)= 1
𝑥
𝑝(𝑋)
When X < 1 , F(X) = 0
X 1 2 3 4
F(X) 15/61 25/61 55/61 61/61 = 1
Problem 3:
The diameter, say X of an electric cable, is assumed to be a continuous r.v.
with p.d.f. :
f(x) = 6x(1-x), 0 ≤ x ≤ 1
(i) Check that the above is a p.d.f.
(ii) Compute P(X ≤ ½ / ⅓ ≤ X ≤ ⅔)
(iii) Determine the number k such that P(X< k) = P(X > k)
(iv) Find the cumulative distribution function.
Dr. S. Kalyani PRP 21
Solution:
1 1
0 0
1
2 3
0
( )
( ) 6 (1 )
6
2 3
1
i
f x dx x x dx
x x
 
 
 
 
 

 
Dr. S. Kalyani PRP 22
1
2
1
3
2
3
1
3
( )
1 1
( )
1 1 2 3 2
( | )
1 2
2 3 3 ( )
3 3
6 (1 )
=
6 (1 )
11
11
54
13 26
27
ii
P X
P X X
P X
x x dx
x x dx
 
   
 


 


Dr. S. Kalyani PRP 23
1
0
2 3 2 3
3 2
( )
( ) ( )
6 (1 ) 6 (1 )
3 2 3(1 ) 2(1 )
4 6 1 0
1 1 3
,
2 2
1
The only possible value of k in the given range is .
2
1
2
k
k
iii
We have P X k P X k
x x dx x x dx
k k k k
k k
k
k
  
   
     
   

 
 
 
Dr. S. Kalyani PRP 24
Dr. S. Kalyani PRP 25
𝑖𝑣) 𝐹 𝑥 =
−∞
𝑥
𝑓 𝑥 𝑑𝑥
𝐹 𝑥 =
0
𝑥
6𝑥 1 − 𝑥 𝑑𝑥
=
0
𝑥
(6𝑥 − 6𝑥2
)𝑑𝑥
= 6
𝑥2
2
− 6
𝑥3
3 0
𝑥
𝐹(𝑥) = 3𝑥2
− 2𝑥3 is the cumulative distribution function
Dr. S. Kalyani PRP 26
Problem
The distribution function of a random variable X is given by 𝐹 𝑋 = 1 − 1 + 𝑥 𝑒−𝑥
, 𝑥 ≥ 0
Find the density function.
Solution:
We know that 𝑓 𝑥 =
𝑑
𝑑𝑥
𝐹 𝑥
=
𝑑
𝑑𝑥
{1 − 𝑒−𝑥 − 𝑥𝑒−𝑥}
= 0 − −𝑒−𝑥
− (−𝑥𝑒−𝑥
+ 𝑒−𝑥
)
= 𝑒−𝑥
+ 𝑥𝑒−𝑥
− 𝑒−𝑥
= 𝑥𝑒−𝑥, 𝑥 ≥ 0. is the density function

Más contenido relacionado

La actualidad más candente

Lesson02 Vectors And Matrices Slides
Lesson02   Vectors And Matrices SlidesLesson02   Vectors And Matrices Slides
Lesson02 Vectors And Matrices Slides
Matthew Leingang
 

La actualidad más candente (20)

Greedy Algorithm - Huffman coding
Greedy Algorithm - Huffman codingGreedy Algorithm - Huffman coding
Greedy Algorithm - Huffman coding
 
Matlab lecture 7 – regula falsi or false position method@taj
Matlab lecture 7 – regula falsi or false position method@tajMatlab lecture 7 – regula falsi or false position method@taj
Matlab lecture 7 – regula falsi or false position method@taj
 
Newton divided difference interpolation
Newton divided difference interpolationNewton divided difference interpolation
Newton divided difference interpolation
 
Gauss Elimination Method With Partial Pivoting
Gauss Elimination Method With Partial PivotingGauss Elimination Method With Partial Pivoting
Gauss Elimination Method With Partial Pivoting
 
Applications of differential equations(by Anil.S.Nayak)
Applications of differential equations(by Anil.S.Nayak)Applications of differential equations(by Anil.S.Nayak)
Applications of differential equations(by Anil.S.Nayak)
 
Gradient , Directional Derivative , Divergence , Curl
Gradient , Directional Derivative , Divergence , Curl Gradient , Directional Derivative , Divergence , Curl
Gradient , Directional Derivative , Divergence , Curl
 
Backtracking
BacktrackingBacktracking
Backtracking
 
0/1 knapsack
0/1 knapsack0/1 knapsack
0/1 knapsack
 
Newton’s Forward & backward interpolation
Newton’s Forward &  backward interpolation Newton’s Forward &  backward interpolation
Newton’s Forward & backward interpolation
 
Calculus several variables canadian 9th edition adams solutions manual
Calculus several variables canadian 9th edition adams solutions manualCalculus several variables canadian 9th edition adams solutions manual
Calculus several variables canadian 9th edition adams solutions manual
 
Matrix and its operation (addition, subtraction, multiplication)
Matrix and its operation (addition, subtraction, multiplication)Matrix and its operation (addition, subtraction, multiplication)
Matrix and its operation (addition, subtraction, multiplication)
 
Ford Fulkerson Algorithm
Ford Fulkerson AlgorithmFord Fulkerson Algorithm
Ford Fulkerson Algorithm
 
Walpole ch02
Walpole ch02Walpole ch02
Walpole ch02
 
System of linear equations
System of linear equationsSystem of linear equations
System of linear equations
 
Rank of a matrix
Rank of a matrixRank of a matrix
Rank of a matrix
 
Double Integrals
Double IntegralsDouble Integrals
Double Integrals
 
Relation Hasse diagram
Relation Hasse diagramRelation Hasse diagram
Relation Hasse diagram
 
Greedy algorithms
Greedy algorithmsGreedy algorithms
Greedy algorithms
 
Chapter 4: Vector Spaces - Part 4/Slides By Pearson
Chapter 4: Vector Spaces - Part 4/Slides By PearsonChapter 4: Vector Spaces - Part 4/Slides By Pearson
Chapter 4: Vector Spaces - Part 4/Slides By Pearson
 
Lesson02 Vectors And Matrices Slides
Lesson02   Vectors And Matrices SlidesLesson02   Vectors And Matrices Slides
Lesson02 Vectors And Matrices Slides
 

Similar a Random variables.pptx

15 Probability Distribution Practical (HSC).pdf
15 Probability Distribution Practical (HSC).pdf15 Probability Distribution Practical (HSC).pdf
15 Probability Distribution Practical (HSC).pdf
vedantsk1
 
Linear differential equation with constant coefficient
Linear differential equation with constant coefficientLinear differential equation with constant coefficient
Linear differential equation with constant coefficient
Sanjay Singh
 
Statistik 1 5 distribusi probabilitas diskrit
Statistik 1 5 distribusi probabilitas diskritStatistik 1 5 distribusi probabilitas diskrit
Statistik 1 5 distribusi probabilitas diskrit
Selvin Hadi
 

Similar a Random variables.pptx (20)

15 Probability Distribution Practical (HSC).pdf
15 Probability Distribution Practical (HSC).pdf15 Probability Distribution Practical (HSC).pdf
15 Probability Distribution Practical (HSC).pdf
 
PROBABILITY DISTRIBUTION
PROBABILITY DISTRIBUTIONPROBABILITY DISTRIBUTION
PROBABILITY DISTRIBUTION
 
Finance Enginering from Columbia.pdf
Finance Enginering from Columbia.pdfFinance Enginering from Columbia.pdf
Finance Enginering from Columbia.pdf
 
Linear differential equation with constant coefficient
Linear differential equation with constant coefficientLinear differential equation with constant coefficient
Linear differential equation with constant coefficient
 
Discrete Distribution.pptx
Discrete Distribution.pptxDiscrete Distribution.pptx
Discrete Distribution.pptx
 
CMSC 56 | Lecture 3: Predicates & Quantifiers
CMSC 56 | Lecture 3: Predicates & QuantifiersCMSC 56 | Lecture 3: Predicates & Quantifiers
CMSC 56 | Lecture 3: Predicates & Quantifiers
 
Derivatives
DerivativesDerivatives
Derivatives
 
Statistik 1 5 distribusi probabilitas diskrit
Statistik 1 5 distribusi probabilitas diskritStatistik 1 5 distribusi probabilitas diskrit
Statistik 1 5 distribusi probabilitas diskrit
 
Rough K Means - Numerical Example
Rough K Means - Numerical ExampleRough K Means - Numerical Example
Rough K Means - Numerical Example
 
2 random variables notes 2p3
2 random variables notes 2p32 random variables notes 2p3
2 random variables notes 2p3
 
El6303 solu 3 f15 1
El6303 solu 3 f15  1 El6303 solu 3 f15  1
El6303 solu 3 f15 1
 
Use of quantifiers
Use of quantifiersUse of quantifiers
Use of quantifiers
 
CALCULUS 2.pptx
CALCULUS 2.pptxCALCULUS 2.pptx
CALCULUS 2.pptx
 
Discussion about random variable ad its characterization
Discussion about random variable ad its characterizationDiscussion about random variable ad its characterization
Discussion about random variable ad its characterization
 
Probability-1.pptx
Probability-1.pptxProbability-1.pptx
Probability-1.pptx
 
Rosser's theorem
Rosser's theoremRosser's theorem
Rosser's theorem
 
Cubic Spline Interpolation
Cubic Spline InterpolationCubic Spline Interpolation
Cubic Spline Interpolation
 
Normal probability distribution
Normal probability distributionNormal probability distribution
Normal probability distribution
 
Chapter 4 Special Discrete Distribution.pptx
Chapter 4 Special Discrete Distribution.pptxChapter 4 Special Discrete Distribution.pptx
Chapter 4 Special Discrete Distribution.pptx
 
Fin500J_topic10_Probability_2010_0000000
Fin500J_topic10_Probability_2010_0000000Fin500J_topic10_Probability_2010_0000000
Fin500J_topic10_Probability_2010_0000000
 

Último

Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills KuwaitKuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
jaanualu31
 
"Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments""Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments"
mphochane1998
 
Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7
Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7
Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7
9953056974 Low Rate Call Girls In Saket, Delhi NCR
 

Último (20)

Generative AI or GenAI technology based PPT
Generative AI or GenAI technology based PPTGenerative AI or GenAI technology based PPT
Generative AI or GenAI technology based PPT
 
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced LoadsFEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
 
Hostel management system project report..pdf
Hostel management system project report..pdfHostel management system project report..pdf
Hostel management system project report..pdf
 
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptx
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptxHOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptx
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptx
 
Tamil Call Girls Bhayandar WhatsApp +91-9930687706, Best Service
Tamil Call Girls Bhayandar WhatsApp +91-9930687706, Best ServiceTamil Call Girls Bhayandar WhatsApp +91-9930687706, Best Service
Tamil Call Girls Bhayandar WhatsApp +91-9930687706, Best Service
 
Online electricity billing project report..pdf
Online electricity billing project report..pdfOnline electricity billing project report..pdf
Online electricity billing project report..pdf
 
Design For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the startDesign For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the start
 
Thermal Engineering Unit - I & II . ppt
Thermal Engineering  Unit - I & II . pptThermal Engineering  Unit - I & II . ppt
Thermal Engineering Unit - I & II . ppt
 
Unleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leapUnleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leap
 
Engineering Drawing focus on projection of planes
Engineering Drawing focus on projection of planesEngineering Drawing focus on projection of planes
Engineering Drawing focus on projection of planes
 
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills KuwaitKuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
 
"Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments""Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments"
 
Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...
Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...
Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...
 
Online food ordering system project report.pdf
Online food ordering system project report.pdfOnline food ordering system project report.pdf
Online food ordering system project report.pdf
 
HAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKAR
HAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKARHAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKAR
HAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKAR
 
Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7
Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7
Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7
 
PE 459 LECTURE 2- natural gas basic concepts and properties
PE 459 LECTURE 2- natural gas basic concepts and propertiesPE 459 LECTURE 2- natural gas basic concepts and properties
PE 459 LECTURE 2- natural gas basic concepts and properties
 
GEAR TRAIN- BASIC CONCEPTS AND WORKING PRINCIPLE
GEAR TRAIN- BASIC CONCEPTS AND WORKING PRINCIPLEGEAR TRAIN- BASIC CONCEPTS AND WORKING PRINCIPLE
GEAR TRAIN- BASIC CONCEPTS AND WORKING PRINCIPLE
 
Bhubaneswar🌹Call Girls Bhubaneswar ❤Komal 9777949614 💟 Full Trusted CALL GIRL...
Bhubaneswar🌹Call Girls Bhubaneswar ❤Komal 9777949614 💟 Full Trusted CALL GIRL...Bhubaneswar🌹Call Girls Bhubaneswar ❤Komal 9777949614 💟 Full Trusted CALL GIRL...
Bhubaneswar🌹Call Girls Bhubaneswar ❤Komal 9777949614 💟 Full Trusted CALL GIRL...
 
Computer Networks Basics of Network Devices
Computer Networks  Basics of Network DevicesComputer Networks  Basics of Network Devices
Computer Networks Basics of Network Devices
 

Random variables.pptx

  • 2. Random Variables A random variable is a function that assigns a real number X(s) to every elements s in S, where S is the sample space corresponding to a random experiment. Random variables Discrete Random Variables Continuous Random variables Dr. S. Kalyani PRP 2
  • 3. Discrete Random variable: If X is a random variable which can take a finite number or countably infinite number of values, X is called a Discrete Random variable. Eg: 1. The marks obtained by the student in an exam. 2. Number of students absent for a particular class. Continuous Random variable: If X is a random variable which can take all values in an interval, then is called a Continuous Random variable. Eg: The length of time during which a vacuum tube installed in a circuit functions is a continuous RV. Dr. S. Kalyani PRP 3
  • 4. Probability Mass Function (or) Probability Function: If X is a discrete RV with distinct values x1 x2 x3 ,… xn… then P ( X = xi) = pi, then the function p(x) is called the Probability Mass Function. Where p(i = 1, 2, 3, …) satisfy the following conditions: 1. for all i, and 2. 0, pi 1 i i p   Dr. S. Kalyani PRP 4
  • 5. PROBABILITY DENSITY FUNCTION FOR CONTINUOUS CASE: If X is a continuous r.v., then f(x) is defined the probability density function of X. Provided f(x) satisfies the following conditions, 1. 2. 3. ( ) 0 f x  ( ) 1 f x dx     ( ) ( ) b a P a x b f x dx     Dr. S. Kalyani PRP 5
  • 6. CUMULATIVE DISTRIBUTION FUNCTION OF C.R.V.: The cumulative distribution function of a continuous r.v. X is ( ) ( ) ( ) , x F x P X x f x dx for x           CUMULATIVE DISTRIBUTION FUNCTION OF D.R.V.: The cumulative distribution function F(x) of a discrete r.v. X with probability distribution p(x) is given by ( ) ( ) ( ) i i X x F x P X x p x for x          6 Dr. S. Kalyani PRP
  • 7. Dr. S. Kalyani PRP 7 Relationship between probability density function and distribution function 𝑖) 𝑓 𝑥 = 𝑑 𝑑𝑥 𝐹 𝑥 𝑖𝑖) 𝐹 𝑥 = −∞ 𝑥 𝑓 𝑥 𝑑𝑥
  • 8. PROBLEM 1: The number of telephone calls received in an office during lunch time has the following probability function given below No. of calls 0 1 2 3 4 5 6 Probability p(x) 0.05 0.2 0.25 0.2 0.15 0.1 0.05 i) Verify that it is really a probability function. ii) Find the probability that there will be 3 or more calls. iii)Find the probability that there will be odd number of calls. Dr. S. Kalyani PRP 8
  • 9. ii) Let X denote the no. of telephone calls P(X>=3) = P(X=3) + P(X=4) + P(X=5) +P(X=6) = 0.2 + 0.15 + 0.1 + 0.05 = 0.5 iii) Let X denote the no. of telephone calls P(X is odd) = P(X=1) + P(X=3) + P(X=5) = 0.2 + 0.2 + 0.1 = 0.5 i) Probability function p(x) follows 2 properties i) all probability values lies between 0 and 1 ii) total probability value is 1. In the given data all probability values are between 0 and 1 And 0.05+0.2+0.25+0.15+0.1+0.05 = 1 So it is a probability function. Solution: Dr. S. Kalyani PRP 9
  • 10. PROBLEM 2: A r. v. X has the following probability functions X 0 1 2 3 4 5 6 7 p(x) 0 k 2k 2k 3k k2 2k2 7k2 + k Find (i) value of k (ii) P(1.5 < X < 4.5 / X > 2) (iii) if P(X ≤ a) > ½, find the minimum value of a. Dr. S. Kalyani PRP 10
  • 11. Solution: 7 0 2 ( ) . . . ( ) 1 10 9 1 (10 1)( 1) 0 1 , 1 10 ( ) cannot be negative, 1 is neglected. 1 10 x i w k t p x k k k k k p x k k                  Dr. S. Kalyani PRP 11
  • 12. 7 3 ( ) (1.5 4.5 / 2) ( ) ( / ) ( ) [(1.5 4.5) ( 2)] (1.5 4.5 / 2) ( 2) ( 3) ( 4) ( ) 5 5 10 = 7 7 10 r ii P X x P A B P A B P B P X X P X X P X P X P X P X r                       Dr. S. Kalyani PRP 12 0 1 2 3 4 5
  • 13. ( ) By trials, ( 0) 0 1 ( 1) 10 3 ( 2) 10 5 ( 3) 10 8 ( 4) 10 1 the minimum value of 'a' satisfying the condition ( ) 4 2 iii P X P X P X P X P X P X a is              X 0 1 2 3 4 5 6 7 p(x) 0 1/10 2/10 2/10 3/10 1/100 2/100 17/100 Dr. S. Kalyani PRP 13
  • 14. PROBLEM 3 A random Variable X has the following probability distribution. Find (i) the value of k (ii) Evaluate P[X<2] and P[-2<X<2] (iii)Find the cumulative Distribution of X. x -2 -1 0 1 2 3 p(x) 0.1 k 0.2 2k 0.3 3k Dr. S. Kalyani PRP 14
  • 15. Solution: Dr. S. Kalyani PRP 15 6 0 ( ) . . . ( ) 1 6 0.6 1 6 0.4 1 15 x i w k t p x k k k          
  • 16.             2 2 1 0 1 1 2 0.1 0.2 15 15 3 1 0.3 15 2 ii P X P X P X P X P X                   Dr. S. Kalyani PRP 16
  • 17. Dr. S. Kalyani PRP 17 ( ) [ ] [ ] [ ] [ ] 2 2 1 0 1 1 2 0.2 15 15 3 = 0.2 15 2 5 ii P X P X P X P X - < < = = - + = + = = + + + =
  • 18. (iii) The Cumulative Distribution of X: X F(x) = P(X ≤ x) -2 F(-2)=P(X≤-2)=P(X=-2)=0.1=1/10 -1 F(-1)=P(X≤-1)=F(-2)+P(-1)=1/10+k=1/10+1/15=0.17 0 F(0)=P(X≤0)=F(-1)+P(0)=1/6+2/10=1/6+1/5=0.37 1 F(1)=P(X≤1)=F(0)+P(1)=11/30+2/15=15/30=1/2 2 F(2)=P(X≤2)=F(1)+P(2)=1/2+3/10=(5+3)/10=8/10=4/5 3 F(3)=P(X≤3)=F(2)+P(3)=4/5+3/15=(12+3)/15=1 Dr. S. Kalyani PRP 18
  • 19. Dr. S. Kalyani PRP 19 Problem If the random variable X takes the values 1,2,3 and 4 such that 2P(X=1) = 3P(X=2) = P(X=3) = 5P(X=4), find the probability distribution and cumulative distribution function. Let P(X=3) = k So P(X=1) = k/2 P(X=2) = k/3 P(X=4) = k/5 By property, 𝑘 + 𝑘 2 + 𝑘 3 + 𝑘 5 = 1 So 𝑘 = 30 61
  • 20. X 1 2 3 4 P(X) 15/61 10/61 30/61 6/61 Dr. S. Kalyani PRP 20 F(X)= 1 𝑥 𝑝(𝑋) When X < 1 , F(X) = 0 X 1 2 3 4 F(X) 15/61 25/61 55/61 61/61 = 1
  • 21. Problem 3: The diameter, say X of an electric cable, is assumed to be a continuous r.v. with p.d.f. : f(x) = 6x(1-x), 0 ≤ x ≤ 1 (i) Check that the above is a p.d.f. (ii) Compute P(X ≤ ½ / ⅓ ≤ X ≤ ⅔) (iii) Determine the number k such that P(X< k) = P(X > k) (iv) Find the cumulative distribution function. Dr. S. Kalyani PRP 21
  • 22. Solution: 1 1 0 0 1 2 3 0 ( ) ( ) 6 (1 ) 6 2 3 1 i f x dx x x dx x x              Dr. S. Kalyani PRP 22
  • 23. 1 2 1 3 2 3 1 3 ( ) 1 1 ( ) 1 1 2 3 2 ( | ) 1 2 2 3 3 ( ) 3 3 6 (1 ) = 6 (1 ) 11 11 54 13 26 27 ii P X P X X P X x x dx x x dx               Dr. S. Kalyani PRP 23
  • 24. 1 0 2 3 2 3 3 2 ( ) ( ) ( ) 6 (1 ) 6 (1 ) 3 2 3(1 ) 2(1 ) 4 6 1 0 1 1 3 , 2 2 1 The only possible value of k in the given range is . 2 1 2 k k iii We have P X k P X k x x dx x x dx k k k k k k k k                         Dr. S. Kalyani PRP 24
  • 25. Dr. S. Kalyani PRP 25 𝑖𝑣) 𝐹 𝑥 = −∞ 𝑥 𝑓 𝑥 𝑑𝑥 𝐹 𝑥 = 0 𝑥 6𝑥 1 − 𝑥 𝑑𝑥 = 0 𝑥 (6𝑥 − 6𝑥2 )𝑑𝑥 = 6 𝑥2 2 − 6 𝑥3 3 0 𝑥 𝐹(𝑥) = 3𝑥2 − 2𝑥3 is the cumulative distribution function
  • 26. Dr. S. Kalyani PRP 26 Problem The distribution function of a random variable X is given by 𝐹 𝑋 = 1 − 1 + 𝑥 𝑒−𝑥 , 𝑥 ≥ 0 Find the density function. Solution: We know that 𝑓 𝑥 = 𝑑 𝑑𝑥 𝐹 𝑥 = 𝑑 𝑑𝑥 {1 − 𝑒−𝑥 − 𝑥𝑒−𝑥} = 0 − −𝑒−𝑥 − (−𝑥𝑒−𝑥 + 𝑒−𝑥 ) = 𝑒−𝑥 + 𝑥𝑒−𝑥 − 𝑒−𝑥 = 𝑥𝑒−𝑥, 𝑥 ≥ 0. is the density function