Se ha denunciado esta presentación.
Utilizamos tu perfil de LinkedIn y tus datos de actividad para personalizar los anuncios y mostrarte publicidad más relevante. Puedes cambiar tus preferencias de publicidad en cualquier momento.

Ppt on trignomentry

small introduction on trignomentry for class 10

  • Sé el primero en comentar

Ppt on trignomentry

  1. 1. PROJECT ON TRIGONOMETRY DESIGNED BY: AARTHEE A AMIRTHA VARSHINI V HARINI R HEMA M SUKEERTHI S
  2. 2. TRIGONOMETRIC RATIOS Let us take a right angle ABC as shown in figure. Here, ∟CAB or ∟A is an acute angle. Note the position of side BC with respect to ∟A. It faces ∟A. we call it the side opposite to ∟A(perpendicular). AC is hypotenuse of the right angle and the side AB is a part of ∟A. so, we call it the side adjacent to ∟A(base).
  3. 3. The trigonometric ratios of the angle A in the right triangle ABC see in fig. •Sin of A =side opposite to angle A =BC hypotenuse AC •Cosine of A =side adjacent to angle A =AB hypotenuse AC •Tangent of A =side opposite to angle A =BC side adjacent to angle A AB C A B
  4. 4. Cosecant of A = 1 = hypotenuse = AC sin of A side opposite to angle A BC Secant of A = 1 = hypotenuse = AC sin of A side adjacent to angle a AB Cotangent of A= 1 =side adjacent to angle A= AB tangent of A side opposite to angle A BC C A B
  5. 5. RECIPROCALS OF SIN , COS & TAN Sin θ = reciprocal= Cosec θ Cos θ = reciprocal = Sec θ Tan θ = reciprocal = Cot θ Means :- Sin θ = 1/ Cosec θ (sin θ * cosec θ = 1 ) Cos θ = 1/ Sec θ ( cos θ * sec θ = 1 ) Tan θ = 1/ Cot θ ( tan θ * cot θ = 1 )
  6. 6. VALUES OF TRIGONOMETRIC RATIOS ∟θ 0° 30° 45° 60° 90° Sin θ 0 1/2 1/√2 √3/2 1 Cos θ 1 √3/2 1/√2 1/2 0 Tan θ 0 1/√3 1 √3 NOT DEFINED Cosec θ NOT DEFINED 2 √2 2/√3 1 Sec θ 1 2/√3 √2 2 NOT DEFINED Cot θ NOT DEFINED √3 1 1/√3 0
  7. 7. FORMULAS Sin ( 90° – θ ) = Cos θ Cos ( 90° – θ ) = Sin θ Tan ( 90° – θ ) = Cot θ Cot ( 90° – θ ) = Tan θ Cosec ( 90° – θ ) = Sec θ Sec ( 90° – θ ) = Cosec
  8. 8. MAIN IDENTITIES Sin²θ + Cos² θ = 1 1 + Tan² θ = Sec² θ 1 + Cot² θ = Cosec² θ Sinθ / Cos θ = Tan θ Cosθ / Sin θ = Cot θ Sin² θ / Cos² θ = Tan² θ Cos² θ / Sin² θ = Cot² θ
  9. 9. STEPS OF PROVING THE IDENTITIES 1) Solve the left hand side or right hand side of the identity. 2) Use an identity if required. 3) Use formulas if required. 4) Convert the terms in the form of sinθ or cos θ according to the question. 5) Divide or multiply the L.H.S. by sin θ or cos θ if required. 6) Then solve the R.H.S. if required. 7) Lastly , verify that if L.H.S. = R.H.S.
  10. 10. THANK YOU

×