SlideShare una empresa de Scribd logo
1 de 31
PSpiceを活用した太陽光システムシミュレーション 株式会社ビー・テクノロジーhttp://www.bee-tech.com/horigome@bee-tech.com 1 Copyright (C) Bee Technologies Inc. 2010
2 Copyright (C) Bee Technologies Inc. 2010
モデル デザインキット回路方式のテンプレート 回路解析シミュレータPSpice (ABMライブラリーが豊富) 3 Copyright (C) Bee Technologies Inc. 2010 ABM=Analog Behavior Model
スパイス・パーク http://www.spicepark.com/55種類のデバイス、3,316モデル(2010年6月30日現在)をご提供中。現在、グローバル版スパイス・パークを準備中。 4 Copyright (C) Bee Technologies Inc. 2010
バッテリーのスパイスモデルの推移 5 Copyright (C) Bee Technologies Inc. 2010 リチウムイオン電池ニッケル水素電池 鉛蓄電池
6 Copyright (C) Bee Technologies Inc. 2010 リチウムイオン電池の充放電特性シミュレーションのセミナー及びデモは、2010年7月28日(水曜日)東京2010年7月29日(木曜日)大阪  で開催致します。info@bee-tech.comまでお問い合わせ下さい。
Design Kit PV Li-Ion Battery System 7 Copyright (C) Bee Technologies Inc. 2010
BAYSUN’s Lithium-Ion Batteries Pack : Power Battery Plus (PBT-BAT-0001)  ,[object Object]
Rated Current....................3[A]
Input Voltage.......................20.5 [Vdc]
Output Voltage....................12.8 ~ 16.4 [Vdc] ( 4 cells )
Charging time......................5[hours] (Approximately)1.1 Lithium-Ion Batteries Pack Specification 8 Copyright (C) Bee Technologies Inc. 2010
1.2 Discharge Time Characteristics 0.2C ( 880 mA ) 0.5C ( 2200 mA ) 1C ( 4400 mA ) TSCALE=3600 means time Scale (Simulation time : Real time) is 1:3600 Batteries Pack Model Parameters NS (number of batteries in series) = 4 cells C (capacity) = 4400 mA SOC1 (initial state of charge) = 100% TSCALE (time scale) , 	simulation : real time 		1 : 3600s or  		1s : 1h Discharge Rate : 0.2C(880mA), 0.5C(2200mA), and 1C(4400mA) 9 Copyright (C) Bee Technologies Inc. 2010
1.3 Single Cell Discharge Characteristics Single cell discharge characteristics are compared between measurement data and simulation data. Single cell Measurement Simulation 10 Copyright (C) Bee Technologies Inc. 2010
1.4 Charge Time Characteristics SOC [%] Vbatt [V] ICharge [A] Batteries Pack Model Parameters NS (number of batteries in series) = 4 cells C (capacity) = 4400 mA SOC1 (initial state of charge) = 100% TSCALE (time scale) , 	simulation : real time 		1 : 3600s or  		1s : 1h Charger Adaptor  Input Voltage = 20.5 Vdc Input Current = 880 mA(max.) 11 Copyright (C) Bee Technologies Inc. 2010
BP Solar’s photovoltaic module : SX330  ,[object Object]
Voltage at Pmax (Vmp).............16.8[V]
Current at Pmax (Imp)...............1.78[A]
Short-circuit current (Isc)...........1.94[A]
Open-circuit voltage(Voc)...........21.0[V]2.1 Solar Cells Specification 502mm 595mm 12 Copyright (C) Bee Technologies Inc. 2010
2.2 Output Characteristics vs. Incident Solar Radiation SX330 Output Characteristics vs. Incident Solar Radiation SOL=1 Current (A) SOL=0.5 SOL=0.16 SOL=1 Power (W) Parameter, SOL is added as normalized incident radiation, where SOL=1 for AM1.5 conditions SOL=0.5 SOL=0.16 Voltage (V) 13 Copyright (C) Bee Technologies Inc. 2010
3. Solar Cell Battery Charger Solar Cell charges the Li-ion batteries pack (PBT-BAT-001) with direct connect technique. Choose the solar cell that is able to provide current at charging rate or more with the maximum power voltage (Vmp) nears the batteries pack charging voltage. PBT-BAT-0001 (Li-ion batteries pack) Charging time is approximately 5 hours with charging rate 0.2C or 880mA Voltage during charging with 0.2C is between 14.7 to 16.9 V 14.9 V 14.7 V 0.2C or 880mA 14 Copyright (C) Bee Technologies Inc. 2010
3.1 Concept of Simulation PV Li-Ion Battery Charger Circuit Over Voltage Protection Circuit Short circuit current ISC depends on condition: SOL 16.8V Clamp Circuit Lithium-Ion Batteries Pack Photovoltaic Module PBT-BAT-0001 (BAYSUN) DC12.8~16.4V (4 cells) 4400mAh SX 330 (BP Solar) Vmp=16.8V Pmax=30W 15 Copyright (C) Bee Technologies Inc. 2010
3.2 PV Li-Ion Battery Charger Circuit Input value between 0-1 in the “PARAMETERS:  sol = ” to set the normalized incident radiation, where SOL=1 for AM1.5 conditions. 16 Copyright (C) Bee Technologies Inc. 2010
3.3 Charging Time Characteristics vs. Weather Condition Simulation result shows the charging time for  sol = 1, 0.5, and 0.16.  	sol = 1.00  	sol = 0.50 	sol = 0.16  17 Copyright (C) Bee Technologies Inc. 2010
3.4 Concept of Simulation PV Li-Ion Battery Charger Circuit + Constant Current Over Voltage Protection Circuit Short circuit current ISC depends on condition: SOL 16.8V Clamp Circuit Lithium-Ion Batteries Pack Photovoltaic Module Constant Current Control Circuit PBT-BAT-0001 (BAYSUN) DC12.8~16.4V (4 cells) 4400mAh SX 330 (BP Solar) Vmp=16.8V Pmax=30W Icharge=0.2C (880mA) 18 Copyright (C) Bee Technologies Inc. 2010
3.5 Constant Current PV Li-Ion Battery Charger Circuit Input the battery capacity (Ah) and charging current rate (e.g. 0.2*CAh)  in the  “PARAMETERS: CAh = 4400m and rate = 0.2 ” to set the charging current. 19 Copyright (C) Bee Technologies Inc. 2010
3.6 Charging Time Characteristics vs. Weather Condition(Constant Current) Simulation result shows the charging time for  sol = 1, 0.5, and 0.16. If PV can generate current more than the constant charge rate (0.2A), battery can be fully charged in about 5 hour. 	sol = 1.00  	sol = 0.50 	sol = 0.16  20 Copyright (C) Bee Technologies Inc. 2010
4.1 Concept of Simulation PV Li-Ion Battery System in 24hr. Over Voltage Protection Circuit The model contains 24hr. solar power data (example). 16.8V Clamp Circuit Photovoltaic Module Lithium-Ion Batteries Pack Low-Voltage Shutdown Circuit PBT-BAT-0001 (BAYSUN) DC12.8~16.4V (4 cells) 4400mAh SX 330 (BP Solar) Vmp=16.8V Pmax=30W Vopen= (V) Vclose= (V) DC/DC Converter DC Load VIN = 5V IIN = 1.5A VIN=10~18V VOUT=5V 21 Copyright (C) Bee Technologies Inc. 2010
4.2 Short-Circuit Current vs. Time (24hr.) Short-circuit current vs. time characteristics of photovoltaic module SX330 for 24hours as the solar power profile (example) is included to the model. The model contains 24hr. solar power data (example). 22 Copyright (C) Bee Technologies Inc. 2010
4.3 PV-Battery System Simulation Circuit Solar cell model with 24hr. solar power data. Set initial battery voltage, IC=16.4, for convergence aid. SOC1 value is initial State Of Charge of the battery, is set as 70% of full voltage. Lopen value is load shutdown voltage. Lclose value is load reconnect voltage 7.5W Load (5Vx1.5A).  Simulation at 15W load, change I1 from 1.5A to 3A 23 Copyright (C) Bee Technologies Inc. 2010 DCDCコンバータの簡易モデル DCACコンバータの簡易モデルもあります。

Más contenido relacionado

La actualidad más candente

Simple mode of Li-ion battery (LTspice)
Simple mode of Li-ion battery (LTspice)Simple mode of Li-ion battery (LTspice)
Simple mode of Li-ion battery (LTspice)Tsuyoshi Horigome
 
鉛蓄電池のシンプルモデル(PSpice)
鉛蓄電池のシンプルモデル(PSpice)鉛蓄電池のシンプルモデル(PSpice)
鉛蓄電池のシンプルモデル(PSpice)spicepark
 
鉛蓄電池のシンプルモデル(LTspice)
鉛蓄電池のシンプルモデル(LTspice)鉛蓄電池のシンプルモデル(LTspice)
鉛蓄電池のシンプルモデル(LTspice)spicepark
 
Lithium Ion Battery Simplified Simulink Model using MATLAB
Lithium Ion Battery Simplified Simulink Model using MATLABLithium Ion Battery Simplified Simulink Model using MATLAB
Lithium Ion Battery Simplified Simulink Model using MATLABTsuyoshi Horigome
 
リチウムイオン電池のスパイスモデル
リチウムイオン電池のスパイスモデルリチウムイオン電池のスパイスモデル
リチウムイオン電池のスパイスモデルTsuyoshi Horigome
 
How to Design of Power Management of Hybrid Circuit(Li-Ion Battery and Li-Ion...
How to Design of Power Management of Hybrid Circuit(Li-Ion Battery and Li-Ion...How to Design of Power Management of Hybrid Circuit(Li-Ion Battery and Li-Ion...
How to Design of Power Management of Hybrid Circuit(Li-Ion Battery and Li-Ion...Tsuyoshi Horigome
 
Device Modeling of Li-Ion battery MATLAB/Simulink Model
Device Modeling of Li-Ion battery MATLAB/Simulink ModelDevice Modeling of Li-Ion battery MATLAB/Simulink Model
Device Modeling of Li-Ion battery MATLAB/Simulink ModelTsuyoshi Horigome
 
Lithium Ion Capacitor Simplified Simulink Model using MATLAB
Lithium Ion Capacitor Simplified Simulink Model using MATLABLithium Ion Capacitor Simplified Simulink Model using MATLAB
Lithium Ion Capacitor Simplified Simulink Model using MATLABTsuyoshi Horigome
 
How to Design of Power Management of Hybrid Circuit(Battery and EDLC) using P...
How to Design of Power Management of Hybrid Circuit(Battery and EDLC) using P...How to Design of Power Management of Hybrid Circuit(Battery and EDLC) using P...
How to Design of Power Management of Hybrid Circuit(Battery and EDLC) using P...Tsuyoshi Horigome
 
Lithium Ion Phosphate(Li-FePO4) Battery Simplified SPICE Behavioral Model(LTs...
Lithium Ion Phosphate(Li-FePO4) Battery Simplified SPICE Behavioral Model(LTs...Lithium Ion Phosphate(Li-FePO4) Battery Simplified SPICE Behavioral Model(LTs...
Lithium Ion Phosphate(Li-FePO4) Battery Simplified SPICE Behavioral Model(LTs...Tsuyoshi Horigome
 
Lithium Ion Battery Simplified Simulink Model using MATLAB
Lithium Ion Battery Simplified Simulink Model using MATLABLithium Ion Battery Simplified Simulink Model using MATLAB
Lithium Ion Battery Simplified Simulink Model using MATLABTsuyoshi Horigome
 
LiFePO4 Battery Simplified SPICE Behavioral Model(LTspice Version)
LiFePO4 Battery Simplified SPICE Behavioral Model(LTspice Version)LiFePO4 Battery Simplified SPICE Behavioral Model(LTspice Version)
LiFePO4 Battery Simplified SPICE Behavioral Model(LTspice Version)Tsuyoshi Horigome
 
HAOTECH SOLAR APPLICATION
HAOTECH SOLAR APPLICATIONHAOTECH SOLAR APPLICATION
HAOTECH SOLAR APPLICATIONElmer Wong
 
How to Design of Power Management of Hybrid Circuit(Battery and EDLC) using L...
How to Design of Power Management of Hybrid Circuit(Battery and EDLC) using L...How to Design of Power Management of Hybrid Circuit(Battery and EDLC) using L...
How to Design of Power Management of Hybrid Circuit(Battery and EDLC) using L...Tsuyoshi Horigome
 
LiFePO4 Battery Simplified SPICE Behavioral Model(PSpice Version)
LiFePO4 Battery Simplified SPICE Behavioral Model(PSpice Version)LiFePO4 Battery Simplified SPICE Behavioral Model(PSpice Version)
LiFePO4 Battery Simplified SPICE Behavioral Model(PSpice Version)Tsuyoshi Horigome
 
Photovoltaic By-Pass Diodes (LTspice IV)
Photovoltaic By-Pass Diodes (LTspice IV)Photovoltaic By-Pass Diodes (LTspice IV)
Photovoltaic By-Pass Diodes (LTspice IV)Tsuyoshi Horigome
 
ニッケル水素電池のシンプルモデル(PSpice)
ニッケル水素電池のシンプルモデル(PSpice) ニッケル水素電池のシンプルモデル(PSpice)
ニッケル水素電池のシンプルモデル(PSpice) Tsuyoshi Horigome
 
How to Design of Power Management of Hybrid Circuit(Battery and Capacitor) us...
How to Design of Power Management of Hybrid Circuit(Battery and Capacitor) us...How to Design of Power Management of Hybrid Circuit(Battery and Capacitor) us...
How to Design of Power Management of Hybrid Circuit(Battery and Capacitor) us...Tsuyoshi Horigome
 
Dynamic solar powered robot using dc dc sepic topology
Dynamic solar powered robot using   dc dc sepic topologyDynamic solar powered robot using   dc dc sepic topology
Dynamic solar powered robot using dc dc sepic topologyeSAT Journals
 

La actualidad más candente (20)

Simple mode of Li-ion battery (LTspice)
Simple mode of Li-ion battery (LTspice)Simple mode of Li-ion battery (LTspice)
Simple mode of Li-ion battery (LTspice)
 
鉛蓄電池のシンプルモデル(PSpice)
鉛蓄電池のシンプルモデル(PSpice)鉛蓄電池のシンプルモデル(PSpice)
鉛蓄電池のシンプルモデル(PSpice)
 
鉛蓄電池のシンプルモデル(LTspice)
鉛蓄電池のシンプルモデル(LTspice)鉛蓄電池のシンプルモデル(LTspice)
鉛蓄電池のシンプルモデル(LTspice)
 
Lithium Ion Battery Simplified Simulink Model using MATLAB
Lithium Ion Battery Simplified Simulink Model using MATLABLithium Ion Battery Simplified Simulink Model using MATLAB
Lithium Ion Battery Simplified Simulink Model using MATLAB
 
リチウムイオン電池のスパイスモデル
リチウムイオン電池のスパイスモデルリチウムイオン電池のスパイスモデル
リチウムイオン電池のスパイスモデル
 
How to Design of Power Management of Hybrid Circuit(Li-Ion Battery and Li-Ion...
How to Design of Power Management of Hybrid Circuit(Li-Ion Battery and Li-Ion...How to Design of Power Management of Hybrid Circuit(Li-Ion Battery and Li-Ion...
How to Design of Power Management of Hybrid Circuit(Li-Ion Battery and Li-Ion...
 
Device Modeling of Li-Ion battery MATLAB/Simulink Model
Device Modeling of Li-Ion battery MATLAB/Simulink ModelDevice Modeling of Li-Ion battery MATLAB/Simulink Model
Device Modeling of Li-Ion battery MATLAB/Simulink Model
 
Lithium Ion Capacitor Simplified Simulink Model using MATLAB
Lithium Ion Capacitor Simplified Simulink Model using MATLABLithium Ion Capacitor Simplified Simulink Model using MATLAB
Lithium Ion Capacitor Simplified Simulink Model using MATLAB
 
How to Design of Power Management of Hybrid Circuit(Battery and EDLC) using P...
How to Design of Power Management of Hybrid Circuit(Battery and EDLC) using P...How to Design of Power Management of Hybrid Circuit(Battery and EDLC) using P...
How to Design of Power Management of Hybrid Circuit(Battery and EDLC) using P...
 
SPICE Model of MEC201-10P
SPICE Model of MEC201-10PSPICE Model of MEC201-10P
SPICE Model of MEC201-10P
 
Lithium Ion Phosphate(Li-FePO4) Battery Simplified SPICE Behavioral Model(LTs...
Lithium Ion Phosphate(Li-FePO4) Battery Simplified SPICE Behavioral Model(LTs...Lithium Ion Phosphate(Li-FePO4) Battery Simplified SPICE Behavioral Model(LTs...
Lithium Ion Phosphate(Li-FePO4) Battery Simplified SPICE Behavioral Model(LTs...
 
Lithium Ion Battery Simplified Simulink Model using MATLAB
Lithium Ion Battery Simplified Simulink Model using MATLABLithium Ion Battery Simplified Simulink Model using MATLAB
Lithium Ion Battery Simplified Simulink Model using MATLAB
 
LiFePO4 Battery Simplified SPICE Behavioral Model(LTspice Version)
LiFePO4 Battery Simplified SPICE Behavioral Model(LTspice Version)LiFePO4 Battery Simplified SPICE Behavioral Model(LTspice Version)
LiFePO4 Battery Simplified SPICE Behavioral Model(LTspice Version)
 
HAOTECH SOLAR APPLICATION
HAOTECH SOLAR APPLICATIONHAOTECH SOLAR APPLICATION
HAOTECH SOLAR APPLICATION
 
How to Design of Power Management of Hybrid Circuit(Battery and EDLC) using L...
How to Design of Power Management of Hybrid Circuit(Battery and EDLC) using L...How to Design of Power Management of Hybrid Circuit(Battery and EDLC) using L...
How to Design of Power Management of Hybrid Circuit(Battery and EDLC) using L...
 
LiFePO4 Battery Simplified SPICE Behavioral Model(PSpice Version)
LiFePO4 Battery Simplified SPICE Behavioral Model(PSpice Version)LiFePO4 Battery Simplified SPICE Behavioral Model(PSpice Version)
LiFePO4 Battery Simplified SPICE Behavioral Model(PSpice Version)
 
Photovoltaic By-Pass Diodes (LTspice IV)
Photovoltaic By-Pass Diodes (LTspice IV)Photovoltaic By-Pass Diodes (LTspice IV)
Photovoltaic By-Pass Diodes (LTspice IV)
 
ニッケル水素電池のシンプルモデル(PSpice)
ニッケル水素電池のシンプルモデル(PSpice) ニッケル水素電池のシンプルモデル(PSpice)
ニッケル水素電池のシンプルモデル(PSpice)
 
How to Design of Power Management of Hybrid Circuit(Battery and Capacitor) us...
How to Design of Power Management of Hybrid Circuit(Battery and Capacitor) us...How to Design of Power Management of Hybrid Circuit(Battery and Capacitor) us...
How to Design of Power Management of Hybrid Circuit(Battery and Capacitor) us...
 
Dynamic solar powered robot using dc dc sepic topology
Dynamic solar powered robot using   dc dc sepic topologyDynamic solar powered robot using   dc dc sepic topology
Dynamic solar powered robot using dc dc sepic topology
 

Similar a PSpiceを活用した太陽光システムシミュレーション

PSpiceを活用した太陽光システムシミュレーション
PSpiceを活用した太陽光システムシミュレーションPSpiceを活用した太陽光システムシミュレーション
PSpiceを活用した太陽光システムシミュレーションTsuyoshi Horigome
 
3.リチウムイオン電池のスパイスモデル
3.リチウムイオン電池のスパイスモデル3.リチウムイオン電池のスパイスモデル
3.リチウムイオン電池のスパイスモデルTsuyoshi Horigome
 
SPICEを活用した二次電池アプリケーション回路シミュレーションセミナー資料
SPICEを活用した二次電池アプリケーション回路シミュレーションセミナー資料SPICEを活用した二次電池アプリケーション回路シミュレーションセミナー資料
SPICEを活用した二次電池アプリケーション回路シミュレーションセミナー資料spicepark
 
LiFePO4 Battery Simplified SPICE Behavioral Model(PSpice Version)
LiFePO4 BatterySimplified SPICE Behavioral Model(PSpice Version)LiFePO4 BatterySimplified SPICE Behavioral Model(PSpice Version)
LiFePO4 Battery Simplified SPICE Behavioral Model(PSpice Version)Tsuyoshi Horigome
 
4.ニッケル水素電池のスパイスモデル
4.ニッケル水素電池のスパイスモデル4.ニッケル水素電池のスパイスモデル
4.ニッケル水素電池のスパイスモデルTsuyoshi Horigome
 
SPICE活用入門 (02AUG2013)
SPICE活用入門 (02AUG2013)SPICE活用入門 (02AUG2013)
SPICE活用入門 (02AUG2013)Tsuyoshi Horigome
 
DC/AC 3-Phase Inverter (LTspice Model)
DC/AC 3-Phase Inverter (LTspice Model) DC/AC 3-Phase Inverter (LTspice Model)
DC/AC 3-Phase Inverter (LTspice Model) Tsuyoshi Horigome
 
DC/AC 3-Phase Inverter (PSpice Model)
DC/AC 3-Phase Inverter (PSpice Model) DC/AC 3-Phase Inverter (PSpice Model)
DC/AC 3-Phase Inverter (PSpice Model) Tsuyoshi Horigome
 
Device Modeling of Lithium ion batteries 2009
Device Modeling of Lithium ion batteries 2009Device Modeling of Lithium ion batteries 2009
Device Modeling of Lithium ion batteries 2009Tsuyoshi Horigome
 
Ni-MH battery (LTspice simplified Model)
Ni-MH battery (LTspice simplified Model)Ni-MH battery (LTspice simplified Model)
Ni-MH battery (LTspice simplified Model)Tsuyoshi Horigome
 
Flyback Converter using PWM IC(LTspice Version)
Flyback Converter using PWM IC(LTspice Version)Flyback Converter using PWM IC(LTspice Version)
Flyback Converter using PWM IC(LTspice Version)Tsuyoshi Horigome
 
Li-ion Capacitor Model (Simplified Model) PSpice Version
Li-ion Capacitor Model (Simplified Model) PSpice VersionLi-ion Capacitor Model (Simplified Model) PSpice Version
Li-ion Capacitor Model (Simplified Model) PSpice VersionTsuyoshi Horigome
 
リチウムイオンキャパシタのシンプルモデル(PSpice)
リチウムイオンキャパシタのシンプルモデル(PSpice)リチウムイオンキャパシタのシンプルモデル(PSpice)
リチウムイオンキャパシタのシンプルモデル(PSpice)Tsuyoshi Horigome
 
Photovoltaic By-Pass Diodes Simulation
Photovoltaic By-Pass Diodes SimulationPhotovoltaic By-Pass Diodes Simulation
Photovoltaic By-Pass Diodes SimulationTsuyoshi Horigome
 
PSpiceアプリケーションセミナー(モータアプリケーション回路)
PSpiceアプリケーションセミナー(モータアプリケーション回路)PSpiceアプリケーションセミナー(モータアプリケーション回路)
PSpiceアプリケーションセミナー(モータアプリケーション回路)Tsuyoshi Horigome
 
Simple model of DC Power Supply(LTspice)
Simple model of DC Power Supply(LTspice)Simple model of DC Power Supply(LTspice)
Simple model of DC Power Supply(LTspice)Tsuyoshi Horigome
 
LTspiceのDCモーターシミュレーション事例
LTspiceのDCモーターシミュレーション事例LTspiceのDCモーターシミュレーション事例
LTspiceのDCモーターシミュレーション事例Tsuyoshi Horigome
 

Similar a PSpiceを活用した太陽光システムシミュレーション (20)

PSpiceを活用した太陽光システムシミュレーション
PSpiceを活用した太陽光システムシミュレーションPSpiceを活用した太陽光システムシミュレーション
PSpiceを活用した太陽光システムシミュレーション
 
3.リチウムイオン電池のスパイスモデル
3.リチウムイオン電池のスパイスモデル3.リチウムイオン電池のスパイスモデル
3.リチウムイオン電池のスパイスモデル
 
SPICEを活用した二次電池アプリケーション回路シミュレーションセミナー資料
SPICEを活用した二次電池アプリケーション回路シミュレーションセミナー資料SPICEを活用した二次電池アプリケーション回路シミュレーションセミナー資料
SPICEを活用した二次電池アプリケーション回路シミュレーションセミナー資料
 
LiFePO4 Battery Simplified SPICE Behavioral Model(PSpice Version)
LiFePO4 BatterySimplified SPICE Behavioral Model(PSpice Version)LiFePO4 BatterySimplified SPICE Behavioral Model(PSpice Version)
LiFePO4 Battery Simplified SPICE Behavioral Model(PSpice Version)
 
4.ニッケル水素電池のスパイスモデル
4.ニッケル水素電池のスパイスモデル4.ニッケル水素電池のスパイスモデル
4.ニッケル水素電池のスパイスモデル
 
SPICE活用入門 (02AUG2013)
SPICE活用入門 (02AUG2013)SPICE活用入門 (02AUG2013)
SPICE活用入門 (02AUG2013)
 
DC/AC 3-Phase Inverter (LTspice Model)
DC/AC 3-Phase Inverter (LTspice Model) DC/AC 3-Phase Inverter (LTspice Model)
DC/AC 3-Phase Inverter (LTspice Model)
 
DC/AC 3-Phase Inverter (PSpice Model)
DC/AC 3-Phase Inverter (PSpice Model) DC/AC 3-Phase Inverter (PSpice Model)
DC/AC 3-Phase Inverter (PSpice Model)
 
Device Modeling of Lithium ion batteries 2009
Device Modeling of Lithium ion batteries 2009Device Modeling of Lithium ion batteries 2009
Device Modeling of Lithium ion batteries 2009
 
Ni-MH battery (LTspice simplified Model)
Ni-MH battery (LTspice simplified Model)Ni-MH battery (LTspice simplified Model)
Ni-MH battery (LTspice simplified Model)
 
Flyback Converter using PWM IC(LTspice Version)
Flyback Converter using PWM IC(LTspice Version)Flyback Converter using PWM IC(LTspice Version)
Flyback Converter using PWM IC(LTspice Version)
 
MEC201-10P SPICE Model
MEC201-10P SPICE ModelMEC201-10P SPICE Model
MEC201-10P SPICE Model
 
Li-ion Capacitor Model (Simplified Model) PSpice Version
Li-ion Capacitor Model (Simplified Model) PSpice VersionLi-ion Capacitor Model (Simplified Model) PSpice Version
Li-ion Capacitor Model (Simplified Model) PSpice Version
 
リチウムイオンキャパシタのシンプルモデル(PSpice)
リチウムイオンキャパシタのシンプルモデル(PSpice)リチウムイオンキャパシタのシンプルモデル(PSpice)
リチウムイオンキャパシタのシンプルモデル(PSpice)
 
Photovoltaic By-Pass Diodes Simulation
Photovoltaic By-Pass Diodes SimulationPhotovoltaic By-Pass Diodes Simulation
Photovoltaic By-Pass Diodes Simulation
 
Iceeot
IceeotIceeot
Iceeot
 
PSpiceアプリケーションセミナー(モータアプリケーション回路)
PSpiceアプリケーションセミナー(モータアプリケーション回路)PSpiceアプリケーションセミナー(モータアプリケーション回路)
PSpiceアプリケーションセミナー(モータアプリケーション回路)
 
D1113 hitachi ignition
D1113 hitachi  ignitionD1113 hitachi  ignition
D1113 hitachi ignition
 
Simple model of DC Power Supply(LTspice)
Simple model of DC Power Supply(LTspice)Simple model of DC Power Supply(LTspice)
Simple model of DC Power Supply(LTspice)
 
LTspiceのDCモーターシミュレーション事例
LTspiceのDCモーターシミュレーション事例LTspiceのDCモーターシミュレーション事例
LTspiceのDCモーターシミュレーション事例
 

Más de Tsuyoshi Horigome

FedExで書類を送付する場合の設定について(オンライン受付にて登録する場合について)
FedExで書類を送付する場合の設定について(オンライン受付にて登録する場合について)FedExで書類を送付する場合の設定について(オンライン受付にて登録する場合について)
FedExで書類を送付する場合の設定について(オンライン受付にて登録する場合について)Tsuyoshi Horigome
 
Update 46 models(Solar Cell) in SPICE PARK(MAY2024)
Update 46 models(Solar Cell) in SPICE PARK(MAY2024)Update 46 models(Solar Cell) in SPICE PARK(MAY2024)
Update 46 models(Solar Cell) in SPICE PARK(MAY2024)Tsuyoshi Horigome
 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )Tsuyoshi Horigome
 
Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)
Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)
Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)Tsuyoshi Horigome
 
SPICE PARK APR2024 ( 6,747 SPICE Models )
SPICE PARK APR2024 ( 6,747 SPICE Models )SPICE PARK APR2024 ( 6,747 SPICE Models )
SPICE PARK APR2024 ( 6,747 SPICE Models )Tsuyoshi Horigome
 
Update 31 models(Diode/General ) in SPICE PARK(MAR2024)
Update 31 models(Diode/General ) in SPICE PARK(MAR2024)Update 31 models(Diode/General ) in SPICE PARK(MAR2024)
Update 31 models(Diode/General ) in SPICE PARK(MAR2024)Tsuyoshi Horigome
 
SPICE PARK MAR2024 ( 6,725 SPICE Models )
SPICE PARK MAR2024 ( 6,725 SPICE Models )SPICE PARK MAR2024 ( 6,725 SPICE Models )
SPICE PARK MAR2024 ( 6,725 SPICE Models )Tsuyoshi Horigome
 
Update 29 models(Solar cell) in SPICE PARK(FEB2024)
Update 29 models(Solar cell) in SPICE PARK(FEB2024)Update 29 models(Solar cell) in SPICE PARK(FEB2024)
Update 29 models(Solar cell) in SPICE PARK(FEB2024)Tsuyoshi Horigome
 
SPICE PARK FEB2024 ( 6,694 SPICE Models )
SPICE PARK FEB2024 ( 6,694 SPICE Models )SPICE PARK FEB2024 ( 6,694 SPICE Models )
SPICE PARK FEB2024 ( 6,694 SPICE Models )Tsuyoshi Horigome
 
Circuit simulation using LTspice(Case study)
Circuit simulation using LTspice(Case study)Circuit simulation using LTspice(Case study)
Circuit simulation using LTspice(Case study)Tsuyoshi Horigome
 
Mindmap of Semiconductor sales business(15FEB2024)
Mindmap of Semiconductor sales business(15FEB2024)Mindmap of Semiconductor sales business(15FEB2024)
Mindmap of Semiconductor sales business(15FEB2024)Tsuyoshi Horigome
 
2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice
2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice
2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspiceTsuyoshi Horigome
 
PSpice simulation of power supply for TI is Error
PSpice simulation of power supply  for TI is ErrorPSpice simulation of power supply  for TI is Error
PSpice simulation of power supply for TI is ErrorTsuyoshi Horigome
 
IGBT Simulation of Results from Rgext or Rgint
IGBT Simulation of Results from Rgext or RgintIGBT Simulation of Results from Rgext or Rgint
IGBT Simulation of Results from Rgext or RgintTsuyoshi Horigome
 
Electronic component sales method centered on alternative proposals
Electronic component sales method centered on alternative proposalsElectronic component sales method centered on alternative proposals
Electronic component sales method centered on alternative proposalsTsuyoshi Horigome
 
Electronic component sales method focused on new hires
Electronic component sales method focused on new hiresElectronic component sales method focused on new hires
Electronic component sales method focused on new hiresTsuyoshi Horigome
 
Mindmap(electronics parts sales visions)
Mindmap(electronics parts sales visions)Mindmap(electronics parts sales visions)
Mindmap(electronics parts sales visions)Tsuyoshi Horigome
 
Chat GPTによる伝達関数の導出
Chat GPTによる伝達関数の導出Chat GPTによる伝達関数の導出
Chat GPTによる伝達関数の導出Tsuyoshi Horigome
 
伝達関数の理解(Chatgpt)
伝達関数の理解(Chatgpt)伝達関数の理解(Chatgpt)
伝達関数の理解(Chatgpt)Tsuyoshi Horigome
 
DXセミナー(2024年1月17日開催)のメモ
DXセミナー(2024年1月17日開催)のメモDXセミナー(2024年1月17日開催)のメモ
DXセミナー(2024年1月17日開催)のメモTsuyoshi Horigome
 

Más de Tsuyoshi Horigome (20)

FedExで書類を送付する場合の設定について(オンライン受付にて登録する場合について)
FedExで書類を送付する場合の設定について(オンライン受付にて登録する場合について)FedExで書類を送付する場合の設定について(オンライン受付にて登録する場合について)
FedExで書類を送付する場合の設定について(オンライン受付にて登録する場合について)
 
Update 46 models(Solar Cell) in SPICE PARK(MAY2024)
Update 46 models(Solar Cell) in SPICE PARK(MAY2024)Update 46 models(Solar Cell) in SPICE PARK(MAY2024)
Update 46 models(Solar Cell) in SPICE PARK(MAY2024)
 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )
 
Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)
Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)
Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)
 
SPICE PARK APR2024 ( 6,747 SPICE Models )
SPICE PARK APR2024 ( 6,747 SPICE Models )SPICE PARK APR2024 ( 6,747 SPICE Models )
SPICE PARK APR2024 ( 6,747 SPICE Models )
 
Update 31 models(Diode/General ) in SPICE PARK(MAR2024)
Update 31 models(Diode/General ) in SPICE PARK(MAR2024)Update 31 models(Diode/General ) in SPICE PARK(MAR2024)
Update 31 models(Diode/General ) in SPICE PARK(MAR2024)
 
SPICE PARK MAR2024 ( 6,725 SPICE Models )
SPICE PARK MAR2024 ( 6,725 SPICE Models )SPICE PARK MAR2024 ( 6,725 SPICE Models )
SPICE PARK MAR2024 ( 6,725 SPICE Models )
 
Update 29 models(Solar cell) in SPICE PARK(FEB2024)
Update 29 models(Solar cell) in SPICE PARK(FEB2024)Update 29 models(Solar cell) in SPICE PARK(FEB2024)
Update 29 models(Solar cell) in SPICE PARK(FEB2024)
 
SPICE PARK FEB2024 ( 6,694 SPICE Models )
SPICE PARK FEB2024 ( 6,694 SPICE Models )SPICE PARK FEB2024 ( 6,694 SPICE Models )
SPICE PARK FEB2024 ( 6,694 SPICE Models )
 
Circuit simulation using LTspice(Case study)
Circuit simulation using LTspice(Case study)Circuit simulation using LTspice(Case study)
Circuit simulation using LTspice(Case study)
 
Mindmap of Semiconductor sales business(15FEB2024)
Mindmap of Semiconductor sales business(15FEB2024)Mindmap of Semiconductor sales business(15FEB2024)
Mindmap of Semiconductor sales business(15FEB2024)
 
2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice
2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice
2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice
 
PSpice simulation of power supply for TI is Error
PSpice simulation of power supply  for TI is ErrorPSpice simulation of power supply  for TI is Error
PSpice simulation of power supply for TI is Error
 
IGBT Simulation of Results from Rgext or Rgint
IGBT Simulation of Results from Rgext or RgintIGBT Simulation of Results from Rgext or Rgint
IGBT Simulation of Results from Rgext or Rgint
 
Electronic component sales method centered on alternative proposals
Electronic component sales method centered on alternative proposalsElectronic component sales method centered on alternative proposals
Electronic component sales method centered on alternative proposals
 
Electronic component sales method focused on new hires
Electronic component sales method focused on new hiresElectronic component sales method focused on new hires
Electronic component sales method focused on new hires
 
Mindmap(electronics parts sales visions)
Mindmap(electronics parts sales visions)Mindmap(electronics parts sales visions)
Mindmap(electronics parts sales visions)
 
Chat GPTによる伝達関数の導出
Chat GPTによる伝達関数の導出Chat GPTによる伝達関数の導出
Chat GPTによる伝達関数の導出
 
伝達関数の理解(Chatgpt)
伝達関数の理解(Chatgpt)伝達関数の理解(Chatgpt)
伝達関数の理解(Chatgpt)
 
DXセミナー(2024年1月17日開催)のメモ
DXセミナー(2024年1月17日開催)のメモDXセミナー(2024年1月17日開催)のメモ
DXセミナー(2024年1月17日開催)のメモ
 

Último

Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...
Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...
Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...Neo4j
 
IAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI SolutionsIAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI SolutionsEnterprise Knowledge
 
Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024The Digital Insurer
 
08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking MenDelhi Call girls
 
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdfThe Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdfEnterprise Knowledge
 
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationFrom Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationSafe Software
 
Boost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivityBoost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivityPrincipled Technologies
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerThousandEyes
 
What Are The Drone Anti-jamming Systems Technology?
What Are The Drone Anti-jamming Systems Technology?What Are The Drone Anti-jamming Systems Technology?
What Are The Drone Anti-jamming Systems Technology?Antenna Manufacturer Coco
 
Understanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdfUnderstanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdfUK Journal
 
Presentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreterPresentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreternaman860154
 
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptxEIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptxEarley Information Science
 
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot TakeoffStrategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoffsammart93
 
CNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of ServiceCNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of Servicegiselly40
 
Evaluating the top large language models.pdf
Evaluating the top large language models.pdfEvaluating the top large language models.pdf
Evaluating the top large language models.pdfChristopherTHyatt
 
Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024The Digital Insurer
 
08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking Men08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking MenDelhi Call girls
 
A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)Gabriella Davis
 
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law DevelopmentsTrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law DevelopmentsTrustArc
 
2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...Martijn de Jong
 

Último (20)

Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...
Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...
Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...
 
IAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI SolutionsIAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI Solutions
 
Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024
 
08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men
 
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdfThe Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
 
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationFrom Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
 
Boost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivityBoost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivity
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected Worker
 
What Are The Drone Anti-jamming Systems Technology?
What Are The Drone Anti-jamming Systems Technology?What Are The Drone Anti-jamming Systems Technology?
What Are The Drone Anti-jamming Systems Technology?
 
Understanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdfUnderstanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdf
 
Presentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreterPresentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreter
 
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptxEIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
 
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot TakeoffStrategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
 
CNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of ServiceCNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of Service
 
Evaluating the top large language models.pdf
Evaluating the top large language models.pdfEvaluating the top large language models.pdf
Evaluating the top large language models.pdf
 
Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024
 
08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking Men08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking Men
 
A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)
 
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law DevelopmentsTrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
 
2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...
 

PSpiceを活用した太陽光システムシミュレーション

  • 2. 2 Copyright (C) Bee Technologies Inc. 2010
  • 3. モデル デザインキット回路方式のテンプレート 回路解析シミュレータPSpice (ABMライブラリーが豊富) 3 Copyright (C) Bee Technologies Inc. 2010 ABM=Analog Behavior Model
  • 5. バッテリーのスパイスモデルの推移 5 Copyright (C) Bee Technologies Inc. 2010 リチウムイオン電池ニッケル水素電池 鉛蓄電池
  • 6. 6 Copyright (C) Bee Technologies Inc. 2010 リチウムイオン電池の充放電特性シミュレーションのセミナー及びデモは、2010年7月28日(水曜日)東京2010年7月29日(木曜日)大阪  で開催致します。info@bee-tech.comまでお問い合わせ下さい。
  • 7. Design Kit PV Li-Ion Battery System 7 Copyright (C) Bee Technologies Inc. 2010
  • 8.
  • 12. Charging time......................5[hours] (Approximately)1.1 Lithium-Ion Batteries Pack Specification 8 Copyright (C) Bee Technologies Inc. 2010
  • 13. 1.2 Discharge Time Characteristics 0.2C ( 880 mA ) 0.5C ( 2200 mA ) 1C ( 4400 mA ) TSCALE=3600 means time Scale (Simulation time : Real time) is 1:3600 Batteries Pack Model Parameters NS (number of batteries in series) = 4 cells C (capacity) = 4400 mA SOC1 (initial state of charge) = 100% TSCALE (time scale) , simulation : real time 1 : 3600s or 1s : 1h Discharge Rate : 0.2C(880mA), 0.5C(2200mA), and 1C(4400mA) 9 Copyright (C) Bee Technologies Inc. 2010
  • 14. 1.3 Single Cell Discharge Characteristics Single cell discharge characteristics are compared between measurement data and simulation data. Single cell Measurement Simulation 10 Copyright (C) Bee Technologies Inc. 2010
  • 15. 1.4 Charge Time Characteristics SOC [%] Vbatt [V] ICharge [A] Batteries Pack Model Parameters NS (number of batteries in series) = 4 cells C (capacity) = 4400 mA SOC1 (initial state of charge) = 100% TSCALE (time scale) , simulation : real time 1 : 3600s or 1s : 1h Charger Adaptor Input Voltage = 20.5 Vdc Input Current = 880 mA(max.) 11 Copyright (C) Bee Technologies Inc. 2010
  • 16.
  • 17. Voltage at Pmax (Vmp).............16.8[V]
  • 18. Current at Pmax (Imp)...............1.78[A]
  • 20. Open-circuit voltage(Voc)...........21.0[V]2.1 Solar Cells Specification 502mm 595mm 12 Copyright (C) Bee Technologies Inc. 2010
  • 21. 2.2 Output Characteristics vs. Incident Solar Radiation SX330 Output Characteristics vs. Incident Solar Radiation SOL=1 Current (A) SOL=0.5 SOL=0.16 SOL=1 Power (W) Parameter, SOL is added as normalized incident radiation, where SOL=1 for AM1.5 conditions SOL=0.5 SOL=0.16 Voltage (V) 13 Copyright (C) Bee Technologies Inc. 2010
  • 22. 3. Solar Cell Battery Charger Solar Cell charges the Li-ion batteries pack (PBT-BAT-001) with direct connect technique. Choose the solar cell that is able to provide current at charging rate or more with the maximum power voltage (Vmp) nears the batteries pack charging voltage. PBT-BAT-0001 (Li-ion batteries pack) Charging time is approximately 5 hours with charging rate 0.2C or 880mA Voltage during charging with 0.2C is between 14.7 to 16.9 V 14.9 V 14.7 V 0.2C or 880mA 14 Copyright (C) Bee Technologies Inc. 2010
  • 23. 3.1 Concept of Simulation PV Li-Ion Battery Charger Circuit Over Voltage Protection Circuit Short circuit current ISC depends on condition: SOL 16.8V Clamp Circuit Lithium-Ion Batteries Pack Photovoltaic Module PBT-BAT-0001 (BAYSUN) DC12.8~16.4V (4 cells) 4400mAh SX 330 (BP Solar) Vmp=16.8V Pmax=30W 15 Copyright (C) Bee Technologies Inc. 2010
  • 24. 3.2 PV Li-Ion Battery Charger Circuit Input value between 0-1 in the “PARAMETERS: sol = ” to set the normalized incident radiation, where SOL=1 for AM1.5 conditions. 16 Copyright (C) Bee Technologies Inc. 2010
  • 25. 3.3 Charging Time Characteristics vs. Weather Condition Simulation result shows the charging time for sol = 1, 0.5, and 0.16. sol = 1.00 sol = 0.50 sol = 0.16 17 Copyright (C) Bee Technologies Inc. 2010
  • 26. 3.4 Concept of Simulation PV Li-Ion Battery Charger Circuit + Constant Current Over Voltage Protection Circuit Short circuit current ISC depends on condition: SOL 16.8V Clamp Circuit Lithium-Ion Batteries Pack Photovoltaic Module Constant Current Control Circuit PBT-BAT-0001 (BAYSUN) DC12.8~16.4V (4 cells) 4400mAh SX 330 (BP Solar) Vmp=16.8V Pmax=30W Icharge=0.2C (880mA) 18 Copyright (C) Bee Technologies Inc. 2010
  • 27. 3.5 Constant Current PV Li-Ion Battery Charger Circuit Input the battery capacity (Ah) and charging current rate (e.g. 0.2*CAh) in the “PARAMETERS: CAh = 4400m and rate = 0.2 ” to set the charging current. 19 Copyright (C) Bee Technologies Inc. 2010
  • 28. 3.6 Charging Time Characteristics vs. Weather Condition(Constant Current) Simulation result shows the charging time for sol = 1, 0.5, and 0.16. If PV can generate current more than the constant charge rate (0.2A), battery can be fully charged in about 5 hour. sol = 1.00 sol = 0.50 sol = 0.16 20 Copyright (C) Bee Technologies Inc. 2010
  • 29. 4.1 Concept of Simulation PV Li-Ion Battery System in 24hr. Over Voltage Protection Circuit The model contains 24hr. solar power data (example). 16.8V Clamp Circuit Photovoltaic Module Lithium-Ion Batteries Pack Low-Voltage Shutdown Circuit PBT-BAT-0001 (BAYSUN) DC12.8~16.4V (4 cells) 4400mAh SX 330 (BP Solar) Vmp=16.8V Pmax=30W Vopen= (V) Vclose= (V) DC/DC Converter DC Load VIN = 5V IIN = 1.5A VIN=10~18V VOUT=5V 21 Copyright (C) Bee Technologies Inc. 2010
  • 30. 4.2 Short-Circuit Current vs. Time (24hr.) Short-circuit current vs. time characteristics of photovoltaic module SX330 for 24hours as the solar power profile (example) is included to the model. The model contains 24hr. solar power data (example). 22 Copyright (C) Bee Technologies Inc. 2010
  • 31. 4.3 PV-Battery System Simulation Circuit Solar cell model with 24hr. solar power data. Set initial battery voltage, IC=16.4, for convergence aid. SOC1 value is initial State Of Charge of the battery, is set as 70% of full voltage. Lopen value is load shutdown voltage. Lclose value is load reconnect voltage 7.5W Load (5Vx1.5A).  Simulation at 15W load, change I1 from 1.5A to 3A 23 Copyright (C) Bee Technologies Inc. 2010 DCDCコンバータの簡易モデル DCACコンバータの簡易モデルもあります。
  • 32.
  • 33.
  • 34.
  • 35.
  • 36. .Options ITL4=100027 Copyright (C) Bee Technologies Inc. 2010
  • 37.
  • 38. 4.3.4 Simulation Result (Example of Conclusion) If initial SOC is 100%, this system will never shutdown. If initial SOC is 70%, this system will shutdown after 5.185 hours (about 5:11AM.). system load will reconnect again at 7:40AM (Morning). If initial SOC is 30%, this system will shutdown after 1.633 hours (about 1:38AM.). system load will reconnect again at 7:37AM (Morning). If initial SOC is 10%, this system will start shutdown. this system will reconnect again at 7:37AM (Morning). With the PV generated current profile, battery will fully charged in about 4.25 hours. 29 Copyright (C) Bee Technologies Inc. 2010 The simulation start from midnight(time=0). The system supplies DC load 7.5W.
  • 39. 4.3.4 Simulation Result (Example of Conclusion) If initial SOC is 100%, this system will shutdown after 3.897 hours (about 3:54AM.). system load will reconnect again at 7:37AM (Morning). this system will shutdown again at 8:28 PM (Night). With the PV generated current profile, battery will fully charged in about 5.5 hours. 30 Copyright (C) Bee Technologies Inc. 2010 The simulation start from midnight(time=0). The system supplies DC load 15W.
  • 40. Bee Technologies Group デバイスモデリング スパイス・パーク(スパイスモデル・ライブラリー)  デザインキット デバイスモデリング教材 【本社】 株式会社ビー・テクノロジー 〒105-0012 東京都港区芝大門二丁目2番7号 7セントラルビル4階 代表電話: 03-5401-3851 設立日:2002年9月10日 資本金:8,830万円 【子会社】 Bee Technologies Corporation (アメリカ) Siam Bee Technologies Co.,Ltd. (タイランド) お問合わせ先) info@bee-tech.com 31 Copyright (C) Bee Technologies Inc. 2010 本ドキュメントは予告なき変更をする場合がございます。 ご了承下さい。また、本文中に登場する製品及びサービスの名称は全て関係各社または個人の各国における商標または登録商標です。本原稿に関するお問い合わせは、当社にご連絡下さい。