SlideShare una empresa de Scribd logo
1 de 29
MATHS PROJECT
CLASS - 12TH
ROLL NO. - 23
STUDENT’S NAME - TABREZ
KHAN
TEACHER’S NAME – SIR RAJ
KUSHWAHA
TOPIC - DETERMINANTS
 Determinant of a Square Matrix
 Minors and Cofactors
 Properties of Determinants
 Applications of Determinants
 Area of a Triangle
 Solution of System of Linear Equations (Cramer’s Rule)
 Class Exercise
If is a square matrix of order 1,
then |A| = | a11 | = a11
ij
A = a
 
 
If is a square matrix of order 2, then
11 12
21 22
a a
A =
a a
 
 
 
|A| = = a11a22 – a21a12
a a
a a
1
1 1
2
2
1 2
2
Example 1 :
4 - 3
Evaluate the determinant :
2 5
 
4 - 3
Solution : = 4 × 5 - 2 × -3 = 20 + 6 = 26
2 5
If A = is a square matrix of order 3, then
11 12 13
21 22 23
31 32 33
a a a
a a a
a a a
 
 
 
 
 
[Expanding along first row]
11 12 13
22 23 21 23 21 22
21 22 23 11 12 13
32 33 31 33 31 32
31 32 33
a a a
a a a a a a
| A |= a a a = a - a + a
a a a a a a
a a a
     
11 22 33 32 23 12 21 33 31 23 13 21 32 31 22
= a a a - a a - a a a - a a + a a a - a a
   
11 22 33 12 31 23 13 21 32 11 23 32 12 21 33 13 31 22
a a a a a a a a a a a a a a a a a a
     
2 3 - 5
Evaluate the determinant : 7 1 - 2
-3 4 1
 
2 3 - 5
1 - 2 7 - 2 7 1
7 1 - 2 = 2 - 3 + -5
4 1 -3 1 -3 4
-3 4 1
[Expanding along first row]
     
= 2 1 + 8 - 3 7 - 6 - 5 28 + 3
= 18 - 3 - 155
= -140
Solution :
4 7 8
If A = -9 0 0 , then
2 3 4
 
 
 
 
 
M11 = Minor of a11 = determinant of the order 2 × 2 square
sub-matrix is obtained by leaving first
row and first column of A
0 0
= = 0
3 4
Similarly, M23 = Minor of a23
4 7
= =12-14=-2
2 3
M32 = Minor of a32 etc.
4 8
= = 0+72 = 72
-9 0
 i+j
ij ij ij
C = Cofactor of a in A = -1 M ,
ij ij
where M is minor of a in A
4 7 8
A = -9 0 0
2 3 4
 
 
 
 
 
C11 = Cofactor of a11 = (–1)1 + 1 M11 = (–1)1 +1
0 0
= 0
3 4
C23 = Cofactor of a23 = (–1)2 + 3 M23 =  
4 7
2
2 3
C32 = Cofactor of a32 = (–1)3 + 2M32 = etc.
4 8
- = -72
-9 0
11 12 13
21 22 23
31 32 33
a a a
If A = a a a , then
a a a
 
 
 
 
 
 
3 3
i j
ij ij ij ij
j 1 j 1
A 1 a M a C

 
  
 
i1 i1 i2 i2 i3 i3
= a C +a C +a C , for i =1 or i =2 or i =3
1. The value of a determinant remains unchanged, if its
rows and columns are interchanged.
1 1 1 1 2 3
2 2 2 1 2 3
3 3 3 1 2 3
a b c a a a
a b c = b b b
a b c c c c
i e A A

. . '
2. If any two rows (or columns) of a determinant are interchanged,
then the value of the determinant is changed by minus sign.
 
1 1 1 2 2 2
2 2 2 1 1 1 2 1
3 3 3 3 3 3
a b c a b c
a b c = - a b c R R
a b c a b c
Applying 
3. If all the elements of a row (or column) is multiplied by a
non-zero number k, then the value of the new determinant
is k times the value of the original determinant.
1 1 1 1 1 1
2 2 2 2 2 2
3 3 3 3 3 3
ka kb kc a b c
a b c = k a b c
a b c a b c
which also implies
1 1 1 1 1 1
2 2 2 2 2 2
3 3 3 3 3 3
a b c ma mb mc
1
a b c = a b c
m
a b c a b c
4. If each element of any row (or column) consists of
two or more terms, then the determinant can be
expressed as the sum of two or more determinants.
1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2
3 3 3 3 3 3 3 3
a +x b c a b c x b c
a +y b c = a b c + y b c
a +z b c a b c z b c
5. The value of a determinant is unchanged, if any row
(or column) is multiplied by a number and then added
to any other row (or column).
 
1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2 1 1 2 3
3 3 3 3 3 3 3 3
a b c a +mb - nc b c
a b c = a +mb - nc b c C C + mC -nC
a b c a +mb - nc b c
Applying 
6. If any two rows (or columns) of a determinant are
identical, then its value is zero.
1 1 1
2 2 2
1 1 1
a b c
a b c = 0
a b c
7. If each element of a row (or column) of a determinant is zero,
then its value is zero.
2 2 2
3 3 3
0 0 0
a b c = 0
a b c
 
a 0 0
8 Let A = 0 b 0 be a diagonal matrix, then
0 0 c
 
 
 
 
 
a 0 0
= 0 b 0
0 0 c
A abc

Following are the notations to evaluate a determinant:
Similar notations can be used to denote column
operations by replacing R with C.
(i) Ri to denote ith row
(ii) Ri Rj to denote the interchange of ith and jth rows.
(iii) Ri Ri + lRj to denote the addition of l times the
elements of jth row to the corresponding elements of
ith row.
(iv) lRi to denote the multiplication of all elements of ith
row by l.


If a determinant becomes zero on putting
is the factor of the determinant.
 
x = , then x -
 
2
3
x 5 2
For example, if Δ = x 9 4 , then at x =2
x 16 8
, because C1 and C2 are identical at x = 2
Hence, (x – 2) is a factor of determinant .
  0

Sign System for order 2 and order 3 are
given by
+ – +
+ –
, – + –
– +
+ – +
2 2 2
a b c
We have a b c
bc ca ab
 
2
1 1 2 2 2 3
(a-b) b-c c
= (a-b)(a+b) (b-c)(b+c) c Applying C C -C and C C -C
-c(a-b) -a(b-c) ab
 
   
2
1 2
1 1 c
Taking a-b and b-c common
=(a-b)(b-c) a+b b+c c
from C and C respectively
-c -a ab
 
 
 
bc
2 2 2
a b c
a b c
ca ab
Evaluate the determinant:
Solution:
 
2
1 1 2
0 1 c
=(a-b)(b-c) -(c-a) b+c c Applying c c -c
-(c-a) -a ab

2
0 1 c
=-(a-b)(b-c)(c-a) 1 b+c c
1 -a ab
 
2
2 2 3
0 1 c
= -(a-b)(b-c)(c-a) 0 a+b+c c -ab Applying R R -R
1 -a ab

Now expanding along C1 , we get
(a-b) (b-c) (c-a) [- (c2 – ab – ac – bc – c2)]
= (a-b) (b-c) (c-a) (ab + bc + ac)
Without expanding the determinant,
prove that
3
3x+y 2x x
4x+3y 3x 3x =x
5x+6y 4x 6x
Solution :
3x+y 2x x 3x 2x x y 2x x
L.H.S= 4x+3y 3x 3x = 4x 3x 3x + 3y 3x 3x
5x+6y 4x 6x 5x 4x 6x 6y 4x 6x
3 2
3 2 1 1 2 1
= x 4 3 3 +x y 3 3 3
5 4 6 6 4 6
 
3
1 1 2
1 2 1
= x 1 3 3 Applying C C -C
1 4 6

 
3
2 2 1 3 3 2
1 2 1
=x 0 1 2 ApplyingR R -R and R R -R
0 1 3
 
 
3
1
3
= x ×(3-2) Expanding along C
=x = R.H.S.
3
3 2 1
=x 4 3 3
5 4 6
 
3 2
1 2
3 2 1
= x 4 3 3 +x y×0 C and C are identical in II determinant
5 4 6
Prove that : = 0 , where w is cube root of unity.
3 5
3 4
5 5
1 ω ω
ω 1 ω
ω ω 1
3 5 3 3 2
3 4 3 3
5 5 3 2 3 2
1 ω ω 1 ω ω .ω
L.H.S = ω 1 ω = ω 1 ω .ω
ω ω 1 ω .ω ω .ω 1
 
2
3
2 2
1 2
1 1 ω
= 1 1 ω ω =1
ω ω 1
=0=R.H.S. C and C are identical
 
 
Solution :
2
x+a b c
a x+b c =x (x+a+b+c)
a b x+C
Prove that :
Solution :
 
1 1 2 3
x+a b c x+a+b+c b c
L.H.S= a x+b c = x+a+b+c x+b c
a b x+C x+a+b+c b x+c
Applying C C +C +C

 
2 2 1 3 3 1
1 b c
=(x+a+b+c) 0 x 0
0 0 x
Applying R R -R and R R -R
 
Expanding along C1 , we get
(x + a + b + c) [1(x2)] = x2 (x + a + b + c)
= R.H.S
 
  1
1 b c
= x+a+b+c 1 x+b c
1 b x+c
Taking x+a+b+c commonfrom C
 
 
The area of a triangle whose vertices are
is given by the expression
1 1 2 2 3 3
(x , y ), (x , y ) and (x , y )
1 1
2 2
3 3
x y 1
1
Δ= x y 1
2
x y 1
1 2 3 2 3 1 3 1 2
1
= [x (y - y ) + x (y - y ) + x (y - y )]
2
Find the area of a triangle whose
vertices are (-1, 8), (-2, -3) and (3, 2).
Solution :
1 1
2 2
3 3
x y 1 -1 8 1
1 1
Area of triangle= x y 1 = -2 -3 1
2 2
x y 1 3 2 1
If are three points,
then A, B, C are collinear
1 1 2 2 3 3
A (x , y ), B (x , y ) and C (x , y )
1 1 1 1
2 2 2 2
3 3 3 3
Area of triangle ABC =0
x y 1 x y 1
1
x y 1 =0 x y 1 =0
2
x y 1 x y 1

 
 
1
= -1(-3-2)-8(-2-3)+1(-4+9)
2
 
1
= 5+40+5 =25 sq.units
2
If the points (x, -2) , (5, 2), (8, 8) are collinear,
find x , using determinants.
Solution :
x -2 1
5 2 1 =0
8 8 1

      
x 2-8 - -2 5-8 +1 40-16 =0

-6x-6+24=0

6x=18 x=3
 
Since the given points are collinear.
Let the system of linear equations be
 
2 2 2
a x+b y = c ... ii
 
1 1 1
a x+b y = c ... i
1 2
D D
Then x = , y = provided D 0,
D D

1 1 1 1 1 1
1 2
2 2 2 2 2 2
a b c b a c
where D = , D = and D =
a b c b a c
then the system is consistent and has infinitely many
solutions.
  1 2
2 If D = 0 and D = D = 0,
then the system is inconsistent and has no solution.
 
1 If D 0
Note :
,

then the system is consistent and has unique solution.
  1 2
3 If D=0 and one of D , D 0,

Using Cramer's rule , solve the following
system of equations 2x-3y=7, 3x+y=5
Solution :
2 -3
D= =2+9=11 0
3 1

1
7 -3
D = =7+15=22
5 1
2
2 7
D = =10-21=-11
3 5
1 2
D 0
D D
22 -11
By Cramer's Rule x= = =2 and y= = =-1
D 11 D 11


Let the system of linear equations be
 
2 2 2 2
a x+b y+c z = d ... ii
 
1 1 1 1
a x+b y+c z = d ... i
 
3 3 3 3
a x+b y+c z = d ... iii
3
1 2 D
D D
Then x = , y = z = provided D 0,
D D D
, 
1 1 1 1 1 1 1 1 1
2 2 2 1 2 2 2 2 2 2 2
3 3 3 3 3 3 3 3 3
a b c d b c a d c
where D = a b c , D = d b c , D = a d c
a b c d b c a d c
1 1 1
3 2 2 2
3 3 3
a b d
and D = a b d
a b d
Note:
(1) If D  0, then the system is consistent and has a unique
solution.
(2) If D=0 and D1 = D2 = D3 = 0, then the system has infinite
solutions or no solution.
(3) If D = 0 and one of D1, D2, D3  0, then the system
is inconsistent and has no solution.
(4) If d1 = d2 = d3 = 0, then the system is called the system of
homogeneous linear equations.
(i) If D  0, then the system has only trivial solution x = y = z = 0.
(ii) If D = 0, then the system has infinite solutions.
Using Cramer's rule , solve the following
system of equations
5x - y+ 4z = 5
2x + 3y+ 5z = 2
5x - 2y + 6z = -1
Solution :
5 -1 4
D= 2 3 5
5 -2 6
1
5 -1 4
D = 2 3 5
-1 -2 6
= 5(18+10)+1(12+5)+4(-4 +3)
= 140 +17 –4
= 153
= 5(18+10) + 1(12-25)+4(-4 -15)
= 140 –13 –76 =140 - 89
= 51
0

2
5 5 4
D = 2 2 5
5 -1 6
= 5(12 +5)+5(12 - 25)+ 4(-2 - 10)
= 85 + 65 – 48 = 150 - 48
= 102
3
5 -1 5
D = 2 3 2
5 -2 -1
= 5(-3 +4)+1(-2 - 10)+5(-4-15)
= 5 – 12 – 95 = 5 - 107
= - 102
Solve the following system of homogeneous linear equations:
x + y – z = 0, x – 2y + z = 0, 3x + 6y + -5z = 0
Solution:      
1 1 - 1
We have D = 1 - 2 1 = 1 10 - 6 - 1 -5 - 3 - 1 6 + 6
3 6 - 5
= 4 + 8 - 12 = 0
 
 
 
 
 
The systemhas infinitely many solutions.

Putting z = k, in first two equations, we get
x + y = k, x – 2y = -k
1 2
3
D 0
D D
153 102
By Cramer's Rule x = = =3, y = = =2
D 51 D 51
D -102
and z= = =-2
D 51


1
k 1
D -k - 2 -2k + k k
By Cramer's rule x = = = =
D -2 - 1 3
1 1
1 - 2

2
1 k
D 1 - k -k - k 2k
y = = = =
D -2 - 1 3
1 1
1 - 2
k 2k
x = , y = , z = k , where k R
3 3
 
These values of x, y and z = k satisfy (iii) equation.

Más contenido relacionado

Similar a TABREZ KHAN.ppt

Determinants and matrices.ppt
Determinants and matrices.pptDeterminants and matrices.ppt
Determinants and matrices.pptSauravDash10
 
Solucao_Marion_Thornton_Dinamica_Classic (1).pdf
Solucao_Marion_Thornton_Dinamica_Classic (1).pdfSolucao_Marion_Thornton_Dinamica_Classic (1).pdf
Solucao_Marion_Thornton_Dinamica_Classic (1).pdfFranciscoJavierCaedo
 
Business Math Chapter 3
Business Math Chapter 3Business Math Chapter 3
Business Math Chapter 3Nazrin Nazdri
 
MATHS - Linear equation in two variable (Class - X) Maharashtra Board
MATHS - Linear equation in two variable (Class - X) Maharashtra BoardMATHS - Linear equation in two variable (Class - X) Maharashtra Board
MATHS - Linear equation in two variable (Class - X) Maharashtra BoardPooja M
 
Form 5 Additional Maths Note
Form 5 Additional Maths NoteForm 5 Additional Maths Note
Form 5 Additional Maths NoteChek Wei Tan
 
Notes and formulae mathematics
Notes and formulae mathematicsNotes and formulae mathematics
Notes and formulae mathematicsZainonie Ma'arof
 
math1مرحلة اولى -compressed.pdf
math1مرحلة اولى -compressed.pdfmath1مرحلة اولى -compressed.pdf
math1مرحلة اولى -compressed.pdfHebaEng
 
Pair of linear equations in two variable
Pair of linear equations in two variablePair of linear equations in two variable
Pair of linear equations in two variableBuddhimaan Chanakya
 
engineeringmathematics-iv_unit-ii
engineeringmathematics-iv_unit-iiengineeringmathematics-iv_unit-ii
engineeringmathematics-iv_unit-iiKundan Kumar
 
Engineering Mathematics-IV_B.Tech_Semester-IV_Unit-II
Engineering Mathematics-IV_B.Tech_Semester-IV_Unit-IIEngineering Mathematics-IV_B.Tech_Semester-IV_Unit-II
Engineering Mathematics-IV_B.Tech_Semester-IV_Unit-IIRai University
 

Similar a TABREZ KHAN.ppt (16)

Determinants and matrices.ppt
Determinants and matrices.pptDeterminants and matrices.ppt
Determinants and matrices.ppt
 
Solucao_Marion_Thornton_Dinamica_Classic (1).pdf
Solucao_Marion_Thornton_Dinamica_Classic (1).pdfSolucao_Marion_Thornton_Dinamica_Classic (1).pdf
Solucao_Marion_Thornton_Dinamica_Classic (1).pdf
 
Core 2 revision notes
Core 2 revision notesCore 2 revision notes
Core 2 revision notes
 
Vivek
VivekVivek
Vivek
 
Business Math Chapter 3
Business Math Chapter 3Business Math Chapter 3
Business Math Chapter 3
 
MATHS - Linear equation in two variable (Class - X) Maharashtra Board
MATHS - Linear equation in two variable (Class - X) Maharashtra BoardMATHS - Linear equation in two variable (Class - X) Maharashtra Board
MATHS - Linear equation in two variable (Class - X) Maharashtra Board
 
Metrix[1]
Metrix[1]Metrix[1]
Metrix[1]
 
Sample question paper 2 with solution
Sample question paper 2 with solutionSample question paper 2 with solution
Sample question paper 2 with solution
 
Form 5 Additional Maths Note
Form 5 Additional Maths NoteForm 5 Additional Maths Note
Form 5 Additional Maths Note
 
Notes and formulae mathematics
Notes and formulae mathematicsNotes and formulae mathematics
Notes and formulae mathematics
 
Correlation & regression
Correlation & regression Correlation & regression
Correlation & regression
 
math1مرحلة اولى -compressed.pdf
math1مرحلة اولى -compressed.pdfmath1مرحلة اولى -compressed.pdf
math1مرحلة اولى -compressed.pdf
 
Class XII CBSE Mathematics Sample question paper with solution
Class XII CBSE Mathematics Sample question paper with solutionClass XII CBSE Mathematics Sample question paper with solution
Class XII CBSE Mathematics Sample question paper with solution
 
Pair of linear equations in two variable
Pair of linear equations in two variablePair of linear equations in two variable
Pair of linear equations in two variable
 
engineeringmathematics-iv_unit-ii
engineeringmathematics-iv_unit-iiengineeringmathematics-iv_unit-ii
engineeringmathematics-iv_unit-ii
 
Engineering Mathematics-IV_B.Tech_Semester-IV_Unit-II
Engineering Mathematics-IV_B.Tech_Semester-IV_Unit-IIEngineering Mathematics-IV_B.Tech_Semester-IV_Unit-II
Engineering Mathematics-IV_B.Tech_Semester-IV_Unit-II
 

Último

ComPTIA Overview | Comptia Security+ Book SY0-701
ComPTIA Overview | Comptia Security+ Book SY0-701ComPTIA Overview | Comptia Security+ Book SY0-701
ComPTIA Overview | Comptia Security+ Book SY0-701bronxfugly43
 
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...pradhanghanshyam7136
 
How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17Celine George
 
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxBasic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxDenish Jangid
 
FSB Advising Checklist - Orientation 2024
FSB Advising Checklist - Orientation 2024FSB Advising Checklist - Orientation 2024
FSB Advising Checklist - Orientation 2024Elizabeth Walsh
 
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptxMaritesTamaniVerdade
 
Micro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdfMicro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdfPoh-Sun Goh
 
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17  How to Extend Models Using Mixin ClassesMixin Classes in Odoo 17  How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17 How to Extend Models Using Mixin ClassesCeline George
 
Dyslexia AI Workshop for Slideshare.pptx
Dyslexia AI Workshop for Slideshare.pptxDyslexia AI Workshop for Slideshare.pptx
Dyslexia AI Workshop for Slideshare.pptxcallscotland1987
 
Spellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please PractiseSpellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please PractiseAnaAcapella
 
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...christianmathematics
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxheathfieldcps1
 
Unit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxUnit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxVishalSingh1417
 
Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)Jisc
 
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptxSKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptxAmanpreet Kaur
 
Vishram Singh - Textbook of Anatomy Upper Limb and Thorax.. Volume 1 (1).pdf
Vishram Singh - Textbook of Anatomy  Upper Limb and Thorax.. Volume 1 (1).pdfVishram Singh - Textbook of Anatomy  Upper Limb and Thorax.. Volume 1 (1).pdf
Vishram Singh - Textbook of Anatomy Upper Limb and Thorax.. Volume 1 (1).pdfssuserdda66b
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdfQucHHunhnh
 
General Principles of Intellectual Property: Concepts of Intellectual Proper...
General Principles of Intellectual Property: Concepts of Intellectual  Proper...General Principles of Intellectual Property: Concepts of Intellectual  Proper...
General Principles of Intellectual Property: Concepts of Intellectual Proper...Poonam Aher Patil
 
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdfUGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdfNirmal Dwivedi
 
Unit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptxUnit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptxVishalSingh1417
 

Último (20)

ComPTIA Overview | Comptia Security+ Book SY0-701
ComPTIA Overview | Comptia Security+ Book SY0-701ComPTIA Overview | Comptia Security+ Book SY0-701
ComPTIA Overview | Comptia Security+ Book SY0-701
 
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
 
How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17
 
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxBasic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
 
FSB Advising Checklist - Orientation 2024
FSB Advising Checklist - Orientation 2024FSB Advising Checklist - Orientation 2024
FSB Advising Checklist - Orientation 2024
 
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
 
Micro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdfMicro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdf
 
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17  How to Extend Models Using Mixin ClassesMixin Classes in Odoo 17  How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
 
Dyslexia AI Workshop for Slideshare.pptx
Dyslexia AI Workshop for Slideshare.pptxDyslexia AI Workshop for Slideshare.pptx
Dyslexia AI Workshop for Slideshare.pptx
 
Spellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please PractiseSpellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please Practise
 
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
 
Unit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxUnit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptx
 
Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)
 
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptxSKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
 
Vishram Singh - Textbook of Anatomy Upper Limb and Thorax.. Volume 1 (1).pdf
Vishram Singh - Textbook of Anatomy  Upper Limb and Thorax.. Volume 1 (1).pdfVishram Singh - Textbook of Anatomy  Upper Limb and Thorax.. Volume 1 (1).pdf
Vishram Singh - Textbook of Anatomy Upper Limb and Thorax.. Volume 1 (1).pdf
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
 
General Principles of Intellectual Property: Concepts of Intellectual Proper...
General Principles of Intellectual Property: Concepts of Intellectual  Proper...General Principles of Intellectual Property: Concepts of Intellectual  Proper...
General Principles of Intellectual Property: Concepts of Intellectual Proper...
 
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdfUGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
 
Unit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptxUnit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptx
 

TABREZ KHAN.ppt

  • 1. MATHS PROJECT CLASS - 12TH ROLL NO. - 23 STUDENT’S NAME - TABREZ KHAN TEACHER’S NAME – SIR RAJ KUSHWAHA TOPIC - DETERMINANTS
  • 2.  Determinant of a Square Matrix  Minors and Cofactors  Properties of Determinants  Applications of Determinants  Area of a Triangle  Solution of System of Linear Equations (Cramer’s Rule)  Class Exercise
  • 3. If is a square matrix of order 1, then |A| = | a11 | = a11 ij A = a     If is a square matrix of order 2, then 11 12 21 22 a a A = a a       |A| = = a11a22 – a21a12 a a a a 1 1 1 2 2 1 2 2 Example 1 : 4 - 3 Evaluate the determinant : 2 5   4 - 3 Solution : = 4 × 5 - 2 × -3 = 20 + 6 = 26 2 5
  • 4. If A = is a square matrix of order 3, then 11 12 13 21 22 23 31 32 33 a a a a a a a a a           [Expanding along first row] 11 12 13 22 23 21 23 21 22 21 22 23 11 12 13 32 33 31 33 31 32 31 32 33 a a a a a a a a a | A |= a a a = a - a + a a a a a a a a a a       11 22 33 32 23 12 21 33 31 23 13 21 32 31 22 = a a a - a a - a a a - a a + a a a - a a     11 22 33 12 31 23 13 21 32 11 23 32 12 21 33 13 31 22 a a a a a a a a a a a a a a a a a a       2 3 - 5 Evaluate the determinant : 7 1 - 2 -3 4 1   2 3 - 5 1 - 2 7 - 2 7 1 7 1 - 2 = 2 - 3 + -5 4 1 -3 1 -3 4 -3 4 1 [Expanding along first row]       = 2 1 + 8 - 3 7 - 6 - 5 28 + 3 = 18 - 3 - 155 = -140 Solution :
  • 5. 4 7 8 If A = -9 0 0 , then 2 3 4           M11 = Minor of a11 = determinant of the order 2 × 2 square sub-matrix is obtained by leaving first row and first column of A 0 0 = = 0 3 4 Similarly, M23 = Minor of a23 4 7 = =12-14=-2 2 3 M32 = Minor of a32 etc. 4 8 = = 0+72 = 72 -9 0
  • 6.  i+j ij ij ij C = Cofactor of a in A = -1 M , ij ij where M is minor of a in A 4 7 8 A = -9 0 0 2 3 4           C11 = Cofactor of a11 = (–1)1 + 1 M11 = (–1)1 +1 0 0 = 0 3 4 C23 = Cofactor of a23 = (–1)2 + 3 M23 =   4 7 2 2 3 C32 = Cofactor of a32 = (–1)3 + 2M32 = etc. 4 8 - = -72 -9 0
  • 7. 11 12 13 21 22 23 31 32 33 a a a If A = a a a , then a a a             3 3 i j ij ij ij ij j 1 j 1 A 1 a M a C         i1 i1 i2 i2 i3 i3 = a C +a C +a C , for i =1 or i =2 or i =3
  • 8. 1. The value of a determinant remains unchanged, if its rows and columns are interchanged. 1 1 1 1 2 3 2 2 2 1 2 3 3 3 3 1 2 3 a b c a a a a b c = b b b a b c c c c i e A A  . . ' 2. If any two rows (or columns) of a determinant are interchanged, then the value of the determinant is changed by minus sign.   1 1 1 2 2 2 2 2 2 1 1 1 2 1 3 3 3 3 3 3 a b c a b c a b c = - a b c R R a b c a b c Applying  3. If all the elements of a row (or column) is multiplied by a non-zero number k, then the value of the new determinant is k times the value of the original determinant.
  • 9. 1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3 ka kb kc a b c a b c = k a b c a b c a b c which also implies 1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3 a b c ma mb mc 1 a b c = a b c m a b c a b c 4. If each element of any row (or column) consists of two or more terms, then the determinant can be expressed as the sum of two or more determinants. 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 a +x b c a b c x b c a +y b c = a b c + y b c a +z b c a b c z b c 5. The value of a determinant is unchanged, if any row (or column) is multiplied by a number and then added to any other row (or column).
  • 10.   1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 1 1 2 3 3 3 3 3 3 3 3 3 a b c a +mb - nc b c a b c = a +mb - nc b c C C + mC -nC a b c a +mb - nc b c Applying  6. If any two rows (or columns) of a determinant are identical, then its value is zero. 1 1 1 2 2 2 1 1 1 a b c a b c = 0 a b c 7. If each element of a row (or column) of a determinant is zero, then its value is zero. 2 2 2 3 3 3 0 0 0 a b c = 0 a b c
  • 11.   a 0 0 8 Let A = 0 b 0 be a diagonal matrix, then 0 0 c           a 0 0 = 0 b 0 0 0 c A abc 
  • 12. Following are the notations to evaluate a determinant: Similar notations can be used to denote column operations by replacing R with C. (i) Ri to denote ith row (ii) Ri Rj to denote the interchange of ith and jth rows. (iii) Ri Ri + lRj to denote the addition of l times the elements of jth row to the corresponding elements of ith row. (iv) lRi to denote the multiplication of all elements of ith row by l.  
  • 13. If a determinant becomes zero on putting is the factor of the determinant.   x = , then x -   2 3 x 5 2 For example, if Δ = x 9 4 , then at x =2 x 16 8 , because C1 and C2 are identical at x = 2 Hence, (x – 2) is a factor of determinant .   0 
  • 14. Sign System for order 2 and order 3 are given by + – + + – , – + – – + + – +
  • 15. 2 2 2 a b c We have a b c bc ca ab   2 1 1 2 2 2 3 (a-b) b-c c = (a-b)(a+b) (b-c)(b+c) c Applying C C -C and C C -C -c(a-b) -a(b-c) ab       2 1 2 1 1 c Taking a-b and b-c common =(a-b)(b-c) a+b b+c c from C and C respectively -c -a ab       bc 2 2 2 a b c a b c ca ab Evaluate the determinant: Solution:   2 1 1 2 0 1 c =(a-b)(b-c) -(c-a) b+c c Applying c c -c -(c-a) -a ab  2 0 1 c =-(a-b)(b-c)(c-a) 1 b+c c 1 -a ab
  • 16.   2 2 2 3 0 1 c = -(a-b)(b-c)(c-a) 0 a+b+c c -ab Applying R R -R 1 -a ab  Now expanding along C1 , we get (a-b) (b-c) (c-a) [- (c2 – ab – ac – bc – c2)] = (a-b) (b-c) (c-a) (ab + bc + ac) Without expanding the determinant, prove that 3 3x+y 2x x 4x+3y 3x 3x =x 5x+6y 4x 6x Solution : 3x+y 2x x 3x 2x x y 2x x L.H.S= 4x+3y 3x 3x = 4x 3x 3x + 3y 3x 3x 5x+6y 4x 6x 5x 4x 6x 6y 4x 6x 3 2 3 2 1 1 2 1 = x 4 3 3 +x y 3 3 3 5 4 6 6 4 6
  • 17.   3 1 1 2 1 2 1 = x 1 3 3 Applying C C -C 1 4 6    3 2 2 1 3 3 2 1 2 1 =x 0 1 2 ApplyingR R -R and R R -R 0 1 3     3 1 3 = x ×(3-2) Expanding along C =x = R.H.S. 3 3 2 1 =x 4 3 3 5 4 6   3 2 1 2 3 2 1 = x 4 3 3 +x y×0 C and C are identical in II determinant 5 4 6 Prove that : = 0 , where w is cube root of unity. 3 5 3 4 5 5 1 ω ω ω 1 ω ω ω 1
  • 18. 3 5 3 3 2 3 4 3 3 5 5 3 2 3 2 1 ω ω 1 ω ω .ω L.H.S = ω 1 ω = ω 1 ω .ω ω ω 1 ω .ω ω .ω 1   2 3 2 2 1 2 1 1 ω = 1 1 ω ω =1 ω ω 1 =0=R.H.S. C and C are identical     Solution : 2 x+a b c a x+b c =x (x+a+b+c) a b x+C Prove that : Solution :   1 1 2 3 x+a b c x+a+b+c b c L.H.S= a x+b c = x+a+b+c x+b c a b x+C x+a+b+c b x+c Applying C C +C +C 
  • 19.   2 2 1 3 3 1 1 b c =(x+a+b+c) 0 x 0 0 0 x Applying R R -R and R R -R   Expanding along C1 , we get (x + a + b + c) [1(x2)] = x2 (x + a + b + c) = R.H.S     1 1 b c = x+a+b+c 1 x+b c 1 b x+c Taking x+a+b+c commonfrom C    
  • 20. The area of a triangle whose vertices are is given by the expression 1 1 2 2 3 3 (x , y ), (x , y ) and (x , y ) 1 1 2 2 3 3 x y 1 1 Δ= x y 1 2 x y 1 1 2 3 2 3 1 3 1 2 1 = [x (y - y ) + x (y - y ) + x (y - y )] 2 Find the area of a triangle whose vertices are (-1, 8), (-2, -3) and (3, 2). Solution : 1 1 2 2 3 3 x y 1 -1 8 1 1 1 Area of triangle= x y 1 = -2 -3 1 2 2 x y 1 3 2 1
  • 21. If are three points, then A, B, C are collinear 1 1 2 2 3 3 A (x , y ), B (x , y ) and C (x , y ) 1 1 1 1 2 2 2 2 3 3 3 3 Area of triangle ABC =0 x y 1 x y 1 1 x y 1 =0 x y 1 =0 2 x y 1 x y 1      1 = -1(-3-2)-8(-2-3)+1(-4+9) 2   1 = 5+40+5 =25 sq.units 2
  • 22. If the points (x, -2) , (5, 2), (8, 8) are collinear, find x , using determinants. Solution : x -2 1 5 2 1 =0 8 8 1         x 2-8 - -2 5-8 +1 40-16 =0  -6x-6+24=0  6x=18 x=3   Since the given points are collinear.
  • 23. Let the system of linear equations be   2 2 2 a x+b y = c ... ii   1 1 1 a x+b y = c ... i 1 2 D D Then x = , y = provided D 0, D D  1 1 1 1 1 1 1 2 2 2 2 2 2 2 a b c b a c where D = , D = and D = a b c b a c
  • 24. then the system is consistent and has infinitely many solutions.   1 2 2 If D = 0 and D = D = 0, then the system is inconsistent and has no solution.   1 If D 0 Note : ,  then the system is consistent and has unique solution.   1 2 3 If D=0 and one of D , D 0,  Using Cramer's rule , solve the following system of equations 2x-3y=7, 3x+y=5 Solution : 2 -3 D= =2+9=11 0 3 1  1 7 -3 D = =7+15=22 5 1 2 2 7 D = =10-21=-11 3 5 1 2 D 0 D D 22 -11 By Cramer's Rule x= = =2 and y= = =-1 D 11 D 11  
  • 25. Let the system of linear equations be   2 2 2 2 a x+b y+c z = d ... ii   1 1 1 1 a x+b y+c z = d ... i   3 3 3 3 a x+b y+c z = d ... iii 3 1 2 D D D Then x = , y = z = provided D 0, D D D ,  1 1 1 1 1 1 1 1 1 2 2 2 1 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 a b c d b c a d c where D = a b c , D = d b c , D = a d c a b c d b c a d c 1 1 1 3 2 2 2 3 3 3 a b d and D = a b d a b d
  • 26. Note: (1) If D  0, then the system is consistent and has a unique solution. (2) If D=0 and D1 = D2 = D3 = 0, then the system has infinite solutions or no solution. (3) If D = 0 and one of D1, D2, D3  0, then the system is inconsistent and has no solution. (4) If d1 = d2 = d3 = 0, then the system is called the system of homogeneous linear equations. (i) If D  0, then the system has only trivial solution x = y = z = 0. (ii) If D = 0, then the system has infinite solutions.
  • 27. Using Cramer's rule , solve the following system of equations 5x - y+ 4z = 5 2x + 3y+ 5z = 2 5x - 2y + 6z = -1 Solution : 5 -1 4 D= 2 3 5 5 -2 6 1 5 -1 4 D = 2 3 5 -1 -2 6 = 5(18+10)+1(12+5)+4(-4 +3) = 140 +17 –4 = 153 = 5(18+10) + 1(12-25)+4(-4 -15) = 140 –13 –76 =140 - 89 = 51 0  2 5 5 4 D = 2 2 5 5 -1 6 = 5(12 +5)+5(12 - 25)+ 4(-2 - 10) = 85 + 65 – 48 = 150 - 48 = 102 3 5 -1 5 D = 2 3 2 5 -2 -1 = 5(-3 +4)+1(-2 - 10)+5(-4-15) = 5 – 12 – 95 = 5 - 107 = - 102
  • 28. Solve the following system of homogeneous linear equations: x + y – z = 0, x – 2y + z = 0, 3x + 6y + -5z = 0 Solution:       1 1 - 1 We have D = 1 - 2 1 = 1 10 - 6 - 1 -5 - 3 - 1 6 + 6 3 6 - 5 = 4 + 8 - 12 = 0           The systemhas infinitely many solutions.  Putting z = k, in first two equations, we get x + y = k, x – 2y = -k 1 2 3 D 0 D D 153 102 By Cramer's Rule x = = =3, y = = =2 D 51 D 51 D -102 and z= = =-2 D 51  
  • 29. 1 k 1 D -k - 2 -2k + k k By Cramer's rule x = = = = D -2 - 1 3 1 1 1 - 2  2 1 k D 1 - k -k - k 2k y = = = = D -2 - 1 3 1 1 1 - 2 k 2k x = , y = , z = k , where k R 3 3   These values of x, y and z = k satisfy (iii) equation.