SlideShare una empresa de Scribd logo
1 de 10
Descargar para leer sin conexión
Trigonometric Formula Sheet
Definition of the Trig Functions
Right Triangle Definition
Assume that:
0 < θ < π
2
or 0◦
< θ < 90◦
hypotenuse
adjacent
opposite
θ
sin θ =
opp
hyp
csc θ =
hyp
opp
cos θ =
adj
hyp
sec θ =
hyp
adj
tan θ =
opp
adj
cot θ =
adj
opp
Unit Circle Definition
Assume θ can be any angle.
x
y
y
x
1
(x, y)
θ
sin θ =
y
1
csc θ =
1
y
cos θ =
x
1
sec θ =
1
x
tan θ =
y
x
cot θ =
x
y
Domains of the Trig Functions
sin θ, ∀ θ ∈ (−∞, ∞)
cos θ, ∀ θ ∈ (−∞, ∞)
tan θ, ∀ θ 6=

n +
1
2

π, where n ∈ Z
csc θ, ∀ θ 6= nπ, where n ∈ Z
sec θ, ∀ θ 6=

n +
1
2

π, where n ∈ Z
cot θ, ∀ θ 6= nπ, where n ∈ Z
Ranges of the Trig Functions
−1 ≤ sin θ ≤ 1
−1 ≤ cos θ ≤ 1
−∞ ≤ tan θ ≤ ∞
csc θ ≥ 1 and csc θ ≤ −1
sec θ ≥ 1 and sec θ ≤ −1
−∞ ≤ cot θ ≤ ∞
Periods of the Trig Functions
The period of a function is the number, T, such that f (θ +T ) = f (θ ) .
So, if ω is a fixed number and θ is any angle we have the following periods.
sin(ωθ) ⇒ T =
2π
ω
cos(ωθ) ⇒ T =
2π
ω
tan(ωθ) ⇒ T =
π
ω
csc(ωθ) ⇒ T =
2π
ω
sec(ωθ) ⇒ T =
2π
ω
cot(ωθ) ⇒ T =
π
ω
1
Identities and Formulas
Tangent and Cotangent Identities
tan θ =
sin θ
cos θ
cot θ =
cos θ
sin θ
Reciprocal Identities
sin θ =
1
csc θ
csc θ =
1
sin θ
cos θ =
1
sec θ
sec θ =
1
cos θ
tan θ =
1
cot θ
cot θ =
1
tan θ
Pythagorean Identities
sin2
θ + cos2
θ = 1
tan2
θ + 1 = sec2
θ
1 + cot2
θ = csc2
θ
Even and Odd Formulas
sin(−θ) = − sin θ
cos(−θ) = cos θ
tan(−θ) = − tan θ
csc(−θ) = − csc θ
sec(−θ) = sec θ
cot(−θ) = − cot θ
Periodic Formulas
If n is an integer
sin(θ + 2πn) = sin θ
cos(θ + 2πn) = cos θ
tan(θ + πn) = tan θ
csc(θ + 2πn) = csc θ
sec(θ + 2πn) = sec θ
cot(θ + πn) = cot θ
Double Angle Formulas
sin(2θ) = 2 sin θ cos θ
cos(2θ) = cos2
θ − sin2
θ
= 2 cos2
θ − 1
= 1 − 2 sin2
θ
tan(2θ) =
2 tan θ
1 − tan2
θ
Degrees to Radians Formulas
If x is an angle in degrees and t is an angle in
radians then:
π
180◦
=
t
x
⇒ t =
πx
180◦
and x =
180◦
t
π
Half Angle Formulas
sin θ = ±
r
1 − cos(2θ)
2
cos θ = ±
r
1 + cos(2θ)
2
tan θ = ±
s
1 − cos(2θ)
1 + cos(2θ)
Sum and Difference Formulas
sin(α ± β) = sin α cos β ± cos α sin β
cos(α ± β) = cos α cos β ∓ sin α sin β
tan(α ± β) =
tan α ± tan β
1 ∓ tan α tan β
Product to Sum Formulas
sin α sin β =
1
2
[cos(α − β) − cos(α + β)]
cos α cos β =
1
2
[cos(α − β) + cos(α + β)]
sin α cos β =
1
2
[sin(α + β) + sin(α − β)]
cos α sin β =
1
2
[sin(α + β) − sin(α − β)]
Sum to Product Formulas
sin α + sin β = 2 sin

α + β
2

cos

α − β
2

sin α − sin β = 2 cos

α + β
2

sin

α − β
2

cos α + cos β = 2 cos

α + β
2

cos

α − β
2

cos α − cos β = −2 sin

α + β
2

sin

α − β
2

Cofunction Formulas
sin
π
2
− θ

= cos θ
csc
π
2
− θ

= sec θ
tan
π
2
− θ

= cot θ
cos
π
2
− θ

= sin θ
sec
π
2
− θ

= csc θ
cot
π
2
− θ

= tan θ
2
Unit Circle
0◦
, 2π
(1, 0)
180◦
, π
(−1, 0)
(0, 1)
90◦
, π
2
(0, −1)
270◦
, 3π
2
30◦
, π
6
(
√
3
2
, 1
2
)
45◦
, π
4
(
√
2
2
,
√
2
2
)
60◦
, π
3
(1
2
,
√
3
2
)
120◦
, 2π
3
(−1
2
,
√
3
2
)
135◦
, 3π
4
(−
√
2
2
,
√
2
2
)
150◦
, 5π
6
(−
√
3
2
, 1
2
)
210◦
, 7π
6
(−
√
3
2
, −1
2
) 225◦
, 5π
4
(−
√
2
2
, −
√
2
2
)
240◦
, 4π
3
(−1
2
, −
√
3
2
)
300◦
, 5π
3
(1
2
, −
√
3
2
)
315◦
, 7π
4
(
√
2
2
, −
√
2
2
)
330◦
, 11π
6
(
√
3
2
, −1
2
)
For any ordered pair on the unit circle (x, y) : cos θ = x and sin θ = y
Example
cos (7π
6 ) = −
√
3
2 sin (7π
6 ) = −1
2
3
Inverse Trig Functions
Definition
θ = sin−1
(x) is equivalent to x = sin θ
θ = cos−1
(x) is equivalent to x = cos θ
θ = tan−1
(x) is equivalent to x = tan θ
Domain and Range
Function
θ = sin−1
(x)
θ = cos−1
(x)
θ = tan−1
(x)
Domain
−1 ≤ x ≤ 1
−1 ≤ x ≤ 1
−∞ ≤ x ≤ ∞
Range
−
π
2
≤ θ ≤
π
2
0 ≤ θ ≤ π
−
π
2
 θ 
π
2
Inverse Properties
These properties hold for x in the domain and θ in
the range
sin(sin−1
(x)) = x
cos(cos−1
(x)) = x
tan(tan−1
(x)) = x
sin−1
(sin(θ)) = θ
cos−1
(cos(θ)) = θ
tan−1
(tan(θ)) = θ
Other Notations
sin−1
(x) = arcsin(x)
cos−1
(x) = arccos(x)
tan−1
(x) = arctan(x)
Law of Sines, Cosines, and Tangents
a
b
c
α
β
γ
Law of Sines
sin α
a
=
sin β
b
=
sin γ
c
Law of Cosines
a2
= b2
+ c2
− 2bc cos α
b2
= a2
+ c2
− 2ac cos β
c2
= a2
+ b2
− 2ab cos γ
Law of Tangents
a − b
a + b
=
tan 1
2
(α − β)
tan 1
2
(α + β)
b − c
b + c
=
tan 1
2
(β − γ)
tan 1
2
(β + γ)
a − c
a + c
=
tan 1
2
(α − γ)
tan 1
2
(α + γ)
4
Complex Numbers
i =
√
−1 i2
= −1 i3
= −i i4
= 1
√
−a = i
√
a, a ≥ 0
(a + bi) + (c + di) = a + c + (b + d)i
(a + bi) − (c + di) = a − c + (b − d)i
(a + bi)(c + di) = ac − bd + (ad + bc)i
(a + bi)(a − bi) = a2
+ b2
|a + bi| =
√
a2 + b2 Complex Modulus
(a + bi) = a − bi Complex Conjugate
(a + bi)(a + bi) = |a + bi|2
DeMoivre’s Theorem
Let z = r(cos θ + i sin θ), and let n be a positive integer.
Then:
zn
= rn
(cos nθ + i sin nθ).
Example: Let z = 1 − i, find z6
.
Solution: First write z in polar form.
r =
p
(1)2 + (−1)2 =
√
2
θ = arg(z) = tan−1

−1
1

= −
π
4
Polar Form: z =
√
2

cos

−
π
4

+ i sin

−
π
4

Applying DeMoivre’s Theorem gives :
z6
=
√
2
6 
cos

6 · −
π
4

+ i sin

6 · −
π
4

= 23

cos

−
3π
2

+ i sin

−
3π
2

= 8(0 + i(1))
= 8i
5
Finding the nth roots of a number using DeMoivre’s Theorem
Example: Find all the complex fourth roots of 4. That is, find all the complex solutions of
x4
= 4.
We are asked to find all complex fourth roots of 4.
These are all the solutions (including the complex values) of the equation x4
= 4.
For any positive integer n , a nonzero complex number z has exactly n distinct nth roots.
More specifically, if z is written in the trigonometric form r(cos θ + i sin θ), the nth roots of
z are given by the following formula.
(∗) r
1
n

cos

θ
n
+
360◦
k
n

+ i sin

θ
n
+
360◦
k
n

, for k = 0, 1, 2, ..., n − 1.
Remember from the previous example we need to write 4 in trigonometric form by using:
r =
p
(a)2 + (b)2 and θ = arg(z) = tan−1

b
a

.
So we have the complex number a + ib = 4 + i0.
Therefore a = 4 and b = 0
So r =
p
(4)2 + (0)2 = 4 and
θ = arg(z) = tan−1

0
4

= 0
Finally our trigonometric form is 4 = 4(cos 0◦
+ i sin 0◦
)
Using the formula (∗) above with n = 4, we can find the fourth roots of 4(cos 0◦
+ i sin 0◦
)
• For k = 0, 4
1
4

cos

0◦
4
+
360◦
∗ 0
4

+ i sin

0◦
4
+
360◦
∗ 0
4

=
√
2 (cos(0◦
) + i sin(0◦
)) =
√
2
• For k = 1, 4
1
4

cos

0◦
4
+
360◦
∗ 1
4

+ i sin

0◦
4
+
360◦
∗ 1
4

=
√
2 (cos(90◦
) + i sin(90◦
)) =
√
2i
• For k = 2, 4
1
4

cos

0◦
4
+
360◦
∗ 2
4

+ i sin

0◦
4
+
360◦
∗ 2
4

=
√
2 (cos(180◦
) + i sin(180◦
)) = −
√
2
• For k = 3, 4
1
4

cos

0◦
4
+
360◦
∗ 3
4

+ i sin

0◦
4
+
360◦
∗ 3
4

=
√
2 (cos(270◦
) + i sin(270◦
)) = −
√
2i
Thus all of the complex roots of x4
= 4 are:
√
2,
√
2i, −
√
2, −
√
2i .
6
Formulas for the Conic Sections
Circle
StandardForm : (x − h)2
+ (y − k)2
= r2
Where (h, k) = center and r = radius
Ellipse
Standard Form for Horizontal Major Axis :
(x − h)2
a2
+
(y − k)2
b2
= 1
Standard Form for V ertical Major Axis :
(x − h)2
b2
+
(y − k)2
a2
= 1
Where (h, k)= center
2a=length of major axis
2b=length of minor axis
(0  b  a)
Foci can be found by using c2
= a2
− b2
Where c= foci length
7
More Conic Sections
Hyperbola
Standard Form for Horizontal Transverse Axis :
(x − h)2
a2
−
(y − k)2
b2
= 1
Standard Form for V ertical Transverse Axis :
(y − k)2
a2
−
(x − h)2
b2
= 1
Where (h, k)= center
a=distance between center and either vertex
Foci can be found by using b2
= c2
− a2
Where c is the distance between
center and either focus. (b  0)
Parabola
Vertical axis: y = a(x − h)2
+ k
Horizontal axis: x = a(y − k)2
+ h
Where (h, k)= vertex
a=scaling factor
8
x
Example : sin


5π
4

 = −
√
2
2
f(x)
f(x) = sin(x)
0 π
6
π
4
π
3
π
2
2π
3
3π
4
5π
6
π 7π
6
5π
4
4π
3
3π
2
5π
3
7π
4
11π
6 2π
1
-1
1
2
√
2
2
√
3
2
−1
2
−
√
2
2
−
√
3
2
x
Example : cos


7π
6

 = −
√
3
2
f(x)
f(x) = cos(x)
0 π
6
π
4
π
3
π
2
2π
3
3π
4
5π
6
π 7π
6
5π
4
4π
3
3π
2
5π
3
7π
4
11π
6 2π
1
-1
1
2
√
2
2
√
3
2
−1
2
−
√
2
2
−
√
3
2
9
x
f(x)
f(x) = tan x
π
2
−π
2
√
3
3
1
√
3
−
√
3
3
−1
−
√
3
π
4
−π
4
0 π
6
−π
6
π
3
−π
3
2π
3
−2π
3
3π
4
−3π
4
5π
6
−5π
6
π
−π
10

Más contenido relacionado

La actualidad más candente

University of manchester mathematical formula tables
University of manchester mathematical formula tablesUniversity of manchester mathematical formula tables
University of manchester mathematical formula tables
Gaurav Vasani
 
Pc30 June 2001 Exam Ans Key
Pc30 June 2001 Exam Ans KeyPc30 June 2001 Exam Ans Key
Pc30 June 2001 Exam Ans Key
ingroy
 
Assessments for class xi
Assessments  for class  xi Assessments  for class  xi
Assessments for class xi
indu psthakur
 

La actualidad más candente (18)

Complex analysis notes
Complex analysis notesComplex analysis notes
Complex analysis notes
 
University of manchester mathematical formula tables
University of manchester mathematical formula tablesUniversity of manchester mathematical formula tables
University of manchester mathematical formula tables
 
Engineering Mathematics-IV_B.Tech_Semester-IV_Unit-II
Engineering Mathematics-IV_B.Tech_Semester-IV_Unit-IIEngineering Mathematics-IV_B.Tech_Semester-IV_Unit-II
Engineering Mathematics-IV_B.Tech_Semester-IV_Unit-II
 
brain gate
brain gatebrain gate
brain gate
 
19 trig substitutions-x
19 trig substitutions-x19 trig substitutions-x
19 trig substitutions-x
 
Pc30 June 2001 Exam Ans Key
Pc30 June 2001 Exam Ans KeyPc30 June 2001 Exam Ans Key
Pc30 June 2001 Exam Ans Key
 
Mathematics
MathematicsMathematics
Mathematics
 
Ch08 3
Ch08 3Ch08 3
Ch08 3
 
Calculus Early Transcendentals 10th Edition Anton Solutions Manual
Calculus Early Transcendentals 10th Edition Anton Solutions ManualCalculus Early Transcendentals 10th Edition Anton Solutions Manual
Calculus Early Transcendentals 10th Edition Anton Solutions Manual
 
Capitulo 2 corripio
Capitulo 2 corripioCapitulo 2 corripio
Capitulo 2 corripio
 
corripio
corripio corripio
corripio
 
Sect1 1
Sect1 1Sect1 1
Sect1 1
 
Appendex
AppendexAppendex
Appendex
 
System dynamics 3rd edition palm solutions manual
System dynamics 3rd edition palm solutions manualSystem dynamics 3rd edition palm solutions manual
System dynamics 3rd edition palm solutions manual
 
Identidades
IdentidadesIdentidades
Identidades
 
Sample question paper 2 with solution
Sample question paper 2 with solutionSample question paper 2 with solution
Sample question paper 2 with solution
 
Assessments for class xi
Assessments  for class  xi Assessments  for class  xi
Assessments for class xi
 
Equation of a Circle in standard and general form
Equation of  a Circle in standard and general formEquation of  a Circle in standard and general form
Equation of a Circle in standard and general form
 

Similar a economics

Math resources trigonometric_formulas class 11th and 12th
Math resources trigonometric_formulas class 11th and 12thMath resources trigonometric_formulas class 11th and 12th
Math resources trigonometric_formulas class 11th and 12th
Deepak Kumar
 

Similar a economics (20)

Math resources trigonometric_formulas class 11th and 12th
Math resources trigonometric_formulas class 11th and 12thMath resources trigonometric_formulas class 11th and 12th
Math resources trigonometric_formulas class 11th and 12th
 
Trigonometric ratios and identities 1
Trigonometric ratios and identities 1Trigonometric ratios and identities 1
Trigonometric ratios and identities 1
 
Questions and Solutions Basic Trigonometry.pdf
Questions and Solutions Basic Trigonometry.pdfQuestions and Solutions Basic Trigonometry.pdf
Questions and Solutions Basic Trigonometry.pdf
 
Trigonometry cheat sheet
Trigonometry cheat sheetTrigonometry cheat sheet
Trigonometry cheat sheet
 
Trig cheat sheet
Trig cheat sheetTrig cheat sheet
Trig cheat sheet
 
Maths04
Maths04Maths04
Maths04
 
Formulario Trigonometria
Formulario TrigonometriaFormulario Trigonometria
Formulario Trigonometria
 
TRIGONOMETRY
TRIGONOMETRYTRIGONOMETRY
TRIGONOMETRY
 
Trigonometry cheat sheet
Trigonometry cheat sheetTrigonometry cheat sheet
Trigonometry cheat sheet
 
1.trigonometry Further Mathematics Zimbabwe Zimsec Cambridge
1.trigonometry Further Mathematics Zimbabwe Zimsec Cambridge1.trigonometry Further Mathematics Zimbabwe Zimsec Cambridge
1.trigonometry Further Mathematics Zimbabwe Zimsec Cambridge
 
Summary Of Important Laws Of Differentiation And Integration
Summary Of Important Laws Of Differentiation And IntegrationSummary Of Important Laws Of Differentiation And Integration
Summary Of Important Laws Of Differentiation And Integration
 
Review of Trigonometry for Calculus “Trigon” =triangle +“metry”=measurement =...
Review of Trigonometry for Calculus “Trigon” =triangle +“metry”=measurement =...Review of Trigonometry for Calculus “Trigon” =triangle +“metry”=measurement =...
Review of Trigonometry for Calculus “Trigon” =triangle +“metry”=measurement =...
 
Trigonometry.pdf
Trigonometry.pdfTrigonometry.pdf
Trigonometry.pdf
 
maths ppt.pdf
maths ppt.pdfmaths ppt.pdf
maths ppt.pdf
 
maths ppt.pdf
maths ppt.pdfmaths ppt.pdf
maths ppt.pdf
 
On Triplet of Positive Integers Such That the Sum of Any Two of Them is a Per...
On Triplet of Positive Integers Such That the Sum of Any Two of Them is a Per...On Triplet of Positive Integers Such That the Sum of Any Two of Them is a Per...
On Triplet of Positive Integers Such That the Sum of Any Two of Them is a Per...
 
Computer science-formulas
Computer science-formulasComputer science-formulas
Computer science-formulas
 
Trig packet1 000
Trig packet1 000Trig packet1 000
Trig packet1 000
 
Trig packet1 000
Trig packet1 000Trig packet1 000
Trig packet1 000
 
2018 mtap for g10 with answers
2018 mtap for g10 with answers2018 mtap for g10 with answers
2018 mtap for g10 with answers
 

Último

Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
ZurliaSoop
 

Último (20)

Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The Basics
 
FSB Advising Checklist - Orientation 2024
FSB Advising Checklist - Orientation 2024FSB Advising Checklist - Orientation 2024
FSB Advising Checklist - Orientation 2024
 
ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.
 
Spatium Project Simulation student brief
Spatium Project Simulation student briefSpatium Project Simulation student brief
Spatium Project Simulation student brief
 
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
 
Micro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdfMicro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdf
 
How to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POSHow to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POS
 
Jamworks pilot and AI at Jisc (20/03/2024)
Jamworks pilot and AI at Jisc (20/03/2024)Jamworks pilot and AI at Jisc (20/03/2024)
Jamworks pilot and AI at Jisc (20/03/2024)
 
Making communications land - Are they received and understood as intended? we...
Making communications land - Are they received and understood as intended? we...Making communications land - Are they received and understood as intended? we...
Making communications land - Are they received and understood as intended? we...
 
Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024
 
Single or Multiple melodic lines structure
Single or Multiple melodic lines structureSingle or Multiple melodic lines structure
Single or Multiple melodic lines structure
 
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
 
Towards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptxTowards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptx
 
General Principles of Intellectual Property: Concepts of Intellectual Proper...
General Principles of Intellectual Property: Concepts of Intellectual  Proper...General Principles of Intellectual Property: Concepts of Intellectual  Proper...
General Principles of Intellectual Property: Concepts of Intellectual Proper...
 
Food safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdfFood safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdf
 
Application orientated numerical on hev.ppt
Application orientated numerical on hev.pptApplication orientated numerical on hev.ppt
Application orientated numerical on hev.ppt
 
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptxHMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
 
Wellbeing inclusion and digital dystopias.pptx
Wellbeing inclusion and digital dystopias.pptxWellbeing inclusion and digital dystopias.pptx
Wellbeing inclusion and digital dystopias.pptx
 
Unit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptxUnit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptx
 
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
 

economics

  • 1. Trigonometric Formula Sheet Definition of the Trig Functions Right Triangle Definition Assume that: 0 < θ < π 2 or 0◦ < θ < 90◦ hypotenuse adjacent opposite θ sin θ = opp hyp csc θ = hyp opp cos θ = adj hyp sec θ = hyp adj tan θ = opp adj cot θ = adj opp Unit Circle Definition Assume θ can be any angle. x y y x 1 (x, y) θ sin θ = y 1 csc θ = 1 y cos θ = x 1 sec θ = 1 x tan θ = y x cot θ = x y Domains of the Trig Functions sin θ, ∀ θ ∈ (−∞, ∞) cos θ, ∀ θ ∈ (−∞, ∞) tan θ, ∀ θ 6= n + 1 2 π, where n ∈ Z csc θ, ∀ θ 6= nπ, where n ∈ Z sec θ, ∀ θ 6= n + 1 2 π, where n ∈ Z cot θ, ∀ θ 6= nπ, where n ∈ Z Ranges of the Trig Functions −1 ≤ sin θ ≤ 1 −1 ≤ cos θ ≤ 1 −∞ ≤ tan θ ≤ ∞ csc θ ≥ 1 and csc θ ≤ −1 sec θ ≥ 1 and sec θ ≤ −1 −∞ ≤ cot θ ≤ ∞ Periods of the Trig Functions The period of a function is the number, T, such that f (θ +T ) = f (θ ) . So, if ω is a fixed number and θ is any angle we have the following periods. sin(ωθ) ⇒ T = 2π ω cos(ωθ) ⇒ T = 2π ω tan(ωθ) ⇒ T = π ω csc(ωθ) ⇒ T = 2π ω sec(ωθ) ⇒ T = 2π ω cot(ωθ) ⇒ T = π ω 1
  • 2. Identities and Formulas Tangent and Cotangent Identities tan θ = sin θ cos θ cot θ = cos θ sin θ Reciprocal Identities sin θ = 1 csc θ csc θ = 1 sin θ cos θ = 1 sec θ sec θ = 1 cos θ tan θ = 1 cot θ cot θ = 1 tan θ Pythagorean Identities sin2 θ + cos2 θ = 1 tan2 θ + 1 = sec2 θ 1 + cot2 θ = csc2 θ Even and Odd Formulas sin(−θ) = − sin θ cos(−θ) = cos θ tan(−θ) = − tan θ csc(−θ) = − csc θ sec(−θ) = sec θ cot(−θ) = − cot θ Periodic Formulas If n is an integer sin(θ + 2πn) = sin θ cos(θ + 2πn) = cos θ tan(θ + πn) = tan θ csc(θ + 2πn) = csc θ sec(θ + 2πn) = sec θ cot(θ + πn) = cot θ Double Angle Formulas sin(2θ) = 2 sin θ cos θ cos(2θ) = cos2 θ − sin2 θ = 2 cos2 θ − 1 = 1 − 2 sin2 θ tan(2θ) = 2 tan θ 1 − tan2 θ Degrees to Radians Formulas If x is an angle in degrees and t is an angle in radians then: π 180◦ = t x ⇒ t = πx 180◦ and x = 180◦ t π Half Angle Formulas sin θ = ± r 1 − cos(2θ) 2 cos θ = ± r 1 + cos(2θ) 2 tan θ = ± s 1 − cos(2θ) 1 + cos(2θ) Sum and Difference Formulas sin(α ± β) = sin α cos β ± cos α sin β cos(α ± β) = cos α cos β ∓ sin α sin β tan(α ± β) = tan α ± tan β 1 ∓ tan α tan β Product to Sum Formulas sin α sin β = 1 2 [cos(α − β) − cos(α + β)] cos α cos β = 1 2 [cos(α − β) + cos(α + β)] sin α cos β = 1 2 [sin(α + β) + sin(α − β)] cos α sin β = 1 2 [sin(α + β) − sin(α − β)] Sum to Product Formulas sin α + sin β = 2 sin α + β 2 cos α − β 2 sin α − sin β = 2 cos α + β 2 sin α − β 2 cos α + cos β = 2 cos α + β 2 cos α − β 2 cos α − cos β = −2 sin α + β 2 sin α − β 2 Cofunction Formulas sin π 2 − θ = cos θ csc π 2 − θ = sec θ tan π 2 − θ = cot θ cos π 2 − θ = sin θ sec π 2 − θ = csc θ cot π 2 − θ = tan θ 2
  • 3. Unit Circle 0◦ , 2π (1, 0) 180◦ , π (−1, 0) (0, 1) 90◦ , π 2 (0, −1) 270◦ , 3π 2 30◦ , π 6 ( √ 3 2 , 1 2 ) 45◦ , π 4 ( √ 2 2 , √ 2 2 ) 60◦ , π 3 (1 2 , √ 3 2 ) 120◦ , 2π 3 (−1 2 , √ 3 2 ) 135◦ , 3π 4 (− √ 2 2 , √ 2 2 ) 150◦ , 5π 6 (− √ 3 2 , 1 2 ) 210◦ , 7π 6 (− √ 3 2 , −1 2 ) 225◦ , 5π 4 (− √ 2 2 , − √ 2 2 ) 240◦ , 4π 3 (−1 2 , − √ 3 2 ) 300◦ , 5π 3 (1 2 , − √ 3 2 ) 315◦ , 7π 4 ( √ 2 2 , − √ 2 2 ) 330◦ , 11π 6 ( √ 3 2 , −1 2 ) For any ordered pair on the unit circle (x, y) : cos θ = x and sin θ = y Example cos (7π 6 ) = − √ 3 2 sin (7π 6 ) = −1 2 3
  • 4. Inverse Trig Functions Definition θ = sin−1 (x) is equivalent to x = sin θ θ = cos−1 (x) is equivalent to x = cos θ θ = tan−1 (x) is equivalent to x = tan θ Domain and Range Function θ = sin−1 (x) θ = cos−1 (x) θ = tan−1 (x) Domain −1 ≤ x ≤ 1 −1 ≤ x ≤ 1 −∞ ≤ x ≤ ∞ Range − π 2 ≤ θ ≤ π 2 0 ≤ θ ≤ π − π 2 θ π 2 Inverse Properties These properties hold for x in the domain and θ in the range sin(sin−1 (x)) = x cos(cos−1 (x)) = x tan(tan−1 (x)) = x sin−1 (sin(θ)) = θ cos−1 (cos(θ)) = θ tan−1 (tan(θ)) = θ Other Notations sin−1 (x) = arcsin(x) cos−1 (x) = arccos(x) tan−1 (x) = arctan(x) Law of Sines, Cosines, and Tangents a b c α β γ Law of Sines sin α a = sin β b = sin γ c Law of Cosines a2 = b2 + c2 − 2bc cos α b2 = a2 + c2 − 2ac cos β c2 = a2 + b2 − 2ab cos γ Law of Tangents a − b a + b = tan 1 2 (α − β) tan 1 2 (α + β) b − c b + c = tan 1 2 (β − γ) tan 1 2 (β + γ) a − c a + c = tan 1 2 (α − γ) tan 1 2 (α + γ) 4
  • 5. Complex Numbers i = √ −1 i2 = −1 i3 = −i i4 = 1 √ −a = i √ a, a ≥ 0 (a + bi) + (c + di) = a + c + (b + d)i (a + bi) − (c + di) = a − c + (b − d)i (a + bi)(c + di) = ac − bd + (ad + bc)i (a + bi)(a − bi) = a2 + b2 |a + bi| = √ a2 + b2 Complex Modulus (a + bi) = a − bi Complex Conjugate (a + bi)(a + bi) = |a + bi|2 DeMoivre’s Theorem Let z = r(cos θ + i sin θ), and let n be a positive integer. Then: zn = rn (cos nθ + i sin nθ). Example: Let z = 1 − i, find z6 . Solution: First write z in polar form. r = p (1)2 + (−1)2 = √ 2 θ = arg(z) = tan−1 −1 1 = − π 4 Polar Form: z = √ 2 cos − π 4 + i sin − π 4 Applying DeMoivre’s Theorem gives : z6 = √ 2 6 cos 6 · − π 4 + i sin 6 · − π 4 = 23 cos − 3π 2 + i sin − 3π 2 = 8(0 + i(1)) = 8i 5
  • 6. Finding the nth roots of a number using DeMoivre’s Theorem Example: Find all the complex fourth roots of 4. That is, find all the complex solutions of x4 = 4. We are asked to find all complex fourth roots of 4. These are all the solutions (including the complex values) of the equation x4 = 4. For any positive integer n , a nonzero complex number z has exactly n distinct nth roots. More specifically, if z is written in the trigonometric form r(cos θ + i sin θ), the nth roots of z are given by the following formula. (∗) r 1 n cos θ n + 360◦ k n + i sin θ n + 360◦ k n , for k = 0, 1, 2, ..., n − 1. Remember from the previous example we need to write 4 in trigonometric form by using: r = p (a)2 + (b)2 and θ = arg(z) = tan−1 b a . So we have the complex number a + ib = 4 + i0. Therefore a = 4 and b = 0 So r = p (4)2 + (0)2 = 4 and θ = arg(z) = tan−1 0 4 = 0 Finally our trigonometric form is 4 = 4(cos 0◦ + i sin 0◦ ) Using the formula (∗) above with n = 4, we can find the fourth roots of 4(cos 0◦ + i sin 0◦ ) • For k = 0, 4 1 4 cos 0◦ 4 + 360◦ ∗ 0 4 + i sin 0◦ 4 + 360◦ ∗ 0 4 = √ 2 (cos(0◦ ) + i sin(0◦ )) = √ 2 • For k = 1, 4 1 4 cos 0◦ 4 + 360◦ ∗ 1 4 + i sin 0◦ 4 + 360◦ ∗ 1 4 = √ 2 (cos(90◦ ) + i sin(90◦ )) = √ 2i • For k = 2, 4 1 4 cos 0◦ 4 + 360◦ ∗ 2 4 + i sin 0◦ 4 + 360◦ ∗ 2 4 = √ 2 (cos(180◦ ) + i sin(180◦ )) = − √ 2 • For k = 3, 4 1 4 cos 0◦ 4 + 360◦ ∗ 3 4 + i sin 0◦ 4 + 360◦ ∗ 3 4 = √ 2 (cos(270◦ ) + i sin(270◦ )) = − √ 2i Thus all of the complex roots of x4 = 4 are: √ 2, √ 2i, − √ 2, − √ 2i . 6
  • 7. Formulas for the Conic Sections Circle StandardForm : (x − h)2 + (y − k)2 = r2 Where (h, k) = center and r = radius Ellipse Standard Form for Horizontal Major Axis : (x − h)2 a2 + (y − k)2 b2 = 1 Standard Form for V ertical Major Axis : (x − h)2 b2 + (y − k)2 a2 = 1 Where (h, k)= center 2a=length of major axis 2b=length of minor axis (0 b a) Foci can be found by using c2 = a2 − b2 Where c= foci length 7
  • 8. More Conic Sections Hyperbola Standard Form for Horizontal Transverse Axis : (x − h)2 a2 − (y − k)2 b2 = 1 Standard Form for V ertical Transverse Axis : (y − k)2 a2 − (x − h)2 b2 = 1 Where (h, k)= center a=distance between center and either vertex Foci can be found by using b2 = c2 − a2 Where c is the distance between center and either focus. (b 0) Parabola Vertical axis: y = a(x − h)2 + k Horizontal axis: x = a(y − k)2 + h Where (h, k)= vertex a=scaling factor 8
  • 9. x Example : sin   5π 4   = − √ 2 2 f(x) f(x) = sin(x) 0 π 6 π 4 π 3 π 2 2π 3 3π 4 5π 6 π 7π 6 5π 4 4π 3 3π 2 5π 3 7π 4 11π 6 2π 1 -1 1 2 √ 2 2 √ 3 2 −1 2 − √ 2 2 − √ 3 2 x Example : cos   7π 6   = − √ 3 2 f(x) f(x) = cos(x) 0 π 6 π 4 π 3 π 2 2π 3 3π 4 5π 6 π 7π 6 5π 4 4π 3 3π 2 5π 3 7π 4 11π 6 2π 1 -1 1 2 √ 2 2 √ 3 2 −1 2 − √ 2 2 − √ 3 2 9
  • 10. x f(x) f(x) = tan x π 2 −π 2 √ 3 3 1 √ 3 − √ 3 3 −1 − √ 3 π 4 −π 4 0 π 6 −π 6 π 3 −π 3 2π 3 −2π 3 3π 4 −3π 4 5π 6 −5π 6 π −π 10