SlideShare una empresa de Scribd logo
1 de 72
Descargar para leer sin conexión
Power Topologies Review
Steve Mappus
FAE Training
May 2015
2
Agenda
 Non Isolated Converter Topologies and Their Isolated DC/DC Derivatives
• PFC Boost
• Buck
• Buck-Boost
 Single Ended Converter Topologies
• Transformer Reset Techniques
• Forward Converter
• Flyback Converter
 Double Ended Converter Topologies
• Push Pull
• Half Bridge
• Full Bridge
• Phase Shifted Full Bridge
 Synchronous Rectification
• Current Doubler Rectifier
3
DOUBLE-ENDEDSINGLE-ENDED
ACTIVE CLAMP
2-SWITCH
PUSH-PULL
HALF BRIDGE
FULL BRIDGE
LOW POWER (<100W)
MID-POWER (100W-500W)
HIGH-POWER (>500W)
HARD SWITCHED
ZVT/PHASE SHIFT
NON-ISOLATED
ISOLATED
D
V
V
i
O
=
DV
V
i
O
−
=
1
1
FORWARD
D
D
V
V
i
O
−
−=
1
SINGLE-ENDED
FLYBACK
BOOST BUCK-BOOST BUCK
ACTIVE CLAMP
2-SWITCH
LLC
Isolated Power Topology Derivatives
 8 “Mainstream” Topologies
Non-Isolated
1. Boost
2. Buck-Boost
3. Buck
Isolated
4. Flyback
5. Forward
6. Push-Pull
7. Half Bridge
8. Full Bridge
4
Other Topologies?
 Numerous Variations Exist
• Sepic
• Cuk
• Current Fed Buck
• Tapped Inductors
• Multiple Outputs
• Interleaving
• More?
 Different Ways to Operate Them
• Voltage Mode Control
• Current Mode Control
• Digital Control
• Variable Frequency
• CCM, DCM, BCM
• ZVS
• ZCS
• Synchronous Rectification
 Some Practical Converter Topology Advice
• Most power conversion requirements can be met using one or more of the 8 mainstream topologies
• Save more difficult topologies for unique application requirements
• Beware of publications proclaiming the “best” topology
5
AC Line
85V<VAC<265V
VDC=400V 400V to 48V Bus Converter
VPOL_1<5V
VPOL_N<5V
48V to 12V IBC (Intermediate Bus Converter)
Telecom Rectifier
Multi-Stage Topology
Typical Distributed Power System
High Power DC/DCPFC Boost
POLDCDCPFCSYS ηηηηη ×××=
%9.84%96%95%95%98 =×××=SYSη
 Scalable, efficient, complex protection functions, sequencing,
redundancy, digital control, etc
 Efficiency example:
POL DC/DC
 Non-Isolated Converter Topologies
 Single Ended Converter Topologies
 Double Ended Converter Topologies
 Synchronous Rectification
7
Boost Converter
 Most popular topology for Power Factor Correction
• Simple power stage
• Efficient energy storage
• Continuous input current waveform
• VIN<VOUT
 Operating modes
• CCM – fixed frequency, best PF and THD, Any Power Level
• BCM – variable frequency, good PF and THD, <300W
• DCM – never used intentionally but unavoidable at light load
 Usually power factor correction capability is lost
AC
LINE
VB
EMI
Filter
DC/DC
VLOAD
8
Boost Converter
VGS(Q)
VDS(Q)
IL
IDS(Q)
ID
VOUT
BCM
tON tOFF
TS
𝑉𝑉𝐼𝐼𝐼𝐼(𝑡𝑡) × (𝑡𝑡𝑂𝑂𝑂𝑂 + 𝑡𝑡𝑂𝑂𝑂𝑂𝑂𝑂 ) = 𝑉𝑉𝑂𝑂𝑂𝑂𝑂𝑂 × 𝑡𝑡𝑂𝑂𝑂𝑂𝑂𝑂
𝑉𝑉𝐼𝐼𝐼𝐼(𝑡𝑡) × 𝑇𝑇𝑆𝑆 = 𝑉𝑉𝑂𝑂𝑂𝑂𝑂𝑂 × 𝑡𝑡𝑂𝑂𝑂𝑂𝑂𝑂
𝑉𝑉𝑂𝑂𝑂𝑂𝑂𝑂
𝑉𝑉𝐼𝐼𝐼𝐼(𝑡𝑡)
=
𝑇𝑇𝑆𝑆
𝑡𝑡𝑂𝑂𝑂𝑂𝑂𝑂
=
1
1 − 𝐷𝐷
Inductor volt-second balance:
Boost transfer function:
 VIN<VOUT
 Most efficient at lower D
 Continuous input current
 High PF, low THD
 CCM, BCM, DCM modes
VOUT
VAC
VIN(t)
D
IL
L
VL
Q
COUTCBYP
VOUT
VAC
VIN(t)
D
IL
L
VL
Q
COUTCBYP
〈𝑉𝑉𝐿𝐿〉 𝑇𝑇 𝑆𝑆
= 𝑉𝑉𝐼𝐼𝐼𝐼(𝑡𝑡) × 𝑡𝑡𝑂𝑂𝑁𝑁 + ��𝑉𝑉𝐼𝐼𝐼𝐼(𝑡𝑡) − 𝑉𝑉𝑂𝑂𝑂𝑂𝑂𝑂 � × 𝑡𝑡𝑂𝑂𝐹𝐹𝐹𝐹 � = 0
9
Operating Mode
0V
VDS
tREStOFFtON
TS
0A
IL
0V
VGS
VIN
VOUT
2x(VIN – VOUT)
t
IL(PK)
0V
VDS
tDtOFFtON
TS
0A
IL
0V
VGS
t
IL(PK)
VOUT
VAC
VIN(t)
DIL
L
Q
COUTCBYP
TS
0V
VDS
tOFFtON
0A
IL
0V
VGS
VOUT
t
IL(PK)
IL(MIN)
CCM BCM DCM
10
Continuous Conduction Mode (CCM) PFC
IL
 Advantages
• Low Ripple current: Lower core losses
• Lower EMI : Smaller Input Filter
• Simple inductor design
• Fixed frequency operation, best PF and THD
• Can be used at any power level
• Easily interleaved for power levels up to
many KW
 Disadvantages
 Requires very fast boost diode with low IRR
 Silicon Carbide diodes are often used
 Larger Inductor
 MOSFET Switching Loss (hard switching)
(1-D)TsDTs
Ts
IL
IDIsw
(Not to scale)
11
Boundary Conduction Mode (BCM) PFC
IL
DTs
Ts
IDIsw
 Advantages
• MOSFET turns on at zero current
• ZVS/valley switching
• No reverse recovery in boost diode
(low cost, low VF diode can be used)
• Higher efficiency compared to CCM
 Disadvantages
• Larger MOSFET conduction loss
• Variable Frequency
• Inductor design can be complex
• High peak current limits practical use to
~300W (Impact on EMI filter)
(Not to scale)
12
Buck Converter
VGS(Q)
VD
VDS(Q)
IL
IDS(Q)
ID
VIN
VF
VL
-VOUT
VIN-VOUT
VIN+VF
BCM
tON tOFF
TS
Inductor volt-second balance: Buck transfer function:
 VIN>VOUT
 Most efficient at higher D
VOUT
D
VOUT
D
IL
Q
L
VL
L
VL
Q COUT
COUT
VIN
CIN
VIN
CIN
〈𝑉𝑉𝐿𝐿〉 𝑇𝑇 𝑆𝑆
= [( 𝑉𝑉𝐼𝐼𝐼𝐼 − 𝑉𝑉𝑂𝑂𝑂𝑂𝑂𝑂 ) × 𝑡𝑡𝑂𝑂𝑂𝑂 ] − 𝑉𝑉𝑂𝑂𝑂𝑂𝑂𝑂 × 𝑡𝑡𝑂𝑂𝑂𝑂𝑂𝑂 = 0
𝑉𝑉𝐼𝐼𝐼𝐼 × 𝑡𝑡𝑂𝑂𝑂𝑂 = 𝑉𝑉𝑂𝑂𝑂𝑂𝑂𝑂 × (𝑡𝑡𝑂𝑂𝑂𝑂 + 𝑡𝑡𝑂𝑂𝑂𝑂𝑂𝑂 )
𝑉𝑉𝐼𝐼𝐼𝐼 × 𝑡𝑡𝑂𝑂𝑂𝑂 = 𝑉𝑉𝑂𝑂𝑂𝑂𝑂𝑂 × 𝑇𝑇𝑆𝑆
𝑉𝑉𝑂𝑂𝑂𝑂𝑂𝑂
𝑉𝑉𝐼𝐼𝐼𝐼
=
𝑡𝑡𝑂𝑂𝑂𝑂
𝑇𝑇𝑆𝑆
= 𝐷𝐷
13
Buck-Boost Converter
Inductor volt-second balance: Buck-Boost transfer function:
 VIN<VOUT or VIN>VOUT
 Used for negative VOUT
〈𝑉𝑉𝐿𝐿〉 𝑇𝑇 𝑆𝑆
= 𝑉𝑉𝐼𝐼𝐼𝐼 × 𝑡𝑡𝑂𝑂𝑂𝑂 + 𝑉𝑉𝑂𝑂𝑂𝑂𝑂𝑂 × 𝑡𝑡𝑂𝑂𝑂𝑂𝑂𝑂 = 0
𝑉𝑉𝐼𝐼𝐼𝐼 × 𝑡𝑡𝑂𝑂𝑂𝑂 = −(𝑉𝑉𝑂𝑂𝑂𝑂𝑂𝑂 × 𝑡𝑡𝑂𝑂𝑂𝑂𝑂𝑂 )
𝑉𝑉𝑂𝑂𝑂𝑂𝑂𝑂
𝑉𝑉𝐼𝐼𝐼𝐼
= − �
𝑡𝑡𝑂𝑂𝑂𝑂 /𝑇𝑇𝑆𝑆
𝑡𝑡𝑂𝑂𝑂𝑂𝑂𝑂 /𝑇𝑇𝑆𝑆
� = − �
𝑡𝑡𝑂𝑂𝑂𝑂 /𝑇𝑇𝑆𝑆
(𝑇𝑇𝑆𝑆 − 𝑡𝑡𝑂𝑂𝑂𝑂 )/𝑇𝑇𝑆𝑆
�
𝑉𝑉𝑂𝑂𝑂𝑂𝑂𝑂
𝑉𝑉𝐼𝐼𝐼𝐼
= − �
𝐷𝐷
1 − 𝐷𝐷
�
VGS(Q)
VD
VDS(Q)
IL
IDS(Q)
ID
VF
VL
VIN
VIN+|-VOUT|
tON tOFF
TS
VIN+|-VOUT|
VOUT-VF
-VOUT
IL
L VL
Q COUT
D
-VOUT
VIN
IL
L VL
Q COUT
CIN
D
VIN
CIN
 Non-Isolated Converter Topologies
 Single Ended Converter Topologies
 Double Ended Converter Topologies
 Synchronous Rectification
15
Benefits of a Transformer
AC
AC DC
Output Load
(or DC)
D1
L
CO
Q1
CIN
VOVIN
D1
D2
L
CO
NP NS
CIN
Q1
VIN
VO
1. Provides primary to secondary safety isolation – subject to regulatory standards
2. Voltage conversion resolution
D
V
V
IN
O
= D
N
N
V
V
P
S
IN
O
=
Ex: For FSW=300kHz (TSW=3.33µs), NP:NS=4:1, 36V<VIN<75 and VO=5V
Buck Converter Isolated Buck (Forward) Converter
27%<D<55%
900ns<tON<1.8µs
6%<D<14%
200ns<tON<467ns
3. Multiple outputs can be regulated/quasi-regulated
16
Transformer Characteristics
NP NS
VIN
VOUT
RP
RS
LP(LEAK) LS(LEAK)
CP(W)
CS(W)
NP NS
LMAGRCORE
CP-S(MUTUAL)
NP NS
VIN
VOUT
VGS
VDS
Parasitic Transformer Model
CCM Flyback
Overshoot/ringing due to
Leakage Inductance
 Ideal transformer
• Perfect coupling between Np:Ns
• No energy storage
 Flyback “transformer”
• Really a coupled inductor
• Primary energy stored during tON
• Power transferred during tOFF
17
Single Ended Topologies Defined
∝B Vt
∝H NI
∆B
B1
B2
+BSAT
-BSAT
D1
D2
L
CO
NP NS
CIN
Q1
Reset
Circuit
TS
+VIN(max)
+VIN(min)
D=25%
D=50%
D>50%
-VRESET
-VRESET
OFFRESETONIN tVtV ×−=×+ (max)
RESETIN VV −=+ (max)
OFFON tt =
tON
tOFF
OFFON tt >
INQDS VV ×= 2)1(
INQDS VV ×> 2)1(
+VIN
-VRESET
-VIN
t
t
t
0
0
0
OFFRESETONIN tVtV ×−=×+
RESETIN VV −<+
(b) Forward Converter
Single Ended – Transformer operation limited to first quadrant
(c) Transformer Volt-Second Balance
(a) Transformer Hysteresis
18
Single Ended Topologies Defined
∝B Vt
∝H NI
∆B
B1
B2
+BSAT
-BSAT
D1
D2
L
CO
NP NS
CIN
Q1
Reset
Circuit
(b) Forward Converter
Single Ended – Transformer operation limited to first quadrant
(a) Transformer Hysteresis (c) Gapped Flyback “Transformer”
D
CO
NP NS
CIN
Q1
VIN
VO
(d) Flyback Converter
∝B Vt
∝H NI
∆B
B1
B2
+BSAT
-BSAT
UNGAPPED
GAPPED
19
Single Ended Transformer Reset Techniques
Reset Winding
+ Reset Energy Recycled
+ Simple Off-Line Solution
- 50% Duty Cycle Limit (1:1)
- Possible Core Saturation
- Transformer Structure
- Q1 Hard Switched
Resonant Reset
+ Reset Energy Recycled
+ Fewest Components
+ Simple Telecom Solution
- Repeatable Design Difficult
- High VDS Stress
- Not for Off-Line Power
- Not Suitable for Self-Driven SR
- Q1 Hard Switched
RCD Reset
+ Inexpensive Off-Line Solution
+ >50% Duty cycle Possible
- Reset Energy Dissipated
- Q1 Hard Switched
Active Clamp Reset
+ High Efficiency (ZVT)
+ Higher Frequency Operation
+ Lowest Vds Stress
+ Off-Line and Telecom
+ SR Gate Drive
- Q1, Q2 Gate Drive
- Higher Cost
- Limited PWM and/or Driver
Choices
NP NS
Q1
Reset
Winding
0
VIN
-VR
NP NS
Q1
RCD Reset
0
VIN
-VR
NP NS
Q1
Resonant
Reset
0
VIN
-VR
Q2
CCL
NP NS
Q1
Active Clamp
Reset
0
VIN
-VR
20
Flyback Converter Derivation
-VOUT
L
Q COUT
D
VIN
CIN
-VOUT
L
Q COUT
D
VIN
CIN
1:1
-VOUT
LM
Q COUT
D
VIN
CIN
1:1
(a)
(b)
(c)
(d)
(e)
a) Non-isolated buck-boost
b) Coupled inductor buck-boost
c) Isolated buck-boost
d) Isolated flyback converter
e) D can be in return path
VOUT
LM
Q
COUT
D
VIN
CIN
n:1
VOUT
LM
Q
COUT
D
VIN
CIN
n:1
21
Flyback Converter Operating Modes
 Discontinuous Conduction Mode (DCM)
• Advantages (DCM): Smaller transformer, trr of output rectifiers is less of an issue since
current is zero before reverse voltage appears, single pole characteristic of the power circuit
simplifies compensation
• Disadvantages (DCM): Peak currents in the switch and diodes are considerably greater,
ripple currents in output capacitors are much greater than continuous mode
 Continuous Conduction Mode (CCM)
• Advantages (CCM) = Peak currents in the switching devices are lower, ripple currents in the
output capacitors are lower
• Disadvantages (CCM) = Larger transformer is required, right half plane zero (RHPZ) shows
up in the control loop thereby complicating compensation
 Boundary Conduction Mode (BCM)
• Variable frequency
22
Flyback Converter
CCM Operation
D
D
N
N
V
V
P
S
IN
O
−
×=
1
(a) Flyback Converter
(b) CCM Waveforms
 CCM Transfer Function
 Limitations
• Q1 switching loss (hard switched)
• D2 reverse recovery loss
• Q1(VDS)>VIN
• 50% duty cycle limit
• Right half plane zero in CCM
VOUT
LM
Q
COUT
D
VIN
CIN
n:1 NSNP
0
0
0
0
0
0
PWM
VDS
VS
IQ1
ID1
IL
VOUT
-(NS/NP)VIN
VIN+(NP/NS)VOUT
23
Quasi-Resonant Flyback
Conventional Valley Switching
Wide frequency variation depends on output load condition
t
t
iD
vDS
T2
Output Power [W]
fS[Hz]
vDS
iD
t
t
T1
Output load decreases
Operating frequency
increases
SOSSLossSwitching fVCP DS
2
∝
24
Quasi-Resonant Flyback
Window Valley Switching Ts
max
=10.8us
tB=7.8us
tW=3.0us
fs_A=110kHz
fs_B=122kHz
fs_C=127.5kHz
fs_D=92.6kHz
(a)
(b)
(c)
(d)
vDS (100V/div)
iD (100mA/div) Time scale 2usec/div
 Frequency variation depends on
output load conditions
 Operating frequency is within narrow
variation (127.5 kHz ~ 92.6 kHz)
Light Load
Heavy Load
25
Two-Switch, Quasi-Resonant Flyback
CC
CVFB
FAN6300H
1
2
3
4 5
6
7
8
NC
HV
VDD
GATEGND
CS
FB
DET
FAN7382
1
2
3
4 5
6
7
8
HO
VB
VS
LOCOM
LIN
HIN
VCCPBIAS
VIN
R1
R2
R3
Q1
Q2
D1
D2
D3
D4D5
ACIN
R4
C1
VA
VLED
VHS
C2
C3
(FROM PFC)
(FROM PFC)
RDY
PBIAS
26
Two-Switch, Quasi-Resonant Flyback
Switching Waveforms
0V
VDS
0A
IDS
tftOFF tON
TS
0A
ID
VAVA
0V
0V
VDET
0V
VIN
PBIAS
VIN+VHS
VGS(HS)
VGS(LS)
0.7V
5µs
2.5V
VO
OVP
IDET(SOURCE)>30µA
tDELAY=200ns
VRO
2
VRO
2
VIN
2
VIN
2
 Quasi-resonant, variable frequency
 HS and LS MOSFETs switch synchronously
 Switching period, TS=tOFF+tf+tON
 Inductor current switches from 0A (ZCS) every
switching cycle
 VDS
• ZVS→VOUT>2×VIN
• Valley switching→otherwise
• Window valley switching
27
Two-Switch, Quasi-Resonant Flyback
Measured Waveforms
 Extended Window Valley Switching
 VOUT< ½ VIN
 D=11%
 FS=68kHz
 POUT=24W
 VDS Valley Switching on First Valley
• VOUT< ½ VIN
• D=42%
• FS=63kHz
• POUT=85W
28
Buck Derived Transfer Functions
D1
L
CO
VOVIN
D1
L
CO
VOVIN
NP : NS
tON
tOFF
TS
D
N
N
V
V
P
S
IN
O
×=
(a) Buck Converter (b) Forward Converter (isolated buck)
S
ON
OFFON
ON
T
t
tt
t
D =
+
=Duty Cycle =
INO VDV ×=
( ) OFFOONOIN tVtVV ×=×−
D
V
V
IN
O
=
Buck Converter Transfer Function
Forward Converter Transfer Function
D
N
N
V
V
P
S
IN
O
×=
All Isolated Single Ended Buck Converters
All Isolated Double Ended Buck Converters
D
N
N
V
V
P
S
IN
O
××= 2
29
Forward Converter Basics
0
0
0
PWM
VDS(Q1)
VP
VR+VIN
VIN
IMAG
0 IQ1
IL
ID1
ID2
0
0
0
0
VIN
R
P
INR
N
N
VV ×−=
D1
D2
L
CO
NP NSCIN
Q1
VIN
VO
NR
D3
(a) Forward Converter with Reset Winding
(b) DCM Waveforms (D<0.5)
 Really a transformer coupled buck
 Transfer function
 Limitations
• Q1 switching loss (hard switched)
• D2 conduction loss
• Q1(VDS)>2VIN
• 50% duty cycle limit (NP:NR = 1:1)
D
N
N
V
V
P
S
IN
O
×=
30
VIN
0
VP
IMAG
TS
DTS D2TS D3TS
t
t
R
P
IN
N
N
V ×−
Why 50% Duty Cycle Limit?
(a) Forward Converter: Transformer Voltage and Current
1. Average primary voltage must be zero over switching period
2. Solve (1) for D2
0)0()( 32 =+





−+=〉〈 D
N
N
VDVDV
R
P
ININp
132 =++ DDD
3. By definition
(1)
(2)
(3)
4. Solve (3) for D3
01 23 ≥−−= DDD (4)
P
R
N
N
DD =2
5. Sub (2) into (4)
01 ≥−−
P
R
N
N
DD (5)
6. Solve (5) for D
(6)
P
R
N
N
D
+
≤
1
1
7. For NP:NR=1:1 (common practice)
(7)
2
1
≤D
31
Problems with Duty Cycle > 50%
VIN
0
VP
IMAG
TS
DTS D2TS D3TS
t
t
R
P
IN
N
N
V ×−
Equal Vxt Area
VIN
VP
IMAG
t
t
R
P
IN
N
N
V ×−
2TS 3TSTS
DTS D2TS
D=67%
D=40%
Unequal Vxt Area
 Common practice is to use 1:1 bifilar
transformer winding for NP:NR
 D=40%
• Converter operates in DCM
• Transformer is completely reset on every
switching cycle
 D=67%
• Converter wants to operate in CCM
• Transformer can NOT reset on every
switching cycle
• IMAG increases due to volt second product
imbalance
• Transformer saturation will result
• Operation beyond D=50% requires
additional reset voltage
32
Duty Cycle Greater Than 50%
VDS vs Vin
Third Winding Reset
72
84
96
108
120
132
144
156
168
180
192
204
216
36 42 48 54 60 66 72
Vin (V)
VDS(V)
Np:NR=1:1 Np:NR=1:2
NP NS
Q1
NR
VDS
VIN
VP
IMAG
t
t
R
P
IN
N
N
V ×−
2TS 3TSTS
DTS D2TS
D=67%
Equal Vxt Area
}
}
NP:NR=1:1
NP:NR=1:2
 For NP:NR=1:2
VDS=3VIN
Conclusion: Reset winding technique, D>50% not practical for high VIN applications
due to additional MOSFET VDS stress
33
Active Clamp Forward Converter
D1
D2
L
CO
NP NS
CIN
Q1
Q2
CCL
0
0
0
0
PWM
Q1 VDS
VP
IQ1
VIN
VRESET
VIN+VCL
0
Q2 VGS
IMAG
ICL
0
IP
 Advantages
• Reduced MOSFET VDS voltage stress
• Higher efficiency through ZVS
• Use of parasitic elements
• Higher frequency operation
• Square wave transformer reset for SR applications
• Suitable for off-line (HS clamp) or DC/DC (LS clamp)
 Disadvantages
• Conditional ZVS only
• Dual primary side gate drive with accurate dead-time control
and max duty cycle clamp required
• Poor transient response due to CCL
 Transfer Function
D
N
N
V
V
P
S
IN
O
×=
34
Active Clamp Forward Converter
Two Versions
D1
D2
L
CO
NP NS
CIN
Q1
Q2
CCL
D1
D2
L
CO
NP NS
CIN
Q1
Q2
CCL
(a) High-Side Active Clamp
(Flyback Clamp)
(b) Low-Side Active Clamp
(Boost Clamp)
INV
D
×





−1
1
INV
D
×





−1
1
INV
D
D
×





−1
INV
D
D
×





−1
INV
D
D
×





−1
INV
D
×





−1
1
PARAMETER HIGH-SIDE ACTIVE CLAMP (off-line) LOW-SIDE ACTIVE CLAMP (telecom)
VDS
VRESET
VCL
CCL
(applied voltage)
Lower voltage by VIN volts
Highest VCL occurs at DMAX
Higher voltage by VIN volts
Not practical for off-line
CCL
(cap value)
Same value as low-side for given ripple voltage Same value as high-side for given ripple voltage
Clamp MOSFET
(Q2)
N-Channel
Can be used for >500V
P-Channel
Can be used up to 500V
Gate Drive Gate drive transformer required Level shifting gate drive required
35
Active Clamp Forward Converter
VDS Voltage Stress
VDS vs Vin
Active Clamp Reset
75
85
95
105
115
125
135
145
36 42 48 54 60 66 72
Vin (V)
VDS(V)
N=5 N=6 N=7
SECIN
IN
INDS
VNV
V
D
VV
×−
=
−
×=
2
1
1
Telecom Converter Example
VVV IN 7236 ≤≤
S
P
N
N
N =, where
VVO 3.3=
 Optimize transformer turns ratio, N, to
minimize VDS voltage stress over entire
VIN range
 For N=6
• VDS=108V at VIN(MIN) and VIN(MAX)
• VDS≤1.5VIN at VIN(MAX)
N=5
N=6
N=7
DMIN=28%DMAX=55%
IN
O
V
NV
D
×
=
 IMPORTANT – Accurate max duty cycle clamp or volt-second clamp is necessary due to the
parabolic nature of VDS near DMAX
36
Active Clamp Forward Converter
Clamp Capacitor
D1
D2
L
CO
NP NS
CIN
Q1
Q2
CCL
0
0
PWM
Q1 VDS
VIN+VCL
0
Q2 VGS
VCL(Ripple) = 0%
VCL(Ripple) = 50%
 Clamp capacitor optimal
• VCL(RIPPLE) = 10%-20%
VCL(Ripple) = 10%
Q1 VDS Waveforms verses Clamp Capacitor Value:
 Clamp capacitor too small
• VCL(RIPPLE) = 50%
• Better transient response
• Increase VDS stress
 Clamp capacitor too large
• VCL(RIPPLE) = 0%
• Lowest VDS stress
• Poor transient response
 Choosing Clamp Capacitor
• Capacitor needs to be large enough to approximate the clamp voltage as DC
• Initially calculate CCL according to “Rule of Thumb”
• Select CCL voltage rating according to maximum clamp voltage PLUS allowable
ripple voltage and safety margin
)(2 MAXoffCLMAG tCL >××π
( )
2
2
)2(
1
10
swMAG
MIN
CL
FL
D
C
××
−
×>
π
37
Active Clamp Forward Converter
Zero Voltage Switching (ZVS)
 ZVS occurs when the voltage across the MOSFET, VDS, is positioned to “zero volts” prior to
the start of the next switching cycle.
 Benefits of ZVS
• Reduced switching losses
• Higher operating frequency possible (smaller passive component size)
• Higher converter efficiency
• Increased reliability
• Reduced radiated emissions (EMI)
VDS
ID
PSW=VDS x ID x FSW
(a) Hard Switching (b) “Ideal” ZVS
38
Active Clamp Forward Converter
Zero Voltage Switching (ZVS)
D1
D2
L
CO
Q1
Q2
CCL
D2
CDS
D1
CDS
VDS
RP
RS
LP(LEAK) LS(LEAK)
CP(W)
CS(W)
NP NS
LMAGRCORE
CP-S(MUTUAL)
CD1
CD2
 Parasitic elements can be used to benefit ZVS
 Active Clamp Forward converter uses fixed frequency resonant transitions to achieve
ZVS when specific operating conditions are met
39
Active Clamp Forward Converter
Zero Voltage Switching, Q1 Turn-Off
IM
+ IO
N
IC
VIN
VDS
0
VIN
VDS
IM
IO
N
VGS(Q1)
VGS(Q2)
 ZVS turn-off is easy
• Magnetizing current, IM
+, and reflected secondary current
combine to fully charge the resonant capacitance, C
( )2
2
2
1
2
1
CLINDSM
O
M VVCI
N
I
L +>





+ +
NOTE: leakage inductance is neglected for this analysis
D1
D2
L
CO
NP NS
CIN
Q1
Q2
CCL
40
Active Clamp Forward Converter
Zero Voltage Switching, Q1 Turn-On
IM
- IO
N
IC
VIN
VDS
, for ZVS turn-on
−
MI
0
VIN
VDS
IM
IO
N
VGS(Q1)
VGS(Q2)
N
I
I O
M >−
VDS
VGS(Q1)
1 - Non-ZVS
2 - Optimal ZVS
3 - ZVS
(2, 3) - ZVS
1 - Non-ZVS
(Miller)
 ZVS turn-on is difficult
• Magnitude of IM
- must be greater than the magnitude of
the reflected secondary current during entire ZVS
window
• Must be enough resonant current to fully discharge C
• Must be enough dead time for the drain voltage to fully
resonate to near zero volts
N
I
I O
M >−
( )2
2
2
1
2
1
CLINDSM
O
M VVCI
N
I
L +>





− −
DSMRES CLt ×≥
2
π
NOTE: leakage inductance is neglected for this analysis
41
Single Ended (<500W)
2 Switch Forward Converter
D1
D2
L
CO
NP NSCIN
Q1
Q2
D3D4
0
0
0
PWM
(Q1, Q2)
VDS
(Q1, Q2)
VS
VIN/NP
VIN
VIN/2
ID3, ID4
-VIN/NP
0 IQ1, IQ2
0
IL
ID1
ID2
0
0
IO
IMAG0
 Advantages
 Ruggedness
 MOSFET voltage stress limited to VIN
 Magnetizing energy recycled by D3, D4
 Universal input, 150W<P<500W
 Disadvantages
 Limited to less than 50% duty cycle
 High side gate drive required for Q2
 Hard switching
 Transfer Function
D
N
N
V
V
P
S
IN
O
×=
42
Single Ended (>1kW)
Interleaved 2 Switch Forward Converter
D1
D2
L
CO
NP NSCIN
Q1
Q2
D3D4
D5
D6
L
NP NS
Q3
Q4
D7D8
Dn
Dn
L
NP NS
Qn
Qn
DnDn
 Advantages
• Can operate multiple power stages out of
phase
• Ripple current cancellation at output
capacitor
• Reduced RMS current at input capacitor
• Multiple stages can add up to kW of power
• Smaller output inductors can improve
transient response
 Disadvantages
• Design complexity
• PCB layout can be challenging
 Non-Isolated Converter Topologies
 Single Ended Converter Topologies
 Double Ended Converter Topologies
 Synchronous Rectification
44
Double Ended Topologies Defined
∝B Vt
+BSAT
∝H NI
-BSAT
∆B
B1
B2
∝B Vt
∝H NI
∆B
B1
B2
+BSAT
-BSAT
∆B
B1
B2
(RCD Reset)
(Active Clamp)
Normal
Flux Imbalance
Saturation
Primary Current
Double Ended – Transformer operation occurs in first and third quadrants
Active Clamp Forward
 “Single ended” but operates slightly into the
third quadrant
Half-Bridge, Full-Bridge
 Symmetrical operation between first and third
quadrants
 No transformer reset circuitry required
45
Double Ended (<500W)
Push Pull Converter
D1
D2
L
CO
NP
NS
Q1
NS
Q2
CIN
NP
PWM, Q1
PWM, Q2
IQ1
IQ2
VDS(Q1)
2VIN
VDS(Q2)
2VIN
ID1
ID2
ILIO
 Advantages
• Lower primary current compared to HB
• Best for lower VIN, such as telecom
DC/DC of US Line Voltage
• Simple low-side gate drive
 Disadvantages
• High voltage (2xVIN) on primary MOSFETs
• Transformer flux walking (VMC only)
• Center tapped transformer structure
• Hard switching
 Transfer Function
D
N
N
V
V
P
S
IN
O
××= 2
46
Double Ended (<500W)
Half Bridge Converter (Symmetrical)
D1
D2
L
CO
NP
NS
Q1
NS
Q2
CIN
C1
C2
VP
VDS(Q1, Q3)
VIN
VDS(Q2, Q4)
VIN
ID1
ID2
IL
IO
VP
IP
VIN/2
PWM, Q1
PWM, Q2
-VIN/2
 Advantages
• Better transformer utilization
• MOSFET voltage stress limited to VIN
• Best for high VIN off line applications up to 500W
• Single winding primary
• Transformer balanced by C1 and C2
• Asymmetric and resonant versions can ZVS
 Disadvantages
• Totem pole primary gate drive
• High primary current
• Possible cross conduction between Q1 and Q2
• Hard switching
 Transfer Function
D
N
N
V
V
P
S
IN
O
××= 2
47
Asymmetrical Half Bridge Converter
+
Vp
-
+
Vd
-
+
Vp
-
1 : 1
0
Asymmetric square waveform
Symmetric square waveform
Vd
Vd
0
CB
+
Vp
-
+
Vd
-
+ VCB -
Same area
VCB
+
Vp
-
1 : 1
0
0
 What if an asymmetric square wave were introduced to the transformer?
 Transformer will be saturated
 What if an asymmetric square wave were introduced to the transformer in series with a DC
blocking capacitor?
 Not saturated due to the voltage of the blocking capacitor, CB
48
Asymmetrical Half Bridge Converter
VP
IP
Q2 (D)
Q1 (D)
VIN/2
-VIN/2
D=0.46 D=0.23
VIN/2
-VIN/2
VP
IP
Q2 (D)
Q1 (1-D)
VIN-VCB
VCB VCB
D=0.46 D=0.23
Equal
Area
VIN-VCB
(a) Symmetrical HB waveforms
(b) Asymmetrical HB waveforms
 Asymmetrical Gate Drive
• Q2 modulated by D
• Q1 driven by 1-D
• Fixed dead time between Q1 and Q2
• Dead time optimized for ZVS and anti cross conduction
• Fixed frequency ZVS PWM operation
• Near D=0.5, operation is same as symmetrical HB
 BUT, excessive voltage stress is applied to secondary
rectifier at VIN(MAX)
( )DD
N
N
V
V
P
S
IN
O
−×××= 12
D1
D2
L
CO
NP
NS
Q1
NS
Q2
CIN
CB
VP
49
Asymmetrical Half Bridge
VD vs D
50
75
100
125
150
175
200
225
250
0.20 0.23 0.26 0.29 0.32 0.35 0.38 0.41 0.44 0.47 0.50
Duty Cycle
DiodeVoltageStress(V)
VD1 VD2
Asymmetrical Half Bridge Converter
 Secondary Rectifier Voltage Stress
 Reverse recovery and parasitic ringing
 Wide DD Range requires use of high
voltage rectifiers
 Converter operates best at D=0.5
D
V
V O
D
−
=
1
1 OD VDV ×=2
50
Asymmetrical Half Bridge Converter
 Advantages
• Fixed frequency ZVS
• Constant power transfer (D and 1-D) reduces output ripple
• Power stage can be controlled using any active clamp PWM controller
 Disadvantages
• High voltage stress on secondary rectifier
• Loss of ZVS at some min load current – extending ZVS range is difficult
• Poor transient response due to blocking capacitor, CB
51
LLC Resonant Half Bridge Converter
 Square wave generator: produces a square wave voltage, Vd by driving switches, Q1 and
Q2 with alternating 50% duty cycle for each switch.
 Resonant network: consists of Llkp, Llks, Lm and Cr. The current lags the voltage applied to
the resonant network which allows the MOSFET’s to be turned on with zero voltage.
 Rectifier network: produces DC voltage by rectifying AC current
Ip
Ids2
Vd
(Vds2)
Vgs2
Im
Vin
ID
Vgs1
+
VO
-
Ro
Q1
Q2
n:1
Ip
Llkp
Lm
Cr
Ids2
Vd
Llks
Im
ID
Vin
Square wave generator
resonant network Rectifier network
Io
52
LLC Topology Variations
VIN
Lr
Lm
Cr
Q1
Q2
VIN
Lr
Lm
Cr
Q1
Q2
VIN
Lr
Lm
½ Cr
Q1
Q2
½ Cr
VIN
Lr
Lm
½ Cr
Q1
Q2
½ Cr
+
VO
-
Ro
+
VO
-
Ro
+
VO
-
Ro
+
VO
-
Ro
Primary Side Variation Secondary Side Variation
Transformer across the
high side MOSFET
Transformer across the low
side MOSFET
Split resonant capacitor with
clamping diode
Split resonant capacitor
Full bridge rectifier with
single winding
2 Rectifier diode with center
tab winding
Voltage doubler rectifier
with single winding
Synchronous rectifier with
center tab winding
53
LLC Resonant Half Bridge Converter
 Advantages of the LLC resonant converter
• Narrow frequency variation range over wide load range
• Zero voltage switching even at no load condition
• Reduced switching loss through ZVS  Improved efficiency and EMI
• When the two magnetic components are implemented with a single core (use the leakage inductance
as the resonant inductor), one component can be saved
54
LLC Resonant Half Bridge Converter
 Disadvantages of the LLC resonant converter
• Can optimize performance at one operating point, but not with wide range of input voltage and load
variations (too wide frequency range)
• Difficult to regulate the output at no load condition
• Significant current may circulate through the resonant network, even at the no load condition
• Quasi-sinusoidal waveforms exhibit higher peak values than equivalent rectangular waveforms
• High output current ripple
55
Double Ended (<500W)
Push Pull Converter
D1
D2
L
CO
NP
NS
Q1
NS
Q2
CIN
NP
PWM, Q1
PWM, Q2
IQ1
IQ2
VDS(Q1)
2VIN
VDS(Q2)
2VIN
ID1
ID2
ILIO
 Advantages
• Lower primary current compared to HB
• Best for lower VIN, such as telecom DC/DC of
US Line Voltage
• Simple low-side gate drive
 Disadvantages
• High voltage (2xVIN) on primary MOSFETs
• Transformer flux walking (VMC only)
• Center tapped transformer structure
• Hard switching
 Transfer Function
D
N
N
V
V
P
S
IN
O
××= 2
56
Double Ended (>500W)
Full Bridge Converter (PWM)
D1
D2
L
CO
NP
NS
Q3
NS
Q4
CIN
Q1
Q2
Gate, Q1
Gate, Q2
VDS(Q1, Q4)
VIN
VDS(Q2, Q3)
VIN
ID1
ID2
IL
IO
Gate, Q3
Gate, Q4
VP
IP
VIN
-VIN
 Advantages
• MOSFET voltage stress limited to VIN
• Twice the power compared to half bridge
• Single winding primary
 Disadvantages
• Dual, totem pole primary gate drive
• Hard switching (Non-ZVT)
• Parasitics degrade circuit performance
• Circuit complexity
 Transfer Function
D
N
N
V
V
P
S
IN
O
××= 2
57
Double Ended (>500W)
Phase Shifted Full Bridge Converter
D1
D2
L
CO
NP
NS
Q3
NS
Q4
CIN
Q1
Q2
Gate, Q1
Gate, Q2
VDS(Q2, Q3)
VDS(Q1, Q4)
ID1
ID2
IL
IO
Gate, Q3
Gate, Q4
VP
IP
VIN
-VIN
VIN
Freewheel
Power
Freewheel
Power
VIN
 Advantages
• High Efficiency ZVS
• Highest single stage processing power
• MOSFET voltage stress limited to VIN
• Twice the power compared to half bridge
• Full wave rectified secondary
• Excellent choice for EU line voltage (PFC pre-
regulator) with output power >1kW
 Disadvantages
• Dual, high side primary gate drive
• Circuit complexity
• High circulating primary current for ZVS
• Loss of ZVS at light load current
 Transfer Function D
N
N
V
V
P
S
IN
O
××= 2
58
Phase Shifted Full Bridge Converter
ZVS Waveforms
(a) IO=100% (b) IO=35% (c) IO=0%
Q3
Q4
Q1
Q2
Q3
Q4
Q1
Q2
Q2
P→A
Q4
A→P
VDS
VGS
VDS
VGS
A=Active (Power)
P=Passive (Freewheel)
59
Phase Shift Control vs ZVT PWM Control
A
B
C
D
VPRI
IPRI
UL(A)
LL(B)
UR(C)
LR(D)
VPRI
IPRI
UR(C)
LR(D)
UL(A)
LL(B)
 ZVT PWM Control
• Upper bridge FETs are fixed at 50% D
• Lower bridge FETs are trailing edge PWM
• Resonant delay set on lower FET leading edge
 Freewheel period
• Both SRs are ON
• Reduces reflected secondary current since current
only flows through both SRs
• Less available ZVS current
 Phase Shift Control
• All bridge FETs are fixed at 50% D
• A and B are synced to clock
• C and D are phase shift modulated
• Resonant delay set between AB and CD
 Freewheel period
• Secondary-side load current freewheels through
transformer and is reflected to primary
• Reflected current aids ZVS
• Higher conduction losses at higher power
60
Phase Shift Control vs ZVT PWM Control
 ZVT PWM Control
• Current freewheels through one high-side active
FET and body-diode of other high-side FET during
each FW period
 Phase Shift Control
• Current freewheels through two active high-side
FETs for first FW period then through two active
low-side FETs for second FW period
Freewheel
ResonantFreewheel
Resonant
( )ONDSFWDISS RIP _
2
2 ××= ( )ONDSFWFWFSWBDDISS RIIVFtP _
2
×+×××=
61
ZVT PWM Control
Upper Bridge MOSFET Body-Diode Conduction
 Freewheel (FW) Period
• For 36V<VIN<72V
• Body-diode conduction is 970ns at VIN=72V
 Minimize body-diode conduction in upper MOSFETs
• Pre-regulate input voltage (PFC)
 Still have to deal with brown-out and hold-up
• Operate converter at lowest frequency possible
VVF 1=
AI FW 2=
nstBD 970=
kHzFSW 265=
Ω= mR ONDS 25_
mWVAkHznsPBD 51412265970 =×××=
mWmAP ONRDS 100252 2
)( =Ω×=
Measured Values
Calculated Body-Diode Conduction Loss in each Upper FET
Calculated Channel Conduction Loss in each Upper FET
Total Conduction Loss for each FW period (ZVT PWM Control)
Total Conduction Loss for each FW period (PSFB Control)
 Comparison of FW MOSFET Conduction Losses for
Telecom DC/DC App
VVIN 72=
AIOUT 10=
*Assume switching, gate charge, Coss losses
are same for each control method
mWmWmWP ZVTPWMFW 614100514)(1 =+=
mWmWmWP ZVTPWMFW 614100514)(2 =+=
mWmWP PSFBFW 2001002)(1 =×=
mWmWP PSFBFW 2001002)(2 =×=
(25%)
(UL and UR)
(UL and UR)
(A and B)
(C and D)
62
High Power Topology Summary
D1
1
VIN
−
×
Topology Transformer Primary
Switches
VDS “Ideal” Application
CCM Boost Inductor
(non-isolated)
1 VOUT High power PFC >300W
Interleaved PFC >Several kW
BCM Boost Inductor
(non-isolated)
1 VOUT PFC <300W
Interleaved PFC <1kW
Forward Single-end 1 2xVIN <200W, universal off-line or telecom
Active Clamp Single-end 2 <500W, universal off-line or telecom, highest
efficiency required
2-Switch Forward Single-end 2 VIN <500W, universal off-line, PFC pre-regulator
Half Bridge Double-end 2 VIN <500W, EU off-line, Intermediate Bus Converters
Push Pull Double-end 2 2xVIN <500W, telecom or low VIN (<200V)
Full Bridge Double-end 4 VIN >500W, universal off-line
Phase Shifted FB Double-end 4 VIN >1kW, universal off-line or telecom, highest
efficiency required
Current Doubler Double-end NA NA Any double-ended topology, low VOUT, high IOUT
most benefit
63
LLC vs AHB Comparison
LLC resonant converter Asymmetric Half-bridge
Control method Variable frequency with fixed duty cycle (50%) PWM with fixed frequency
Practically input
voltage range
Vmax
/Vmin
=1.2~1.4 Vmax
/Vmin
=1.2~1.3
Primary side MOSFET
voltage
 Clamped to the input voltage  Clamped to the input voltage
Secondary side rectifier
voltage stress
 2 times the output voltage (for center tapped
transformer)
 Usually about 3 to 6 times the output voltage for powering and
freewheeling diodes, respectively (for center tapped transformer)
Output capacitor current
ripple
 Almost twice the output current (peak-to-peak)  Several tens % of output current (peak-to-peak)
ZVS condition  ZVS is easily achieved from full load to no load
condition using the energy in the magnetizing inductance
 ZVS is difficult to achieve at light load condition
 ZVS at full load condition is relatively easy
Other features  No simple power limit capability such as pulse-by-
pulse current limit in PWM operation
 Requires tight tolerance of resonant components (L,C)
 Relatively large circulating current
 Tight tolerance is not required for the resonant components (L,C)
+
VO
-
Ro
Q2
Q1
Vin
Io
Lr
Lm
CB
+
VO
-
Ro
Q1
Q2
Vin
Io
Lr
Lm
Cr
 Non-Isolated Converter Topologies
 Single Ended Converter Topologies
 Double Ended Converter Topologies
 Synchronous Rectification
65
Synchronous Rectification (SR)
D1
D2
L
CO
NP NS
CIN
Q1
Reset
Circuit
Efficiency vs Output Voltage
Vf=0.4V, Vf=1V
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
0.5 1.7 2.8 4.0 5.1 6.3 7.4 8.6 9.7 10.9 12.0
Output Voltage (V)
Efficiency
Vf=0.4V Vf=1V
Q2
Q3
L
CO
NP NS
CIN
Q1
Reset
Circuit
 What is Synchronous Rectification?
• Replacing secondary side discrete rectifiers
(D1, D2) with MOSFETs (Q2, Q3)
 Benefits of SR
• Parallel MOSFETs
• Increase efficiency
 Lower output voltage and higher current
applications benefit most
 How do we drive them?
OUT
FOUTFOUTOUT
OUTOUT
IN
OUT
V
VIVIV
IV
P
P
+
=
×+×
×
==
1
1
η
66
Single Ended Synchronous Rectification
SR Gate Drive Options
Q3
Q4
L
CO
NP NS
CIN
Q1
Q2
CCL
Q3
Q4
L
CO
NP NS
CIN
Q1
Q2
CCL
SR Gate Drive
Self-Driven SR
 SR gate drive derived from transformer (as
shown) or output inductor
 Advantages
• Simple – no timing issues
• High efficiency for few components
 Disadvantages
• SR gate drive not regulated
• Difficult when VIN > 2:1
• No control of secondary during start-up
• Not compatible with all reset techniques
Control-Driven SR
 SR gate drive comes from PWM control signal
 Advantages
• SR gate drive is regulated
• Can be used for wide VIN applications
• Secondary is controlled by primary
 Disadvantages
• Primary to secondary timing
67
Q3
Q4
L
CO
SR Gate Drive
Reset
Circuit
NP NS
CIN
Q1
D
1-D
Single Ended “Hybrid” SR
SR Gate Drive Options
 Hybrid-Driven SR
• Combination of control driven and self driven
• Forward SR (Q3) self driven by D
• Free wheeling SR (Q4) driven by PWM inverted (1-D)
 Applications
• Forward converter operating in DCM
• RCD, Resonant and Third Winding Reset
68
NP
Q3
Q4
CIN
Q1
Q2
Q5
L1
CO
NS
L2
Q6
SR Gate Drive
T1
Double Ended Synchronous Rectification
(>1kW)
(a) Full Bridge with Current Doubler SR Secondary
 SR applications typically greater than 12V output
 Highest efficiency
• Minimize body-diode conduction
• Use Secondary sensing for best timing
 SR driver solution is strongly related to control scheme
• Primary side PWM control
 Need signal and timing from pri-to-sec for good SR control
 Difficult to adapt over line/load changes
• Secondary side PWM control
 Allows sensing key nodes for timing optimization
 Cross boundary with timing to communicate with primary
 Direct drive between PWM and SR
 Needs startup bias supply
 Double ended control driven SR drive is the more difficult SR problem to solve
69
Double Ended (All)
Current Doubler Rectifier
D1
D2
L
CO
NP
NS
NS
VO
D1
D2
L CO
NP
NS
NS
VO
D1
D2
CO
VO
V
I
V
D1
D2
CO
VO
V
I
I
What is it? - A full wave alternative rectification technique compatible with all
double ended converter topologies
D1
D2
CO
VO
L2
L1
NP
NS
NP
NS
D1
D2
L1
CO
L2
VO
NP
Q1
L1
CO
NS
L2
Q2
VO
OR
Current Doubler
Derivation of Current Doubler
(a) (b) (c) (d)
(e)
(f) (g)
70
Double Ended (All)
Current Doubler Rectifier Operation
t3 t4
Q3
Q4
CIN
Q1
Q2
D1
D2
L1
CO
L2
Q3
Q4
CIN
Q1
Q2
D1
D2
L1
CO
L2 t2 t3
Q3
Q4
CIN
Q1
Q2
D1
D2
L1
CO
L2 t1 t2
Gate, Q1
Gate, Q2
IO=IL1+IL2
Gate, Q3
Gate, Q4
VP
IP
IL1
IL2
VL2
VL1
t0 t1
t2 t3 t4
Q3
Q4
CIN
Q1
Q2
D1
D2
L1
CO
L2 t0 t1
Current Doubler Timing Diagram (PSFB Application)
 Current doubler benefits:
• Better thermal distribution for
higher current outputs
• Each inductor carries half the load
current at half the switching
frequency
• Ripple currents cancel as a
function of D
• Single winding secondary
71
 Choosing the “best” topology:
• Is the output voltage higher or lower than the input voltage range?
• Are there isolation requirements?
• Are multiple outputs required?
• AC input – PFC/THD requirements?
• Output power?
• What is the maximum input/output voltage?
• What is the maximum input/output current?
 Fine tune topology choice by trading off:
• Efficiency
• Performance
• Cost
• Size
 Q&A?
Summary
THANK YOU

Más contenido relacionado

La actualidad más candente

Generator Protection Relay Setting Calculations
Generator Protection Relay Setting CalculationsGenerator Protection Relay Setting Calculations
Generator Protection Relay Setting CalculationsPower System Operation
 
Original Power Supply IC TOP264VG TOP264V TOP264 eDIP-11 New
Original Power Supply IC TOP264VG TOP264V TOP264 eDIP-11 NewOriginal Power Supply IC TOP264VG TOP264V TOP264 eDIP-11 New
Original Power Supply IC TOP264VG TOP264V TOP264 eDIP-11 NewAUTHELECTRONIC
 
TPS720xx: LDO Linear Regulators
TPS720xx: LDO Linear RegulatorsTPS720xx: LDO Linear Regulators
TPS720xx: LDO Linear RegulatorsPremier Farnell
 
Chapter 2 - Isolated DC-DC Converter.pdf
Chapter 2 - Isolated DC-DC Converter.pdfChapter 2 - Isolated DC-DC Converter.pdf
Chapter 2 - Isolated DC-DC Converter.pdfbenson215
 
Phase-locked Loops - Theory and Design
Phase-locked Loops - Theory and DesignPhase-locked Loops - Theory and Design
Phase-locked Loops - Theory and DesignSimen Li
 
Design of a Fully Differential Folded-Cascode Operational Amplifier
Design of a Fully Differential Folded-Cascode Operational AmplifierDesign of a Fully Differential Folded-Cascode Operational Amplifier
Design of a Fully Differential Folded-Cascode Operational AmplifierSteven Ernst, PE
 
Two-Phase Interleaved CCM PFC Controller
Two-Phase Interleaved CCM PFC ControllerTwo-Phase Interleaved CCM PFC Controller
Two-Phase Interleaved CCM PFC ControllerPremier Farnell
 
Techniques and Challenges in Designing Wideband Power Amplifiers Using GaN an...
Techniques and Challenges in Designing Wideband Power Amplifiers Using GaN an...Techniques and Challenges in Designing Wideband Power Amplifiers Using GaN an...
Techniques and Challenges in Designing Wideband Power Amplifiers Using GaN an...NXP Admin
 
Cable sizing to withstand short-circuit current - Example
Cable sizing to withstand short-circuit current - ExampleCable sizing to withstand short-circuit current - Example
Cable sizing to withstand short-circuit current - ExampleLeonardo ENERGY
 
SPICE Compatible Models for Circuit Simulation of ESD Events
SPICE Compatible Models for Circuit Simulation of ESD EventsSPICE Compatible Models for Circuit Simulation of ESD Events
SPICE Compatible Models for Circuit Simulation of ESD EventsTsuyoshi Horigome
 
RELAY ETTING CALCULATION REV-A (DG-298).pdf
RELAY ETTING CALCULATION REV-A (DG-298).pdfRELAY ETTING CALCULATION REV-A (DG-298).pdf
RELAY ETTING CALCULATION REV-A (DG-298).pdfJayWin2
 
High efficiency power amplifiers
High efficiency power amplifiersHigh efficiency power amplifiers
High efficiency power amplifiersAbhishek Kadam
 
Voltage Source Inverter
Voltage Source InverterVoltage Source Inverter
Voltage Source InverterPreetamJadhav2
 

La actualidad más candente (20)

Generator Protection Relay Setting Calculations
Generator Protection Relay Setting CalculationsGenerator Protection Relay Setting Calculations
Generator Protection Relay Setting Calculations
 
Original Power Supply IC TOP264VG TOP264V TOP264 eDIP-11 New
Original Power Supply IC TOP264VG TOP264V TOP264 eDIP-11 NewOriginal Power Supply IC TOP264VG TOP264V TOP264 eDIP-11 New
Original Power Supply IC TOP264VG TOP264V TOP264 eDIP-11 New
 
TPS720xx: LDO Linear Regulators
TPS720xx: LDO Linear RegulatorsTPS720xx: LDO Linear Regulators
TPS720xx: LDO Linear Regulators
 
Cuk dc dc+converter
Cuk dc dc+converterCuk dc dc+converter
Cuk dc dc+converter
 
Chapter 2 - Isolated DC-DC Converter.pdf
Chapter 2 - Isolated DC-DC Converter.pdfChapter 2 - Isolated DC-DC Converter.pdf
Chapter 2 - Isolated DC-DC Converter.pdf
 
Phase-locked Loops - Theory and Design
Phase-locked Loops - Theory and DesignPhase-locked Loops - Theory and Design
Phase-locked Loops - Theory and Design
 
cuk converter
cuk convertercuk converter
cuk converter
 
14827 mosfet
14827 mosfet14827 mosfet
14827 mosfet
 
Design of a Fully Differential Folded-Cascode Operational Amplifier
Design of a Fully Differential Folded-Cascode Operational AmplifierDesign of a Fully Differential Folded-Cascode Operational Amplifier
Design of a Fully Differential Folded-Cascode Operational Amplifier
 
Two-Phase Interleaved CCM PFC Controller
Two-Phase Interleaved CCM PFC ControllerTwo-Phase Interleaved CCM PFC Controller
Two-Phase Interleaved CCM PFC Controller
 
Techniques and Challenges in Designing Wideband Power Amplifiers Using GaN an...
Techniques and Challenges in Designing Wideband Power Amplifiers Using GaN an...Techniques and Challenges in Designing Wideband Power Amplifiers Using GaN an...
Techniques and Challenges in Designing Wideband Power Amplifiers Using GaN an...
 
Cable sizing to withstand short-circuit current - Example
Cable sizing to withstand short-circuit current - ExampleCable sizing to withstand short-circuit current - Example
Cable sizing to withstand short-circuit current - Example
 
MOSFET....complete PPT
MOSFET....complete PPTMOSFET....complete PPT
MOSFET....complete PPT
 
SPICE Compatible Models for Circuit Simulation of ESD Events
SPICE Compatible Models for Circuit Simulation of ESD EventsSPICE Compatible Models for Circuit Simulation of ESD Events
SPICE Compatible Models for Circuit Simulation of ESD Events
 
RELAY ETTING CALCULATION REV-A (DG-298).pdf
RELAY ETTING CALCULATION REV-A (DG-298).pdfRELAY ETTING CALCULATION REV-A (DG-298).pdf
RELAY ETTING CALCULATION REV-A (DG-298).pdf
 
Mosfet baising
Mosfet baisingMosfet baising
Mosfet baising
 
MOSFETs
MOSFETsMOSFETs
MOSFETs
 
High efficiency power amplifiers
High efficiency power amplifiersHigh efficiency power amplifiers
High efficiency power amplifiers
 
Voltage Source Inverter
Voltage Source InverterVoltage Source Inverter
Voltage Source Inverter
 
Flyback Converters v4
Flyback Converters v4Flyback Converters v4
Flyback Converters v4
 

Destacado

TI’s Next Great Leap: Introducing the NexFET™ 100V Power MOSFETs!
TI’s Next Great Leap: Introducing the NexFET™ 100V Power MOSFETs!TI’s Next Great Leap: Introducing the NexFET™ 100V Power MOSFETs!
TI’s Next Great Leap: Introducing the NexFET™ 100V Power MOSFETs!Design World
 
Naturally clamped zero current commutated soft-switching current-fed push–pul...
Naturally clamped zero current commutated soft-switching current-fed push–pul...Naturally clamped zero current commutated soft-switching current-fed push–pul...
Naturally clamped zero current commutated soft-switching current-fed push–pul...LeMeniz Infotech
 
PID Compensator Control Scheme of Synchronous Buck DC-DC Converter with ZVS L...
PID Compensator Control Scheme of Synchronous Buck DC-DC Converter with ZVS L...PID Compensator Control Scheme of Synchronous Buck DC-DC Converter with ZVS L...
PID Compensator Control Scheme of Synchronous Buck DC-DC Converter with ZVS L...IJRES Journal
 
An integrated boost resonant converter for photovoltaic applications
An integrated boost resonant converter for photovoltaic applicationsAn integrated boost resonant converter for photovoltaic applications
An integrated boost resonant converter for photovoltaic applicationsAsoka Technologies
 
IEEE 2014 - 2015 POWER ELECTRONICS PART 1
IEEE 2014 - 2015 POWER ELECTRONICS PART 1IEEE 2014 - 2015 POWER ELECTRONICS PART 1
IEEE 2014 - 2015 POWER ELECTRONICS PART 1Ganesh Ganesan
 
FL7701 APEC Demo Performance_SMappus 01192012
FL7701 APEC Demo Performance_SMappus 01192012FL7701 APEC Demo Performance_SMappus 01192012
FL7701 APEC Demo Performance_SMappus 01192012Steve Mappus
 
LED Streetlight APEC Demo Performance_SMappus 03062013 AC 12 Mar 2013
LED Streetlight APEC Demo Performance_SMappus 03062013 AC 12 Mar 2013LED Streetlight APEC Demo Performance_SMappus 03062013 AC 12 Mar 2013
LED Streetlight APEC Demo Performance_SMappus 03062013 AC 12 Mar 2013Steve Mappus
 
FAN7688 APEC Demo_Configuration Instructions
FAN7688 APEC Demo_Configuration InstructionsFAN7688 APEC Demo_Configuration Instructions
FAN7688 APEC Demo_Configuration InstructionsSteve Mappus
 
FEBFAN7688_I00250A
FEBFAN7688_I00250AFEBFAN7688_I00250A
FEBFAN7688_I00250ASteve Mappus
 
Drvg_HB_LED_HP Ind_Light Fix
Drvg_HB_LED_HP Ind_Light FixDrvg_HB_LED_HP Ind_Light Fix
Drvg_HB_LED_HP Ind_Light FixSteve Mappus
 
Wide Vin DC/DC Converters: Reliable Power for Demanding Applications
		 Wide Vin DC/DC Converters: Reliable Power for Demanding Applications		 Wide Vin DC/DC Converters: Reliable Power for Demanding Applications
Wide Vin DC/DC Converters: Reliable Power for Demanding ApplicationsDesign World
 
Current_Shap_Strat_Buck_PFC
Current_Shap_Strat_Buck_PFCCurrent_Shap_Strat_Buck_PFC
Current_Shap_Strat_Buck_PFCSteve Mappus
 
Resumé optimisation diodes_erc_pour pdp
Resumé optimisation diodes_erc_pour pdpResumé optimisation diodes_erc_pour pdp
Resumé optimisation diodes_erc_pour pdpAurelien Hamadou
 
A phase shifted semi-bridgeless boost power factor corrected converter for PHEVs
A phase shifted semi-bridgeless boost power factor corrected converter for PHEVsA phase shifted semi-bridgeless boost power factor corrected converter for PHEVs
A phase shifted semi-bridgeless boost power factor corrected converter for PHEVsMurray Edington
 
Quasi-resonant Flyback Converter Simulations with Saber - APEC 2016
Quasi-resonant Flyback Converter Simulations with Saber - APEC 2016Quasi-resonant Flyback Converter Simulations with Saber - APEC 2016
Quasi-resonant Flyback Converter Simulations with Saber - APEC 2016Alan Courtay
 
APEC 2010 ACDC Live Demo Tech SessionPresentation_Feb 19 2010
APEC 2010 ACDC Live Demo Tech SessionPresentation_Feb 19 2010APEC 2010 ACDC Live Demo Tech SessionPresentation_Feb 19 2010
APEC 2010 ACDC Live Demo Tech SessionPresentation_Feb 19 2010Steve Mappus
 
Design of DC-DC Converter for SMPS with Multiple isolated outputs.
Design of DC-DC Converter for SMPS with Multiple isolated outputs.Design of DC-DC Converter for SMPS with Multiple isolated outputs.
Design of DC-DC Converter for SMPS with Multiple isolated outputs.Prajwal M B Raj
 
IC Design of Power Management Circuits (I)
IC Design of Power Management Circuits (I)IC Design of Power Management Circuits (I)
IC Design of Power Management Circuits (I)Claudia Sin
 

Destacado (20)

TI’s Next Great Leap: Introducing the NexFET™ 100V Power MOSFETs!
TI’s Next Great Leap: Introducing the NexFET™ 100V Power MOSFETs!TI’s Next Great Leap: Introducing the NexFET™ 100V Power MOSFETs!
TI’s Next Great Leap: Introducing the NexFET™ 100V Power MOSFETs!
 
Naturally clamped zero current commutated soft-switching current-fed push–pul...
Naturally clamped zero current commutated soft-switching current-fed push–pul...Naturally clamped zero current commutated soft-switching current-fed push–pul...
Naturally clamped zero current commutated soft-switching current-fed push–pul...
 
PID Compensator Control Scheme of Synchronous Buck DC-DC Converter with ZVS L...
PID Compensator Control Scheme of Synchronous Buck DC-DC Converter with ZVS L...PID Compensator Control Scheme of Synchronous Buck DC-DC Converter with ZVS L...
PID Compensator Control Scheme of Synchronous Buck DC-DC Converter with ZVS L...
 
An integrated boost resonant converter for photovoltaic applications
An integrated boost resonant converter for photovoltaic applicationsAn integrated boost resonant converter for photovoltaic applications
An integrated boost resonant converter for photovoltaic applications
 
IEEE 2014 - 2015 POWER ELECTRONICS PART 1
IEEE 2014 - 2015 POWER ELECTRONICS PART 1IEEE 2014 - 2015 POWER ELECTRONICS PART 1
IEEE 2014 - 2015 POWER ELECTRONICS PART 1
 
FL7701 APEC Demo Performance_SMappus 01192012
FL7701 APEC Demo Performance_SMappus 01192012FL7701 APEC Demo Performance_SMappus 01192012
FL7701 APEC Demo Performance_SMappus 01192012
 
LED Streetlight APEC Demo Performance_SMappus 03062013 AC 12 Mar 2013
LED Streetlight APEC Demo Performance_SMappus 03062013 AC 12 Mar 2013LED Streetlight APEC Demo Performance_SMappus 03062013 AC 12 Mar 2013
LED Streetlight APEC Demo Performance_SMappus 03062013 AC 12 Mar 2013
 
AN-9754
AN-9754AN-9754
AN-9754
 
FAN7688 APEC Demo_Configuration Instructions
FAN7688 APEC Demo_Configuration InstructionsFAN7688 APEC Demo_Configuration Instructions
FAN7688 APEC Demo_Configuration Instructions
 
FEBFAN7688_I00250A
FEBFAN7688_I00250AFEBFAN7688_I00250A
FEBFAN7688_I00250A
 
Drvg_HB_LED_HP Ind_Light Fix
Drvg_HB_LED_HP Ind_Light FixDrvg_HB_LED_HP Ind_Light Fix
Drvg_HB_LED_HP Ind_Light Fix
 
Wide Vin DC/DC Converters: Reliable Power for Demanding Applications
		 Wide Vin DC/DC Converters: Reliable Power for Demanding Applications		 Wide Vin DC/DC Converters: Reliable Power for Demanding Applications
Wide Vin DC/DC Converters: Reliable Power for Demanding Applications
 
Current_Shap_Strat_Buck_PFC
Current_Shap_Strat_Buck_PFCCurrent_Shap_Strat_Buck_PFC
Current_Shap_Strat_Buck_PFC
 
Resumé optimisation diodes_erc_pour pdp
Resumé optimisation diodes_erc_pour pdpResumé optimisation diodes_erc_pour pdp
Resumé optimisation diodes_erc_pour pdp
 
POWER ELECTRONICS
POWER ELECTRONICSPOWER ELECTRONICS
POWER ELECTRONICS
 
A phase shifted semi-bridgeless boost power factor corrected converter for PHEVs
A phase shifted semi-bridgeless boost power factor corrected converter for PHEVsA phase shifted semi-bridgeless boost power factor corrected converter for PHEVs
A phase shifted semi-bridgeless boost power factor corrected converter for PHEVs
 
Quasi-resonant Flyback Converter Simulations with Saber - APEC 2016
Quasi-resonant Flyback Converter Simulations with Saber - APEC 2016Quasi-resonant Flyback Converter Simulations with Saber - APEC 2016
Quasi-resonant Flyback Converter Simulations with Saber - APEC 2016
 
APEC 2010 ACDC Live Demo Tech SessionPresentation_Feb 19 2010
APEC 2010 ACDC Live Demo Tech SessionPresentation_Feb 19 2010APEC 2010 ACDC Live Demo Tech SessionPresentation_Feb 19 2010
APEC 2010 ACDC Live Demo Tech SessionPresentation_Feb 19 2010
 
Design of DC-DC Converter for SMPS with Multiple isolated outputs.
Design of DC-DC Converter for SMPS with Multiple isolated outputs.Design of DC-DC Converter for SMPS with Multiple isolated outputs.
Design of DC-DC Converter for SMPS with Multiple isolated outputs.
 
IC Design of Power Management Circuits (I)
IC Design of Power Management Circuits (I)IC Design of Power Management Circuits (I)
IC Design of Power Management Circuits (I)
 

Similar a Power Topologies_Full Deck_04251964_Mappus

Lect2 up210 (100327)
Lect2 up210 (100327)Lect2 up210 (100327)
Lect2 up210 (100327)aicdesign
 
Lect2 up330 (100328)
Lect2 up330 (100328)Lect2 up330 (100328)
Lect2 up330 (100328)aicdesign
 
Low Power Design - PPT 1
Low Power Design - PPT 1 Low Power Design - PPT 1
Low Power Design - PPT 1 Varun Bansal
 
IC Design of Power Management Circuits (I)
IC Design of Power Management Circuits (I)IC Design of Power Management Circuits (I)
IC Design of Power Management Circuits (I)Claudia Sin
 
EV Powertrain Simulations in Saber
EV Powertrain Simulations in SaberEV Powertrain Simulations in Saber
EV Powertrain Simulations in SaberAlan Courtay
 
IC Design of Power Management Circuits (II)
IC Design of Power Management Circuits (II)IC Design of Power Management Circuits (II)
IC Design of Power Management Circuits (II)Claudia Sin
 
Original Mosfet MC33151DR2G 33151 MC33151 SOP-8 New
Original Mosfet MC33151DR2G 33151 MC33151 SOP-8 NewOriginal Mosfet MC33151DR2G 33151 MC33151 SOP-8 New
Original Mosfet MC33151DR2G 33151 MC33151 SOP-8 NewAUTHELECTRONIC
 
ELG4139DCtoACConverters.pdf
ELG4139DCtoACConverters.pdfELG4139DCtoACConverters.pdf
ELG4139DCtoACConverters.pdfBekirTalat
 
Design Basics on Power Amplifiers
Design Basics on Power Amplifiers Design Basics on Power Amplifiers
Design Basics on Power Amplifiers ls234
 
Original Digital Transistor KRC105 C105M C105 100mA 50V TO-92 New
Original Digital Transistor KRC105 C105M C105 100mA 50V TO-92 NewOriginal Digital Transistor KRC105 C105M C105 100mA 50V TO-92 New
Original Digital Transistor KRC105 C105M C105 100mA 50V TO-92 NewAUTHELECTRONIC
 
Original NPN Transistor KRC106M C106 106 TO-92 New KEC
Original NPN Transistor KRC106M C106 106 TO-92 New KECOriginal NPN Transistor KRC106M C106 106 TO-92 New KEC
Original NPN Transistor KRC106M C106 106 TO-92 New KECAUTHELECTRONIC
 
Original N-Channel Mosfet FQP8N60C 8N60C 8N60 600V 7.5A TO-220F New
Original N-Channel Mosfet FQP8N60C 8N60C 8N60 600V 7.5A TO-220F NewOriginal N-Channel Mosfet FQP8N60C 8N60C 8N60 600V 7.5A TO-220F New
Original N-Channel Mosfet FQP8N60C 8N60C 8N60 600V 7.5A TO-220F NewAUTHELECTRONIC
 
Class G ISSCC 2012
Class G ISSCC 2012Class G ISSCC 2012
Class G ISSCC 2012alexzio
 
Chapter 5 DC-DC Converters.pdf
Chapter 5 DC-DC Converters.pdfChapter 5 DC-DC Converters.pdf
Chapter 5 DC-DC Converters.pdfLiewChiaPing
 
Original N-CHANNEL Mosfet FQPF10N60 10N60 10A 600V TO-220F New Fairchild
Original N-CHANNEL Mosfet FQPF10N60 10N60 10A 600V TO-220F New FairchildOriginal N-CHANNEL Mosfet FQPF10N60 10N60 10A 600V TO-220F New Fairchild
Original N-CHANNEL Mosfet FQPF10N60 10N60 10A 600V TO-220F New FairchildAUTHELECTRONIC
 

Similar a Power Topologies_Full Deck_04251964_Mappus (20)

Lect2 up210 (100327)
Lect2 up210 (100327)Lect2 up210 (100327)
Lect2 up210 (100327)
 
Lect2 up330 (100328)
Lect2 up330 (100328)Lect2 up330 (100328)
Lect2 up330 (100328)
 
Low Power Design - PPT 1
Low Power Design - PPT 1 Low Power Design - PPT 1
Low Power Design - PPT 1
 
Anu Mehra ppt - 2
Anu Mehra ppt - 2Anu Mehra ppt - 2
Anu Mehra ppt - 2
 
IC Design of Power Management Circuits (I)
IC Design of Power Management Circuits (I)IC Design of Power Management Circuits (I)
IC Design of Power Management Circuits (I)
 
Buck Converter.pptx
Buck Converter.pptxBuck Converter.pptx
Buck Converter.pptx
 
EV Powertrain Simulations in Saber
EV Powertrain Simulations in SaberEV Powertrain Simulations in Saber
EV Powertrain Simulations in Saber
 
IC Design of Power Management Circuits (II)
IC Design of Power Management Circuits (II)IC Design of Power Management Circuits (II)
IC Design of Power Management Circuits (II)
 
MOSFET Operation
MOSFET OperationMOSFET Operation
MOSFET Operation
 
Lec17 mosfet iv
Lec17 mosfet ivLec17 mosfet iv
Lec17 mosfet iv
 
Original Mosfet MC33151DR2G 33151 MC33151 SOP-8 New
Original Mosfet MC33151DR2G 33151 MC33151 SOP-8 NewOriginal Mosfet MC33151DR2G 33151 MC33151 SOP-8 New
Original Mosfet MC33151DR2G 33151 MC33151 SOP-8 New
 
Ucc 3895 dw
Ucc 3895 dwUcc 3895 dw
Ucc 3895 dw
 
ELG4139DCtoACConverters.pdf
ELG4139DCtoACConverters.pdfELG4139DCtoACConverters.pdf
ELG4139DCtoACConverters.pdf
 
Design Basics on Power Amplifiers
Design Basics on Power Amplifiers Design Basics on Power Amplifiers
Design Basics on Power Amplifiers
 
Original Digital Transistor KRC105 C105M C105 100mA 50V TO-92 New
Original Digital Transistor KRC105 C105M C105 100mA 50V TO-92 NewOriginal Digital Transistor KRC105 C105M C105 100mA 50V TO-92 New
Original Digital Transistor KRC105 C105M C105 100mA 50V TO-92 New
 
Original NPN Transistor KRC106M C106 106 TO-92 New KEC
Original NPN Transistor KRC106M C106 106 TO-92 New KECOriginal NPN Transistor KRC106M C106 106 TO-92 New KEC
Original NPN Transistor KRC106M C106 106 TO-92 New KEC
 
Original N-Channel Mosfet FQP8N60C 8N60C 8N60 600V 7.5A TO-220F New
Original N-Channel Mosfet FQP8N60C 8N60C 8N60 600V 7.5A TO-220F NewOriginal N-Channel Mosfet FQP8N60C 8N60C 8N60 600V 7.5A TO-220F New
Original N-Channel Mosfet FQP8N60C 8N60C 8N60 600V 7.5A TO-220F New
 
Class G ISSCC 2012
Class G ISSCC 2012Class G ISSCC 2012
Class G ISSCC 2012
 
Chapter 5 DC-DC Converters.pdf
Chapter 5 DC-DC Converters.pdfChapter 5 DC-DC Converters.pdf
Chapter 5 DC-DC Converters.pdf
 
Original N-CHANNEL Mosfet FQPF10N60 10N60 10A 600V TO-220F New Fairchild
Original N-CHANNEL Mosfet FQPF10N60 10N60 10A 600V TO-220F New FairchildOriginal N-CHANNEL Mosfet FQPF10N60 10N60 10A 600V TO-220F New Fairchild
Original N-CHANNEL Mosfet FQPF10N60 10N60 10A 600V TO-220F New Fairchild
 

Power Topologies_Full Deck_04251964_Mappus

  • 1. Power Topologies Review Steve Mappus FAE Training May 2015
  • 2. 2 Agenda  Non Isolated Converter Topologies and Their Isolated DC/DC Derivatives • PFC Boost • Buck • Buck-Boost  Single Ended Converter Topologies • Transformer Reset Techniques • Forward Converter • Flyback Converter  Double Ended Converter Topologies • Push Pull • Half Bridge • Full Bridge • Phase Shifted Full Bridge  Synchronous Rectification • Current Doubler Rectifier
  • 3. 3 DOUBLE-ENDEDSINGLE-ENDED ACTIVE CLAMP 2-SWITCH PUSH-PULL HALF BRIDGE FULL BRIDGE LOW POWER (<100W) MID-POWER (100W-500W) HIGH-POWER (>500W) HARD SWITCHED ZVT/PHASE SHIFT NON-ISOLATED ISOLATED D V V i O = DV V i O − = 1 1 FORWARD D D V V i O − −= 1 SINGLE-ENDED FLYBACK BOOST BUCK-BOOST BUCK ACTIVE CLAMP 2-SWITCH LLC Isolated Power Topology Derivatives  8 “Mainstream” Topologies Non-Isolated 1. Boost 2. Buck-Boost 3. Buck Isolated 4. Flyback 5. Forward 6. Push-Pull 7. Half Bridge 8. Full Bridge
  • 4. 4 Other Topologies?  Numerous Variations Exist • Sepic • Cuk • Current Fed Buck • Tapped Inductors • Multiple Outputs • Interleaving • More?  Different Ways to Operate Them • Voltage Mode Control • Current Mode Control • Digital Control • Variable Frequency • CCM, DCM, BCM • ZVS • ZCS • Synchronous Rectification  Some Practical Converter Topology Advice • Most power conversion requirements can be met using one or more of the 8 mainstream topologies • Save more difficult topologies for unique application requirements • Beware of publications proclaiming the “best” topology
  • 5. 5 AC Line 85V<VAC<265V VDC=400V 400V to 48V Bus Converter VPOL_1<5V VPOL_N<5V 48V to 12V IBC (Intermediate Bus Converter) Telecom Rectifier Multi-Stage Topology Typical Distributed Power System High Power DC/DCPFC Boost POLDCDCPFCSYS ηηηηη ×××= %9.84%96%95%95%98 =×××=SYSη  Scalable, efficient, complex protection functions, sequencing, redundancy, digital control, etc  Efficiency example: POL DC/DC
  • 6.  Non-Isolated Converter Topologies  Single Ended Converter Topologies  Double Ended Converter Topologies  Synchronous Rectification
  • 7. 7 Boost Converter  Most popular topology for Power Factor Correction • Simple power stage • Efficient energy storage • Continuous input current waveform • VIN<VOUT  Operating modes • CCM – fixed frequency, best PF and THD, Any Power Level • BCM – variable frequency, good PF and THD, <300W • DCM – never used intentionally but unavoidable at light load  Usually power factor correction capability is lost AC LINE VB EMI Filter DC/DC VLOAD
  • 8. 8 Boost Converter VGS(Q) VDS(Q) IL IDS(Q) ID VOUT BCM tON tOFF TS 𝑉𝑉𝐼𝐼𝐼𝐼(𝑡𝑡) × (𝑡𝑡𝑂𝑂𝑂𝑂 + 𝑡𝑡𝑂𝑂𝑂𝑂𝑂𝑂 ) = 𝑉𝑉𝑂𝑂𝑂𝑂𝑂𝑂 × 𝑡𝑡𝑂𝑂𝑂𝑂𝑂𝑂 𝑉𝑉𝐼𝐼𝐼𝐼(𝑡𝑡) × 𝑇𝑇𝑆𝑆 = 𝑉𝑉𝑂𝑂𝑂𝑂𝑂𝑂 × 𝑡𝑡𝑂𝑂𝑂𝑂𝑂𝑂 𝑉𝑉𝑂𝑂𝑂𝑂𝑂𝑂 𝑉𝑉𝐼𝐼𝐼𝐼(𝑡𝑡) = 𝑇𝑇𝑆𝑆 𝑡𝑡𝑂𝑂𝑂𝑂𝑂𝑂 = 1 1 − 𝐷𝐷 Inductor volt-second balance: Boost transfer function:  VIN<VOUT  Most efficient at lower D  Continuous input current  High PF, low THD  CCM, BCM, DCM modes VOUT VAC VIN(t) D IL L VL Q COUTCBYP VOUT VAC VIN(t) D IL L VL Q COUTCBYP 〈𝑉𝑉𝐿𝐿〉 𝑇𝑇 𝑆𝑆 = 𝑉𝑉𝐼𝐼𝐼𝐼(𝑡𝑡) × 𝑡𝑡𝑂𝑂𝑁𝑁 + ��𝑉𝑉𝐼𝐼𝐼𝐼(𝑡𝑡) − 𝑉𝑉𝑂𝑂𝑂𝑂𝑂𝑂 � × 𝑡𝑡𝑂𝑂𝐹𝐹𝐹𝐹 � = 0
  • 9. 9 Operating Mode 0V VDS tREStOFFtON TS 0A IL 0V VGS VIN VOUT 2x(VIN – VOUT) t IL(PK) 0V VDS tDtOFFtON TS 0A IL 0V VGS t IL(PK) VOUT VAC VIN(t) DIL L Q COUTCBYP TS 0V VDS tOFFtON 0A IL 0V VGS VOUT t IL(PK) IL(MIN) CCM BCM DCM
  • 10. 10 Continuous Conduction Mode (CCM) PFC IL  Advantages • Low Ripple current: Lower core losses • Lower EMI : Smaller Input Filter • Simple inductor design • Fixed frequency operation, best PF and THD • Can be used at any power level • Easily interleaved for power levels up to many KW  Disadvantages  Requires very fast boost diode with low IRR  Silicon Carbide diodes are often used  Larger Inductor  MOSFET Switching Loss (hard switching) (1-D)TsDTs Ts IL IDIsw (Not to scale)
  • 11. 11 Boundary Conduction Mode (BCM) PFC IL DTs Ts IDIsw  Advantages • MOSFET turns on at zero current • ZVS/valley switching • No reverse recovery in boost diode (low cost, low VF diode can be used) • Higher efficiency compared to CCM  Disadvantages • Larger MOSFET conduction loss • Variable Frequency • Inductor design can be complex • High peak current limits practical use to ~300W (Impact on EMI filter) (Not to scale)
  • 12. 12 Buck Converter VGS(Q) VD VDS(Q) IL IDS(Q) ID VIN VF VL -VOUT VIN-VOUT VIN+VF BCM tON tOFF TS Inductor volt-second balance: Buck transfer function:  VIN>VOUT  Most efficient at higher D VOUT D VOUT D IL Q L VL L VL Q COUT COUT VIN CIN VIN CIN 〈𝑉𝑉𝐿𝐿〉 𝑇𝑇 𝑆𝑆 = [( 𝑉𝑉𝐼𝐼𝐼𝐼 − 𝑉𝑉𝑂𝑂𝑂𝑂𝑂𝑂 ) × 𝑡𝑡𝑂𝑂𝑂𝑂 ] − 𝑉𝑉𝑂𝑂𝑂𝑂𝑂𝑂 × 𝑡𝑡𝑂𝑂𝑂𝑂𝑂𝑂 = 0 𝑉𝑉𝐼𝐼𝐼𝐼 × 𝑡𝑡𝑂𝑂𝑂𝑂 = 𝑉𝑉𝑂𝑂𝑂𝑂𝑂𝑂 × (𝑡𝑡𝑂𝑂𝑂𝑂 + 𝑡𝑡𝑂𝑂𝑂𝑂𝑂𝑂 ) 𝑉𝑉𝐼𝐼𝐼𝐼 × 𝑡𝑡𝑂𝑂𝑂𝑂 = 𝑉𝑉𝑂𝑂𝑂𝑂𝑂𝑂 × 𝑇𝑇𝑆𝑆 𝑉𝑉𝑂𝑂𝑂𝑂𝑂𝑂 𝑉𝑉𝐼𝐼𝐼𝐼 = 𝑡𝑡𝑂𝑂𝑂𝑂 𝑇𝑇𝑆𝑆 = 𝐷𝐷
  • 13. 13 Buck-Boost Converter Inductor volt-second balance: Buck-Boost transfer function:  VIN<VOUT or VIN>VOUT  Used for negative VOUT 〈𝑉𝑉𝐿𝐿〉 𝑇𝑇 𝑆𝑆 = 𝑉𝑉𝐼𝐼𝐼𝐼 × 𝑡𝑡𝑂𝑂𝑂𝑂 + 𝑉𝑉𝑂𝑂𝑂𝑂𝑂𝑂 × 𝑡𝑡𝑂𝑂𝑂𝑂𝑂𝑂 = 0 𝑉𝑉𝐼𝐼𝐼𝐼 × 𝑡𝑡𝑂𝑂𝑂𝑂 = −(𝑉𝑉𝑂𝑂𝑂𝑂𝑂𝑂 × 𝑡𝑡𝑂𝑂𝑂𝑂𝑂𝑂 ) 𝑉𝑉𝑂𝑂𝑂𝑂𝑂𝑂 𝑉𝑉𝐼𝐼𝐼𝐼 = − � 𝑡𝑡𝑂𝑂𝑂𝑂 /𝑇𝑇𝑆𝑆 𝑡𝑡𝑂𝑂𝑂𝑂𝑂𝑂 /𝑇𝑇𝑆𝑆 � = − � 𝑡𝑡𝑂𝑂𝑂𝑂 /𝑇𝑇𝑆𝑆 (𝑇𝑇𝑆𝑆 − 𝑡𝑡𝑂𝑂𝑂𝑂 )/𝑇𝑇𝑆𝑆 � 𝑉𝑉𝑂𝑂𝑂𝑂𝑂𝑂 𝑉𝑉𝐼𝐼𝐼𝐼 = − � 𝐷𝐷 1 − 𝐷𝐷 � VGS(Q) VD VDS(Q) IL IDS(Q) ID VF VL VIN VIN+|-VOUT| tON tOFF TS VIN+|-VOUT| VOUT-VF -VOUT IL L VL Q COUT D -VOUT VIN IL L VL Q COUT CIN D VIN CIN
  • 14.  Non-Isolated Converter Topologies  Single Ended Converter Topologies  Double Ended Converter Topologies  Synchronous Rectification
  • 15. 15 Benefits of a Transformer AC AC DC Output Load (or DC) D1 L CO Q1 CIN VOVIN D1 D2 L CO NP NS CIN Q1 VIN VO 1. Provides primary to secondary safety isolation – subject to regulatory standards 2. Voltage conversion resolution D V V IN O = D N N V V P S IN O = Ex: For FSW=300kHz (TSW=3.33µs), NP:NS=4:1, 36V<VIN<75 and VO=5V Buck Converter Isolated Buck (Forward) Converter 27%<D<55% 900ns<tON<1.8µs 6%<D<14% 200ns<tON<467ns 3. Multiple outputs can be regulated/quasi-regulated
  • 16. 16 Transformer Characteristics NP NS VIN VOUT RP RS LP(LEAK) LS(LEAK) CP(W) CS(W) NP NS LMAGRCORE CP-S(MUTUAL) NP NS VIN VOUT VGS VDS Parasitic Transformer Model CCM Flyback Overshoot/ringing due to Leakage Inductance  Ideal transformer • Perfect coupling between Np:Ns • No energy storage  Flyback “transformer” • Really a coupled inductor • Primary energy stored during tON • Power transferred during tOFF
  • 17. 17 Single Ended Topologies Defined ∝B Vt ∝H NI ∆B B1 B2 +BSAT -BSAT D1 D2 L CO NP NS CIN Q1 Reset Circuit TS +VIN(max) +VIN(min) D=25% D=50% D>50% -VRESET -VRESET OFFRESETONIN tVtV ×−=×+ (max) RESETIN VV −=+ (max) OFFON tt = tON tOFF OFFON tt > INQDS VV ×= 2)1( INQDS VV ×> 2)1( +VIN -VRESET -VIN t t t 0 0 0 OFFRESETONIN tVtV ×−=×+ RESETIN VV −<+ (b) Forward Converter Single Ended – Transformer operation limited to first quadrant (c) Transformer Volt-Second Balance (a) Transformer Hysteresis
  • 18. 18 Single Ended Topologies Defined ∝B Vt ∝H NI ∆B B1 B2 +BSAT -BSAT D1 D2 L CO NP NS CIN Q1 Reset Circuit (b) Forward Converter Single Ended – Transformer operation limited to first quadrant (a) Transformer Hysteresis (c) Gapped Flyback “Transformer” D CO NP NS CIN Q1 VIN VO (d) Flyback Converter ∝B Vt ∝H NI ∆B B1 B2 +BSAT -BSAT UNGAPPED GAPPED
  • 19. 19 Single Ended Transformer Reset Techniques Reset Winding + Reset Energy Recycled + Simple Off-Line Solution - 50% Duty Cycle Limit (1:1) - Possible Core Saturation - Transformer Structure - Q1 Hard Switched Resonant Reset + Reset Energy Recycled + Fewest Components + Simple Telecom Solution - Repeatable Design Difficult - High VDS Stress - Not for Off-Line Power - Not Suitable for Self-Driven SR - Q1 Hard Switched RCD Reset + Inexpensive Off-Line Solution + >50% Duty cycle Possible - Reset Energy Dissipated - Q1 Hard Switched Active Clamp Reset + High Efficiency (ZVT) + Higher Frequency Operation + Lowest Vds Stress + Off-Line and Telecom + SR Gate Drive - Q1, Q2 Gate Drive - Higher Cost - Limited PWM and/or Driver Choices NP NS Q1 Reset Winding 0 VIN -VR NP NS Q1 RCD Reset 0 VIN -VR NP NS Q1 Resonant Reset 0 VIN -VR Q2 CCL NP NS Q1 Active Clamp Reset 0 VIN -VR
  • 20. 20 Flyback Converter Derivation -VOUT L Q COUT D VIN CIN -VOUT L Q COUT D VIN CIN 1:1 -VOUT LM Q COUT D VIN CIN 1:1 (a) (b) (c) (d) (e) a) Non-isolated buck-boost b) Coupled inductor buck-boost c) Isolated buck-boost d) Isolated flyback converter e) D can be in return path VOUT LM Q COUT D VIN CIN n:1 VOUT LM Q COUT D VIN CIN n:1
  • 21. 21 Flyback Converter Operating Modes  Discontinuous Conduction Mode (DCM) • Advantages (DCM): Smaller transformer, trr of output rectifiers is less of an issue since current is zero before reverse voltage appears, single pole characteristic of the power circuit simplifies compensation • Disadvantages (DCM): Peak currents in the switch and diodes are considerably greater, ripple currents in output capacitors are much greater than continuous mode  Continuous Conduction Mode (CCM) • Advantages (CCM) = Peak currents in the switching devices are lower, ripple currents in the output capacitors are lower • Disadvantages (CCM) = Larger transformer is required, right half plane zero (RHPZ) shows up in the control loop thereby complicating compensation  Boundary Conduction Mode (BCM) • Variable frequency
  • 22. 22 Flyback Converter CCM Operation D D N N V V P S IN O − ×= 1 (a) Flyback Converter (b) CCM Waveforms  CCM Transfer Function  Limitations • Q1 switching loss (hard switched) • D2 reverse recovery loss • Q1(VDS)>VIN • 50% duty cycle limit • Right half plane zero in CCM VOUT LM Q COUT D VIN CIN n:1 NSNP 0 0 0 0 0 0 PWM VDS VS IQ1 ID1 IL VOUT -(NS/NP)VIN VIN+(NP/NS)VOUT
  • 23. 23 Quasi-Resonant Flyback Conventional Valley Switching Wide frequency variation depends on output load condition t t iD vDS T2 Output Power [W] fS[Hz] vDS iD t t T1 Output load decreases Operating frequency increases SOSSLossSwitching fVCP DS 2 ∝
  • 24. 24 Quasi-Resonant Flyback Window Valley Switching Ts max =10.8us tB=7.8us tW=3.0us fs_A=110kHz fs_B=122kHz fs_C=127.5kHz fs_D=92.6kHz (a) (b) (c) (d) vDS (100V/div) iD (100mA/div) Time scale 2usec/div  Frequency variation depends on output load conditions  Operating frequency is within narrow variation (127.5 kHz ~ 92.6 kHz) Light Load Heavy Load
  • 25. 25 Two-Switch, Quasi-Resonant Flyback CC CVFB FAN6300H 1 2 3 4 5 6 7 8 NC HV VDD GATEGND CS FB DET FAN7382 1 2 3 4 5 6 7 8 HO VB VS LOCOM LIN HIN VCCPBIAS VIN R1 R2 R3 Q1 Q2 D1 D2 D3 D4D5 ACIN R4 C1 VA VLED VHS C2 C3 (FROM PFC) (FROM PFC) RDY PBIAS
  • 26. 26 Two-Switch, Quasi-Resonant Flyback Switching Waveforms 0V VDS 0A IDS tftOFF tON TS 0A ID VAVA 0V 0V VDET 0V VIN PBIAS VIN+VHS VGS(HS) VGS(LS) 0.7V 5µs 2.5V VO OVP IDET(SOURCE)>30µA tDELAY=200ns VRO 2 VRO 2 VIN 2 VIN 2  Quasi-resonant, variable frequency  HS and LS MOSFETs switch synchronously  Switching period, TS=tOFF+tf+tON  Inductor current switches from 0A (ZCS) every switching cycle  VDS • ZVS→VOUT>2×VIN • Valley switching→otherwise • Window valley switching
  • 27. 27 Two-Switch, Quasi-Resonant Flyback Measured Waveforms  Extended Window Valley Switching  VOUT< ½ VIN  D=11%  FS=68kHz  POUT=24W  VDS Valley Switching on First Valley • VOUT< ½ VIN • D=42% • FS=63kHz • POUT=85W
  • 28. 28 Buck Derived Transfer Functions D1 L CO VOVIN D1 L CO VOVIN NP : NS tON tOFF TS D N N V V P S IN O ×= (a) Buck Converter (b) Forward Converter (isolated buck) S ON OFFON ON T t tt t D = + =Duty Cycle = INO VDV ×= ( ) OFFOONOIN tVtVV ×=×− D V V IN O = Buck Converter Transfer Function Forward Converter Transfer Function D N N V V P S IN O ×= All Isolated Single Ended Buck Converters All Isolated Double Ended Buck Converters D N N V V P S IN O ××= 2
  • 29. 29 Forward Converter Basics 0 0 0 PWM VDS(Q1) VP VR+VIN VIN IMAG 0 IQ1 IL ID1 ID2 0 0 0 0 VIN R P INR N N VV ×−= D1 D2 L CO NP NSCIN Q1 VIN VO NR D3 (a) Forward Converter with Reset Winding (b) DCM Waveforms (D<0.5)  Really a transformer coupled buck  Transfer function  Limitations • Q1 switching loss (hard switched) • D2 conduction loss • Q1(VDS)>2VIN • 50% duty cycle limit (NP:NR = 1:1) D N N V V P S IN O ×=
  • 30. 30 VIN 0 VP IMAG TS DTS D2TS D3TS t t R P IN N N V ×− Why 50% Duty Cycle Limit? (a) Forward Converter: Transformer Voltage and Current 1. Average primary voltage must be zero over switching period 2. Solve (1) for D2 0)0()( 32 =+      −+=〉〈 D N N VDVDV R P ININp 132 =++ DDD 3. By definition (1) (2) (3) 4. Solve (3) for D3 01 23 ≥−−= DDD (4) P R N N DD =2 5. Sub (2) into (4) 01 ≥−− P R N N DD (5) 6. Solve (5) for D (6) P R N N D + ≤ 1 1 7. For NP:NR=1:1 (common practice) (7) 2 1 ≤D
  • 31. 31 Problems with Duty Cycle > 50% VIN 0 VP IMAG TS DTS D2TS D3TS t t R P IN N N V ×− Equal Vxt Area VIN VP IMAG t t R P IN N N V ×− 2TS 3TSTS DTS D2TS D=67% D=40% Unequal Vxt Area  Common practice is to use 1:1 bifilar transformer winding for NP:NR  D=40% • Converter operates in DCM • Transformer is completely reset on every switching cycle  D=67% • Converter wants to operate in CCM • Transformer can NOT reset on every switching cycle • IMAG increases due to volt second product imbalance • Transformer saturation will result • Operation beyond D=50% requires additional reset voltage
  • 32. 32 Duty Cycle Greater Than 50% VDS vs Vin Third Winding Reset 72 84 96 108 120 132 144 156 168 180 192 204 216 36 42 48 54 60 66 72 Vin (V) VDS(V) Np:NR=1:1 Np:NR=1:2 NP NS Q1 NR VDS VIN VP IMAG t t R P IN N N V ×− 2TS 3TSTS DTS D2TS D=67% Equal Vxt Area } } NP:NR=1:1 NP:NR=1:2  For NP:NR=1:2 VDS=3VIN Conclusion: Reset winding technique, D>50% not practical for high VIN applications due to additional MOSFET VDS stress
  • 33. 33 Active Clamp Forward Converter D1 D2 L CO NP NS CIN Q1 Q2 CCL 0 0 0 0 PWM Q1 VDS VP IQ1 VIN VRESET VIN+VCL 0 Q2 VGS IMAG ICL 0 IP  Advantages • Reduced MOSFET VDS voltage stress • Higher efficiency through ZVS • Use of parasitic elements • Higher frequency operation • Square wave transformer reset for SR applications • Suitable for off-line (HS clamp) or DC/DC (LS clamp)  Disadvantages • Conditional ZVS only • Dual primary side gate drive with accurate dead-time control and max duty cycle clamp required • Poor transient response due to CCL  Transfer Function D N N V V P S IN O ×=
  • 34. 34 Active Clamp Forward Converter Two Versions D1 D2 L CO NP NS CIN Q1 Q2 CCL D1 D2 L CO NP NS CIN Q1 Q2 CCL (a) High-Side Active Clamp (Flyback Clamp) (b) Low-Side Active Clamp (Boost Clamp) INV D ×      −1 1 INV D ×      −1 1 INV D D ×      −1 INV D D ×      −1 INV D D ×      −1 INV D ×      −1 1 PARAMETER HIGH-SIDE ACTIVE CLAMP (off-line) LOW-SIDE ACTIVE CLAMP (telecom) VDS VRESET VCL CCL (applied voltage) Lower voltage by VIN volts Highest VCL occurs at DMAX Higher voltage by VIN volts Not practical for off-line CCL (cap value) Same value as low-side for given ripple voltage Same value as high-side for given ripple voltage Clamp MOSFET (Q2) N-Channel Can be used for >500V P-Channel Can be used up to 500V Gate Drive Gate drive transformer required Level shifting gate drive required
  • 35. 35 Active Clamp Forward Converter VDS Voltage Stress VDS vs Vin Active Clamp Reset 75 85 95 105 115 125 135 145 36 42 48 54 60 66 72 Vin (V) VDS(V) N=5 N=6 N=7 SECIN IN INDS VNV V D VV ×− = − ×= 2 1 1 Telecom Converter Example VVV IN 7236 ≤≤ S P N N N =, where VVO 3.3=  Optimize transformer turns ratio, N, to minimize VDS voltage stress over entire VIN range  For N=6 • VDS=108V at VIN(MIN) and VIN(MAX) • VDS≤1.5VIN at VIN(MAX) N=5 N=6 N=7 DMIN=28%DMAX=55% IN O V NV D × =  IMPORTANT – Accurate max duty cycle clamp or volt-second clamp is necessary due to the parabolic nature of VDS near DMAX
  • 36. 36 Active Clamp Forward Converter Clamp Capacitor D1 D2 L CO NP NS CIN Q1 Q2 CCL 0 0 PWM Q1 VDS VIN+VCL 0 Q2 VGS VCL(Ripple) = 0% VCL(Ripple) = 50%  Clamp capacitor optimal • VCL(RIPPLE) = 10%-20% VCL(Ripple) = 10% Q1 VDS Waveforms verses Clamp Capacitor Value:  Clamp capacitor too small • VCL(RIPPLE) = 50% • Better transient response • Increase VDS stress  Clamp capacitor too large • VCL(RIPPLE) = 0% • Lowest VDS stress • Poor transient response  Choosing Clamp Capacitor • Capacitor needs to be large enough to approximate the clamp voltage as DC • Initially calculate CCL according to “Rule of Thumb” • Select CCL voltage rating according to maximum clamp voltage PLUS allowable ripple voltage and safety margin )(2 MAXoffCLMAG tCL >××π ( ) 2 2 )2( 1 10 swMAG MIN CL FL D C ×× − ×> π
  • 37. 37 Active Clamp Forward Converter Zero Voltage Switching (ZVS)  ZVS occurs when the voltage across the MOSFET, VDS, is positioned to “zero volts” prior to the start of the next switching cycle.  Benefits of ZVS • Reduced switching losses • Higher operating frequency possible (smaller passive component size) • Higher converter efficiency • Increased reliability • Reduced radiated emissions (EMI) VDS ID PSW=VDS x ID x FSW (a) Hard Switching (b) “Ideal” ZVS
  • 38. 38 Active Clamp Forward Converter Zero Voltage Switching (ZVS) D1 D2 L CO Q1 Q2 CCL D2 CDS D1 CDS VDS RP RS LP(LEAK) LS(LEAK) CP(W) CS(W) NP NS LMAGRCORE CP-S(MUTUAL) CD1 CD2  Parasitic elements can be used to benefit ZVS  Active Clamp Forward converter uses fixed frequency resonant transitions to achieve ZVS when specific operating conditions are met
  • 39. 39 Active Clamp Forward Converter Zero Voltage Switching, Q1 Turn-Off IM + IO N IC VIN VDS 0 VIN VDS IM IO N VGS(Q1) VGS(Q2)  ZVS turn-off is easy • Magnetizing current, IM +, and reflected secondary current combine to fully charge the resonant capacitance, C ( )2 2 2 1 2 1 CLINDSM O M VVCI N I L +>      + + NOTE: leakage inductance is neglected for this analysis D1 D2 L CO NP NS CIN Q1 Q2 CCL
  • 40. 40 Active Clamp Forward Converter Zero Voltage Switching, Q1 Turn-On IM - IO N IC VIN VDS , for ZVS turn-on − MI 0 VIN VDS IM IO N VGS(Q1) VGS(Q2) N I I O M >− VDS VGS(Q1) 1 - Non-ZVS 2 - Optimal ZVS 3 - ZVS (2, 3) - ZVS 1 - Non-ZVS (Miller)  ZVS turn-on is difficult • Magnitude of IM - must be greater than the magnitude of the reflected secondary current during entire ZVS window • Must be enough resonant current to fully discharge C • Must be enough dead time for the drain voltage to fully resonate to near zero volts N I I O M >− ( )2 2 2 1 2 1 CLINDSM O M VVCI N I L +>      − − DSMRES CLt ×≥ 2 π NOTE: leakage inductance is neglected for this analysis
  • 41. 41 Single Ended (<500W) 2 Switch Forward Converter D1 D2 L CO NP NSCIN Q1 Q2 D3D4 0 0 0 PWM (Q1, Q2) VDS (Q1, Q2) VS VIN/NP VIN VIN/2 ID3, ID4 -VIN/NP 0 IQ1, IQ2 0 IL ID1 ID2 0 0 IO IMAG0  Advantages  Ruggedness  MOSFET voltage stress limited to VIN  Magnetizing energy recycled by D3, D4  Universal input, 150W<P<500W  Disadvantages  Limited to less than 50% duty cycle  High side gate drive required for Q2  Hard switching  Transfer Function D N N V V P S IN O ×=
  • 42. 42 Single Ended (>1kW) Interleaved 2 Switch Forward Converter D1 D2 L CO NP NSCIN Q1 Q2 D3D4 D5 D6 L NP NS Q3 Q4 D7D8 Dn Dn L NP NS Qn Qn DnDn  Advantages • Can operate multiple power stages out of phase • Ripple current cancellation at output capacitor • Reduced RMS current at input capacitor • Multiple stages can add up to kW of power • Smaller output inductors can improve transient response  Disadvantages • Design complexity • PCB layout can be challenging
  • 43.  Non-Isolated Converter Topologies  Single Ended Converter Topologies  Double Ended Converter Topologies  Synchronous Rectification
  • 44. 44 Double Ended Topologies Defined ∝B Vt +BSAT ∝H NI -BSAT ∆B B1 B2 ∝B Vt ∝H NI ∆B B1 B2 +BSAT -BSAT ∆B B1 B2 (RCD Reset) (Active Clamp) Normal Flux Imbalance Saturation Primary Current Double Ended – Transformer operation occurs in first and third quadrants Active Clamp Forward  “Single ended” but operates slightly into the third quadrant Half-Bridge, Full-Bridge  Symmetrical operation between first and third quadrants  No transformer reset circuitry required
  • 45. 45 Double Ended (<500W) Push Pull Converter D1 D2 L CO NP NS Q1 NS Q2 CIN NP PWM, Q1 PWM, Q2 IQ1 IQ2 VDS(Q1) 2VIN VDS(Q2) 2VIN ID1 ID2 ILIO  Advantages • Lower primary current compared to HB • Best for lower VIN, such as telecom DC/DC of US Line Voltage • Simple low-side gate drive  Disadvantages • High voltage (2xVIN) on primary MOSFETs • Transformer flux walking (VMC only) • Center tapped transformer structure • Hard switching  Transfer Function D N N V V P S IN O ××= 2
  • 46. 46 Double Ended (<500W) Half Bridge Converter (Symmetrical) D1 D2 L CO NP NS Q1 NS Q2 CIN C1 C2 VP VDS(Q1, Q3) VIN VDS(Q2, Q4) VIN ID1 ID2 IL IO VP IP VIN/2 PWM, Q1 PWM, Q2 -VIN/2  Advantages • Better transformer utilization • MOSFET voltage stress limited to VIN • Best for high VIN off line applications up to 500W • Single winding primary • Transformer balanced by C1 and C2 • Asymmetric and resonant versions can ZVS  Disadvantages • Totem pole primary gate drive • High primary current • Possible cross conduction between Q1 and Q2 • Hard switching  Transfer Function D N N V V P S IN O ××= 2
  • 47. 47 Asymmetrical Half Bridge Converter + Vp - + Vd - + Vp - 1 : 1 0 Asymmetric square waveform Symmetric square waveform Vd Vd 0 CB + Vp - + Vd - + VCB - Same area VCB + Vp - 1 : 1 0 0  What if an asymmetric square wave were introduced to the transformer?  Transformer will be saturated  What if an asymmetric square wave were introduced to the transformer in series with a DC blocking capacitor?  Not saturated due to the voltage of the blocking capacitor, CB
  • 48. 48 Asymmetrical Half Bridge Converter VP IP Q2 (D) Q1 (D) VIN/2 -VIN/2 D=0.46 D=0.23 VIN/2 -VIN/2 VP IP Q2 (D) Q1 (1-D) VIN-VCB VCB VCB D=0.46 D=0.23 Equal Area VIN-VCB (a) Symmetrical HB waveforms (b) Asymmetrical HB waveforms  Asymmetrical Gate Drive • Q2 modulated by D • Q1 driven by 1-D • Fixed dead time between Q1 and Q2 • Dead time optimized for ZVS and anti cross conduction • Fixed frequency ZVS PWM operation • Near D=0.5, operation is same as symmetrical HB  BUT, excessive voltage stress is applied to secondary rectifier at VIN(MAX) ( )DD N N V V P S IN O −×××= 12 D1 D2 L CO NP NS Q1 NS Q2 CIN CB VP
  • 49. 49 Asymmetrical Half Bridge VD vs D 50 75 100 125 150 175 200 225 250 0.20 0.23 0.26 0.29 0.32 0.35 0.38 0.41 0.44 0.47 0.50 Duty Cycle DiodeVoltageStress(V) VD1 VD2 Asymmetrical Half Bridge Converter  Secondary Rectifier Voltage Stress  Reverse recovery and parasitic ringing  Wide DD Range requires use of high voltage rectifiers  Converter operates best at D=0.5 D V V O D − = 1 1 OD VDV ×=2
  • 50. 50 Asymmetrical Half Bridge Converter  Advantages • Fixed frequency ZVS • Constant power transfer (D and 1-D) reduces output ripple • Power stage can be controlled using any active clamp PWM controller  Disadvantages • High voltage stress on secondary rectifier • Loss of ZVS at some min load current – extending ZVS range is difficult • Poor transient response due to blocking capacitor, CB
  • 51. 51 LLC Resonant Half Bridge Converter  Square wave generator: produces a square wave voltage, Vd by driving switches, Q1 and Q2 with alternating 50% duty cycle for each switch.  Resonant network: consists of Llkp, Llks, Lm and Cr. The current lags the voltage applied to the resonant network which allows the MOSFET’s to be turned on with zero voltage.  Rectifier network: produces DC voltage by rectifying AC current Ip Ids2 Vd (Vds2) Vgs2 Im Vin ID Vgs1 + VO - Ro Q1 Q2 n:1 Ip Llkp Lm Cr Ids2 Vd Llks Im ID Vin Square wave generator resonant network Rectifier network Io
  • 52. 52 LLC Topology Variations VIN Lr Lm Cr Q1 Q2 VIN Lr Lm Cr Q1 Q2 VIN Lr Lm ½ Cr Q1 Q2 ½ Cr VIN Lr Lm ½ Cr Q1 Q2 ½ Cr + VO - Ro + VO - Ro + VO - Ro + VO - Ro Primary Side Variation Secondary Side Variation Transformer across the high side MOSFET Transformer across the low side MOSFET Split resonant capacitor with clamping diode Split resonant capacitor Full bridge rectifier with single winding 2 Rectifier diode with center tab winding Voltage doubler rectifier with single winding Synchronous rectifier with center tab winding
  • 53. 53 LLC Resonant Half Bridge Converter  Advantages of the LLC resonant converter • Narrow frequency variation range over wide load range • Zero voltage switching even at no load condition • Reduced switching loss through ZVS  Improved efficiency and EMI • When the two magnetic components are implemented with a single core (use the leakage inductance as the resonant inductor), one component can be saved
  • 54. 54 LLC Resonant Half Bridge Converter  Disadvantages of the LLC resonant converter • Can optimize performance at one operating point, but not with wide range of input voltage and load variations (too wide frequency range) • Difficult to regulate the output at no load condition • Significant current may circulate through the resonant network, even at the no load condition • Quasi-sinusoidal waveforms exhibit higher peak values than equivalent rectangular waveforms • High output current ripple
  • 55. 55 Double Ended (<500W) Push Pull Converter D1 D2 L CO NP NS Q1 NS Q2 CIN NP PWM, Q1 PWM, Q2 IQ1 IQ2 VDS(Q1) 2VIN VDS(Q2) 2VIN ID1 ID2 ILIO  Advantages • Lower primary current compared to HB • Best for lower VIN, such as telecom DC/DC of US Line Voltage • Simple low-side gate drive  Disadvantages • High voltage (2xVIN) on primary MOSFETs • Transformer flux walking (VMC only) • Center tapped transformer structure • Hard switching  Transfer Function D N N V V P S IN O ××= 2
  • 56. 56 Double Ended (>500W) Full Bridge Converter (PWM) D1 D2 L CO NP NS Q3 NS Q4 CIN Q1 Q2 Gate, Q1 Gate, Q2 VDS(Q1, Q4) VIN VDS(Q2, Q3) VIN ID1 ID2 IL IO Gate, Q3 Gate, Q4 VP IP VIN -VIN  Advantages • MOSFET voltage stress limited to VIN • Twice the power compared to half bridge • Single winding primary  Disadvantages • Dual, totem pole primary gate drive • Hard switching (Non-ZVT) • Parasitics degrade circuit performance • Circuit complexity  Transfer Function D N N V V P S IN O ××= 2
  • 57. 57 Double Ended (>500W) Phase Shifted Full Bridge Converter D1 D2 L CO NP NS Q3 NS Q4 CIN Q1 Q2 Gate, Q1 Gate, Q2 VDS(Q2, Q3) VDS(Q1, Q4) ID1 ID2 IL IO Gate, Q3 Gate, Q4 VP IP VIN -VIN VIN Freewheel Power Freewheel Power VIN  Advantages • High Efficiency ZVS • Highest single stage processing power • MOSFET voltage stress limited to VIN • Twice the power compared to half bridge • Full wave rectified secondary • Excellent choice for EU line voltage (PFC pre- regulator) with output power >1kW  Disadvantages • Dual, high side primary gate drive • Circuit complexity • High circulating primary current for ZVS • Loss of ZVS at light load current  Transfer Function D N N V V P S IN O ××= 2
  • 58. 58 Phase Shifted Full Bridge Converter ZVS Waveforms (a) IO=100% (b) IO=35% (c) IO=0% Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q2 P→A Q4 A→P VDS VGS VDS VGS A=Active (Power) P=Passive (Freewheel)
  • 59. 59 Phase Shift Control vs ZVT PWM Control A B C D VPRI IPRI UL(A) LL(B) UR(C) LR(D) VPRI IPRI UR(C) LR(D) UL(A) LL(B)  ZVT PWM Control • Upper bridge FETs are fixed at 50% D • Lower bridge FETs are trailing edge PWM • Resonant delay set on lower FET leading edge  Freewheel period • Both SRs are ON • Reduces reflected secondary current since current only flows through both SRs • Less available ZVS current  Phase Shift Control • All bridge FETs are fixed at 50% D • A and B are synced to clock • C and D are phase shift modulated • Resonant delay set between AB and CD  Freewheel period • Secondary-side load current freewheels through transformer and is reflected to primary • Reflected current aids ZVS • Higher conduction losses at higher power
  • 60. 60 Phase Shift Control vs ZVT PWM Control  ZVT PWM Control • Current freewheels through one high-side active FET and body-diode of other high-side FET during each FW period  Phase Shift Control • Current freewheels through two active high-side FETs for first FW period then through two active low-side FETs for second FW period Freewheel ResonantFreewheel Resonant ( )ONDSFWDISS RIP _ 2 2 ××= ( )ONDSFWFWFSWBDDISS RIIVFtP _ 2 ×+×××=
  • 61. 61 ZVT PWM Control Upper Bridge MOSFET Body-Diode Conduction  Freewheel (FW) Period • For 36V<VIN<72V • Body-diode conduction is 970ns at VIN=72V  Minimize body-diode conduction in upper MOSFETs • Pre-regulate input voltage (PFC)  Still have to deal with brown-out and hold-up • Operate converter at lowest frequency possible VVF 1= AI FW 2= nstBD 970= kHzFSW 265= Ω= mR ONDS 25_ mWVAkHznsPBD 51412265970 =×××= mWmAP ONRDS 100252 2 )( =Ω×= Measured Values Calculated Body-Diode Conduction Loss in each Upper FET Calculated Channel Conduction Loss in each Upper FET Total Conduction Loss for each FW period (ZVT PWM Control) Total Conduction Loss for each FW period (PSFB Control)  Comparison of FW MOSFET Conduction Losses for Telecom DC/DC App VVIN 72= AIOUT 10= *Assume switching, gate charge, Coss losses are same for each control method mWmWmWP ZVTPWMFW 614100514)(1 =+= mWmWmWP ZVTPWMFW 614100514)(2 =+= mWmWP PSFBFW 2001002)(1 =×= mWmWP PSFBFW 2001002)(2 =×= (25%) (UL and UR) (UL and UR) (A and B) (C and D)
  • 62. 62 High Power Topology Summary D1 1 VIN − × Topology Transformer Primary Switches VDS “Ideal” Application CCM Boost Inductor (non-isolated) 1 VOUT High power PFC >300W Interleaved PFC >Several kW BCM Boost Inductor (non-isolated) 1 VOUT PFC <300W Interleaved PFC <1kW Forward Single-end 1 2xVIN <200W, universal off-line or telecom Active Clamp Single-end 2 <500W, universal off-line or telecom, highest efficiency required 2-Switch Forward Single-end 2 VIN <500W, universal off-line, PFC pre-regulator Half Bridge Double-end 2 VIN <500W, EU off-line, Intermediate Bus Converters Push Pull Double-end 2 2xVIN <500W, telecom or low VIN (<200V) Full Bridge Double-end 4 VIN >500W, universal off-line Phase Shifted FB Double-end 4 VIN >1kW, universal off-line or telecom, highest efficiency required Current Doubler Double-end NA NA Any double-ended topology, low VOUT, high IOUT most benefit
  • 63. 63 LLC vs AHB Comparison LLC resonant converter Asymmetric Half-bridge Control method Variable frequency with fixed duty cycle (50%) PWM with fixed frequency Practically input voltage range Vmax /Vmin =1.2~1.4 Vmax /Vmin =1.2~1.3 Primary side MOSFET voltage  Clamped to the input voltage  Clamped to the input voltage Secondary side rectifier voltage stress  2 times the output voltage (for center tapped transformer)  Usually about 3 to 6 times the output voltage for powering and freewheeling diodes, respectively (for center tapped transformer) Output capacitor current ripple  Almost twice the output current (peak-to-peak)  Several tens % of output current (peak-to-peak) ZVS condition  ZVS is easily achieved from full load to no load condition using the energy in the magnetizing inductance  ZVS is difficult to achieve at light load condition  ZVS at full load condition is relatively easy Other features  No simple power limit capability such as pulse-by- pulse current limit in PWM operation  Requires tight tolerance of resonant components (L,C)  Relatively large circulating current  Tight tolerance is not required for the resonant components (L,C) + VO - Ro Q2 Q1 Vin Io Lr Lm CB + VO - Ro Q1 Q2 Vin Io Lr Lm Cr
  • 64.  Non-Isolated Converter Topologies  Single Ended Converter Topologies  Double Ended Converter Topologies  Synchronous Rectification
  • 65. 65 Synchronous Rectification (SR) D1 D2 L CO NP NS CIN Q1 Reset Circuit Efficiency vs Output Voltage Vf=0.4V, Vf=1V 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.5 1.7 2.8 4.0 5.1 6.3 7.4 8.6 9.7 10.9 12.0 Output Voltage (V) Efficiency Vf=0.4V Vf=1V Q2 Q3 L CO NP NS CIN Q1 Reset Circuit  What is Synchronous Rectification? • Replacing secondary side discrete rectifiers (D1, D2) with MOSFETs (Q2, Q3)  Benefits of SR • Parallel MOSFETs • Increase efficiency  Lower output voltage and higher current applications benefit most  How do we drive them? OUT FOUTFOUTOUT OUTOUT IN OUT V VIVIV IV P P + = ×+× × == 1 1 η
  • 66. 66 Single Ended Synchronous Rectification SR Gate Drive Options Q3 Q4 L CO NP NS CIN Q1 Q2 CCL Q3 Q4 L CO NP NS CIN Q1 Q2 CCL SR Gate Drive Self-Driven SR  SR gate drive derived from transformer (as shown) or output inductor  Advantages • Simple – no timing issues • High efficiency for few components  Disadvantages • SR gate drive not regulated • Difficult when VIN > 2:1 • No control of secondary during start-up • Not compatible with all reset techniques Control-Driven SR  SR gate drive comes from PWM control signal  Advantages • SR gate drive is regulated • Can be used for wide VIN applications • Secondary is controlled by primary  Disadvantages • Primary to secondary timing
  • 67. 67 Q3 Q4 L CO SR Gate Drive Reset Circuit NP NS CIN Q1 D 1-D Single Ended “Hybrid” SR SR Gate Drive Options  Hybrid-Driven SR • Combination of control driven and self driven • Forward SR (Q3) self driven by D • Free wheeling SR (Q4) driven by PWM inverted (1-D)  Applications • Forward converter operating in DCM • RCD, Resonant and Third Winding Reset
  • 68. 68 NP Q3 Q4 CIN Q1 Q2 Q5 L1 CO NS L2 Q6 SR Gate Drive T1 Double Ended Synchronous Rectification (>1kW) (a) Full Bridge with Current Doubler SR Secondary  SR applications typically greater than 12V output  Highest efficiency • Minimize body-diode conduction • Use Secondary sensing for best timing  SR driver solution is strongly related to control scheme • Primary side PWM control  Need signal and timing from pri-to-sec for good SR control  Difficult to adapt over line/load changes • Secondary side PWM control  Allows sensing key nodes for timing optimization  Cross boundary with timing to communicate with primary  Direct drive between PWM and SR  Needs startup bias supply  Double ended control driven SR drive is the more difficult SR problem to solve
  • 69. 69 Double Ended (All) Current Doubler Rectifier D1 D2 L CO NP NS NS VO D1 D2 L CO NP NS NS VO D1 D2 CO VO V I V D1 D2 CO VO V I I What is it? - A full wave alternative rectification technique compatible with all double ended converter topologies D1 D2 CO VO L2 L1 NP NS NP NS D1 D2 L1 CO L2 VO NP Q1 L1 CO NS L2 Q2 VO OR Current Doubler Derivation of Current Doubler (a) (b) (c) (d) (e) (f) (g)
  • 70. 70 Double Ended (All) Current Doubler Rectifier Operation t3 t4 Q3 Q4 CIN Q1 Q2 D1 D2 L1 CO L2 Q3 Q4 CIN Q1 Q2 D1 D2 L1 CO L2 t2 t3 Q3 Q4 CIN Q1 Q2 D1 D2 L1 CO L2 t1 t2 Gate, Q1 Gate, Q2 IO=IL1+IL2 Gate, Q3 Gate, Q4 VP IP IL1 IL2 VL2 VL1 t0 t1 t2 t3 t4 Q3 Q4 CIN Q1 Q2 D1 D2 L1 CO L2 t0 t1 Current Doubler Timing Diagram (PSFB Application)  Current doubler benefits: • Better thermal distribution for higher current outputs • Each inductor carries half the load current at half the switching frequency • Ripple currents cancel as a function of D • Single winding secondary
  • 71. 71  Choosing the “best” topology: • Is the output voltage higher or lower than the input voltage range? • Are there isolation requirements? • Are multiple outputs required? • AC input – PFC/THD requirements? • Output power? • What is the maximum input/output voltage? • What is the maximum input/output current?  Fine tune topology choice by trading off: • Efficiency • Performance • Cost • Size  Q&A? Summary