SlideShare una empresa de Scribd logo
1 de 30
Descargar para leer sin conexión
Algorithms
1. Notion of an algorithm
2. Properties of an algorithm
3. The GCD algorithm
4. Correctness of the GCD algorithm
5. Termination of the GCD algorithm
6. Performance
7. Data structures
Need for studying algorithms:
• The study of algorithms is the cornerstone of computer
science. It can be recognized as the core of computer
science.
• Computer programs would not exist without algorithms.
With computers becoming an essential part of our
professional & personal life‘s, studying algorithms
becomes a necessity, more so for computer science
engineers.
• Another reason for studying algorithms is that if we know a
standard set of important algorithms, They enhance our
analytical skills & help us in developing new algorithms for
required applications
Problem
Datastructure
Algorithm
Program
Computer
+
Input Output
1-Notion of an algorithm
Definition
An algorithm is a clearly specified set of instructions
describing the solution to a specific problem.
• An algorithm is finite set of instructions that is followed,
accomplishes a particular task. (Sahani)
An algorithm
• takes the input and transforms it into an adequate output,
• must be independent from any programming language,
• is written in a level of detail that allows to reproduce it in
any programming language,
• has to be designed so it can be reused and understood by
others.
Algorithms must satisfy the following
criteria
1.Input: Zero or more quantities are externally supplied.
2.Output : At least one quantity is produced.
3.Definiteness:Each instruction is clear and unambiguous.
4.Finiteness: If we trace out the instructions of an
algorithm, then for all cases, the algorithm terminates after
a finite number of steps.
5.Effectiveness: Every instruction must be very basic so
that it can be carried out, in principle,by a person using only
pencil and paper. It is not enough that each operation be
definite as in criterion3; it also must be feasible.
2-Properties of an algorithm
Some properties must be satisfied by an algorithm in
order to allow a successful execution of the
corresponding program:
1. Correctness: if the input conditions are satisfied and the
algorithm instructions executed, then the correct output is
produced.
2. Termination: the algorithm must terminate after a finite number
of steps. Thus, it has to be composed by a finite number of steps.
This can be ensured if the algorithm avoids an infinite loop.
3. Performance: Quantification of the space and time complexities.
• Algorithms that are definite and effective
are also called computational procedures.
• The same algorithm can be represented in
several ways
• Several algorithms to solve the same
problem
• Different ideas different speed
The four distinct areas of
studying algorithms
1. How to devise algorithms
2. How to validate algorithms
3. How to analyze algorithms
4. How to test a program
The GCD algorithm:
Given two positive integers m and n, find the greatest common divisor,
gcd(m,n).
A view of the problem:
All numbers from 1 up to the smallest of m and n, say n.
Naive algorithm:
Go through search space (from 1 to n)
Keep track of largest number that divides both m and n.
Is there a more efficient way of doing this?
Yes, the Euclidean Algorithm (Euclid – c.350 B.C.E.)
Pseudocode of the GCD algorithm :
Algorithm GreatestCommonDivisor
Input: Two positive integers, m and n
Ouptut: The gcd of m and n
repeat
r  m mod n
m  n
n  r
until (r == 0)
Output m and STOP.
Example:
m = 24, n = 9
r  24 mod 9 = 6
m  9
n  6
r  9 mod 6 = 3
m  6
n  3
r  6 mod 3 = 0
m  3
n  0
Output 3
STOP
Euclids algorithm
Step1:if n=0 return val of m & stop else proceed step 2
Step 2:Divide m by n & assign the value of remainder to r
Step 3:Assign the value of n to m,r to n,Go to step1.
Another algorithm to solve the same problem
Euclids algorithm
Step1:Assign the value of min(m,n) to t
Step 2:Divide m by t.if remainder is 0,go to step3 else goto step4
Step 3: Divide n by t.if the remainder is 0,return the value of t as the
answer and stop,otherwise proceed to step4
Step4 :Decrease the value of t by 1. go to step 2
Thus, ri will become 0 in at most 2 log n iterations
Example: m = 1989 and n = 1590
Remainder sequence:
399 = 1989 mod 1590  399 < 1989/2
393 = 1590 mod 399  393 < 1590/2
6 = 399 mod 393  6 < 399/2 < 1989/4
3 = 393 mod 6  3 < 393/2 < 1590/4
0 = 6 mod 3  0 < 6/2 < 399/4 < 1989/8
We stop here, but if we continue: < 1590/8
< 1989/16
< 1590/16
Number of Steps:
In 2 * 3 steps, ri reduced by factor of 8
2 * 4 ri 16
2 * 5 ri 32
2 * 6 ri 64
……
2 * log n ri n
Thus, ri becomes 0 in at most 2 log n iterations.
4-Correctness of the GCD algorithm.
4-Correctness of the GCD algorithm.
• Correctness is an important issue in algorithm design. This means
Correctness is an important issue in algorithm design. This means
proving that the algorithm works for all legal inputs.
proving that the algorithm works for all legal inputs.
It is analogous to proving the correctness of a theorem in
It is analogous to proving the correctness of a theorem in
mathematics!
mathematics!
• The correctness of the GCD algorithm depends on the following loop
The correctness of the GCD algorithm depends on the following loop
invariant:
invariant:
gcd(m,n)=gcd(n,r) where r=m%n
gcd(m,n)=gcd(n,r) where r=m%n
Claim 1:
gcd(m,n) = gcd(n,r)
Proof:
The gcd of the new pair is equal to the gcd of the previous pair.
How is this correct?
Let us write:
m = q * n + r
where 0  r  n.
This implies that:
a common divisor of m and n is also
a common divisor of n and r,
and vice versa. q.e.d.
5-Termination of the GCD algorithm.
5-Termination of the GCD algorithm.
• Show that algorithm terminates in a finite number of steps.
Show that algorithm terminates in a finite number of steps.
• This must be true for every valid input.
This must be true for every valid input.
• Can we show this for Algorithm GCD?
Can we show this for Algorithm GCD?
• We must show that
We must show that ri
ri goes to 0 in a finite number of steps.
goes to 0 in a finite number of steps.
Observe:
Observe:
• The sequence of remainders strictly decreases.
The sequence of remainders strictly decreases.
• They are all non-negative.
They are all non-negative.
• Thus
Thus ri
ri will become 0 in at most 2 log
will become 0 in at most 2 log n
n steps.
steps.
6-Performance of the GCD algorithm.
6-Performance of the GCD algorithm.
• Quantification of performance of the algorithm.
Quantification of performance of the algorithm.
• Crucial parameters: time and space.
Crucial parameters: time and space.
• Called time and space complexity of the algorithm.
Called time and space complexity of the algorithm.
• Will be discussed latter in the course.
Will be discussed latter in the course.
For example:
For example:
Time complexity of GCD:
Time complexity of GCD:
Takes at most 2 log
Takes at most 2 log n
n steps, where
steps, where n
n <
< m
m
Thus, worst-case time complexity:
Thus, worst-case time complexity: O
O(log
(log n
n)
)
7-Data structures
7-Data structures
• The study of different ways of organizing data.
The study of different ways of organizing data.
• Why?
Why?
• Efficiency of algorithm depends on how data is organized.
Efficiency of algorithm depends on how data is organized.
• Reason for studying data structures and algorithms together.
Reason for studying data structures and algorithms together.
• Organic connection between the two areas.
Organic connection between the two areas.
• In 60-212 the programming language JAVA is studied.
In 60-212 the programming language JAVA is studied.
• Here: An algorithmic perspective.
Here: An algorithmic perspective.
• Independent of programming language (eg. C, C++, JAVA).
Independent of programming language (eg. C, C++, JAVA).
For example:
• The median of a list of n numbers is a number m such that:
n/2 numbers in the list are  m, and
n/2 … are  m.
• Many definitions of median, we take:
If n is even:
Two medians:
lower median and upper median,
Then, median is average of lower and upper medians.
If n is odd:
Both medians (lower and upper) are the same.
• Consider this problem:
Given a sorted list of n numbers, find the median.
• A crucial question:
How should we store the list?
• We store it in an array, A, then
The median is found in constant time, O(1) !!
• Median = (A[5]+A[6])/2 = (19+22)/2 = 20.5
2 5 9 16 19 22 26 27 30 31
1 2 3 4 5 6 7 8 9 10
• Whereas in a linked list:
Traverse half of the list in n/2 steps, which is O(n) !
• Quite simple stated:
The way in which data is organized is crucial in complexity.
More examples like this will be seen later.
2 5 9 16 19 22 ….
first
Example of problems:
• Design an efficient algorithm to determine if a list has repeated
elements.
• Given a list of n elements find their minimum (or maximum).
• Given n points in the plane, find the pair(s) of points which are closest
to each other.
• Given n points in the plane determine if any three are contained in a
straight line.
Notion of Algorithms.pdf

Más contenido relacionado

Similar a Notion of Algorithms.pdf

Analysis of Algorithm full version 2024.pptx
Analysis of Algorithm  full version  2024.pptxAnalysis of Algorithm  full version  2024.pptx
Analysis of Algorithm full version 2024.pptx
rajesshs31r
 
Design Analysis of Alogorithm 1 ppt 2024.pptx
Design Analysis of Alogorithm 1 ppt 2024.pptxDesign Analysis of Alogorithm 1 ppt 2024.pptx
Design Analysis of Alogorithm 1 ppt 2024.pptx
rajesshs31r
 
Ch24 efficient algorithms
Ch24 efficient algorithmsCh24 efficient algorithms
Ch24 efficient algorithms
rajatmay1992
 
Data Structure & Algorithms - Mathematical
Data Structure & Algorithms - MathematicalData Structure & Algorithms - Mathematical
Data Structure & Algorithms - Mathematical
babuk110
 
(Slides) Efficient Evaluation Methods of Elementary Functions Suitable for SI...
(Slides) Efficient Evaluation Methods of Elementary Functions Suitable for SI...(Slides) Efficient Evaluation Methods of Elementary Functions Suitable for SI...
(Slides) Efficient Evaluation Methods of Elementary Functions Suitable for SI...
Naoki Shibata
 

Similar a Notion of Algorithms.pdf (20)

Algorithm Analysis
Algorithm AnalysisAlgorithm Analysis
Algorithm Analysis
 
Design & Analysis of Algorithm course .pptx
Design & Analysis of Algorithm course .pptxDesign & Analysis of Algorithm course .pptx
Design & Analysis of Algorithm course .pptx
 
Analysis of Algorithm full version 2024.pptx
Analysis of Algorithm  full version  2024.pptxAnalysis of Algorithm  full version  2024.pptx
Analysis of Algorithm full version 2024.pptx
 
Design Analysis of Alogorithm 1 ppt 2024.pptx
Design Analysis of Alogorithm 1 ppt 2024.pptxDesign Analysis of Alogorithm 1 ppt 2024.pptx
Design Analysis of Alogorithm 1 ppt 2024.pptx
 
Daa chapter 1
Daa chapter 1Daa chapter 1
Daa chapter 1
 
Unit i
Unit iUnit i
Unit i
 
01 - DAA - PPT.pptx
01 - DAA - PPT.pptx01 - DAA - PPT.pptx
01 - DAA - PPT.pptx
 
DSA Complexity.pptx What is Complexity Analysis? What is the need for Compl...
DSA Complexity.pptx   What is Complexity Analysis? What is the need for Compl...DSA Complexity.pptx   What is Complexity Analysis? What is the need for Compl...
DSA Complexity.pptx What is Complexity Analysis? What is the need for Compl...
 
Unit i
Unit iUnit i
Unit i
 
Unit ii algorithm
Unit   ii algorithmUnit   ii algorithm
Unit ii algorithm
 
Ch24 efficient algorithms
Ch24 efficient algorithmsCh24 efficient algorithms
Ch24 efficient algorithms
 
Data Structure & Algorithms - Mathematical
Data Structure & Algorithms - MathematicalData Structure & Algorithms - Mathematical
Data Structure & Algorithms - Mathematical
 
(Slides) Efficient Evaluation Methods of Elementary Functions Suitable for SI...
(Slides) Efficient Evaluation Methods of Elementary Functions Suitable for SI...(Slides) Efficient Evaluation Methods of Elementary Functions Suitable for SI...
(Slides) Efficient Evaluation Methods of Elementary Functions Suitable for SI...
 
UNIT-2-PPTS-DAA.ppt
UNIT-2-PPTS-DAA.pptUNIT-2-PPTS-DAA.ppt
UNIT-2-PPTS-DAA.ppt
 
Algorithms
Algorithms Algorithms
Algorithms
 
dynamic programming complete by Mumtaz Ali (03154103173)
dynamic programming complete by Mumtaz Ali (03154103173)dynamic programming complete by Mumtaz Ali (03154103173)
dynamic programming complete by Mumtaz Ali (03154103173)
 
DAA 1 ppt.pptx
DAA 1 ppt.pptxDAA 1 ppt.pptx
DAA 1 ppt.pptx
 
DAA ppt.pptx
DAA ppt.pptxDAA ppt.pptx
DAA ppt.pptx
 
Data_Structure_and_Algorithms_Lecture_1.ppt
Data_Structure_and_Algorithms_Lecture_1.pptData_Structure_and_Algorithms_Lecture_1.ppt
Data_Structure_and_Algorithms_Lecture_1.ppt
 
Ch1. Analysis of Algorithms.pdf
Ch1. Analysis of Algorithms.pdfCh1. Analysis of Algorithms.pdf
Ch1. Analysis of Algorithms.pdf
 

Más de ShivareddyGangam

Student Voting Application for Election – Using SMS (1).pptx
Student Voting Application for Election – Using SMS (1).pptxStudent Voting Application for Election – Using SMS (1).pptx
Student Voting Application for Election – Using SMS (1).pptx
ShivareddyGangam
 
Unit24_TopologicalSort (2).ppt
Unit24_TopologicalSort (2).pptUnit24_TopologicalSort (2).ppt
Unit24_TopologicalSort (2).ppt
ShivareddyGangam
 
artificialintelligencea-200326090832.pdf
artificialintelligencea-200326090832.pdfartificialintelligencea-200326090832.pdf
artificialintelligencea-200326090832.pdf
ShivareddyGangam
 
Software Project Risks Management (1).pdf
Software Project Risks Management (1).pdfSoftware Project Risks Management (1).pdf
Software Project Risks Management (1).pdf
ShivareddyGangam
 
OS-Final-Transform-Manual-Testing-Processes-to-incorporate-Automatio....pptx
OS-Final-Transform-Manual-Testing-Processes-to-incorporate-Automatio....pptxOS-Final-Transform-Manual-Testing-Processes-to-incorporate-Automatio....pptx
OS-Final-Transform-Manual-Testing-Processes-to-incorporate-Automatio....pptx
ShivareddyGangam
 
machinelearningengineeringslideshare-160909192132 (1).pdf
machinelearningengineeringslideshare-160909192132 (1).pdfmachinelearningengineeringslideshare-160909192132 (1).pdf
machinelearningengineeringslideshare-160909192132 (1).pdf
ShivareddyGangam
 

Más de ShivareddyGangam (20)

Student Voting Application for Election – Using SMS (1).pptx
Student Voting Application for Election – Using SMS (1).pptxStudent Voting Application for Election – Using SMS (1).pptx
Student Voting Application for Election – Using SMS (1).pptx
 
Project Management (2).pdf
Project Management (2).pdfProject Management (2).pdf
Project Management (2).pdf
 
pca.ppt
pca.pptpca.ppt
pca.ppt
 
The Product and Process(1).pdf
The Product and Process(1).pdfThe Product and Process(1).pdf
The Product and Process(1).pdf
 
Unit24_TopologicalSort (2).ppt
Unit24_TopologicalSort (2).pptUnit24_TopologicalSort (2).ppt
Unit24_TopologicalSort (2).ppt
 
Lecture1_jps (1).ppt
Lecture1_jps (1).pptLecture1_jps (1).ppt
Lecture1_jps (1).ppt
 
2 semai.pptx
2 semai.pptx2 semai.pptx
2 semai.pptx
 
artificialintelligencea-200326090832.pdf
artificialintelligencea-200326090832.pdfartificialintelligencea-200326090832.pdf
artificialintelligencea-200326090832.pdf
 
Software Project Risks Management (1).pdf
Software Project Risks Management (1).pdfSoftware Project Risks Management (1).pdf
Software Project Risks Management (1).pdf
 
Introduction (1).pdf
Introduction (1).pdfIntroduction (1).pdf
Introduction (1).pdf
 
Unit 3 (1) (1).pdf
Unit 3 (1) (1).pdfUnit 3 (1) (1).pdf
Unit 3 (1) (1).pdf
 
Unit 1 (1).pdf
Unit 1 (1).pdfUnit 1 (1).pdf
Unit 1 (1).pdf
 
Strassen.ppt
Strassen.pptStrassen.ppt
Strassen.ppt
 
11_Automated_Testing.ppt
11_Automated_Testing.ppt11_Automated_Testing.ppt
11_Automated_Testing.ppt
 
OS-Final-Transform-Manual-Testing-Processes-to-incorporate-Automatio....pptx
OS-Final-Transform-Manual-Testing-Processes-to-incorporate-Automatio....pptxOS-Final-Transform-Manual-Testing-Processes-to-incorporate-Automatio....pptx
OS-Final-Transform-Manual-Testing-Processes-to-incorporate-Automatio....pptx
 
Project Management.pdf
Project Management.pdfProject Management.pdf
Project Management.pdf
 
PP
PPPP
PP
 
chapter2.ppt
chapter2.pptchapter2.ppt
chapter2.ppt
 
machinelearningengineeringslideshare-160909192132 (1).pdf
machinelearningengineeringslideshare-160909192132 (1).pdfmachinelearningengineeringslideshare-160909192132 (1).pdf
machinelearningengineeringslideshare-160909192132 (1).pdf
 
intelligent agent (1).pptx
intelligent agent (1).pptxintelligent agent (1).pptx
intelligent agent (1).pptx
 

Último

CRISIS COMMUNICATION presentation=-Rishabh(11195)-group ppt (4).pptx
CRISIS COMMUNICATION presentation=-Rishabh(11195)-group ppt (4).pptxCRISIS COMMUNICATION presentation=-Rishabh(11195)-group ppt (4).pptx
CRISIS COMMUNICATION presentation=-Rishabh(11195)-group ppt (4).pptx
Rishabh332761
 
Abortion pills in Jeddah |+966572737505 | Get Cytotec
Abortion pills in Jeddah |+966572737505 | Get CytotecAbortion pills in Jeddah |+966572737505 | Get Cytotec
Abortion pills in Jeddah |+966572737505 | Get Cytotec
Abortion pills in Riyadh +966572737505 get cytotec
 
一比一原版(Otago毕业证书)奥塔哥理工学院毕业证成绩单学位证靠谱定制
一比一原版(Otago毕业证书)奥塔哥理工学院毕业证成绩单学位证靠谱定制一比一原版(Otago毕业证书)奥塔哥理工学院毕业证成绩单学位证靠谱定制
一比一原版(Otago毕业证书)奥塔哥理工学院毕业证成绩单学位证靠谱定制
uodye
 
怎样办理昆士兰大学毕业证(UQ毕业证书)成绩单留信认证
怎样办理昆士兰大学毕业证(UQ毕业证书)成绩单留信认证怎样办理昆士兰大学毕业证(UQ毕业证书)成绩单留信认证
怎样办理昆士兰大学毕业证(UQ毕业证书)成绩单留信认证
ehyxf
 
Abortion Pill for sale in Riyadh ((+918761049707) Get Cytotec in Dammam
Abortion Pill for sale in Riyadh ((+918761049707) Get Cytotec in DammamAbortion Pill for sale in Riyadh ((+918761049707) Get Cytotec in Dammam
Abortion Pill for sale in Riyadh ((+918761049707) Get Cytotec in Dammam
ahmedjiabur940
 
怎样办理圣芭芭拉分校毕业证(UCSB毕业证书)成绩单留信认证
怎样办理圣芭芭拉分校毕业证(UCSB毕业证书)成绩单留信认证怎样办理圣芭芭拉分校毕业证(UCSB毕业证书)成绩单留信认证
怎样办理圣芭芭拉分校毕业证(UCSB毕业证书)成绩单留信认证
ehyxf
 
一比一原版(USYD毕业证书)澳洲悉尼大学毕业证如何办理
一比一原版(USYD毕业证书)澳洲悉尼大学毕业证如何办理一比一原版(USYD毕业证书)澳洲悉尼大学毕业证如何办理
一比一原版(USYD毕业证书)澳洲悉尼大学毕业证如何办理
uodye
 
怎样办理阿德莱德大学毕业证(Adelaide毕业证书)成绩单留信认证
怎样办理阿德莱德大学毕业证(Adelaide毕业证书)成绩单留信认证怎样办理阿德莱德大学毕业证(Adelaide毕业证书)成绩单留信认证
怎样办理阿德莱德大学毕业证(Adelaide毕业证书)成绩单留信认证
ehyxf
 
In Riyadh Saudi Arabia |+966572737505 | Buy Cytotec| Get Abortion pills
In Riyadh Saudi Arabia |+966572737505 | Buy Cytotec| Get Abortion pillsIn Riyadh Saudi Arabia |+966572737505 | Buy Cytotec| Get Abortion pills
In Riyadh Saudi Arabia |+966572737505 | Buy Cytotec| Get Abortion pills
Abortion pills in Riyadh +966572737505 get cytotec
 
Mankhurd Call Girls, 09167354423 Mankhurd Escorts Services,Mankhurd Female Es...
Mankhurd Call Girls, 09167354423 Mankhurd Escorts Services,Mankhurd Female Es...Mankhurd Call Girls, 09167354423 Mankhurd Escorts Services,Mankhurd Female Es...
Mankhurd Call Girls, 09167354423 Mankhurd Escorts Services,Mankhurd Female Es...
Priya Reddy
 
怎样办理斯威本科技大学毕业证(SUT毕业证书)成绩单留信认证
怎样办理斯威本科技大学毕业证(SUT毕业证书)成绩单留信认证怎样办理斯威本科技大学毕业证(SUT毕业证书)成绩单留信认证
怎样办理斯威本科技大学毕业证(SUT毕业证书)成绩单留信认证
tufbav
 
怎样办理维多利亚大学毕业证(UVic毕业证书)成绩单留信认证
怎样办理维多利亚大学毕业证(UVic毕业证书)成绩单留信认证怎样办理维多利亚大学毕业证(UVic毕业证书)成绩单留信认证
怎样办理维多利亚大学毕业证(UVic毕业证书)成绩单留信认证
tufbav
 
一比一定(购)国立南方理工学院毕业证(Southern毕业证)成绩单学位证
一比一定(购)国立南方理工学院毕业证(Southern毕业证)成绩单学位证一比一定(购)国立南方理工学院毕业证(Southern毕业证)成绩单学位证
一比一定(购)国立南方理工学院毕业证(Southern毕业证)成绩单学位证
wpkuukw
 
在线制作(UQ毕业证书)昆士兰大学毕业证成绩单原版一比一
在线制作(UQ毕业证书)昆士兰大学毕业证成绩单原版一比一在线制作(UQ毕业证书)昆士兰大学毕业证成绩单原版一比一
在线制作(UQ毕业证书)昆士兰大学毕业证成绩单原版一比一
uodye
 
一比一维多利亚大学毕业证(victoria毕业证)成绩单学位证如何办理
一比一维多利亚大学毕业证(victoria毕业证)成绩单学位证如何办理一比一维多利亚大学毕业证(victoria毕业证)成绩单学位证如何办理
一比一维多利亚大学毕业证(victoria毕业证)成绩单学位证如何办理
uodye
 
一比一定(购)UNITEC理工学院毕业证(UNITEC毕业证)成绩单学位证
一比一定(购)UNITEC理工学院毕业证(UNITEC毕业证)成绩单学位证一比一定(购)UNITEC理工学院毕业证(UNITEC毕业证)成绩单学位证
一比一定(购)UNITEC理工学院毕业证(UNITEC毕业证)成绩单学位证
wpkuukw
 
Abort pregnancy in research centre+966_505195917 abortion pills in Kuwait cyt...
Abort pregnancy in research centre+966_505195917 abortion pills in Kuwait cyt...Abort pregnancy in research centre+966_505195917 abortion pills in Kuwait cyt...
Abort pregnancy in research centre+966_505195917 abortion pills in Kuwait cyt...
drmarathore
 

Último (20)

CRISIS COMMUNICATION presentation=-Rishabh(11195)-group ppt (4).pptx
CRISIS COMMUNICATION presentation=-Rishabh(11195)-group ppt (4).pptxCRISIS COMMUNICATION presentation=-Rishabh(11195)-group ppt (4).pptx
CRISIS COMMUNICATION presentation=-Rishabh(11195)-group ppt (4).pptx
 
Abortion pills in Jeddah |+966572737505 | Get Cytotec
Abortion pills in Jeddah |+966572737505 | Get CytotecAbortion pills in Jeddah |+966572737505 | Get Cytotec
Abortion pills in Jeddah |+966572737505 | Get Cytotec
 
一比一原版(Otago毕业证书)奥塔哥理工学院毕业证成绩单学位证靠谱定制
一比一原版(Otago毕业证书)奥塔哥理工学院毕业证成绩单学位证靠谱定制一比一原版(Otago毕业证书)奥塔哥理工学院毕业证成绩单学位证靠谱定制
一比一原版(Otago毕业证书)奥塔哥理工学院毕业证成绩单学位证靠谱定制
 
Point of Care Testing in clinical laboratory
Point of Care Testing in clinical laboratoryPoint of Care Testing in clinical laboratory
Point of Care Testing in clinical laboratory
 
怎样办理昆士兰大学毕业证(UQ毕业证书)成绩单留信认证
怎样办理昆士兰大学毕业证(UQ毕业证书)成绩单留信认证怎样办理昆士兰大学毕业证(UQ毕业证书)成绩单留信认证
怎样办理昆士兰大学毕业证(UQ毕业证书)成绩单留信认证
 
Critical Commentary Social Work Ethics.pptx
Critical Commentary Social Work Ethics.pptxCritical Commentary Social Work Ethics.pptx
Critical Commentary Social Work Ethics.pptx
 
Abortion Pill for sale in Riyadh ((+918761049707) Get Cytotec in Dammam
Abortion Pill for sale in Riyadh ((+918761049707) Get Cytotec in DammamAbortion Pill for sale in Riyadh ((+918761049707) Get Cytotec in Dammam
Abortion Pill for sale in Riyadh ((+918761049707) Get Cytotec in Dammam
 
怎样办理圣芭芭拉分校毕业证(UCSB毕业证书)成绩单留信认证
怎样办理圣芭芭拉分校毕业证(UCSB毕业证书)成绩单留信认证怎样办理圣芭芭拉分校毕业证(UCSB毕业证书)成绩单留信认证
怎样办理圣芭芭拉分校毕业证(UCSB毕业证书)成绩单留信认证
 
一比一原版(USYD毕业证书)澳洲悉尼大学毕业证如何办理
一比一原版(USYD毕业证书)澳洲悉尼大学毕业证如何办理一比一原版(USYD毕业证书)澳洲悉尼大学毕业证如何办理
一比一原版(USYD毕业证书)澳洲悉尼大学毕业证如何办理
 
怎样办理阿德莱德大学毕业证(Adelaide毕业证书)成绩单留信认证
怎样办理阿德莱德大学毕业证(Adelaide毕业证书)成绩单留信认证怎样办理阿德莱德大学毕业证(Adelaide毕业证书)成绩单留信认证
怎样办理阿德莱德大学毕业证(Adelaide毕业证书)成绩单留信认证
 
In Riyadh Saudi Arabia |+966572737505 | Buy Cytotec| Get Abortion pills
In Riyadh Saudi Arabia |+966572737505 | Buy Cytotec| Get Abortion pillsIn Riyadh Saudi Arabia |+966572737505 | Buy Cytotec| Get Abortion pills
In Riyadh Saudi Arabia |+966572737505 | Buy Cytotec| Get Abortion pills
 
Mankhurd Call Girls, 09167354423 Mankhurd Escorts Services,Mankhurd Female Es...
Mankhurd Call Girls, 09167354423 Mankhurd Escorts Services,Mankhurd Female Es...Mankhurd Call Girls, 09167354423 Mankhurd Escorts Services,Mankhurd Female Es...
Mankhurd Call Girls, 09167354423 Mankhurd Escorts Services,Mankhurd Female Es...
 
怎样办理斯威本科技大学毕业证(SUT毕业证书)成绩单留信认证
怎样办理斯威本科技大学毕业证(SUT毕业证书)成绩单留信认证怎样办理斯威本科技大学毕业证(SUT毕业证书)成绩单留信认证
怎样办理斯威本科技大学毕业证(SUT毕业证书)成绩单留信认证
 
怎样办理维多利亚大学毕业证(UVic毕业证书)成绩单留信认证
怎样办理维多利亚大学毕业证(UVic毕业证书)成绩单留信认证怎样办理维多利亚大学毕业证(UVic毕业证书)成绩单留信认证
怎样办理维多利亚大学毕业证(UVic毕业证书)成绩单留信认证
 
Guwahati Escorts Service Girl ^ 9332606886, WhatsApp Anytime Guwahati
Guwahati Escorts Service Girl ^ 9332606886, WhatsApp Anytime GuwahatiGuwahati Escorts Service Girl ^ 9332606886, WhatsApp Anytime Guwahati
Guwahati Escorts Service Girl ^ 9332606886, WhatsApp Anytime Guwahati
 
一比一定(购)国立南方理工学院毕业证(Southern毕业证)成绩单学位证
一比一定(购)国立南方理工学院毕业证(Southern毕业证)成绩单学位证一比一定(购)国立南方理工学院毕业证(Southern毕业证)成绩单学位证
一比一定(购)国立南方理工学院毕业证(Southern毕业证)成绩单学位证
 
在线制作(UQ毕业证书)昆士兰大学毕业证成绩单原版一比一
在线制作(UQ毕业证书)昆士兰大学毕业证成绩单原版一比一在线制作(UQ毕业证书)昆士兰大学毕业证成绩单原版一比一
在线制作(UQ毕业证书)昆士兰大学毕业证成绩单原版一比一
 
一比一维多利亚大学毕业证(victoria毕业证)成绩单学位证如何办理
一比一维多利亚大学毕业证(victoria毕业证)成绩单学位证如何办理一比一维多利亚大学毕业证(victoria毕业证)成绩单学位证如何办理
一比一维多利亚大学毕业证(victoria毕业证)成绩单学位证如何办理
 
一比一定(购)UNITEC理工学院毕业证(UNITEC毕业证)成绩单学位证
一比一定(购)UNITEC理工学院毕业证(UNITEC毕业证)成绩单学位证一比一定(购)UNITEC理工学院毕业证(UNITEC毕业证)成绩单学位证
一比一定(购)UNITEC理工学院毕业证(UNITEC毕业证)成绩单学位证
 
Abort pregnancy in research centre+966_505195917 abortion pills in Kuwait cyt...
Abort pregnancy in research centre+966_505195917 abortion pills in Kuwait cyt...Abort pregnancy in research centre+966_505195917 abortion pills in Kuwait cyt...
Abort pregnancy in research centre+966_505195917 abortion pills in Kuwait cyt...
 

Notion of Algorithms.pdf

  • 1. Algorithms 1. Notion of an algorithm 2. Properties of an algorithm 3. The GCD algorithm 4. Correctness of the GCD algorithm 5. Termination of the GCD algorithm 6. Performance 7. Data structures
  • 2. Need for studying algorithms: • The study of algorithms is the cornerstone of computer science. It can be recognized as the core of computer science. • Computer programs would not exist without algorithms. With computers becoming an essential part of our professional & personal life‘s, studying algorithms becomes a necessity, more so for computer science engineers. • Another reason for studying algorithms is that if we know a standard set of important algorithms, They enhance our analytical skills & help us in developing new algorithms for required applications
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.
  • 9. 1-Notion of an algorithm Definition An algorithm is a clearly specified set of instructions describing the solution to a specific problem. • An algorithm is finite set of instructions that is followed, accomplishes a particular task. (Sahani) An algorithm • takes the input and transforms it into an adequate output, • must be independent from any programming language, • is written in a level of detail that allows to reproduce it in any programming language, • has to be designed so it can be reused and understood by others.
  • 10. Algorithms must satisfy the following criteria 1.Input: Zero or more quantities are externally supplied. 2.Output : At least one quantity is produced. 3.Definiteness:Each instruction is clear and unambiguous. 4.Finiteness: If we trace out the instructions of an algorithm, then for all cases, the algorithm terminates after a finite number of steps. 5.Effectiveness: Every instruction must be very basic so that it can be carried out, in principle,by a person using only pencil and paper. It is not enough that each operation be definite as in criterion3; it also must be feasible.
  • 11. 2-Properties of an algorithm Some properties must be satisfied by an algorithm in order to allow a successful execution of the corresponding program: 1. Correctness: if the input conditions are satisfied and the algorithm instructions executed, then the correct output is produced. 2. Termination: the algorithm must terminate after a finite number of steps. Thus, it has to be composed by a finite number of steps. This can be ensured if the algorithm avoids an infinite loop. 3. Performance: Quantification of the space and time complexities.
  • 12. • Algorithms that are definite and effective are also called computational procedures. • The same algorithm can be represented in several ways • Several algorithms to solve the same problem • Different ideas different speed
  • 13. The four distinct areas of studying algorithms 1. How to devise algorithms 2. How to validate algorithms 3. How to analyze algorithms 4. How to test a program
  • 14. The GCD algorithm: Given two positive integers m and n, find the greatest common divisor, gcd(m,n). A view of the problem: All numbers from 1 up to the smallest of m and n, say n. Naive algorithm: Go through search space (from 1 to n) Keep track of largest number that divides both m and n. Is there a more efficient way of doing this? Yes, the Euclidean Algorithm (Euclid – c.350 B.C.E.)
  • 15. Pseudocode of the GCD algorithm : Algorithm GreatestCommonDivisor Input: Two positive integers, m and n Ouptut: The gcd of m and n repeat r  m mod n m  n n  r until (r == 0) Output m and STOP.
  • 16. Example: m = 24, n = 9 r  24 mod 9 = 6 m  9 n  6 r  9 mod 6 = 3 m  6 n  3 r  6 mod 3 = 0 m  3 n  0 Output 3 STOP
  • 17. Euclids algorithm Step1:if n=0 return val of m & stop else proceed step 2 Step 2:Divide m by n & assign the value of remainder to r Step 3:Assign the value of n to m,r to n,Go to step1.
  • 18. Another algorithm to solve the same problem Euclids algorithm Step1:Assign the value of min(m,n) to t Step 2:Divide m by t.if remainder is 0,go to step3 else goto step4 Step 3: Divide n by t.if the remainder is 0,return the value of t as the answer and stop,otherwise proceed to step4 Step4 :Decrease the value of t by 1. go to step 2
  • 19. Thus, ri will become 0 in at most 2 log n iterations Example: m = 1989 and n = 1590 Remainder sequence: 399 = 1989 mod 1590  399 < 1989/2 393 = 1590 mod 399  393 < 1590/2 6 = 399 mod 393  6 < 399/2 < 1989/4 3 = 393 mod 6  3 < 393/2 < 1590/4 0 = 6 mod 3  0 < 6/2 < 399/4 < 1989/8 We stop here, but if we continue: < 1590/8 < 1989/16 < 1590/16
  • 20. Number of Steps: In 2 * 3 steps, ri reduced by factor of 8 2 * 4 ri 16 2 * 5 ri 32 2 * 6 ri 64 …… 2 * log n ri n Thus, ri becomes 0 in at most 2 log n iterations.
  • 21. 4-Correctness of the GCD algorithm. 4-Correctness of the GCD algorithm. • Correctness is an important issue in algorithm design. This means Correctness is an important issue in algorithm design. This means proving that the algorithm works for all legal inputs. proving that the algorithm works for all legal inputs. It is analogous to proving the correctness of a theorem in It is analogous to proving the correctness of a theorem in mathematics! mathematics! • The correctness of the GCD algorithm depends on the following loop The correctness of the GCD algorithm depends on the following loop invariant: invariant: gcd(m,n)=gcd(n,r) where r=m%n gcd(m,n)=gcd(n,r) where r=m%n
  • 22. Claim 1: gcd(m,n) = gcd(n,r) Proof: The gcd of the new pair is equal to the gcd of the previous pair. How is this correct? Let us write: m = q * n + r where 0  r  n. This implies that: a common divisor of m and n is also a common divisor of n and r, and vice versa. q.e.d.
  • 23. 5-Termination of the GCD algorithm. 5-Termination of the GCD algorithm. • Show that algorithm terminates in a finite number of steps. Show that algorithm terminates in a finite number of steps. • This must be true for every valid input. This must be true for every valid input. • Can we show this for Algorithm GCD? Can we show this for Algorithm GCD? • We must show that We must show that ri ri goes to 0 in a finite number of steps. goes to 0 in a finite number of steps. Observe: Observe: • The sequence of remainders strictly decreases. The sequence of remainders strictly decreases. • They are all non-negative. They are all non-negative. • Thus Thus ri ri will become 0 in at most 2 log will become 0 in at most 2 log n n steps. steps.
  • 24. 6-Performance of the GCD algorithm. 6-Performance of the GCD algorithm. • Quantification of performance of the algorithm. Quantification of performance of the algorithm. • Crucial parameters: time and space. Crucial parameters: time and space. • Called time and space complexity of the algorithm. Called time and space complexity of the algorithm. • Will be discussed latter in the course. Will be discussed latter in the course. For example: For example: Time complexity of GCD: Time complexity of GCD: Takes at most 2 log Takes at most 2 log n n steps, where steps, where n n < < m m Thus, worst-case time complexity: Thus, worst-case time complexity: O O(log (log n n) )
  • 25. 7-Data structures 7-Data structures • The study of different ways of organizing data. The study of different ways of organizing data. • Why? Why? • Efficiency of algorithm depends on how data is organized. Efficiency of algorithm depends on how data is organized. • Reason for studying data structures and algorithms together. Reason for studying data structures and algorithms together. • Organic connection between the two areas. Organic connection between the two areas. • In 60-212 the programming language JAVA is studied. In 60-212 the programming language JAVA is studied. • Here: An algorithmic perspective. Here: An algorithmic perspective. • Independent of programming language (eg. C, C++, JAVA). Independent of programming language (eg. C, C++, JAVA).
  • 26. For example: • The median of a list of n numbers is a number m such that: n/2 numbers in the list are  m, and n/2 … are  m. • Many definitions of median, we take: If n is even: Two medians: lower median and upper median, Then, median is average of lower and upper medians. If n is odd: Both medians (lower and upper) are the same.
  • 27. • Consider this problem: Given a sorted list of n numbers, find the median. • A crucial question: How should we store the list? • We store it in an array, A, then The median is found in constant time, O(1) !! • Median = (A[5]+A[6])/2 = (19+22)/2 = 20.5 2 5 9 16 19 22 26 27 30 31 1 2 3 4 5 6 7 8 9 10
  • 28. • Whereas in a linked list: Traverse half of the list in n/2 steps, which is O(n) ! • Quite simple stated: The way in which data is organized is crucial in complexity. More examples like this will be seen later. 2 5 9 16 19 22 …. first
  • 29. Example of problems: • Design an efficient algorithm to determine if a list has repeated elements. • Given a list of n elements find their minimum (or maximum). • Given n points in the plane, find the pair(s) of points which are closest to each other. • Given n points in the plane determine if any three are contained in a straight line.