SlideShare una empresa de Scribd logo
1 de 70
Descargar para leer sin conexión
© 2019 GREiA, University of Lleida
Materials for thermal energy storage
Le tecnologie per l'accumulo termico nelle Smart grid
Cagliari, Italy
Dr. Luisa F. Cabeza
2Dr. Luisa F. Cabeza – October 2019
Contents
• Introduction
• Materials for TES
3Dr. Luisa F. Cabeza – October 2019
Basic principle of TES
• A complete storage process involves at least three
steps:
• Charging
• Storing
• Discharging
Mehling H, Cabeza LF. Heat and cold storage with PCM. An up to date
introduction into basics and applications. Springer, 2008.
4Dr. Luisa F. Cabeza – October 2019
Basic principle of TES
• The technical and economical requirements for an
energy storage system are determined by its actual
application within the energy system
• Therefore any evaluation and comparison of energy
storage technologies is only possible with respect to
this application
• The application determines the technical
requirements (e.g. type of energy, storage capacity,
charging/discharging power, etc.) as well as the
economical environment (e.g. expected pay-back
time, price for delivered energy, etc.)
5Dr. Luisa F. Cabeza – October 2019
Benefits of TES
• The systems achieve benefits by fulfilling one or
more of the following purposes:
• Increase generation capacity
• Enable better operation of cogeneration plants
• Shift energy purchases to low cost periods
• Increase system reliability
• Integration with other functions
Figure from Andreas Hauer
6Dr. Luisa F. Cabeza – October 2019
Thermal Energy Storage
L.F. Cabeza, A. Gutierrez, C. Barreneche, S. Ushak, A.G. Fernández, A.I Fernández, M. Grágeda
Renewable and Sustainable Energy Reviews 42 (2015) 1106-1112
7Dr. Luisa F. Cabeza – October 2019
Thermal Energy Storage
• Maturity of TES technologies
A. Gutierrez, L. Miró, A. Gil, J. Rodríquez-
Aseguinolaza, C. Barreneche, N. Calvet, X. Py, A.I.
Fernández, M. Grágeda, S. Ushak, L.F. Cabeza
Renewable and Sustainable Energy Reviews 59
(2016) 763-783
8Dr. Luisa F. Cabeza – October 2019
Thermal Energy Storage
Sensible Latent
Sorption & chemical
reactions
Thermochemical
(kJ/kg)
Temperature(ºC)
Stored heat (kJ/kg)
Temperature(ºC)
Stored heat
A(s)
heat storage
endothermic reaction
heat release
exothermic reaction
B(s) + 𝐶(g)
STORAGE
CHARGE
DISCHARGE
9Dr. Luisa F. Cabeza – October 2019
TES technologies
• Heat storage as sensible heat
– solids (stone, brick,…)
– liquids (water,…)
The most common method for heat storage.
Stored heat
Temperature
sensible
TcmQ 
10Dr. Luisa F. Cabeza – October 2019
Stored heat
Temperature
sensible
sensible
latent
sensible
Temperature of
phase change
Materials with useful phase change
= latent heat storage material,
= phase change material (PCM)
TES technologies
• Heat storage as latent heat
– evaporation at constant
volume  temperature and
pressure change
– evaporation at constant
pressure  volume change
or open system
– melting at constant pressure
 small volume change
 no temperature change
hmQ 
11Dr. Luisa F. Cabeza – October 2019
TES technologies
• Sorption and thermochemical storage
• Uses reversible chemical reactions to store thermal
energy in the form of chemical compounds
• This energy can be discharged at different temperatures,
dependent on the properties of the thermochemical
reaction
12Dr. Luisa F. Cabeza – October 2019
TES application potential
• Matching supply and demand
Figure from Andreas Hauer
13Dr. Luisa F. Cabeza – October 2019
TES application potential
• Matching supply and demand: seasonal storage
A. Dahash, F. Ochs, M.B. Janetti, W. Streicher.
Applied Enregy 239 (2019) 296-315
14Dr. Luisa F. Cabeza – October 2019
TES application potential
• Power vs. Energy
Figure from Andreas Hauer
15Dr. Luisa F. Cabeza – October 2019
TES application potential
• Building applications
– Passive systems in the envelope
– Active systems in the envelope (ventilated façade)
– DHW solar energy with PCM in water tank
• High temperature applications
– Solar cooling
– Industrial waste heat recovery
– Storage in CSP
• Other applications
– General containers
– Beverages
– Catering
– Blood products
– Electronic devices
16Dr. Luisa F. Cabeza – October 2019
Contents
• Introduction
• Materials for TES
17Dr. Luisa F. Cabeza – October 2019
Classes of materials
• Any material can be used for thermal energy
storage (TES)
• The selection of the material depends on:
– The application
– The requirements of the application:
• Temperature
• Power
• Energy density
– The properties of the material:
• Energy density
• Stability (chemical, physical, etc.)
• TES technology used
• …
18Dr. Luisa F. Cabeza – October 2019
Classes of materials
• Classes of materials
A. Fallahi, G. Guldentops, M. Tao, S. Granados-Focil,
S. Van Dessel. Applied Thermal Engineering 127
(2017) 1427-1441
19Dr. Luisa F. Cabeza – October 2019
Sensible TES
• Classes of materials
– Water (tanks, pits)
– Rocks/bricks/ceramics
– Metals
– Molten salts
Usually classified by the
application
20Dr. Luisa F. Cabeza – October 2019
Sensible TES
• Classes of materials
– Water (tanks, pits)
• Widely available
• Cheap
• High energy density
A. Dahash, F. Ochs, M.B. Janetti, W. Streicher.
Applied Energy 239 (2019) 296-315
Y. Pal Chandra, T. Matuska. Energy and Buildigns 187
(2019) 110-131
21Dr. Luisa F. Cabeza – October 2019
Sensible TES
• Classes of materials
– Ceramics
• Highly used
• Low cost
• Low thermal cycling (they break under thermal stress)
22Dr. Luisa F. Cabeza – October 2019
Sensible TES
• Classes of materials
A. Gil, M. Medrano, I. Martorell, A. Lázaro, P. Dolado, B. Zalba, L.F. Cabeza.
Renewable and Sustainable Energy Reviews 14 (2010) 31-55
23Dr. Luisa F. Cabeza – October 2019
Sensible TES
• Classes of materials
– Metals and metal alloys
• High thermal diffusivity
• Low thermal energy density
• Considerations:
– There is a lack of consciousness about the implications of the
metallurgic aspects related to melting and solidification of metals
and metal alloys under thermal cycling at high temperatures
A.I. Fernández, C. Barreneche, M. Belusko, M. Segarra, F. Bruno, L.F. Cabeza
Solar Energy Materials and Solar Cells 171 (2017) 275-281
24Dr. Luisa F. Cabeza – October 2019
Sensible TES
• Classes of materials
– Metals and metal alloys
A.I. Fernández, C. Barreneche, M. Belusko, M. Segarra, F. Bruno, L.F. Cabeza
Solar Energy Materials and Solar Cells 171 (2017) 275-281
25Dr. Luisa F. Cabeza – October 2019
Sensible TES
• Classes of materials
– Metal alloys
G. Wei, G. Wang, C. Xu, X. Ju, L. Xing, X. Du, Y. Yang
Renewable and Sustainable Energy Reviews 81 (2018) 1771-1786
26Dr. Luisa F. Cabeza – October 2019
Sensible TES
• Classes of materials
– High temperature concrete and castable ceramic
A. Gil, M. Medrano, I. Martorell, A. Lázaro, P. Dolado, B. Zalba, L.F. Cabeza.
Renewable and Sustainable Energy Reviews 14 (2010) 31-55
27Dr. Luisa F. Cabeza – October 2019
Sensible TES
• Classes of materials
– Molten salts: solar salt
• Highly corrosive
• Low thermal conductivity
G. Wei, G. Wang, C. Xu, X. Ju, L. Xing, X. Du, Y. Yang
Renewable and Sustainable Energy Reviews 81 (2018) 1771-1786
28Dr. Luisa F. Cabeza – October 2019
Sensible TES
• Classes of materials
– Molten salts
G. Wei, G. Wang, C. Xu, X. Ju, L. Xing, X. Du, Y. Yang
Renewable and Sustainable Energy Reviews 81 (2018) 1771-1786
29Dr. Luisa F. Cabeza – October 2019
Sensible TES
• Classes of materials
– Other materials used for high temperature
A. Gil, M. Medrano, I. Martorell, A. Lázaro, P. Dolado, B. Zalba, L.F. Cabeza.
Renewable and Sustainable Energy Reviews 14 (2010) 31-55
30Dr. Luisa F. Cabeza – October 2019
Sensible TES
• Classes of materials
– Wastes and by-products: bischofite
A. Gutierrez, L. Miró, A. Gil, J. Rodríquez-Aseguinolaza, C. Barreneche,
N. Calvet, X. Py, A.I. Fernández, M. Grágeda, S. Ushak, L.F. Cabeza
Renewable and Sustainable Energy Reviews 59 (2016) 763-783
31Dr. Luisa F. Cabeza – October 2019
Sensible TES
• Classes of materials
– Wastes and by-products: slags
A. Gutierrez, L. Miró, A. Gil, J. Rodríquez-Aseguinolaza, C. Barreneche,
N. Calvet, X. Py, A.I. Fernández, M. Grágeda, S. Ushak, L.F. Cabeza
Renewable and Sustainable Energy Reviews 59 (2016) 763-783
32Dr. Luisa F. Cabeza – October 2019
Sensible TES
• Requirements of the materials
Thermal requirements
- High energy density
- Good specific heat capacity
- High thermal conductivity
- Low thermal diffusivity
- Service temperature range fitted to the
application
- Low thermal expansion coefficient
Physical and technical requirements
- High density
- High cycle stability
- Non-corrosiveness
- Low system complexity
- Low vapour pressure in the service temperature range
33Dr. Luisa F. Cabeza – October 2019
Sensible TES
• Requirements of the materials
Economic requirements
- Low price
- Large scale production methods
Recyclability and safety requirements
- Non-toxicity
- Recyclable or reusable
- Low CO2 footprint
- Low embodied energy
For a good selection of the proper material, we
need to rank the requirements and to evaluate a
compromise between contradictory or competing
requirements
34Dr. Luisa F. Cabeza – October 2019
Latent TES
• Classes of materials
– Inorganic substances
• Water/ice
• Salt hydrates
• Salts
– Organic substances
• Paraffin
• Fatty acids
• Polymers (HDPE)
• BioPCM (esters, etc.)
Usually classified by the
nature of the material
35Dr. Luisa F. Cabeza – October 2019
Latent TES
• Classes of materials
Organics Inorganics
Advantages
- No corrosives
- Low or none subcooling
- Chemical and thermal stability
Advantages
- Greater phase change enthalpy
- Higher energy density
Disadvantages
- Lower phase change enthalpy
- Low thermal conductivity
- Flammability
- Bad compatibility with plastics
Disadvantages
- Subcooling
- Corrosion
- Phase separation
- Phase segregation, lack of
thermal stability
L.F. Cabeza, A. Castell, C. Barreneche, A. de Gracia, A.I Fernández
Renewable and Sustainable Energy Reviews 15 (2011) 1675-1695
36Dr. Luisa F. Cabeza – October 2019
Latent TES
• Classes of materials
Inorganic
Organic
A. Fallahi, G. Guldentops, M. Tao, S. Granados-Focil,
S. Van Dessel. Applied Thermal Engineering 127
(2017) 1427-1441
37Dr. Luisa F. Cabeza – October 2019
Latent TES
• Classes of materials
Solid-solid organic PCM
A. Fallahi, G. Guldentops, M. Tao, S. Granados-Focil,
S. Van Dessel. Applied Thermal Engineering 127
(2017) 1427-1441
38Dr. Luisa F. Cabeza – October 2019
Latent TES
• Classes of materials
– Water/ice
• It is the oldest PCM, used since prehistory
• Its use for cold drinks is a clear example of TES material
39Dr. Luisa F. Cabeza – October 2019
Latent TES
• Classes of materials
– Salt hydrates
Y. Lin, G. Alva, G. Fang. Energy 165 Part A
(2018) 685-708
40Dr. Luisa F. Cabeza – October 2019
Latent TES
• Classes of materials
– Salts
Y. Lin, G. Alva, G. Fang. Energy 165 Part A
(2018) 685-708
41Dr. Luisa F. Cabeza – October 2019
Latent TES
• Classes of materials
– Eutectic salts
Y. Lin, G. Alva, G. Fang. Energy 165 Part A
(2018) 685-708
42Dr. Luisa F. Cabeza – October 2019
Latent TES
• Classes of materials
– Polymeric solid-solid PCM
A. Fallahi, G. Guldentops, M. Tao, S. Granados-Focil,
S. Van Dessel. Applied Thermal Engineering 127
(2017) 1427-1441
43Dr. Luisa F. Cabeza – October 2019
Latent TES
• Classes of materials
– Organic solid-solid PCM
A. Fallahi, G. Guldentops, M. Tao, S. Granados-Focil,
S. Van Dessel. Applied Thermal Engineering 127
(2017) 1427-1441
44Dr. Luisa F. Cabeza – October 2019
Latent TES
• Classes of materials
– Organometallic solid-solid PCM
A. Fallahi, G. Guldentops, M. Tao, S. Granados-Focil,
S. Van Dessel. Applied Thermal Engineering 127
(2017) 1427-1441
45Dr. Luisa F. Cabeza – October 2019
Latent TES
• Classes of materials
– Inorganic solid-solid PCM
A. Fallahi, G. Guldentops, M. Tao, S. Granados-Focil,
S. Van Dessel. Applied Thermal Engineering 127
(2017) 1427-1441
46Dr. Luisa F. Cabeza – October 2019
Latent TES
• Classes of materials
– Metal and metal alloys
Y. Lin, G. Alva, G. Fang. Energy 165 Part A
(2018) 685-708
47Dr. Luisa F. Cabeza – October 2019
Latent TES
• Classes of materials
– Wastes and by-products: bischofite
A. Gutierrez, L. Miró, A. Gil, J. Rodríquez-Aseguinolaza, C. Barreneche,
N. Calvet, X. Py, A.I. Fernández, M. Grágeda, S. Ushak, L.F. Cabeza
Renewable and Sustainable Energy Reviews 59 (2016) 763-783
48Dr. Luisa F. Cabeza – October 2019
Latent TES
• Classes of materials
– Wastes and by-products: astrakanite and kainite
A. Gutierrez, L. Miró, A. Gil, J. Rodríquez-Aseguinolaza, C. Barreneche,
N. Calvet, X. Py, A.I. Fernández, M. Grágeda, S. Ushak, L.F. Cabeza
Renewable and Sustainable Energy Reviews 59 (2016) 763-783
49Dr. Luisa F. Cabeza – October 2019
Latent TES
• Requirements of the materials
Thermal requirements
- Suitable phase change temperature fitted to the application
- Large phase change enthalpy and specific heat
- High thermal conductivity
- Reproducible phase change
- Good thermal stability
Physical and technical requirements
- Low density variation and small volume change
- High cycle stability
- High chemical and physical stability
- Small or no subcooling
- Non-corrosiveness (good compatibility with other materials)
- Low system complexity
- Low vapour pressure in the service temperature range
50Dr. Luisa F. Cabeza – October 2019
Latent TES
• Requirements of the materials
Economic requirements
- Low price
- Large scale production methods
Recyclability and safety requirements
- Non-toxicity
- Recyclable or reusable
- Low CO2 footprint
- Low embodied energy
51Dr. Luisa F. Cabeza – October 2019
Sorption & chemical reactions
• Classes of materials
J. Cot-Gores, A. Castell, L.F. Cabeza
Renewable and Sustainable Energy Reviews 16 (2012) 5207-5224
C. Prieto, P. Cooper, A.I. Fernández, L.F. Cabeza
Renewable and Sustainable Energy Reviews 60 (2016) 909-929
52Dr. Luisa F. Cabeza – October 2019
Sorption & chemical reactions
• Classes of materials
– Chemical reactions: gas/solid reactions
• Hydration reaction:
• Carbonation reaction:
• Ammonia decomposition:
• Metal oxidation reactions:
• Sulphur cycle:
53Dr. Luisa F. Cabeza – October 2019
Sorption & chemical reactions
• Classes of materials
– Chemical reactions: gas/solid reactions
J. Cot-Gores, A. Castell, L.F. Cabeza
Renewable and Sustainable Energy Reviews 16 (2012) 5207-5224
54Dr. Luisa F. Cabeza – October 2019
Sorption & chemical reactions
• Classes of materials
– Chemical reactions: gas/solid reactions
J. Cot-Gores, A. Castell, L.F. Cabeza
Renewable and Sustainable Energy
Reviews 16 (2012) 5207-5224
55Dr. Luisa F. Cabeza – October 2019
Sorption & chemical reactions
• Classes of materials
– Chemical reactions: gas/solid reactions
J. Cot-Gores, A. Castell, L.F. Cabeza
Renewable and Sustainable Energy Reviews 16 (2012) 5207-5224
56Dr. Luisa F. Cabeza – October 2019
Sorption & chemical reactions
• Classes of materials
– Chemical reactions: gas/solid reactions
J. Cot-Gores, A. Castell, L.F. Cabeza
Renewable and Sustainable Energy Reviews 16 (2012) 5207-5224
57Dr. Luisa F. Cabeza – October 2019
Sorption & chemical reactions
• Classes of materials
– Chemical reactions: gas/solid reactions
J. Cot-Gores, A. Castell, L.F. Cabeza
Renewable and Sustainable Energy Reviews 16 (2012) 5207-5224
58Dr. Luisa F. Cabeza – October 2019
Sorption & chemical reactions
• Classes of materials
L.F. Cabeza, A. Sole, C. Barreneche
Renewable Energy 110 (2017) 3-39
59Dr. Luisa F. Cabeza – October 2019
Sorption & chemical reactions
• Classes of materials
– Adsorption
• Gas-solid processes (physisorption or chemisorption)
• Open/closed
– Absorption
• Gas-liquid processes
• Open/closed
A. Sole, I. Martorell, L.F. Cabeza
Renewable Energy 47 (2015) 386-398
L.F. Cabeza, A. Sole, C. Barreneche
Renewable Energy 110 (2017) 3-39
60Dr. Luisa F. Cabeza – October 2019
Sorption & chemical reactions
• Classes of materials
L.F. Cabeza, A. Sole, C. Barreneche
Renewable Energy 110 (2017) 3-39
61Dr. Luisa F. Cabeza – October 2019
Sorption & chemical reactions
• Classes of materials
L.F. Cabeza, A. Sole, C. Barreneche
Renewable Energy 110 (2017) 3-39
62Dr. Luisa F. Cabeza – October 2019
Sorption & chemical reactions
• Classes of materials
L.F. Cabeza, A. Sole, C. Barreneche
Renewable Energy 110 (2017) 3-39
63Dr. Luisa F. Cabeza – October 2019
Sorption & chemical reactions
• Classes of materials
L.F. Cabeza, A. Sole, C. Barreneche
Renewable Energy 110 (2017) 3-39
64Dr. Luisa F. Cabeza – October 2019
Sorption & chemical reactions
• Classes of materials
L.F. Cabeza, A. Sole, C. Barreneche
Renewable Energy 110 (2017) 3-39
65Dr. Luisa F. Cabeza – October 2019
Sorption & chemical reactions
• Classes of materials
L.F. Cabeza, A. Sole, C. Barreneche
Renewable Energy 110 (2017) 3-39
66Dr. Luisa F. Cabeza – October 2019
Sorption & chemical reactions
• Requirements of the materials
Thermal requirements
- Reversible reaction
- Control of the kinetic model
- Control of the crystallographic structure changes
- High thermal conductivity
- Water stability with the crystal structure
- Proper particle size
- Control of the impurities
- Solubility of the material in the working conditions
- Suitable working temperature range fitted to the applications
- Thermal stability
67Dr. Luisa F. Cabeza – October 2019
Sorption & chemical reactions
• Requirements of the materials
Physical and technical requirements
- High cycle stability
- High chemical and physical stability
- Non-corrosiveness (good compatibility with other materials)
- Low system complexity
Economic requirements
- Low price
- Large scale production methods
Recyclability and safety requirements
- Non-toxicity
- Recyclable or reusable
- Low CO2 footprint
- Low embodied energy
68Dr. Luisa F. Cabeza – October 2019
Sorption & chemical reactions
• Requirements of the materials
Economic requirements
- Low price
- Large scale production methods
Recyclability and safety requirements
- Non-toxicity
- Recyclable or reusable
- Low CO2 footprint
- Low embodied energy
69Dr. Luisa F. Cabeza – October 2019
Acknowledgements
© 2019 GREiA, University of Lleida
This work was partially funded by the Ministerio de Ciencia, Innovación y Universidades de
España (RTI2018-093849-B-C31).
Funding has also been received from European Union’s Horizon 2020 research and innovation
programs under projects Innova MicroSOLAR (723596), HYBUILD (768824), SWS-HEATING
(764025) and SolBio-Rev (814945).
The authors at the University of Lleida would like to thank the Catalan Government for the
quality accreditation given to their research group (2017 SGR 1537). GREiA is certified agent
TECNIO in the category of technology developers from the Government of Catalonia. This work
is partially supported by ICREA under the ICREA Academia programme.
70Dr. Luisa F. Cabeza – October 2019
Thank you for your attention!
www.greia.udl.cat
lcabeza@diei.udl.cat

Más contenido relacionado

Similar a Sistemi di accumulo dell’energia termica - Luisa F. Cabeza (GREiA Research Group, University of Lleida)

Introduction An increase of is predicted for primary.pdf
Introduction An increase of is predicted for primary.pdfIntroduction An increase of is predicted for primary.pdf
Introduction An increase of is predicted for primary.pdf
bkbk37
 
aseminar report on magnetic refrigeration
aseminar report on magnetic refrigerationaseminar report on magnetic refrigeration
aseminar report on magnetic refrigeration
hardik9343
 

Similar a Sistemi di accumulo dell’energia termica - Luisa F. Cabeza (GREiA Research Group, University of Lleida) (16)

Ew34916921
Ew34916921Ew34916921
Ew34916921
 
Sistemi di accumulo dell’energia termica - Luisa F. Cabeza (GREiA Research Gr...
Sistemi di accumulo dell’energia termica - Luisa F. Cabeza (GREiA Research Gr...Sistemi di accumulo dell’energia termica - Luisa F. Cabeza (GREiA Research Gr...
Sistemi di accumulo dell’energia termica - Luisa F. Cabeza (GREiA Research Gr...
 
REVIEW OF THERMAL ENERGY STORAGE SYSTEMS AND THEIR APPLICATIONS
REVIEW OF THERMAL ENERGY STORAGE SYSTEMS AND THEIR APPLICATIONSREVIEW OF THERMAL ENERGY STORAGE SYSTEMS AND THEIR APPLICATIONS
REVIEW OF THERMAL ENERGY STORAGE SYSTEMS AND THEIR APPLICATIONS
 
5th GGT - Martin Bloemendal - TU Delft
5th GGT - Martin Bloemendal - TU Delft5th GGT - Martin Bloemendal - TU Delft
5th GGT - Martin Bloemendal - TU Delft
 
Denia Kolokotsa: The cool and reflective materials' contribution to nzeb. Tec...
Denia Kolokotsa: The cool and reflective materials' contribution to nzeb. Tec...Denia Kolokotsa: The cool and reflective materials' contribution to nzeb. Tec...
Denia Kolokotsa: The cool and reflective materials' contribution to nzeb. Tec...
 
Enhancement of Latent Heat Thermal Energy Storage using Embedded Heat Pipe
Enhancement of Latent Heat Thermal Energy Storage using Embedded Heat PipeEnhancement of Latent Heat Thermal Energy Storage using Embedded Heat Pipe
Enhancement of Latent Heat Thermal Energy Storage using Embedded Heat Pipe
 
PCM
PCMPCM
PCM
 
Case study Professional ethics
Case study Professional ethicsCase study Professional ethics
Case study Professional ethics
 
A Review of Performance of Insulating Material in Buildings
A Review of Performance of Insulating Material in BuildingsA Review of Performance of Insulating Material in Buildings
A Review of Performance of Insulating Material in Buildings
 
Huge savings on the surface
Huge savings on the surfaceHuge savings on the surface
Huge savings on the surface
 
Ca34471473
Ca34471473Ca34471473
Ca34471473
 
Introduction An increase of is predicted for primary.pdf
Introduction An increase of is predicted for primary.pdfIntroduction An increase of is predicted for primary.pdf
Introduction An increase of is predicted for primary.pdf
 
Fabrication of new ceramics nanocomposites for solar energy storage and release
Fabrication of new ceramics nanocomposites for solar energy storage and releaseFabrication of new ceramics nanocomposites for solar energy storage and release
Fabrication of new ceramics nanocomposites for solar energy storage and release
 
aseminar report on magnetic refrigeration
aseminar report on magnetic refrigerationaseminar report on magnetic refrigeration
aseminar report on magnetic refrigeration
 
B59ES Energy Studies.docx
B59ES Energy Studies.docxB59ES Energy Studies.docx
B59ES Energy Studies.docx
 
PloymerHX_ppt
PloymerHX_pptPloymerHX_ppt
PloymerHX_ppt
 

Más de Sardegna Ricerche

Más de Sardegna Ricerche (20)

Progetto PRELuDE PRotocollo ELaborazione Dati per l'Efficienza Energetica in ...
Progetto PRELuDE PRotocollo ELaborazione Dati per l'Efficienza Energetica in ...Progetto PRELuDE PRotocollo ELaborazione Dati per l'Efficienza Energetica in ...
Progetto PRELuDE PRotocollo ELaborazione Dati per l'Efficienza Energetica in ...
 
PRELuDE - La valutazione del comfort termoigrometrico con sensori non invasivi
PRELuDE - La valutazione del comfort termoigrometrico con sensori non invasiviPRELuDE - La valutazione del comfort termoigrometrico con sensori non invasivi
PRELuDE - La valutazione del comfort termoigrometrico con sensori non invasivi
 
PRELuDE - Rete di sensori innovativi per il monitoraggio energetico e control...
PRELuDE - Rete di sensori innovativi per il monitoraggio energetico e control...PRELuDE - Rete di sensori innovativi per il monitoraggio energetico e control...
PRELuDE - Rete di sensori innovativi per il monitoraggio energetico e control...
 
PRELuDE - La simulazione degli interventi migliorativi per il padiglione Mand...
PRELuDE - La simulazione degli interventi migliorativi per il padiglione Mand...PRELuDE - La simulazione degli interventi migliorativi per il padiglione Mand...
PRELuDE - La simulazione degli interventi migliorativi per il padiglione Mand...
 
PRELuDE - Il Building Information Modelling per la gestione dell'audit energe...
PRELuDE - Il Building Information Modelling per la gestione dell'audit energe...PRELuDE - Il Building Information Modelling per la gestione dell'audit energe...
PRELuDE - Il Building Information Modelling per la gestione dell'audit energe...
 
Il progetto PRELuDE, attività e risultati raggiunti
Il progetto PRELuDE, attività e risultati raggiuntiIl progetto PRELuDE, attività e risultati raggiunti
Il progetto PRELuDE, attività e risultati raggiunti
 
PROGETTO PRELuDE3 PRotocollo ELaborazione Dati per l'Efficienza Energetica in...
PROGETTO PRELuDE3 PRotocollo ELaborazione Dati per l'Efficienza Energetica in...PROGETTO PRELuDE3 PRotocollo ELaborazione Dati per l'Efficienza Energetica in...
PROGETTO PRELuDE3 PRotocollo ELaborazione Dati per l'Efficienza Energetica in...
 
PROGETTO PRELuDE3 PRotocollo ELaborazione Dati per l'Efficienza Il progetto P...
PROGETTO PRELuDE3 PRotocollo ELaborazione Dati per l'Efficienza Il progetto P...PROGETTO PRELuDE3 PRotocollo ELaborazione Dati per l'Efficienza Il progetto P...
PROGETTO PRELuDE3 PRotocollo ELaborazione Dati per l'Efficienza Il progetto P...
 
PROGETTO PRELuDE3 PRotocollo ELaborazione Dati per l'Efficienza Energetica in...
PROGETTO PRELuDE3 PRotocollo ELaborazione Dati per l'Efficienza Energetica in...PROGETTO PRELuDE3 PRotocollo ELaborazione Dati per l'Efficienza Energetica in...
PROGETTO PRELuDE3 PRotocollo ELaborazione Dati per l'Efficienza Energetica in...
 
Progetto PRELuDE: presentazione di Giuseppe Desogus in occasione di Sinnova 2019
Progetto PRELuDE: presentazione di Giuseppe Desogus in occasione di Sinnova 2019Progetto PRELuDE: presentazione di Giuseppe Desogus in occasione di Sinnova 2019
Progetto PRELuDE: presentazione di Giuseppe Desogus in occasione di Sinnova 2019
 
La soluzione di agrivoltaico dinamico_Insolight - Sardegna_Raphaël Sonney
La soluzione di agrivoltaico dinamico_Insolight - Sardegna_Raphaël SonneyLa soluzione di agrivoltaico dinamico_Insolight - Sardegna_Raphaël Sonney
La soluzione di agrivoltaico dinamico_Insolight - Sardegna_Raphaël Sonney
 
Introduzione AIAS - Alessandra Scognamiglio
Introduzione AIAS - Alessandra ScognamiglioIntroduzione AIAS - Alessandra Scognamiglio
Introduzione AIAS - Alessandra Scognamiglio
 
L’impronta idrica della produzione di idrogeno elettrolitico su larga scala -...
L’impronta idrica della produzione di idrogeno elettrolitico su larga scala -...L’impronta idrica della produzione di idrogeno elettrolitico su larga scala -...
L’impronta idrica della produzione di idrogeno elettrolitico su larga scala -...
 
Produzione di elettrodi migliorata per un’elettrolisi più efficiente - Albert...
Produzione di elettrodi migliorata per un’elettrolisi più efficiente - Albert...Produzione di elettrodi migliorata per un’elettrolisi più efficiente - Albert...
Produzione di elettrodi migliorata per un’elettrolisi più efficiente - Albert...
 
Soluzioni per il trattamento dell’acqua destinata all’elettrolisi - Giulia Sp...
Soluzioni per il trattamento dell’acqua destinata all’elettrolisi - Giulia Sp...Soluzioni per il trattamento dell’acqua destinata all’elettrolisi - Giulia Sp...
Soluzioni per il trattamento dell’acqua destinata all’elettrolisi - Giulia Sp...
 
Soluzioni digitali per la flessibilità del sistema energetico - M.Repossi _ L...
Soluzioni digitali per la flessibilità del sistema energetico - M.Repossi _ L...Soluzioni digitali per la flessibilità del sistema energetico - M.Repossi _ L...
Soluzioni digitali per la flessibilità del sistema energetico - M.Repossi _ L...
 
Digitalizzazione del sistema energetico - M.Gawronska
Digitalizzazione del sistema energetico - M.GawronskaDigitalizzazione del sistema energetico - M.Gawronska
Digitalizzazione del sistema energetico - M.Gawronska
 
Avvio lavori - M.Gawronska
Avvio lavori - M.GawronskaAvvio lavori - M.Gawronska
Avvio lavori - M.Gawronska
 
Esempi applicativi di impiego dell’energia termica nelle microreti
Esempi applicativi di impiego dell’energia termica nelle microretiEsempi applicativi di impiego dell’energia termica nelle microreti
Esempi applicativi di impiego dell’energia termica nelle microreti
 
“Cogenerazione ad alto rendimento: opportunità per le PMI e la PA, aggiorname...
“Cogenerazione ad alto rendimento: opportunità per le PMI e la PA, aggiorname...“Cogenerazione ad alto rendimento: opportunità per le PMI e la PA, aggiorname...
“Cogenerazione ad alto rendimento: opportunità per le PMI e la PA, aggiorname...
 

Último

💚😋 Mathura Escort Service Call Girls, 9352852248 ₹5000 To 25K With AC💚😋
💚😋 Mathura Escort Service Call Girls, 9352852248 ₹5000 To 25K With AC💚😋💚😋 Mathura Escort Service Call Girls, 9352852248 ₹5000 To 25K With AC💚😋
💚😋 Mathura Escort Service Call Girls, 9352852248 ₹5000 To 25K With AC💚😋
nirzagarg
 
Principle of erosion control- Introduction to contouring,strip cropping,conto...
Principle of erosion control- Introduction to contouring,strip cropping,conto...Principle of erosion control- Introduction to contouring,strip cropping,conto...
Principle of erosion control- Introduction to contouring,strip cropping,conto...
ZAPPAC1
 
Call Now ☎️🔝 9332606886 🔝 Call Girls ❤ Service In Muzaffarpur Female Escorts ...
Call Now ☎️🔝 9332606886 🔝 Call Girls ❤ Service In Muzaffarpur Female Escorts ...Call Now ☎️🔝 9332606886 🔝 Call Girls ❤ Service In Muzaffarpur Female Escorts ...
Call Now ☎️🔝 9332606886 🔝 Call Girls ❤ Service In Muzaffarpur Female Escorts ...
Anamikakaur10
 

Último (20)

Water Pollution
Water Pollution Water Pollution
Water Pollution
 
Get Premium Attur Layout Call Girls (8005736733) 24x7 Rate 15999 with A/c Roo...
Get Premium Attur Layout Call Girls (8005736733) 24x7 Rate 15999 with A/c Roo...Get Premium Attur Layout Call Girls (8005736733) 24x7 Rate 15999 with A/c Roo...
Get Premium Attur Layout Call Girls (8005736733) 24x7 Rate 15999 with A/c Roo...
 
Cyclone Case Study Odisha 1999 Super Cyclone in India.
Cyclone Case Study Odisha 1999 Super Cyclone in India.Cyclone Case Study Odisha 1999 Super Cyclone in India.
Cyclone Case Study Odisha 1999 Super Cyclone in India.
 
Call On 6297143586 Pimpri Chinchwad Call Girls In All Pune 24/7 Provide Call...
Call On 6297143586  Pimpri Chinchwad Call Girls In All Pune 24/7 Provide Call...Call On 6297143586  Pimpri Chinchwad Call Girls In All Pune 24/7 Provide Call...
Call On 6297143586 Pimpri Chinchwad Call Girls In All Pune 24/7 Provide Call...
 
VIP Model Call Girls Uruli Kanchan ( Pune ) Call ON 8005736733 Starting From ...
VIP Model Call Girls Uruli Kanchan ( Pune ) Call ON 8005736733 Starting From ...VIP Model Call Girls Uruli Kanchan ( Pune ) Call ON 8005736733 Starting From ...
VIP Model Call Girls Uruli Kanchan ( Pune ) Call ON 8005736733 Starting From ...
 
RATING SYSTEMS- IGBC, GRIHA, LEED--.pptx
RATING  SYSTEMS- IGBC, GRIHA, LEED--.pptxRATING  SYSTEMS- IGBC, GRIHA, LEED--.pptx
RATING SYSTEMS- IGBC, GRIHA, LEED--.pptx
 
(Anamika) VIP Call Girls Jammu Call Now 8617697112 Jammu Escorts 24x7
(Anamika) VIP Call Girls Jammu Call Now 8617697112 Jammu Escorts 24x7(Anamika) VIP Call Girls Jammu Call Now 8617697112 Jammu Escorts 24x7
(Anamika) VIP Call Girls Jammu Call Now 8617697112 Jammu Escorts 24x7
 
💚😋 Mathura Escort Service Call Girls, 9352852248 ₹5000 To 25K With AC💚😋
💚😋 Mathura Escort Service Call Girls, 9352852248 ₹5000 To 25K With AC💚😋💚😋 Mathura Escort Service Call Girls, 9352852248 ₹5000 To 25K With AC💚😋
💚😋 Mathura Escort Service Call Girls, 9352852248 ₹5000 To 25K With AC💚😋
 
VIP Model Call Girls Wagholi ( Pune ) Call ON 8005736733 Starting From 5K to ...
VIP Model Call Girls Wagholi ( Pune ) Call ON 8005736733 Starting From 5K to ...VIP Model Call Girls Wagholi ( Pune ) Call ON 8005736733 Starting From 5K to ...
VIP Model Call Girls Wagholi ( Pune ) Call ON 8005736733 Starting From 5K to ...
 
Climate Change
Climate ChangeClimate Change
Climate Change
 
Presentation: Farmer-led climate adaptation - Project launch and overview by ...
Presentation: Farmer-led climate adaptation - Project launch and overview by ...Presentation: Farmer-led climate adaptation - Project launch and overview by ...
Presentation: Farmer-led climate adaptation - Project launch and overview by ...
 
(INDIRA) Call Girl Katra Call Now 8617697112 Katra Escorts 24x7
(INDIRA) Call Girl Katra Call Now 8617697112 Katra Escorts 24x7(INDIRA) Call Girl Katra Call Now 8617697112 Katra Escorts 24x7
(INDIRA) Call Girl Katra Call Now 8617697112 Katra Escorts 24x7
 
Presentation: Farmer-led climate adaptation - Project launch and overview by ...
Presentation: Farmer-led climate adaptation - Project launch and overview by ...Presentation: Farmer-led climate adaptation - Project launch and overview by ...
Presentation: Farmer-led climate adaptation - Project launch and overview by ...
 
Call Girls Moshi Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Moshi Call Me 7737669865 Budget Friendly No Advance BookingCall Girls Moshi Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Moshi Call Me 7737669865 Budget Friendly No Advance Booking
 
VVIP Pune Call Girls Moshi WhatSapp Number 8005736733 With Elite Staff And Re...
VVIP Pune Call Girls Moshi WhatSapp Number 8005736733 With Elite Staff And Re...VVIP Pune Call Girls Moshi WhatSapp Number 8005736733 With Elite Staff And Re...
VVIP Pune Call Girls Moshi WhatSapp Number 8005736733 With Elite Staff And Re...
 
Principle of erosion control- Introduction to contouring,strip cropping,conto...
Principle of erosion control- Introduction to contouring,strip cropping,conto...Principle of erosion control- Introduction to contouring,strip cropping,conto...
Principle of erosion control- Introduction to contouring,strip cropping,conto...
 
Introduction to heat waves and Heatwaves in Bangladesh.pptx
Introduction to heat waves and Heatwaves in Bangladesh.pptxIntroduction to heat waves and Heatwaves in Bangladesh.pptx
Introduction to heat waves and Heatwaves in Bangladesh.pptx
 
Call Girls Talegaon Dabhade Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Talegaon Dabhade Call Me 7737669865 Budget Friendly No Advance Boo...Call Girls Talegaon Dabhade Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Talegaon Dabhade Call Me 7737669865 Budget Friendly No Advance Boo...
 
Call Now ☎️🔝 9332606886 🔝 Call Girls ❤ Service In Muzaffarpur Female Escorts ...
Call Now ☎️🔝 9332606886 🔝 Call Girls ❤ Service In Muzaffarpur Female Escorts ...Call Now ☎️🔝 9332606886 🔝 Call Girls ❤ Service In Muzaffarpur Female Escorts ...
Call Now ☎️🔝 9332606886 🔝 Call Girls ❤ Service In Muzaffarpur Female Escorts ...
 
Call Girls Budhwar Peth Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Budhwar Peth Call Me 7737669865 Budget Friendly No Advance BookingCall Girls Budhwar Peth Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Budhwar Peth Call Me 7737669865 Budget Friendly No Advance Booking
 

Sistemi di accumulo dell’energia termica - Luisa F. Cabeza (GREiA Research Group, University of Lleida)

  • 1. © 2019 GREiA, University of Lleida Materials for thermal energy storage Le tecnologie per l'accumulo termico nelle Smart grid Cagliari, Italy Dr. Luisa F. Cabeza
  • 2. 2Dr. Luisa F. Cabeza – October 2019 Contents • Introduction • Materials for TES
  • 3. 3Dr. Luisa F. Cabeza – October 2019 Basic principle of TES • A complete storage process involves at least three steps: • Charging • Storing • Discharging Mehling H, Cabeza LF. Heat and cold storage with PCM. An up to date introduction into basics and applications. Springer, 2008.
  • 4. 4Dr. Luisa F. Cabeza – October 2019 Basic principle of TES • The technical and economical requirements for an energy storage system are determined by its actual application within the energy system • Therefore any evaluation and comparison of energy storage technologies is only possible with respect to this application • The application determines the technical requirements (e.g. type of energy, storage capacity, charging/discharging power, etc.) as well as the economical environment (e.g. expected pay-back time, price for delivered energy, etc.)
  • 5. 5Dr. Luisa F. Cabeza – October 2019 Benefits of TES • The systems achieve benefits by fulfilling one or more of the following purposes: • Increase generation capacity • Enable better operation of cogeneration plants • Shift energy purchases to low cost periods • Increase system reliability • Integration with other functions Figure from Andreas Hauer
  • 6. 6Dr. Luisa F. Cabeza – October 2019 Thermal Energy Storage L.F. Cabeza, A. Gutierrez, C. Barreneche, S. Ushak, A.G. Fernández, A.I Fernández, M. Grágeda Renewable and Sustainable Energy Reviews 42 (2015) 1106-1112
  • 7. 7Dr. Luisa F. Cabeza – October 2019 Thermal Energy Storage • Maturity of TES technologies A. Gutierrez, L. Miró, A. Gil, J. Rodríquez- Aseguinolaza, C. Barreneche, N. Calvet, X. Py, A.I. Fernández, M. Grágeda, S. Ushak, L.F. Cabeza Renewable and Sustainable Energy Reviews 59 (2016) 763-783
  • 8. 8Dr. Luisa F. Cabeza – October 2019 Thermal Energy Storage Sensible Latent Sorption & chemical reactions Thermochemical (kJ/kg) Temperature(ºC) Stored heat (kJ/kg) Temperature(ºC) Stored heat A(s) heat storage endothermic reaction heat release exothermic reaction B(s) + 𝐶(g) STORAGE CHARGE DISCHARGE
  • 9. 9Dr. Luisa F. Cabeza – October 2019 TES technologies • Heat storage as sensible heat – solids (stone, brick,…) – liquids (water,…) The most common method for heat storage. Stored heat Temperature sensible TcmQ 
  • 10. 10Dr. Luisa F. Cabeza – October 2019 Stored heat Temperature sensible sensible latent sensible Temperature of phase change Materials with useful phase change = latent heat storage material, = phase change material (PCM) TES technologies • Heat storage as latent heat – evaporation at constant volume  temperature and pressure change – evaporation at constant pressure  volume change or open system – melting at constant pressure  small volume change  no temperature change hmQ 
  • 11. 11Dr. Luisa F. Cabeza – October 2019 TES technologies • Sorption and thermochemical storage • Uses reversible chemical reactions to store thermal energy in the form of chemical compounds • This energy can be discharged at different temperatures, dependent on the properties of the thermochemical reaction
  • 12. 12Dr. Luisa F. Cabeza – October 2019 TES application potential • Matching supply and demand Figure from Andreas Hauer
  • 13. 13Dr. Luisa F. Cabeza – October 2019 TES application potential • Matching supply and demand: seasonal storage A. Dahash, F. Ochs, M.B. Janetti, W. Streicher. Applied Enregy 239 (2019) 296-315
  • 14. 14Dr. Luisa F. Cabeza – October 2019 TES application potential • Power vs. Energy Figure from Andreas Hauer
  • 15. 15Dr. Luisa F. Cabeza – October 2019 TES application potential • Building applications – Passive systems in the envelope – Active systems in the envelope (ventilated façade) – DHW solar energy with PCM in water tank • High temperature applications – Solar cooling – Industrial waste heat recovery – Storage in CSP • Other applications – General containers – Beverages – Catering – Blood products – Electronic devices
  • 16. 16Dr. Luisa F. Cabeza – October 2019 Contents • Introduction • Materials for TES
  • 17. 17Dr. Luisa F. Cabeza – October 2019 Classes of materials • Any material can be used for thermal energy storage (TES) • The selection of the material depends on: – The application – The requirements of the application: • Temperature • Power • Energy density – The properties of the material: • Energy density • Stability (chemical, physical, etc.) • TES technology used • …
  • 18. 18Dr. Luisa F. Cabeza – October 2019 Classes of materials • Classes of materials A. Fallahi, G. Guldentops, M. Tao, S. Granados-Focil, S. Van Dessel. Applied Thermal Engineering 127 (2017) 1427-1441
  • 19. 19Dr. Luisa F. Cabeza – October 2019 Sensible TES • Classes of materials – Water (tanks, pits) – Rocks/bricks/ceramics – Metals – Molten salts Usually classified by the application
  • 20. 20Dr. Luisa F. Cabeza – October 2019 Sensible TES • Classes of materials – Water (tanks, pits) • Widely available • Cheap • High energy density A. Dahash, F. Ochs, M.B. Janetti, W. Streicher. Applied Energy 239 (2019) 296-315 Y. Pal Chandra, T. Matuska. Energy and Buildigns 187 (2019) 110-131
  • 21. 21Dr. Luisa F. Cabeza – October 2019 Sensible TES • Classes of materials – Ceramics • Highly used • Low cost • Low thermal cycling (they break under thermal stress)
  • 22. 22Dr. Luisa F. Cabeza – October 2019 Sensible TES • Classes of materials A. Gil, M. Medrano, I. Martorell, A. Lázaro, P. Dolado, B. Zalba, L.F. Cabeza. Renewable and Sustainable Energy Reviews 14 (2010) 31-55
  • 23. 23Dr. Luisa F. Cabeza – October 2019 Sensible TES • Classes of materials – Metals and metal alloys • High thermal diffusivity • Low thermal energy density • Considerations: – There is a lack of consciousness about the implications of the metallurgic aspects related to melting and solidification of metals and metal alloys under thermal cycling at high temperatures A.I. Fernández, C. Barreneche, M. Belusko, M. Segarra, F. Bruno, L.F. Cabeza Solar Energy Materials and Solar Cells 171 (2017) 275-281
  • 24. 24Dr. Luisa F. Cabeza – October 2019 Sensible TES • Classes of materials – Metals and metal alloys A.I. Fernández, C. Barreneche, M. Belusko, M. Segarra, F. Bruno, L.F. Cabeza Solar Energy Materials and Solar Cells 171 (2017) 275-281
  • 25. 25Dr. Luisa F. Cabeza – October 2019 Sensible TES • Classes of materials – Metal alloys G. Wei, G. Wang, C. Xu, X. Ju, L. Xing, X. Du, Y. Yang Renewable and Sustainable Energy Reviews 81 (2018) 1771-1786
  • 26. 26Dr. Luisa F. Cabeza – October 2019 Sensible TES • Classes of materials – High temperature concrete and castable ceramic A. Gil, M. Medrano, I. Martorell, A. Lázaro, P. Dolado, B. Zalba, L.F. Cabeza. Renewable and Sustainable Energy Reviews 14 (2010) 31-55
  • 27. 27Dr. Luisa F. Cabeza – October 2019 Sensible TES • Classes of materials – Molten salts: solar salt • Highly corrosive • Low thermal conductivity G. Wei, G. Wang, C. Xu, X. Ju, L. Xing, X. Du, Y. Yang Renewable and Sustainable Energy Reviews 81 (2018) 1771-1786
  • 28. 28Dr. Luisa F. Cabeza – October 2019 Sensible TES • Classes of materials – Molten salts G. Wei, G. Wang, C. Xu, X. Ju, L. Xing, X. Du, Y. Yang Renewable and Sustainable Energy Reviews 81 (2018) 1771-1786
  • 29. 29Dr. Luisa F. Cabeza – October 2019 Sensible TES • Classes of materials – Other materials used for high temperature A. Gil, M. Medrano, I. Martorell, A. Lázaro, P. Dolado, B. Zalba, L.F. Cabeza. Renewable and Sustainable Energy Reviews 14 (2010) 31-55
  • 30. 30Dr. Luisa F. Cabeza – October 2019 Sensible TES • Classes of materials – Wastes and by-products: bischofite A. Gutierrez, L. Miró, A. Gil, J. Rodríquez-Aseguinolaza, C. Barreneche, N. Calvet, X. Py, A.I. Fernández, M. Grágeda, S. Ushak, L.F. Cabeza Renewable and Sustainable Energy Reviews 59 (2016) 763-783
  • 31. 31Dr. Luisa F. Cabeza – October 2019 Sensible TES • Classes of materials – Wastes and by-products: slags A. Gutierrez, L. Miró, A. Gil, J. Rodríquez-Aseguinolaza, C. Barreneche, N. Calvet, X. Py, A.I. Fernández, M. Grágeda, S. Ushak, L.F. Cabeza Renewable and Sustainable Energy Reviews 59 (2016) 763-783
  • 32. 32Dr. Luisa F. Cabeza – October 2019 Sensible TES • Requirements of the materials Thermal requirements - High energy density - Good specific heat capacity - High thermal conductivity - Low thermal diffusivity - Service temperature range fitted to the application - Low thermal expansion coefficient Physical and technical requirements - High density - High cycle stability - Non-corrosiveness - Low system complexity - Low vapour pressure in the service temperature range
  • 33. 33Dr. Luisa F. Cabeza – October 2019 Sensible TES • Requirements of the materials Economic requirements - Low price - Large scale production methods Recyclability and safety requirements - Non-toxicity - Recyclable or reusable - Low CO2 footprint - Low embodied energy For a good selection of the proper material, we need to rank the requirements and to evaluate a compromise between contradictory or competing requirements
  • 34. 34Dr. Luisa F. Cabeza – October 2019 Latent TES • Classes of materials – Inorganic substances • Water/ice • Salt hydrates • Salts – Organic substances • Paraffin • Fatty acids • Polymers (HDPE) • BioPCM (esters, etc.) Usually classified by the nature of the material
  • 35. 35Dr. Luisa F. Cabeza – October 2019 Latent TES • Classes of materials Organics Inorganics Advantages - No corrosives - Low or none subcooling - Chemical and thermal stability Advantages - Greater phase change enthalpy - Higher energy density Disadvantages - Lower phase change enthalpy - Low thermal conductivity - Flammability - Bad compatibility with plastics Disadvantages - Subcooling - Corrosion - Phase separation - Phase segregation, lack of thermal stability L.F. Cabeza, A. Castell, C. Barreneche, A. de Gracia, A.I Fernández Renewable and Sustainable Energy Reviews 15 (2011) 1675-1695
  • 36. 36Dr. Luisa F. Cabeza – October 2019 Latent TES • Classes of materials Inorganic Organic A. Fallahi, G. Guldentops, M. Tao, S. Granados-Focil, S. Van Dessel. Applied Thermal Engineering 127 (2017) 1427-1441
  • 37. 37Dr. Luisa F. Cabeza – October 2019 Latent TES • Classes of materials Solid-solid organic PCM A. Fallahi, G. Guldentops, M. Tao, S. Granados-Focil, S. Van Dessel. Applied Thermal Engineering 127 (2017) 1427-1441
  • 38. 38Dr. Luisa F. Cabeza – October 2019 Latent TES • Classes of materials – Water/ice • It is the oldest PCM, used since prehistory • Its use for cold drinks is a clear example of TES material
  • 39. 39Dr. Luisa F. Cabeza – October 2019 Latent TES • Classes of materials – Salt hydrates Y. Lin, G. Alva, G. Fang. Energy 165 Part A (2018) 685-708
  • 40. 40Dr. Luisa F. Cabeza – October 2019 Latent TES • Classes of materials – Salts Y. Lin, G. Alva, G. Fang. Energy 165 Part A (2018) 685-708
  • 41. 41Dr. Luisa F. Cabeza – October 2019 Latent TES • Classes of materials – Eutectic salts Y. Lin, G. Alva, G. Fang. Energy 165 Part A (2018) 685-708
  • 42. 42Dr. Luisa F. Cabeza – October 2019 Latent TES • Classes of materials – Polymeric solid-solid PCM A. Fallahi, G. Guldentops, M. Tao, S. Granados-Focil, S. Van Dessel. Applied Thermal Engineering 127 (2017) 1427-1441
  • 43. 43Dr. Luisa F. Cabeza – October 2019 Latent TES • Classes of materials – Organic solid-solid PCM A. Fallahi, G. Guldentops, M. Tao, S. Granados-Focil, S. Van Dessel. Applied Thermal Engineering 127 (2017) 1427-1441
  • 44. 44Dr. Luisa F. Cabeza – October 2019 Latent TES • Classes of materials – Organometallic solid-solid PCM A. Fallahi, G. Guldentops, M. Tao, S. Granados-Focil, S. Van Dessel. Applied Thermal Engineering 127 (2017) 1427-1441
  • 45. 45Dr. Luisa F. Cabeza – October 2019 Latent TES • Classes of materials – Inorganic solid-solid PCM A. Fallahi, G. Guldentops, M. Tao, S. Granados-Focil, S. Van Dessel. Applied Thermal Engineering 127 (2017) 1427-1441
  • 46. 46Dr. Luisa F. Cabeza – October 2019 Latent TES • Classes of materials – Metal and metal alloys Y. Lin, G. Alva, G. Fang. Energy 165 Part A (2018) 685-708
  • 47. 47Dr. Luisa F. Cabeza – October 2019 Latent TES • Classes of materials – Wastes and by-products: bischofite A. Gutierrez, L. Miró, A. Gil, J. Rodríquez-Aseguinolaza, C. Barreneche, N. Calvet, X. Py, A.I. Fernández, M. Grágeda, S. Ushak, L.F. Cabeza Renewable and Sustainable Energy Reviews 59 (2016) 763-783
  • 48. 48Dr. Luisa F. Cabeza – October 2019 Latent TES • Classes of materials – Wastes and by-products: astrakanite and kainite A. Gutierrez, L. Miró, A. Gil, J. Rodríquez-Aseguinolaza, C. Barreneche, N. Calvet, X. Py, A.I. Fernández, M. Grágeda, S. Ushak, L.F. Cabeza Renewable and Sustainable Energy Reviews 59 (2016) 763-783
  • 49. 49Dr. Luisa F. Cabeza – October 2019 Latent TES • Requirements of the materials Thermal requirements - Suitable phase change temperature fitted to the application - Large phase change enthalpy and specific heat - High thermal conductivity - Reproducible phase change - Good thermal stability Physical and technical requirements - Low density variation and small volume change - High cycle stability - High chemical and physical stability - Small or no subcooling - Non-corrosiveness (good compatibility with other materials) - Low system complexity - Low vapour pressure in the service temperature range
  • 50. 50Dr. Luisa F. Cabeza – October 2019 Latent TES • Requirements of the materials Economic requirements - Low price - Large scale production methods Recyclability and safety requirements - Non-toxicity - Recyclable or reusable - Low CO2 footprint - Low embodied energy
  • 51. 51Dr. Luisa F. Cabeza – October 2019 Sorption & chemical reactions • Classes of materials J. Cot-Gores, A. Castell, L.F. Cabeza Renewable and Sustainable Energy Reviews 16 (2012) 5207-5224 C. Prieto, P. Cooper, A.I. Fernández, L.F. Cabeza Renewable and Sustainable Energy Reviews 60 (2016) 909-929
  • 52. 52Dr. Luisa F. Cabeza – October 2019 Sorption & chemical reactions • Classes of materials – Chemical reactions: gas/solid reactions • Hydration reaction: • Carbonation reaction: • Ammonia decomposition: • Metal oxidation reactions: • Sulphur cycle:
  • 53. 53Dr. Luisa F. Cabeza – October 2019 Sorption & chemical reactions • Classes of materials – Chemical reactions: gas/solid reactions J. Cot-Gores, A. Castell, L.F. Cabeza Renewable and Sustainable Energy Reviews 16 (2012) 5207-5224
  • 54. 54Dr. Luisa F. Cabeza – October 2019 Sorption & chemical reactions • Classes of materials – Chemical reactions: gas/solid reactions J. Cot-Gores, A. Castell, L.F. Cabeza Renewable and Sustainable Energy Reviews 16 (2012) 5207-5224
  • 55. 55Dr. Luisa F. Cabeza – October 2019 Sorption & chemical reactions • Classes of materials – Chemical reactions: gas/solid reactions J. Cot-Gores, A. Castell, L.F. Cabeza Renewable and Sustainable Energy Reviews 16 (2012) 5207-5224
  • 56. 56Dr. Luisa F. Cabeza – October 2019 Sorption & chemical reactions • Classes of materials – Chemical reactions: gas/solid reactions J. Cot-Gores, A. Castell, L.F. Cabeza Renewable and Sustainable Energy Reviews 16 (2012) 5207-5224
  • 57. 57Dr. Luisa F. Cabeza – October 2019 Sorption & chemical reactions • Classes of materials – Chemical reactions: gas/solid reactions J. Cot-Gores, A. Castell, L.F. Cabeza Renewable and Sustainable Energy Reviews 16 (2012) 5207-5224
  • 58. 58Dr. Luisa F. Cabeza – October 2019 Sorption & chemical reactions • Classes of materials L.F. Cabeza, A. Sole, C. Barreneche Renewable Energy 110 (2017) 3-39
  • 59. 59Dr. Luisa F. Cabeza – October 2019 Sorption & chemical reactions • Classes of materials – Adsorption • Gas-solid processes (physisorption or chemisorption) • Open/closed – Absorption • Gas-liquid processes • Open/closed A. Sole, I. Martorell, L.F. Cabeza Renewable Energy 47 (2015) 386-398 L.F. Cabeza, A. Sole, C. Barreneche Renewable Energy 110 (2017) 3-39
  • 60. 60Dr. Luisa F. Cabeza – October 2019 Sorption & chemical reactions • Classes of materials L.F. Cabeza, A. Sole, C. Barreneche Renewable Energy 110 (2017) 3-39
  • 61. 61Dr. Luisa F. Cabeza – October 2019 Sorption & chemical reactions • Classes of materials L.F. Cabeza, A. Sole, C. Barreneche Renewable Energy 110 (2017) 3-39
  • 62. 62Dr. Luisa F. Cabeza – October 2019 Sorption & chemical reactions • Classes of materials L.F. Cabeza, A. Sole, C. Barreneche Renewable Energy 110 (2017) 3-39
  • 63. 63Dr. Luisa F. Cabeza – October 2019 Sorption & chemical reactions • Classes of materials L.F. Cabeza, A. Sole, C. Barreneche Renewable Energy 110 (2017) 3-39
  • 64. 64Dr. Luisa F. Cabeza – October 2019 Sorption & chemical reactions • Classes of materials L.F. Cabeza, A. Sole, C. Barreneche Renewable Energy 110 (2017) 3-39
  • 65. 65Dr. Luisa F. Cabeza – October 2019 Sorption & chemical reactions • Classes of materials L.F. Cabeza, A. Sole, C. Barreneche Renewable Energy 110 (2017) 3-39
  • 66. 66Dr. Luisa F. Cabeza – October 2019 Sorption & chemical reactions • Requirements of the materials Thermal requirements - Reversible reaction - Control of the kinetic model - Control of the crystallographic structure changes - High thermal conductivity - Water stability with the crystal structure - Proper particle size - Control of the impurities - Solubility of the material in the working conditions - Suitable working temperature range fitted to the applications - Thermal stability
  • 67. 67Dr. Luisa F. Cabeza – October 2019 Sorption & chemical reactions • Requirements of the materials Physical and technical requirements - High cycle stability - High chemical and physical stability - Non-corrosiveness (good compatibility with other materials) - Low system complexity Economic requirements - Low price - Large scale production methods Recyclability and safety requirements - Non-toxicity - Recyclable or reusable - Low CO2 footprint - Low embodied energy
  • 68. 68Dr. Luisa F. Cabeza – October 2019 Sorption & chemical reactions • Requirements of the materials Economic requirements - Low price - Large scale production methods Recyclability and safety requirements - Non-toxicity - Recyclable or reusable - Low CO2 footprint - Low embodied energy
  • 69. 69Dr. Luisa F. Cabeza – October 2019 Acknowledgements © 2019 GREiA, University of Lleida This work was partially funded by the Ministerio de Ciencia, Innovación y Universidades de España (RTI2018-093849-B-C31). Funding has also been received from European Union’s Horizon 2020 research and innovation programs under projects Innova MicroSOLAR (723596), HYBUILD (768824), SWS-HEATING (764025) and SolBio-Rev (814945). The authors at the University of Lleida would like to thank the Catalan Government for the quality accreditation given to their research group (2017 SGR 1537). GREiA is certified agent TECNIO in the category of technology developers from the Government of Catalonia. This work is partially supported by ICREA under the ICREA Academia programme.
  • 70. 70Dr. Luisa F. Cabeza – October 2019 Thank you for your attention! www.greia.udl.cat lcabeza@diei.udl.cat