SlideShare una empresa de Scribd logo
1 de 33
Descargar para leer sin conexión
PSpiceによるバッテリー回路アプリケーション




       株式会社ビー・テクノロジー
       http://www.bee-tech.com/
        horigome@bee-tech.com
       Copyright (C) Bee Technologies Inc. 2010   1
EDA




                      Designer

Technology
                                                        Device
    of
                                                        Model
Simulation

             Copyright (C) Bee Technologies Inc. 2010            2
モデル


    デザインキット
  回路方式のテンプレート

     回路解析シミュレータ
PSpice (ABMライブラリーが豊富)

                                     ABM=Analog Behavior Model
     Copyright (C) Bee Technologies Inc. 2010                    3
http://www.bee-tech.com/




                           Copyright (C) Bee Technologies Inc. 2010   4
スパイス・パーク http://www.spicepark.com/
55種類のデバイス、3,328モデル(2010年7月29日現在)をご提供中。
現在、グローバル版スパイス・パークを準備中。




                Copyright (C) Bee Technologies Inc. 2010   5
Bee Style: http://www.spicepark.com/
スパイス・パークのログイン後トップページにて、PDFでバックナンバーも含め
PDF形式で参照及びダウンロード出来ます。




             Copyright (C) Bee Technologies Inc. 2010   6
バッテリーのスパイスモデルの推移




   放電特性         放電特性                                   充電特性
   付加抵抗         付加抵抗                                     +
    一定           可変                                    放電特性


       リチウムイオン電池
       ニッケル水素電池
         鉛蓄電池


            Copyright (C) Bee Technologies Inc. 2010          7
Copyright (C) Bee Technologies Inc. 2010   8
Design Kit
PV Li-Ion Battery System

                Copyright (C) Bee Technologies Inc. 2010   9
1.1 Lithium-Ion Batteries Pack Specification

  BAYSUN’s Lithium-Ion Batteries Pack : Power Battery Plus (PBT-BAT-0001)

  • Capacity............................65[Wh], 4400[mAh] (Approximately)

  • Rated Current....................3[A]

  • Input Voltage.......................20.5 [Vdc]

  • Output Voltage....................12.8 ~ 16.4 [Vdc] ( 4 cells )

  • Charging time......................5[hours] (Approximately)




                                  Copyright (C) Bee Technologies Inc. 2010   10
1.2 Discharge Time Characteristics

18V
                                                                                                                               D1

                                                                                                                               DMOD

                                                                                     PARAMETERS:                                         Voch
16V                                                                                  rate = 1                                            16.8Vdc
                                                                                     CAh = 4400m                                        0
                                                                                                                      Hi

                                       0.2C ( 880 mA )                                                                                       0
                                                                                                                 C1             U1
14V                 0.5C ( 2200 mA )                                    IN+    OUT+                              1n    +   -    PBT-BAT-0001
                                                                        IN-    OUT-
                                                                     G1                                      0                  TSCALE = 3600
                                                                     GVALUE                                                     SOC1 = 100
              1C ( 4400 mA )                                         limit(V(%IN+, %IN-)/0.01, 0, rate*CAh )

12V                                                                                                                         TSCALE=3600 means
                                                                                       0                                   time Scale (Simulation
                                                                                                                             time : Real time) is
                                                                 Batteries Pack Model Parameters                                   1:3600
10V
                                                                 NS (number of batteries in series) = 4 cells
                                                                 C (capacity) = 4400 mA
                                                                 SOC1 (initial state of charge) = 100%
 8V                                                              TSCALE (time scale) ,           simulation : real time
      0s    1.0s   2.0s        3.0s    4.0s     5.0s     6.0s                                    1 : 3600s or
           V(Hi)                                                                                 1s : 1h
                               Time
                                                                 Discharge Rate : 0.2C(880mA), 0.5C(2200mA), and 1C(4400mA)




                                           Copyright (C) Bee Technologies Inc. 2010                                                                11
1.3 Single Cell Discharge Characteristics

                      Single cell




                    Measurement                                                                            Simulation
                                                                          4.50
                                                                                                                           0.2C ( 880mA )
                                                                                                                           0.5C ( 2200mA )
                                                                                                                           1.0C ( 4400mA )
                                                                          4.00




                                                            VOLTAGE [V]
                                                                          3.50



                                                                          3.00



                                                                          2.50



                                                                          2.00
                                                                                 100   90   80   70   60    50   40   30   20   10    0      -10
                                                                                                       SOC [%]


•   Single cell discharge characteristics are compared between measurement data and simulation data.




                                    Copyright (C) Bee Technologies Inc. 2010                                                                       12
1.4 Charge Time Characteristics

              SOC [%]                                                                                                                     D1
                    100V                                                         PARAMETERS:
                                                                                 rate = 0.2                                               DMOD
                                                                                 CAh = 4400m

                     80V                                                               G1                                                               Voch
                                                                                       GVALUE                                                           16.8Vdc
                                                                                       Limit(V(%IN+, %IN-)/0.1, 0, rate*CAh )                          0
                                                                                                                                         Hi
                     60V




                                                                                           OUT+
                                                                                           OUT-
                                                                                                                                    C1             U1           0
                     40V                                                                                                            1n    +    -   PBT-BAT-0001




                                                                                           IN+
                                                                                           IN-
                                                                                                                                0                  TSCALE = 3600
                     20V                                                                                                                           SOC1 = 0
                                                                                 Vin
                                                                                 20.5Vdc
                    SEL>>
                       0V
Vbatt [V] ICharge [A]         V(X_U1.SOC)                                       0
        18V         5.0A
    1           2                                                             Batteries Pack Model Parameters

        16V         4.0A                                                      NS (number of batteries in series) = 4 cells
                                                                              C (capacity) = 4400 mA
        14V         3.0A                                                      SOC1 (initial state of charge) = 100%
                                                                              TSCALE (time scale) ,           simulation : real time
        12V         2.0A                                                                                      1 : 3600s or
                                                                                                              1s : 1h
        10V         1.0A
                                                                              Charger Adaptor
                      >>
         8V           0A                                                      Input Voltage = 20.5 Vdc
                         0s     1.0s 2.0s   3.0s 4.0s 5.0s   6.0s   7.0s
                                                                              Input Current = 880 mA(max.)
                          1      V(Hi) 2     I(U1:PLUS)
                                                  Time




                                                        Copyright (C) Bee Technologies Inc. 2010                                                             13
2.1 Solar Cells Specification

  BP Solar’s photovoltaic module : SX330

  • Maximum power (Pmax)..............30[W]

  • Voltage at Pmax (Vmp).............16.8[V]

  • Current at Pmax (Imp)...............1.78[A]                            502mm

  • Short-circuit current (Isc)...........1.94[A]

  • Open-circuit voltage(Voc)...........21.0[V]




                                                                                   595mm
                                Copyright (C) Bee Technologies Inc. 2010                   14
2.2 Output Characteristics vs. Incident Solar Radiation
                                                           SX330 Output Characteristics vs. Incident Solar Radiation

                                                                    2.5A
                                                                                     SOL=1
                                                                    2.0A




                                                    Current (A)
                                                                    1.5A

                                                                                     SOL=0.5
            +                                                       1.0A

                    U1                                              0.5A             SOL=0.16
                    SX330                                              0A
          SX330     SOL = 1                                                    I(Isence)
                                                                     40W

                                                                                                SOL=1
                                                                     30W




                                                        Power (W)
                                                                     20W
          Parameter, SOL is added as                                                             SOL=0.5

        normalized incident radiation,                               10W
                                                                                                 SOL=0.16
       where SOL=1 for AM1.5 conditions                             SEL>>
                                                                       0W
                                                                          0V    5V     10V     15V         20V   25V   30V
                                                                               I(Isence)* V(V1:+)
                                                                                              V_V1
                                                                                             Voltage (V)



                                Copyright (C) Bee Technologies Inc. 2010                                                     15
3. Solar Cell Battery Charger

•   Solar Cell charges the Li-ion batteries pack (PBT-BAT-001) with direct connect technique.
    Choose the solar cell that is able to provide current at charging rate or more with the
    maximum power voltage 100V
                          (Vmp) nears the batteries pack charging voltage.
                                    80V


•   PBT-BAT-0001 (Li-ion batteries pack)
                             60V


     – Charging time is approximately 5 hours with charging rate 0.2C or 880mA
                            40V


     – Voltage during charging with 0.2C is between 14.7 to 16.9 V
                            20V


                                      0V
                                              V(X_U1.SOC)
                         18V       5.0A
                     1         2
                                                                                             16.9 V
                         16V       4.0A
                                                                                             14.7 V
                         14V       3.0A


                         12V       2.0A

                                                        0.2C or 880mA
                         10V       1.0A
                                   SEL>>
                          8V          0A
                                         0s     1.0s 2.0s   3.0s 4.0s 5.0s     6.0s   7.0s
                                          1      V(Hi) 2     I(U1:PLUS)
                                                                  Time




                                              Copyright (C) Bee Technologies Inc. 2010                16
3.1 Concept of Simulation PV Li-Ion Battery Charger Circuit



                                                             Over Voltage Protection
                                                             Circuit
    Short circuit current ISC
  depends on condition: SOL
                                                            16.8V Clamp Circuit



         Photovoltaic                                                  Lithium-Ion
         Module                                                        Batteries Pack



        SX 330 (BP Solar)                                            PBT-BAT-0001 (BAYSUN)
        Vmp=16.8V                                                    DC12.8~16.4V (4 cells)
        Pmax=30W                                                     4400mAh




                                Copyright (C) Bee Technologies Inc. 2010                      17
3.2 PV Li-Ion Battery Charger Circuit

                                                                                D1

          PARAMETERS:
                                                                                DMOD
          sol = 1
                                                                                              Voch
                                                                                              16.8Vdc
                               pv                                                            0
                                                                               Hi


         +                                                         C1                    U1           0
                 U2                                                1n           +    -   PBT-BAT-0001
                 SX330
        SX330    SOL = {sol}
                                                               0                         TSCALE = 3600
                                                                                         SOC1 = 0
             0

    •     Input value between 0-1 in the “PARAMETERS: sol = ” to set the normalized incident
          radiation, where SOL=1 for AM1.5 conditions.



                                    Copyright (C) Bee Technologies Inc. 2010                              18
3.3 Charging Time Characteristics vs. Weather Condition


        100V




         80V




         60V




         40V



                                                                                        sol = 1.00
         20V
                                                                                        sol = 0.50
                                                                                        sol = 0.16
          0V
               0s    1s       2s     3s       4s        5s       6s           7s   8s        9s      10s
                    V(X_U1.SOC)
                                                      Time




    •   Simulation result shows the charging time for sol = 1, 0.5, and 0.16.



                                   Copyright (C) Bee Technologies Inc. 2010                                19
3.4 Concept of Simulation PV Li-Ion Battery Charger Circuit
+ Constant Current


                                                                      Over Voltage Protection
                                                                      Circuit
    Short circuit current ISC
  depends on condition: SOL
                                                                     16.8V Clamp Circuit


                                 Constant
      Photovoltaic               Current                                       Lithium-Ion
      Module                     Control                                       Batteries Pack
                                 Circuit


     SX 330 (BP Solar)          Icharge=0.2C (880mA)                           PBT-BAT-0001 (BAYSUN)
     Vmp=16.8V                                                                 DC12.8~16.4V (4 cells)
     Pmax=30W                                                                  4400mAh




                                    Copyright (C) Bee Technologies Inc. 2010                            20
3.5 Constant Current PV Li-Ion Battery Charger Circuit

                                                                                    D1

          PARAMETERS:              PARAMETERS:
                                                                                    DMOD
          sol = 1                  rate = 0.2
                                   CAh = 4400m
                                                                                                  Voch
                                                                                                  16.8Vdc
                         pv                                                                      0
                                                                                   Hi
                                    OUT+
                                    OUT-
         +                                                                C1                 U1           0
                  U2                                                      1n        +    -   PBT-BAT-0001
                  SX330
                                    IN+
                                    IN-



        SX330     SOL = {sol}
                                                                      0                      TSCALE = 3600
                                   G1                                                        SOC1 = 0
                                   GVALUE
              0                    Limit(V(%IN+, %IN-)/0.1, 0, rate*CAh)



    •        Input the battery capacity (Ah) and charging current rate (e.g. 0.2*CAh) in the
    •        “PARAMETERS: CAh = 4400m and rate = 0.2 ” to set the charging current.



                                        Copyright (C) Bee Technologies Inc. 2010                              21
3.6 Charging Time Characteristics vs. Weather Condition
(Constant Current)

        100V




         80V




         60V




         40V



                                                                                        sol = 1.00
         20V
                                                                                        sol = 0.50
                                                                                        sol = 0.16
          0V
               0s    1s       2s     3s       4s        5s       6s           7s   8s        9s      10s
                    V(X_U1.SOC)
                                                      Time


    •   Simulation result shows the charging time for sol = 1, 0.5, and 0.16. If PV can generate
        current more than the constant charge rate (0.2A), battery can be fully charged in about 5
        hour.


                                   Copyright (C) Bee Technologies Inc. 2010                                22
4.1 Concept of Simulation PV Li-Ion Battery System in 24hr.


                                                                                    Over Voltage Protection
    The model contains 24hr.                                                        Circuit
   solar power data (example).
                                                                                  16.8V Clamp Circuit



  Photovoltaic                                                                      Lithium-Ion
  Module                                                                            Batteries Pack

                                 Low-Voltage                                      PBT-BAT-0001 (BAYSUN)
 SX 330 (BP Solar)               Shutdown                                         DC12.8~16.4V (4 cells)
 Vmp=16.8V                       Circuit                                          4400mAh
 Pmax=30W
                         Vopen= (V)
                         Vclose= (V)
                                                   DC/DC
                                                                                 DC Load
                                                   Converter

                                                 VIN=10~18V                     VIN = 5V
                                                 VOUT=5V                        IIN = 1.5A


                                     Copyright (C) Bee Technologies Inc. 2010                                 23
4.2 Short-Circuit Current vs. Time (24hr.)
                                                                                                The model contains
                                                                                               24hr. solar power data
                                                                                                     (example).
2.0A




1.6A
                                                                                              +

1.2A
                                                                                                     U2
                                                                                             SX330   SX330_24H_TS3600

0.8A




0.4A




  0A
       0s              4s          8s           12s            16s            20s      24s
            I(X_U1.I_I1)
                                                Time




            •    Short-circuit current vs. time characteristics of photovoltaic module SX330 for 24hours as the
                 solar power profile (example) is included to the model.



                                            Copyright (C) Bee Technologies Inc. 2010                               24
4.3 PV-Battery System Simulation Circuit
Solar cell model with                                                                                                                                                            D1
 24hr. solar power                                                                                                                 Set initial battery
        data.                                                                                                                     voltage, IC=16.4, for                          DMOD

                                                                                                                                   convergence aid.                                             Voch
                                                                                                                                                                                                16.8Vdc
                  pv                                                                                                                                                                            0
                                  D2
                                                                                                                                                                               batt
                                  DMOD
                                                                                                                                                                   C1
       +                                                                                                                                                           100n                   U1           0
                                                                                       Low-Voltage Shutdown Circuit                                                IC = 16.4      +   -   PBT-BAT-0001
               U2
      SX330    SX330_24H_TS3600
                                         VON = 0.7                                                                                                                0                       TSCALE = 3600
                                         VOFF = 0.3                             E1                                                                                                        SOC1 = 70
                                         RON = 0.01                   Ronof f   EVALUE
           0                             ROFF = 10MEG                 100       IF(V(batt1)>V(dchth),5,0)                        Ronof f 1
                                             +                Lctrl                                                    batt1
                                                 +                              OUT+    IN+
                                   C3
                                         -       -                              OUT-    IN-       dchth                               100
                                   10n
                                         S2
                                                                Conof f
                                                                1n
                                                                                                                                                                                  SOC1 value is initial
                                                     0                                             OUT+     IN+
                                         S                      IC = 5
                                                                                                   OUT-     IN-
                                                                                                                                   Conof f 1                                     State Of Charge of the
                                                                                                                                   100n
                                         PARAMETERS:                                                 E2                                                                          battery, is set as 70%
                                         Lopen = 14                                                  EVALUE
                                                                                          IF( V(lctrl) > 0.25 ,Lopen ,Lclose)                                                        of full voltage.
                                         Lclose = 15.2                                                                            0



           Lopen value is load                                                                                                  DC/DC Converter                                                     7.5W Load
           shutdown voltage.                                                                                                                                                                        (5Vx1.5A).
                                                                                                                        PARAMETERS:
           Lclose value is load                                                                                         n=1                                             out_dc
            reconnect voltage                            IN                                                                                    OUT
                                                              G1                                       Iomax                                                                                I1
                                                                                                                        E3
                                                              IN+  OUT+                                                                                                              1.5Adc
                                                                                        IN+    OUT+                     IN+    OUT+
                                                              IN-  OUT-                 IN-    OUT-                     IN-    OUT-
                                                              GVALUE                    ecal_Iomax                      EVALUE
                                                                                        EVALUE                          IF( I(OUT)-V(Iomax) > 0 ,n*V(%IN+, %IN-)*I(IN)/(I(OUT)+1u), 5 )
                                                                                                      0
                                                                                        n*V(%IN+, %IN-)*I(IN)/5

                                                         Limit( V(%IN+, %IN-)/0.1, 1m, 5*I(out)/(n*limit(V(%IN+, %IN-),10,25)) )
                                                                                                                                                                                            0
                                                         DCDCコンバータの簡易モデル
                                         0                                                                          Simulation at 15W load, change I1 from 1.5A to 3A

 DCACコンバータの簡易モデルもあります。
                                                               Copyright (C) Bee Technologies Inc. 2010                                                                                                    25
4.3.1 Simulation Result (SOC1=100)

PV generated current
                              1.0A


                                0A
                                         I(pv)                                  PV module charge the battery
                 17.5V        2.0A
             1           2
Battery voltage
                 15.0V          0A
Battery current     >>
                 12.5V       -2.0A                                                                             Battery supplies current when solar
                                     1      V(batt)    2    I(U1:PLUS)                                         power drops.
                              100V
                               75V
Battery SOC                              SOC1=100                                            Fully charged,
                               50V
                                                                                             stop charging
                               25V
                                0V
                                         V(X_U1.SOC)
                  7.5V       600mA
DC output voltage
          1              2
                  5.0V
DC/DC input current          500mA
                  2.5V
                             SEL>>
                    0V       400mA
                                   0s                4s               8s               12s               16s       20s             24s
                                    1       V(out_dc) 2       I(IN)
                                                                         Charging
                                                                                      Time
                                                                         time


         •         C1: IC=16.4
         •         Run to time: 24s (24hours in real world)                             •     .Options ITL4=1000
         •         Step size: 0.01s



                                                           Copyright (C) Bee Technologies Inc. 2010                                                  26
4.3.2 Simulation Result (SOC1=70)

PV generated current
                                1.0A


                                  0A
                                            I(pv)                                       PV module charge the battery
             17.5V              2.0A
          1             2                           V=Lopen            (7.6750,15.199)
Battery voltage
             15.0V                0A
Battery current                                                                     V=Lclose
                                SEL>>                                (5.1850,14.000)
             12.5V              -2.0A                                                                                         Battery supplies current when solar
                                        1      V(batt)     2      I(U1:PLUS)                                                  power drops.
                                100V
                                             SOC1=70
                                 75V
Battery SOC                                                                                            Fully charged,
                                 50V
                                                                                                       stop charging
                                 25V    10.152m,69.889)
                                  0V
                                            V(X_U1.SOC)
               7.5V             1.0A                                  Shutdown
DC output voltage
           1                2
               5.0V
DC/DC input current             0.5A
               2.5V
                                  >>                                                Reconnect
                   0V             0A
                                     0s                    4s                  8s               12s                     16s         20s               24s
                                      1        V(out_dc)     2      I(IN)
                                                                               Charging
                                                                                                Time
                                                                               time

         •        C1: IC=16.4
         •        Run to time: 24s (24hours in real world)
                                                                                                •       .Options ITL4=1000
         •        Step size: 0.01s
         •        SKIPBP


                                                                 Copyright (C) Bee Technologies Inc. 2010                                                           27
4.3.3 Simulation Result (SOC1=30)

PV generated current
                                  1.0A


                                    0A
                                              I(pv)                                      PV module charge the battery
                 17.5V            2.0A
             1            2                                              (7.6150,15.193)
Battery voltage                                   V=Lopen
                 15.0V              0A
Battery current                      >>                                               V=Lclose
                                                      (1.6328,14.004)                                                          Battery supplies current when solar
                 12.5V            -2.0A
                                          1      V(batt)     2      I(U1:PLUS)                                                 power drops.
                                  100V

Battery SOC                               (12.800m,29.854)                                              Fully charged,
                                                 SOC1=30                                                stop charging
                                  SEL>>
                                     0V
                                              V(X_U1.SOC)
                   7.5V           1.0A
DC output voltage
           1                  2
                   5.0V                                 Shutdown
DC/DC input current               0.5A
                   2.5V                                                               Reconnect
                                    >>
                     0V             0A
                                       0s                    4s                  8s                   12s                16s          20s               24s
                                        1        V(out_dc)     2      I(IN)       Charging time
                                                                                                  Time


         •         C1: IC=15
         •         Run to time: 24s (24hours in real world)
                                                                                                  •         .Options ITL4=1000
         •         Step size: 0.01s
         •         Total job time = 2s


                                                                   Copyright (C) Bee Technologies Inc. 2010                                                          28
4.3.4 Simulation Result (SOC1=10)

PV generated current
                                  1.0A


                                    0A
                                              I(pv)                                      PV module charge the battery
                 17.5V            2.0A
             1            2                                              (7.6163,15.200)
Battery voltage
                 15.0V              0A
Battery current                   SEL>>                                               V=Lclose
                 12.5V            -2.0A                                                                                        Battery supplies current when solar
                                          1      V(batt)     2      I(U1:PLUS)                                                 power drops.
                                  100V

Battery SOC                                                                                             Fully charged,
                                              SOC1=10                                                   stop charging

                                    0V
                                              V(X_U1.SOC)
                   7.5V           1.0A
DC output voltage
           1                  2
                   5.0V                        Shutdown
DC/DC input current               0.5A
                   2.5V                                                               Reconnect
                                    >>
                     0V             0A
                                       0s                    4s                  8s                   12s                16s          20s               24s
                                        1        V(out_dc)     2      I(IN)       Charging time
                                                                                                  Time


         •         C1: IC=14.4
         •         Run to time: 24s (24hours in real world)                                       •         .Options RELTOL=0.01
         •         Step size: 0.01s                                                               •         .Options ITL4=1000
         •         SKIPBP


                                                                   Copyright (C) Bee Technologies Inc. 2010                                                          29
4.3.5 Simulation Result (SOC1=100, IL=3A or 15W load)

PV generated current
                                  1.0A


                                    0A
                                              I(pv)                                  PV module charge the battery
                 17.5V            2.0A                                                                                                  V=Lopen
             1            2
Battery voltage                                              V=Lopen (7.6086,15.200)
                                                         (3.8973,14.000)                                                          (20.473,14.003)
                 15.0V              0A
Battery current                   SEL>>
                 12.5V            -2.0A
                                          1      V(batt)    2    I(U1:PLUS)
                                                                                                                           Battery supplies current when solar
                                  100V
                                                                                                                           power drops.
                                   75V
Battery SOC                                   SOC1=100                                                    Fully charged,
                                   50V
                                                                                                          stop charging
                                   25V
                                    0V
                                              V(X_U1.SOC)
                   7.5V           2.0A
DC output voltage
           1                  2                                                                                                             Shutdown
                   5.0V                                           Shutdown
DC/DC input current               1.0A
                   2.5V
                                    >>
                     0V             0A
                                       0s                 4s                 8s             12s              16s                  20s             24s
                                        1        V(out_dc) 2       I(IN)
                                                                              Charging
                                                                                           Time
                                                                              time


         •         C1: IC=16.4
         •         Run to time: 24s (24hours in real world)                                  •     .Options ITL4=1000
         •         Step size: 0.001s



                                                                Copyright (C) Bee Technologies Inc. 2010                                                         30
4.3.4 Simulation Result (Example of Conclusion)

    The simulation start from midnight(time=0).
    The system supplies DC load 7.5W.

•    If initial SOC is 100%,
       – this system will never shutdown.
•    If initial SOC is 70%,
       – this system will shutdown after 5.185 hours (about 5:11AM.).
       – system load will reconnect again at 7:40AM (Morning).
•    If initial SOC is 30%,
       – this system will shutdown after 1.633 hours (about 1:38AM.).
       – system load will reconnect again at 7:37AM (Morning).
•    If initial SOC is 10%,
       – this system will start shutdown.
       – this system will reconnect again at 7:37AM (Morning).
•    With the PV generated current profile, battery will fully charged in about 4.25
     hours.



                               Copyright (C) Bee Technologies Inc. 2010                31
4.3.4 Simulation Result (Example of Conclusion)

The simulation start from midnight(time=0).
The system supplies DC load 15W.


• If initial SOC is 100%,
    – this system will shutdown after 3.897 hours (about 3:54AM.).
    – system load will reconnect again at 7:37AM (Morning).
    – this system will shutdown again at 8:28 PM (Night).
• With the PV generated current profile, battery will fully charged in about
  5.5 hours.




                          Copyright (C) Bee Technologies Inc. 2010             32
Bee Technologies Group




デバイスモデリング
スパイス・パーク(スパイスモデル・ライブラリー)
デザインキット
デバイスモデリング教材



【本社】                                                      本ドキュメントは予告なき変更をする場合がございます。
                                                          ご了承下さい。また、本文中に登場する製品及びサービス
株式会社ビー・テクノロジー                                             の名称は全て関係各社または個人の各国における商標
〒105-0012 東京都港区芝大門二丁目2番7号 7セントラルビル4階                      または登録商標です。本原稿に関するお問い合わせは、
代表電話: 03-5401-3851                                        当社にご連絡下さい。
設立日:2002年9月10日
資本金:8,830万円
【子会社】                                                      お問合わせ先)
Bee Technologies Corporation (アメリカ)
Siam Bee Technologies Co.,Ltd. (タイランド)                     info@bee-tech.com
                      Copyright (C) Bee Technologies Inc. 2010                         33

Más contenido relacionado

La actualidad más candente

PV Lead Acid Battery System Simulation
PV Lead Acid Battery System SimulationPV Lead Acid Battery System Simulation
PV Lead Acid Battery System SimulationTsuyoshi Horigome
 
Simple model of Lithium Ion Battery (PSpice)
Simple model of Lithium Ion Battery (PSpice)Simple model of Lithium Ion Battery (PSpice)
Simple model of Lithium Ion Battery (PSpice)Tsuyoshi Horigome
 
Lithium Ion Capacitor Simplified Simulink Model using MATLAB
Lithium Ion Capacitor Simplified Simulink Model using MATLABLithium Ion Capacitor Simplified Simulink Model using MATLAB
Lithium Ion Capacitor Simplified Simulink Model using MATLABTsuyoshi Horigome
 
鉛蓄電池のシンプルモデル(PSpice)
鉛蓄電池のシンプルモデル(PSpice)鉛蓄電池のシンプルモデル(PSpice)
鉛蓄電池のシンプルモデル(PSpice)spicepark
 
LiFePO4 Battery Simplified SPICE Behavioral Model(LTspice Version)
LiFePO4 Battery Simplified SPICE Behavioral Model(LTspice Version)LiFePO4 Battery Simplified SPICE Behavioral Model(LTspice Version)
LiFePO4 Battery Simplified SPICE Behavioral Model(LTspice Version)Tsuyoshi Horigome
 
Concept of modeling of Lithium ion batteries (v1)
Concept of modeling of Lithium ion batteries (v1)Concept of modeling of Lithium ion batteries (v1)
Concept of modeling of Lithium ion batteries (v1)Tsuyoshi Horigome
 
リチウムイオン電池のスパイスモデル
リチウムイオン電池のスパイスモデルリチウムイオン電池のスパイスモデル
リチウムイオン電池のスパイスモデルTsuyoshi Horigome
 
Lithium Ion Battery Simplified Simulink Model using MATLAB
Lithium Ion Battery Simplified Simulink Model using MATLABLithium Ion Battery Simplified Simulink Model using MATLAB
Lithium Ion Battery Simplified Simulink Model using MATLABTsuyoshi Horigome
 
リチウムイオンキャパシタのシンプルモデル(PSpice)
リチウムイオンキャパシタのシンプルモデル(PSpice)リチウムイオンキャパシタのシンプルモデル(PSpice)
リチウムイオンキャパシタのシンプルモデル(PSpice)Tsuyoshi Horigome
 
リチウムイオンキャパシタのシンプルモデル(LTspice)
リチウムイオンキャパシタのシンプルモデル(LTspice)リチウムイオンキャパシタのシンプルモデル(LTspice)
リチウムイオンキャパシタのシンプルモデル(LTspice)Tsuyoshi Horigome
 
SPICEを活用した二次電池アプリケーション回路シミュレーションセミナー資料
SPICEを活用した二次電池アプリケーション回路シミュレーションセミナー資料SPICEを活用した二次電池アプリケーション回路シミュレーションセミナー資料
SPICEを活用した二次電池アプリケーション回路シミュレーションセミナー資料spicepark
 
鉛蓄電池のシンプルモデル(LTspice)
鉛蓄電池のシンプルモデル(LTspice)鉛蓄電池のシンプルモデル(LTspice)
鉛蓄電池のシンプルモデル(LTspice)spicepark
 
How to Design of Power Management of Hybrid Circuit(Battery and EDLC) using L...
How to Design of Power Management of Hybrid Circuit(Battery and EDLC) using L...How to Design of Power Management of Hybrid Circuit(Battery and EDLC) using L...
How to Design of Power Management of Hybrid Circuit(Battery and EDLC) using L...Tsuyoshi Horigome
 
Lithium Ion Battery Simplified Simulink Model using MATLAB
Lithium Ion Battery Simplified Simulink Model using MATLABLithium Ion Battery Simplified Simulink Model using MATLAB
Lithium Ion Battery Simplified Simulink Model using MATLABTsuyoshi Horigome
 
ニッケル水素電池のシンプルモデル(PSpice)
ニッケル水素電池のシンプルモデル(PSpice) ニッケル水素電池のシンプルモデル(PSpice)
ニッケル水素電池のシンプルモデル(PSpice) Tsuyoshi Horigome
 
Lithium Ion Phosphate(Li-FePO4) Battery Simplified SPICE Behavioral Model(LTs...
Lithium Ion Phosphate(Li-FePO4) Battery Simplified SPICE Behavioral Model(LTs...Lithium Ion Phosphate(Li-FePO4) Battery Simplified SPICE Behavioral Model(LTs...
Lithium Ion Phosphate(Li-FePO4) Battery Simplified SPICE Behavioral Model(LTs...Tsuyoshi Horigome
 

La actualidad más candente (16)

PV Lead Acid Battery System Simulation
PV Lead Acid Battery System SimulationPV Lead Acid Battery System Simulation
PV Lead Acid Battery System Simulation
 
Simple model of Lithium Ion Battery (PSpice)
Simple model of Lithium Ion Battery (PSpice)Simple model of Lithium Ion Battery (PSpice)
Simple model of Lithium Ion Battery (PSpice)
 
Lithium Ion Capacitor Simplified Simulink Model using MATLAB
Lithium Ion Capacitor Simplified Simulink Model using MATLABLithium Ion Capacitor Simplified Simulink Model using MATLAB
Lithium Ion Capacitor Simplified Simulink Model using MATLAB
 
鉛蓄電池のシンプルモデル(PSpice)
鉛蓄電池のシンプルモデル(PSpice)鉛蓄電池のシンプルモデル(PSpice)
鉛蓄電池のシンプルモデル(PSpice)
 
LiFePO4 Battery Simplified SPICE Behavioral Model(LTspice Version)
LiFePO4 Battery Simplified SPICE Behavioral Model(LTspice Version)LiFePO4 Battery Simplified SPICE Behavioral Model(LTspice Version)
LiFePO4 Battery Simplified SPICE Behavioral Model(LTspice Version)
 
Concept of modeling of Lithium ion batteries (v1)
Concept of modeling of Lithium ion batteries (v1)Concept of modeling of Lithium ion batteries (v1)
Concept of modeling of Lithium ion batteries (v1)
 
リチウムイオン電池のスパイスモデル
リチウムイオン電池のスパイスモデルリチウムイオン電池のスパイスモデル
リチウムイオン電池のスパイスモデル
 
Lithium Ion Battery Simplified Simulink Model using MATLAB
Lithium Ion Battery Simplified Simulink Model using MATLABLithium Ion Battery Simplified Simulink Model using MATLAB
Lithium Ion Battery Simplified Simulink Model using MATLAB
 
リチウムイオンキャパシタのシンプルモデル(PSpice)
リチウムイオンキャパシタのシンプルモデル(PSpice)リチウムイオンキャパシタのシンプルモデル(PSpice)
リチウムイオンキャパシタのシンプルモデル(PSpice)
 
リチウムイオンキャパシタのシンプルモデル(LTspice)
リチウムイオンキャパシタのシンプルモデル(LTspice)リチウムイオンキャパシタのシンプルモデル(LTspice)
リチウムイオンキャパシタのシンプルモデル(LTspice)
 
SPICEを活用した二次電池アプリケーション回路シミュレーションセミナー資料
SPICEを活用した二次電池アプリケーション回路シミュレーションセミナー資料SPICEを活用した二次電池アプリケーション回路シミュレーションセミナー資料
SPICEを活用した二次電池アプリケーション回路シミュレーションセミナー資料
 
鉛蓄電池のシンプルモデル(LTspice)
鉛蓄電池のシンプルモデル(LTspice)鉛蓄電池のシンプルモデル(LTspice)
鉛蓄電池のシンプルモデル(LTspice)
 
How to Design of Power Management of Hybrid Circuit(Battery and EDLC) using L...
How to Design of Power Management of Hybrid Circuit(Battery and EDLC) using L...How to Design of Power Management of Hybrid Circuit(Battery and EDLC) using L...
How to Design of Power Management of Hybrid Circuit(Battery and EDLC) using L...
 
Lithium Ion Battery Simplified Simulink Model using MATLAB
Lithium Ion Battery Simplified Simulink Model using MATLABLithium Ion Battery Simplified Simulink Model using MATLAB
Lithium Ion Battery Simplified Simulink Model using MATLAB
 
ニッケル水素電池のシンプルモデル(PSpice)
ニッケル水素電池のシンプルモデル(PSpice) ニッケル水素電池のシンプルモデル(PSpice)
ニッケル水素電池のシンプルモデル(PSpice)
 
Lithium Ion Phosphate(Li-FePO4) Battery Simplified SPICE Behavioral Model(LTs...
Lithium Ion Phosphate(Li-FePO4) Battery Simplified SPICE Behavioral Model(LTs...Lithium Ion Phosphate(Li-FePO4) Battery Simplified SPICE Behavioral Model(LTs...
Lithium Ion Phosphate(Li-FePO4) Battery Simplified SPICE Behavioral Model(LTs...
 

Destacado

A Model and Simulation of EV Use in Environments with V2H and Battery Replace...
A Model and Simulation of EV Use in Environments with V2H and Battery Replace...A Model and Simulation of EV Use in Environments with V2H and Battery Replace...
A Model and Simulation of EV Use in Environments with V2H and Battery Replace...Tokyo University of Science
 
HEV-Inverter Li-Ion Battery Simulation using PSpice
HEV-Inverter Li-Ion Battery Simulation  using PSpiceHEV-Inverter Li-Ion Battery Simulation  using PSpice
HEV-Inverter Li-Ion Battery Simulation using PSpiceTsuyoshi Horigome
 
Mircochip pmsm
Mircochip pmsmMircochip pmsm
Mircochip pmsmwarluck88
 
Device Modeling and Simulation of DC Motor using LTspice
Device Modeling and Simulation of  DC Motor using LTspiceDevice Modeling and Simulation of  DC Motor using LTspice
Device Modeling and Simulation of DC Motor using LTspiceTsuyoshi Horigome
 
Dynamic model of pmsm (lq and la)
Dynamic model of pmsm  (lq and la)Dynamic model of pmsm  (lq and la)
Dynamic model of pmsm (lq and la)warluck88
 
Advanced Automotive Batteries Europe 2016
Advanced Automotive Batteries Europe 2016Advanced Automotive Batteries Europe 2016
Advanced Automotive Batteries Europe 2016David Mello
 
Li-ion into EV Simulator - LMS Conference 2011 Oral Presentation
Li-ion into EV Simulator - LMS Conference 2011 Oral PresentationLi-ion into EV Simulator - LMS Conference 2011 Oral Presentation
Li-ion into EV Simulator - LMS Conference 2011 Oral PresentationEric Prada
 
Modelling and dynamic simulation of a mobile hybrid power system
Modelling and dynamic simulation of a mobile hybrid power systemModelling and dynamic simulation of a mobile hybrid power system
Modelling and dynamic simulation of a mobile hybrid power systemPrivate Consultants
 
PMS Motor of Simple Model using PSpice
PMS Motor of Simple Model using PSpicePMS Motor of Simple Model using PSpice
PMS Motor of Simple Model using PSpiceTsuyoshi Horigome
 
Permanent Magnet Synchronous Motor (PMSM) Simplified SPICE Behavioral Model
Permanent Magnet Synchronous Motor (PMSM)Simplified SPICE Behavioral ModelPermanent Magnet Synchronous Motor (PMSM)Simplified SPICE Behavioral Model
Permanent Magnet Synchronous Motor (PMSM) Simplified SPICE Behavioral ModelTsuyoshi Horigome
 
How to Design of Power Management of Hybrid Circuit(Battery and Capacitor) us...
How to Design of Power Management of Hybrid Circuit(Battery and Capacitor) us...How to Design of Power Management of Hybrid Circuit(Battery and Capacitor) us...
How to Design of Power Management of Hybrid Circuit(Battery and Capacitor) us...Tsuyoshi Horigome
 
Concept Kit 3-Phase AC Motor Drive Circuit Simulation (LTspice Version)
Concept Kit 3-Phase AC Motor Drive Circuit Simulation (LTspice Version)Concept Kit 3-Phase AC Motor Drive Circuit Simulation (LTspice Version)
Concept Kit 3-Phase AC Motor Drive Circuit Simulation (LTspice Version)Tsuyoshi Horigome
 
Concept Kit 3-Phase AC Motor Drive Simulation (PSpice Version)
Concept Kit 3-Phase AC Motor Drive Simulation (PSpice Version)Concept Kit 3-Phase AC Motor Drive Simulation (PSpice Version)
Concept Kit 3-Phase AC Motor Drive Simulation (PSpice Version)Tsuyoshi Horigome
 
Hirschmann: Automotive SPICE Requirements for development process and tools
Hirschmann: Automotive SPICE Requirements for development process and tools Hirschmann: Automotive SPICE Requirements for development process and tools
Hirschmann: Automotive SPICE Requirements for development process and tools Intland Software GmbH
 
Interior Permanent Magnet (IPM) motor drive
Interior Permanent Magnet (IPM) motor driveInterior Permanent Magnet (IPM) motor drive
Interior Permanent Magnet (IPM) motor driveanusheel nahar
 
• Sensorless speed and position estimation of a PMSM (Master´s Thesis)
•	Sensorless speed and position estimation of a PMSM (Master´s Thesis)•	Sensorless speed and position estimation of a PMSM (Master´s Thesis)
• Sensorless speed and position estimation of a PMSM (Master´s Thesis)Cesar Hernaez Ojeda
 

Destacado (20)

A Model and Simulation of EV Use in Environments with V2H and Battery Replace...
A Model and Simulation of EV Use in Environments with V2H and Battery Replace...A Model and Simulation of EV Use in Environments with V2H and Battery Replace...
A Model and Simulation of EV Use in Environments with V2H and Battery Replace...
 
HEV-Inverter Li-Ion Battery Simulation using PSpice
HEV-Inverter Li-Ion Battery Simulation  using PSpiceHEV-Inverter Li-Ion Battery Simulation  using PSpice
HEV-Inverter Li-Ion Battery Simulation using PSpice
 
Mircochip pmsm
Mircochip pmsmMircochip pmsm
Mircochip pmsm
 
Plug-In Hybrid Simulation
Plug-In Hybrid SimulationPlug-In Hybrid Simulation
Plug-In Hybrid Simulation
 
Device Modeling and Simulation of DC Motor using LTspice
Device Modeling and Simulation of  DC Motor using LTspiceDevice Modeling and Simulation of  DC Motor using LTspice
Device Modeling and Simulation of DC Motor using LTspice
 
Dynamic model of pmsm (lq and la)
Dynamic model of pmsm  (lq and la)Dynamic model of pmsm  (lq and la)
Dynamic model of pmsm (lq and la)
 
Advanced Automotive Batteries Europe 2016
Advanced Automotive Batteries Europe 2016Advanced Automotive Batteries Europe 2016
Advanced Automotive Batteries Europe 2016
 
Li-ion into EV Simulator - LMS Conference 2011 Oral Presentation
Li-ion into EV Simulator - LMS Conference 2011 Oral PresentationLi-ion into EV Simulator - LMS Conference 2011 Oral Presentation
Li-ion into EV Simulator - LMS Conference 2011 Oral Presentation
 
Modelling and dynamic simulation of a mobile hybrid power system
Modelling and dynamic simulation of a mobile hybrid power systemModelling and dynamic simulation of a mobile hybrid power system
Modelling and dynamic simulation of a mobile hybrid power system
 
Motores pmsm
Motores pmsmMotores pmsm
Motores pmsm
 
Concept kit: 3-Phase AC Motor Drive Simulation (LTspice Version)
Concept kit: 3-Phase AC Motor Drive Simulation (LTspice Version)Concept kit: 3-Phase AC Motor Drive Simulation (LTspice Version)
Concept kit: 3-Phase AC Motor Drive Simulation (LTspice Version)
 
PMS Motor of Simple Model using PSpice
PMS Motor of Simple Model using PSpicePMS Motor of Simple Model using PSpice
PMS Motor of Simple Model using PSpice
 
Permanent Magnet Synchronous Motor (PMSM) Simplified SPICE Behavioral Model
Permanent Magnet Synchronous Motor (PMSM)Simplified SPICE Behavioral ModelPermanent Magnet Synchronous Motor (PMSM)Simplified SPICE Behavioral Model
Permanent Magnet Synchronous Motor (PMSM) Simplified SPICE Behavioral Model
 
How to Design of Power Management of Hybrid Circuit(Battery and Capacitor) us...
How to Design of Power Management of Hybrid Circuit(Battery and Capacitor) us...How to Design of Power Management of Hybrid Circuit(Battery and Capacitor) us...
How to Design of Power Management of Hybrid Circuit(Battery and Capacitor) us...
 
Concept kit: 3-Phase AC Motor Drive Simulation (PSpice Version)
Concept kit: 3-Phase AC Motor Drive Simulation (PSpice Version)Concept kit: 3-Phase AC Motor Drive Simulation (PSpice Version)
Concept kit: 3-Phase AC Motor Drive Simulation (PSpice Version)
 
Concept Kit 3-Phase AC Motor Drive Circuit Simulation (LTspice Version)
Concept Kit 3-Phase AC Motor Drive Circuit Simulation (LTspice Version)Concept Kit 3-Phase AC Motor Drive Circuit Simulation (LTspice Version)
Concept Kit 3-Phase AC Motor Drive Circuit Simulation (LTspice Version)
 
Concept Kit 3-Phase AC Motor Drive Simulation (PSpice Version)
Concept Kit 3-Phase AC Motor Drive Simulation (PSpice Version)Concept Kit 3-Phase AC Motor Drive Simulation (PSpice Version)
Concept Kit 3-Phase AC Motor Drive Simulation (PSpice Version)
 
Hirschmann: Automotive SPICE Requirements for development process and tools
Hirschmann: Automotive SPICE Requirements for development process and tools Hirschmann: Automotive SPICE Requirements for development process and tools
Hirschmann: Automotive SPICE Requirements for development process and tools
 
Interior Permanent Magnet (IPM) motor drive
Interior Permanent Magnet (IPM) motor driveInterior Permanent Magnet (IPM) motor drive
Interior Permanent Magnet (IPM) motor drive
 
• Sensorless speed and position estimation of a PMSM (Master´s Thesis)
•	Sensorless speed and position estimation of a PMSM (Master´s Thesis)•	Sensorless speed and position estimation of a PMSM (Master´s Thesis)
• Sensorless speed and position estimation of a PMSM (Master´s Thesis)
 

Similar a PSpiceによるバッテリー回路アプリケーション

リチウムイオン電池シミュレーションセミナー
リチウムイオン電池シミュレーションセミナーリチウムイオン電池シミュレーションセミナー
リチウムイオン電池シミュレーションセミナーspicepark
 
デザインキット・PV Li-Ion Battery Systemの解説書
デザインキット・PV Li-Ion Battery Systemの解説書 デザインキット・PV Li-Ion Battery Systemの解説書
デザインキット・PV Li-Ion Battery Systemの解説書 Tsuyoshi Horigome
 
PV Ni-MH Battery System (Output is AC)
PV Ni-MH Battery System (Output is AC)PV Ni-MH Battery System (Output is AC)
PV Ni-MH Battery System (Output is AC)spicepark
 
PV Ni-MH Battery System (Output is DC)
PV Ni-MH Battery System (Output is DC)PV Ni-MH Battery System (Output is DC)
PV Ni-MH Battery System (Output is DC)spicepark
 
Simple Model of Lead-Acid Battery Model using PSpice
Simple Model of Lead-Acid Battery Model using PSpiceSimple Model of Lead-Acid Battery Model using PSpice
Simple Model of Lead-Acid Battery Model using PSpicespicepark
 
Evaluation Report of TL431BILP
Evaluation Report of TL431BILPEvaluation Report of TL431BILP
Evaluation Report of TL431BILPTsuyoshi Horigome
 
SPICE MODEL of MSE-1500 in SPICE PARK
SPICE MODEL of MSE-1500 in SPICE PARKSPICE MODEL of MSE-1500 in SPICE PARK
SPICE MODEL of MSE-1500 in SPICE PARKTsuyoshi Horigome
 
SPICE MODEL of SX310 , PSpice Model in SPICE PARK
SPICE MODEL of SX310 , PSpice Model in SPICE PARKSPICE MODEL of SX310 , PSpice Model in SPICE PARK
SPICE MODEL of SX310 , PSpice Model in SPICE PARKTsuyoshi Horigome
 
SPICE MODEL of MSE-3000 in SPICE PARK
SPICE MODEL of MSE-3000 in SPICE PARKSPICE MODEL of MSE-3000 in SPICE PARK
SPICE MODEL of MSE-3000 in SPICE PARKTsuyoshi Horigome
 
SPICE MODEL of CM600HA-24H (Professional+FWDS Model) in SPICE PARK
SPICE MODEL of CM600HA-24H (Professional+FWDS Model) in SPICE PARKSPICE MODEL of CM600HA-24H (Professional+FWDS Model) in SPICE PARK
SPICE MODEL of CM600HA-24H (Professional+FWDS Model) in SPICE PARKTsuyoshi Horigome
 
鉛蓄電池のスパイスモデル
鉛蓄電池のスパイスモデル鉛蓄電池のスパイスモデル
鉛蓄電池のスパイスモデルTsuyoshi Horigome
 
SPICE MODEL of MSE-1000 in SPICE PARK
SPICE MODEL of MSE-1000 in SPICE PARKSPICE MODEL of MSE-1000 in SPICE PARK
SPICE MODEL of MSE-1000 in SPICE PARKTsuyoshi Horigome
 
GP Batetry GP40AAAM Datenblatt Datasheed
GP Batetry GP40AAAM Datenblatt DatasheedGP Batetry GP40AAAM Datenblatt Datasheed
GP Batetry GP40AAAM Datenblatt DatasheedAkkuShop.de
 
SPICE MODEL of MSE-2000 in SPICE PARK
SPICE MODEL of MSE-2000 in SPICE PARKSPICE MODEL of MSE-2000 in SPICE PARK
SPICE MODEL of MSE-2000 in SPICE PARKTsuyoshi Horigome
 
SPICE MODEL of MSE-500 in SPICE PARK
SPICE MODEL of MSE-500 in SPICE PARKSPICE MODEL of MSE-500 in SPICE PARK
SPICE MODEL of MSE-500 in SPICE PARKTsuyoshi Horigome
 
SPICE MODEL of 2SK3938 (Standard+BDS Model) in SPICE PARK
SPICE MODEL of 2SK3938 (Standard+BDS Model) in SPICE PARKSPICE MODEL of 2SK3938 (Standard+BDS Model) in SPICE PARK
SPICE MODEL of 2SK3938 (Standard+BDS Model) in SPICE PARKTsuyoshi Horigome
 
SPICE MODEL of PC111LY in SPICE PARK
SPICE MODEL of PC111LY in SPICE PARKSPICE MODEL of PC111LY in SPICE PARK
SPICE MODEL of PC111LY in SPICE PARKTsuyoshi Horigome
 

Similar a PSpiceによるバッテリー回路アプリケーション (20)

リチウムイオン電池シミュレーションセミナー
リチウムイオン電池シミュレーションセミナーリチウムイオン電池シミュレーションセミナー
リチウムイオン電池シミュレーションセミナー
 
デザインキット・PV Li-Ion Battery Systemの解説書
デザインキット・PV Li-Ion Battery Systemの解説書 デザインキット・PV Li-Ion Battery Systemの解説書
デザインキット・PV Li-Ion Battery Systemの解説書
 
PV Ni-MH Battery System (Output is AC)
PV Ni-MH Battery System (Output is AC)PV Ni-MH Battery System (Output is AC)
PV Ni-MH Battery System (Output is AC)
 
PV Ni-MH Battery System (Output is DC)
PV Ni-MH Battery System (Output is DC)PV Ni-MH Battery System (Output is DC)
PV Ni-MH Battery System (Output is DC)
 
Simple Model of Lead-Acid Battery Model using PSpice
Simple Model of Lead-Acid Battery Model using PSpiceSimple Model of Lead-Acid Battery Model using PSpice
Simple Model of Lead-Acid Battery Model using PSpice
 
Evaluation Report of TL431BILP
Evaluation Report of TL431BILPEvaluation Report of TL431BILP
Evaluation Report of TL431BILP
 
SPICE MODEL of MSE-1500 in SPICE PARK
SPICE MODEL of MSE-1500 in SPICE PARKSPICE MODEL of MSE-1500 in SPICE PARK
SPICE MODEL of MSE-1500 in SPICE PARK
 
SPICE MODEL of SX310 , PSpice Model in SPICE PARK
SPICE MODEL of SX310 , PSpice Model in SPICE PARKSPICE MODEL of SX310 , PSpice Model in SPICE PARK
SPICE MODEL of SX310 , PSpice Model in SPICE PARK
 
SPICE MODEL of MSE-3000 in SPICE PARK
SPICE MODEL of MSE-3000 in SPICE PARKSPICE MODEL of MSE-3000 in SPICE PARK
SPICE MODEL of MSE-3000 in SPICE PARK
 
SPICE MODEL of CM600HA-24H (Professional+FWDS Model) in SPICE PARK
SPICE MODEL of CM600HA-24H (Professional+FWDS Model) in SPICE PARKSPICE MODEL of CM600HA-24H (Professional+FWDS Model) in SPICE PARK
SPICE MODEL of CM600HA-24H (Professional+FWDS Model) in SPICE PARK
 
鉛蓄電池のスパイスモデル
鉛蓄電池のスパイスモデル鉛蓄電池のスパイスモデル
鉛蓄電池のスパイスモデル
 
SPICE MODEL of MSE-1000 in SPICE PARK
SPICE MODEL of MSE-1000 in SPICE PARKSPICE MODEL of MSE-1000 in SPICE PARK
SPICE MODEL of MSE-1000 in SPICE PARK
 
Manual dcout web
Manual dcout webManual dcout web
Manual dcout web
 
Manual acout web
Manual acout webManual acout web
Manual acout web
 
GP Batetry GP40AAAM Datenblatt Datasheed
GP Batetry GP40AAAM Datenblatt DatasheedGP Batetry GP40AAAM Datenblatt Datasheed
GP Batetry GP40AAAM Datenblatt Datasheed
 
SPICE MODEL of MSE-2000 in SPICE PARK
SPICE MODEL of MSE-2000 in SPICE PARKSPICE MODEL of MSE-2000 in SPICE PARK
SPICE MODEL of MSE-2000 in SPICE PARK
 
SPICE MODEL of MSE-500 in SPICE PARK
SPICE MODEL of MSE-500 in SPICE PARKSPICE MODEL of MSE-500 in SPICE PARK
SPICE MODEL of MSE-500 in SPICE PARK
 
PUTのスパイスモデル
PUTのスパイスモデルPUTのスパイスモデル
PUTのスパイスモデル
 
SPICE MODEL of 2SK3938 (Standard+BDS Model) in SPICE PARK
SPICE MODEL of 2SK3938 (Standard+BDS Model) in SPICE PARKSPICE MODEL of 2SK3938 (Standard+BDS Model) in SPICE PARK
SPICE MODEL of 2SK3938 (Standard+BDS Model) in SPICE PARK
 
SPICE MODEL of PC111LY in SPICE PARK
SPICE MODEL of PC111LY in SPICE PARKSPICE MODEL of PC111LY in SPICE PARK
SPICE MODEL of PC111LY in SPICE PARK
 

Más de Tsuyoshi Horigome

Update 46 models(Solar Cell) in SPICE PARK(MAY2024)
Update 46 models(Solar Cell) in SPICE PARK(MAY2024)Update 46 models(Solar Cell) in SPICE PARK(MAY2024)
Update 46 models(Solar Cell) in SPICE PARK(MAY2024)Tsuyoshi Horigome
 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )Tsuyoshi Horigome
 
Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)
Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)
Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)Tsuyoshi Horigome
 
SPICE PARK APR2024 ( 6,747 SPICE Models )
SPICE PARK APR2024 ( 6,747 SPICE Models )SPICE PARK APR2024 ( 6,747 SPICE Models )
SPICE PARK APR2024 ( 6,747 SPICE Models )Tsuyoshi Horigome
 
Update 31 models(Diode/General ) in SPICE PARK(MAR2024)
Update 31 models(Diode/General ) in SPICE PARK(MAR2024)Update 31 models(Diode/General ) in SPICE PARK(MAR2024)
Update 31 models(Diode/General ) in SPICE PARK(MAR2024)Tsuyoshi Horigome
 
SPICE PARK MAR2024 ( 6,725 SPICE Models )
SPICE PARK MAR2024 ( 6,725 SPICE Models )SPICE PARK MAR2024 ( 6,725 SPICE Models )
SPICE PARK MAR2024 ( 6,725 SPICE Models )Tsuyoshi Horigome
 
Update 29 models(Solar cell) in SPICE PARK(FEB2024)
Update 29 models(Solar cell) in SPICE PARK(FEB2024)Update 29 models(Solar cell) in SPICE PARK(FEB2024)
Update 29 models(Solar cell) in SPICE PARK(FEB2024)Tsuyoshi Horigome
 
SPICE PARK FEB2024 ( 6,694 SPICE Models )
SPICE PARK FEB2024 ( 6,694 SPICE Models )SPICE PARK FEB2024 ( 6,694 SPICE Models )
SPICE PARK FEB2024 ( 6,694 SPICE Models )Tsuyoshi Horigome
 
Circuit simulation using LTspice(Case study)
Circuit simulation using LTspice(Case study)Circuit simulation using LTspice(Case study)
Circuit simulation using LTspice(Case study)Tsuyoshi Horigome
 
Mindmap of Semiconductor sales business(15FEB2024)
Mindmap of Semiconductor sales business(15FEB2024)Mindmap of Semiconductor sales business(15FEB2024)
Mindmap of Semiconductor sales business(15FEB2024)Tsuyoshi Horigome
 
2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice
2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice
2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspiceTsuyoshi Horigome
 
PSpice simulation of power supply for TI is Error
PSpice simulation of power supply  for TI is ErrorPSpice simulation of power supply  for TI is Error
PSpice simulation of power supply for TI is ErrorTsuyoshi Horigome
 
IGBT Simulation of Results from Rgext or Rgint
IGBT Simulation of Results from Rgext or RgintIGBT Simulation of Results from Rgext or Rgint
IGBT Simulation of Results from Rgext or RgintTsuyoshi Horigome
 
Electronic component sales method centered on alternative proposals
Electronic component sales method centered on alternative proposalsElectronic component sales method centered on alternative proposals
Electronic component sales method centered on alternative proposalsTsuyoshi Horigome
 
Electronic component sales method focused on new hires
Electronic component sales method focused on new hiresElectronic component sales method focused on new hires
Electronic component sales method focused on new hiresTsuyoshi Horigome
 
Mindmap(electronics parts sales visions)
Mindmap(electronics parts sales visions)Mindmap(electronics parts sales visions)
Mindmap(electronics parts sales visions)Tsuyoshi Horigome
 
Chat GPTによる伝達関数の導出
Chat GPTによる伝達関数の導出Chat GPTによる伝達関数の導出
Chat GPTによる伝達関数の導出Tsuyoshi Horigome
 
伝達関数の理解(Chatgpt)
伝達関数の理解(Chatgpt)伝達関数の理解(Chatgpt)
伝達関数の理解(Chatgpt)Tsuyoshi Horigome
 
DXセミナー(2024年1月17日開催)のメモ
DXセミナー(2024年1月17日開催)のメモDXセミナー(2024年1月17日開催)のメモ
DXセミナー(2024年1月17日開催)のメモTsuyoshi Horigome
 
0Ω抵抗を評価ボードで採用する理由は何ですか?
0Ω抵抗を評価ボードで採用する理由は何ですか?0Ω抵抗を評価ボードで採用する理由は何ですか?
0Ω抵抗を評価ボードで採用する理由は何ですか?Tsuyoshi Horigome
 

Más de Tsuyoshi Horigome (20)

Update 46 models(Solar Cell) in SPICE PARK(MAY2024)
Update 46 models(Solar Cell) in SPICE PARK(MAY2024)Update 46 models(Solar Cell) in SPICE PARK(MAY2024)
Update 46 models(Solar Cell) in SPICE PARK(MAY2024)
 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )
 
Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)
Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)
Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)
 
SPICE PARK APR2024 ( 6,747 SPICE Models )
SPICE PARK APR2024 ( 6,747 SPICE Models )SPICE PARK APR2024 ( 6,747 SPICE Models )
SPICE PARK APR2024 ( 6,747 SPICE Models )
 
Update 31 models(Diode/General ) in SPICE PARK(MAR2024)
Update 31 models(Diode/General ) in SPICE PARK(MAR2024)Update 31 models(Diode/General ) in SPICE PARK(MAR2024)
Update 31 models(Diode/General ) in SPICE PARK(MAR2024)
 
SPICE PARK MAR2024 ( 6,725 SPICE Models )
SPICE PARK MAR2024 ( 6,725 SPICE Models )SPICE PARK MAR2024 ( 6,725 SPICE Models )
SPICE PARK MAR2024 ( 6,725 SPICE Models )
 
Update 29 models(Solar cell) in SPICE PARK(FEB2024)
Update 29 models(Solar cell) in SPICE PARK(FEB2024)Update 29 models(Solar cell) in SPICE PARK(FEB2024)
Update 29 models(Solar cell) in SPICE PARK(FEB2024)
 
SPICE PARK FEB2024 ( 6,694 SPICE Models )
SPICE PARK FEB2024 ( 6,694 SPICE Models )SPICE PARK FEB2024 ( 6,694 SPICE Models )
SPICE PARK FEB2024 ( 6,694 SPICE Models )
 
Circuit simulation using LTspice(Case study)
Circuit simulation using LTspice(Case study)Circuit simulation using LTspice(Case study)
Circuit simulation using LTspice(Case study)
 
Mindmap of Semiconductor sales business(15FEB2024)
Mindmap of Semiconductor sales business(15FEB2024)Mindmap of Semiconductor sales business(15FEB2024)
Mindmap of Semiconductor sales business(15FEB2024)
 
2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice
2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice
2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice
 
PSpice simulation of power supply for TI is Error
PSpice simulation of power supply  for TI is ErrorPSpice simulation of power supply  for TI is Error
PSpice simulation of power supply for TI is Error
 
IGBT Simulation of Results from Rgext or Rgint
IGBT Simulation of Results from Rgext or RgintIGBT Simulation of Results from Rgext or Rgint
IGBT Simulation of Results from Rgext or Rgint
 
Electronic component sales method centered on alternative proposals
Electronic component sales method centered on alternative proposalsElectronic component sales method centered on alternative proposals
Electronic component sales method centered on alternative proposals
 
Electronic component sales method focused on new hires
Electronic component sales method focused on new hiresElectronic component sales method focused on new hires
Electronic component sales method focused on new hires
 
Mindmap(electronics parts sales visions)
Mindmap(electronics parts sales visions)Mindmap(electronics parts sales visions)
Mindmap(electronics parts sales visions)
 
Chat GPTによる伝達関数の導出
Chat GPTによる伝達関数の導出Chat GPTによる伝達関数の導出
Chat GPTによる伝達関数の導出
 
伝達関数の理解(Chatgpt)
伝達関数の理解(Chatgpt)伝達関数の理解(Chatgpt)
伝達関数の理解(Chatgpt)
 
DXセミナー(2024年1月17日開催)のメモ
DXセミナー(2024年1月17日開催)のメモDXセミナー(2024年1月17日開催)のメモ
DXセミナー(2024年1月17日開催)のメモ
 
0Ω抵抗を評価ボードで採用する理由は何ですか?
0Ω抵抗を評価ボードで採用する理由は何ですか?0Ω抵抗を評価ボードで採用する理由は何ですか?
0Ω抵抗を評価ボードで採用する理由は何ですか?
 

Último

Tata AIG General Insurance Company - Insurer Innovation Award 2024
Tata AIG General Insurance Company - Insurer Innovation Award 2024Tata AIG General Insurance Company - Insurer Innovation Award 2024
Tata AIG General Insurance Company - Insurer Innovation Award 2024The Digital Insurer
 
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Drew Madelung
 
How to convert PDF to text with Nanonets
How to convert PDF to text with NanonetsHow to convert PDF to text with Nanonets
How to convert PDF to text with Nanonetsnaman860154
 
The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024Rafal Los
 
Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)wesley chun
 
Slack Application Development 101 Slides
Slack Application Development 101 SlidesSlack Application Development 101 Slides
Slack Application Development 101 Slidespraypatel2
 
08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking MenDelhi Call girls
 
08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking Men08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking MenDelhi Call girls
 
CNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of ServiceCNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of Servicegiselly40
 
A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)Gabriella Davis
 
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptxHampshireHUG
 
Data Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt RobisonData Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt RobisonAnna Loughnan Colquhoun
 
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking MenDelhi Call girls
 
Exploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone ProcessorsExploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone Processorsdebabhi2
 
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationFrom Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationSafe Software
 
Presentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreterPresentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreternaman860154
 
Artificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and MythsArtificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and MythsJoaquim Jorge
 
Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024The Digital Insurer
 
Understanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdfUnderstanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdfUK Journal
 
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdfThe Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdfEnterprise Knowledge
 

Último (20)

Tata AIG General Insurance Company - Insurer Innovation Award 2024
Tata AIG General Insurance Company - Insurer Innovation Award 2024Tata AIG General Insurance Company - Insurer Innovation Award 2024
Tata AIG General Insurance Company - Insurer Innovation Award 2024
 
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
 
How to convert PDF to text with Nanonets
How to convert PDF to text with NanonetsHow to convert PDF to text with Nanonets
How to convert PDF to text with Nanonets
 
The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024
 
Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)
 
Slack Application Development 101 Slides
Slack Application Development 101 SlidesSlack Application Development 101 Slides
Slack Application Development 101 Slides
 
08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men
 
08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking Men08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking Men
 
CNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of ServiceCNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of Service
 
A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)
 
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
 
Data Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt RobisonData Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt Robison
 
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
 
Exploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone ProcessorsExploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone Processors
 
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationFrom Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
 
Presentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreterPresentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreter
 
Artificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and MythsArtificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and Myths
 
Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024
 
Understanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdfUnderstanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdf
 
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdfThe Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
 

PSpiceによるバッテリー回路アプリケーション

  • 1. PSpiceによるバッテリー回路アプリケーション 株式会社ビー・テクノロジー http://www.bee-tech.com/ horigome@bee-tech.com Copyright (C) Bee Technologies Inc. 2010 1
  • 2. EDA Designer Technology Device of Model Simulation Copyright (C) Bee Technologies Inc. 2010 2
  • 3. モデル デザインキット 回路方式のテンプレート 回路解析シミュレータ PSpice (ABMライブラリーが豊富) ABM=Analog Behavior Model Copyright (C) Bee Technologies Inc. 2010 3
  • 4. http://www.bee-tech.com/ Copyright (C) Bee Technologies Inc. 2010 4
  • 7. バッテリーのスパイスモデルの推移 放電特性 放電特性 充電特性 付加抵抗 付加抵抗 + 一定 可変 放電特性 リチウムイオン電池 ニッケル水素電池 鉛蓄電池 Copyright (C) Bee Technologies Inc. 2010 7
  • 8. Copyright (C) Bee Technologies Inc. 2010 8
  • 9. Design Kit PV Li-Ion Battery System Copyright (C) Bee Technologies Inc. 2010 9
  • 10. 1.1 Lithium-Ion Batteries Pack Specification BAYSUN’s Lithium-Ion Batteries Pack : Power Battery Plus (PBT-BAT-0001) • Capacity............................65[Wh], 4400[mAh] (Approximately) • Rated Current....................3[A] • Input Voltage.......................20.5 [Vdc] • Output Voltage....................12.8 ~ 16.4 [Vdc] ( 4 cells ) • Charging time......................5[hours] (Approximately) Copyright (C) Bee Technologies Inc. 2010 10
  • 11. 1.2 Discharge Time Characteristics 18V D1 DMOD PARAMETERS: Voch 16V rate = 1 16.8Vdc CAh = 4400m 0 Hi 0.2C ( 880 mA ) 0 C1 U1 14V 0.5C ( 2200 mA ) IN+ OUT+ 1n + - PBT-BAT-0001 IN- OUT- G1 0 TSCALE = 3600 GVALUE SOC1 = 100 1C ( 4400 mA ) limit(V(%IN+, %IN-)/0.01, 0, rate*CAh ) 12V TSCALE=3600 means 0 time Scale (Simulation time : Real time) is Batteries Pack Model Parameters 1:3600 10V NS (number of batteries in series) = 4 cells C (capacity) = 4400 mA SOC1 (initial state of charge) = 100% 8V TSCALE (time scale) , simulation : real time 0s 1.0s 2.0s 3.0s 4.0s 5.0s 6.0s 1 : 3600s or V(Hi) 1s : 1h Time Discharge Rate : 0.2C(880mA), 0.5C(2200mA), and 1C(4400mA) Copyright (C) Bee Technologies Inc. 2010 11
  • 12. 1.3 Single Cell Discharge Characteristics Single cell Measurement Simulation 4.50 0.2C ( 880mA ) 0.5C ( 2200mA ) 1.0C ( 4400mA ) 4.00 VOLTAGE [V] 3.50 3.00 2.50 2.00 100 90 80 70 60 50 40 30 20 10 0 -10 SOC [%] • Single cell discharge characteristics are compared between measurement data and simulation data. Copyright (C) Bee Technologies Inc. 2010 12
  • 13. 1.4 Charge Time Characteristics SOC [%] D1 100V PARAMETERS: rate = 0.2 DMOD CAh = 4400m 80V G1 Voch GVALUE 16.8Vdc Limit(V(%IN+, %IN-)/0.1, 0, rate*CAh ) 0 Hi 60V OUT+ OUT- C1 U1 0 40V 1n + - PBT-BAT-0001 IN+ IN- 0 TSCALE = 3600 20V SOC1 = 0 Vin 20.5Vdc SEL>> 0V Vbatt [V] ICharge [A] V(X_U1.SOC) 0 18V 5.0A 1 2 Batteries Pack Model Parameters 16V 4.0A NS (number of batteries in series) = 4 cells C (capacity) = 4400 mA 14V 3.0A SOC1 (initial state of charge) = 100% TSCALE (time scale) , simulation : real time 12V 2.0A 1 : 3600s or 1s : 1h 10V 1.0A Charger Adaptor >> 8V 0A Input Voltage = 20.5 Vdc 0s 1.0s 2.0s 3.0s 4.0s 5.0s 6.0s 7.0s Input Current = 880 mA(max.) 1 V(Hi) 2 I(U1:PLUS) Time Copyright (C) Bee Technologies Inc. 2010 13
  • 14. 2.1 Solar Cells Specification BP Solar’s photovoltaic module : SX330 • Maximum power (Pmax)..............30[W] • Voltage at Pmax (Vmp).............16.8[V] • Current at Pmax (Imp)...............1.78[A] 502mm • Short-circuit current (Isc)...........1.94[A] • Open-circuit voltage(Voc)...........21.0[V] 595mm Copyright (C) Bee Technologies Inc. 2010 14
  • 15. 2.2 Output Characteristics vs. Incident Solar Radiation SX330 Output Characteristics vs. Incident Solar Radiation 2.5A SOL=1 2.0A Current (A) 1.5A SOL=0.5 + 1.0A U1 0.5A SOL=0.16 SX330 0A SX330 SOL = 1 I(Isence) 40W SOL=1 30W Power (W) 20W Parameter, SOL is added as SOL=0.5 normalized incident radiation, 10W SOL=0.16 where SOL=1 for AM1.5 conditions SEL>> 0W 0V 5V 10V 15V 20V 25V 30V I(Isence)* V(V1:+) V_V1 Voltage (V) Copyright (C) Bee Technologies Inc. 2010 15
  • 16. 3. Solar Cell Battery Charger • Solar Cell charges the Li-ion batteries pack (PBT-BAT-001) with direct connect technique. Choose the solar cell that is able to provide current at charging rate or more with the maximum power voltage 100V (Vmp) nears the batteries pack charging voltage. 80V • PBT-BAT-0001 (Li-ion batteries pack) 60V – Charging time is approximately 5 hours with charging rate 0.2C or 880mA 40V – Voltage during charging with 0.2C is between 14.7 to 16.9 V 20V 0V V(X_U1.SOC) 18V 5.0A 1 2 16.9 V 16V 4.0A 14.7 V 14V 3.0A 12V 2.0A 0.2C or 880mA 10V 1.0A SEL>> 8V 0A 0s 1.0s 2.0s 3.0s 4.0s 5.0s 6.0s 7.0s 1 V(Hi) 2 I(U1:PLUS) Time Copyright (C) Bee Technologies Inc. 2010 16
  • 17. 3.1 Concept of Simulation PV Li-Ion Battery Charger Circuit Over Voltage Protection Circuit Short circuit current ISC depends on condition: SOL 16.8V Clamp Circuit Photovoltaic Lithium-Ion Module Batteries Pack SX 330 (BP Solar) PBT-BAT-0001 (BAYSUN) Vmp=16.8V DC12.8~16.4V (4 cells) Pmax=30W 4400mAh Copyright (C) Bee Technologies Inc. 2010 17
  • 18. 3.2 PV Li-Ion Battery Charger Circuit D1 PARAMETERS: DMOD sol = 1 Voch 16.8Vdc pv 0 Hi + C1 U1 0 U2 1n + - PBT-BAT-0001 SX330 SX330 SOL = {sol} 0 TSCALE = 3600 SOC1 = 0 0 • Input value between 0-1 in the “PARAMETERS: sol = ” to set the normalized incident radiation, where SOL=1 for AM1.5 conditions. Copyright (C) Bee Technologies Inc. 2010 18
  • 19. 3.3 Charging Time Characteristics vs. Weather Condition 100V 80V 60V 40V sol = 1.00 20V sol = 0.50 sol = 0.16 0V 0s 1s 2s 3s 4s 5s 6s 7s 8s 9s 10s V(X_U1.SOC) Time • Simulation result shows the charging time for sol = 1, 0.5, and 0.16. Copyright (C) Bee Technologies Inc. 2010 19
  • 20. 3.4 Concept of Simulation PV Li-Ion Battery Charger Circuit + Constant Current Over Voltage Protection Circuit Short circuit current ISC depends on condition: SOL 16.8V Clamp Circuit Constant Photovoltaic Current Lithium-Ion Module Control Batteries Pack Circuit SX 330 (BP Solar) Icharge=0.2C (880mA) PBT-BAT-0001 (BAYSUN) Vmp=16.8V DC12.8~16.4V (4 cells) Pmax=30W 4400mAh Copyright (C) Bee Technologies Inc. 2010 20
  • 21. 3.5 Constant Current PV Li-Ion Battery Charger Circuit D1 PARAMETERS: PARAMETERS: DMOD sol = 1 rate = 0.2 CAh = 4400m Voch 16.8Vdc pv 0 Hi OUT+ OUT- + C1 U1 0 U2 1n + - PBT-BAT-0001 SX330 IN+ IN- SX330 SOL = {sol} 0 TSCALE = 3600 G1 SOC1 = 0 GVALUE 0 Limit(V(%IN+, %IN-)/0.1, 0, rate*CAh) • Input the battery capacity (Ah) and charging current rate (e.g. 0.2*CAh) in the • “PARAMETERS: CAh = 4400m and rate = 0.2 ” to set the charging current. Copyright (C) Bee Technologies Inc. 2010 21
  • 22. 3.6 Charging Time Characteristics vs. Weather Condition (Constant Current) 100V 80V 60V 40V sol = 1.00 20V sol = 0.50 sol = 0.16 0V 0s 1s 2s 3s 4s 5s 6s 7s 8s 9s 10s V(X_U1.SOC) Time • Simulation result shows the charging time for sol = 1, 0.5, and 0.16. If PV can generate current more than the constant charge rate (0.2A), battery can be fully charged in about 5 hour. Copyright (C) Bee Technologies Inc. 2010 22
  • 23. 4.1 Concept of Simulation PV Li-Ion Battery System in 24hr. Over Voltage Protection The model contains 24hr. Circuit solar power data (example). 16.8V Clamp Circuit Photovoltaic Lithium-Ion Module Batteries Pack Low-Voltage PBT-BAT-0001 (BAYSUN) SX 330 (BP Solar) Shutdown DC12.8~16.4V (4 cells) Vmp=16.8V Circuit 4400mAh Pmax=30W Vopen= (V) Vclose= (V) DC/DC DC Load Converter VIN=10~18V VIN = 5V VOUT=5V IIN = 1.5A Copyright (C) Bee Technologies Inc. 2010 23
  • 24. 4.2 Short-Circuit Current vs. Time (24hr.) The model contains 24hr. solar power data (example). 2.0A 1.6A + 1.2A U2 SX330 SX330_24H_TS3600 0.8A 0.4A 0A 0s 4s 8s 12s 16s 20s 24s I(X_U1.I_I1) Time • Short-circuit current vs. time characteristics of photovoltaic module SX330 for 24hours as the solar power profile (example) is included to the model. Copyright (C) Bee Technologies Inc. 2010 24
  • 25. 4.3 PV-Battery System Simulation Circuit Solar cell model with D1 24hr. solar power Set initial battery data. voltage, IC=16.4, for DMOD convergence aid. Voch 16.8Vdc pv 0 D2 batt DMOD C1 + 100n U1 0 Low-Voltage Shutdown Circuit IC = 16.4 + - PBT-BAT-0001 U2 SX330 SX330_24H_TS3600 VON = 0.7 0 TSCALE = 3600 VOFF = 0.3 E1 SOC1 = 70 RON = 0.01 Ronof f EVALUE 0 ROFF = 10MEG 100 IF(V(batt1)>V(dchth),5,0) Ronof f 1 + Lctrl batt1 + OUT+ IN+ C3 - - OUT- IN- dchth 100 10n S2 Conof f 1n SOC1 value is initial 0 OUT+ IN+ S IC = 5 OUT- IN- Conof f 1 State Of Charge of the 100n PARAMETERS: E2 battery, is set as 70% Lopen = 14 EVALUE IF( V(lctrl) > 0.25 ,Lopen ,Lclose) of full voltage. Lclose = 15.2 0 Lopen value is load DC/DC Converter 7.5W Load shutdown voltage. (5Vx1.5A). PARAMETERS: Lclose value is load n=1 out_dc reconnect voltage IN OUT G1 Iomax I1 E3 IN+ OUT+ 1.5Adc IN+ OUT+ IN+ OUT+ IN- OUT- IN- OUT- IN- OUT- GVALUE ecal_Iomax EVALUE EVALUE IF( I(OUT)-V(Iomax) > 0 ,n*V(%IN+, %IN-)*I(IN)/(I(OUT)+1u), 5 ) 0 n*V(%IN+, %IN-)*I(IN)/5 Limit( V(%IN+, %IN-)/0.1, 1m, 5*I(out)/(n*limit(V(%IN+, %IN-),10,25)) ) 0 DCDCコンバータの簡易モデル 0  Simulation at 15W load, change I1 from 1.5A to 3A DCACコンバータの簡易モデルもあります。 Copyright (C) Bee Technologies Inc. 2010 25
  • 26. 4.3.1 Simulation Result (SOC1=100) PV generated current 1.0A 0A I(pv) PV module charge the battery 17.5V 2.0A 1 2 Battery voltage 15.0V 0A Battery current >> 12.5V -2.0A Battery supplies current when solar 1 V(batt) 2 I(U1:PLUS) power drops. 100V 75V Battery SOC SOC1=100 Fully charged, 50V stop charging 25V 0V V(X_U1.SOC) 7.5V 600mA DC output voltage 1 2 5.0V DC/DC input current 500mA 2.5V SEL>> 0V 400mA 0s 4s 8s 12s 16s 20s 24s 1 V(out_dc) 2 I(IN) Charging Time time • C1: IC=16.4 • Run to time: 24s (24hours in real world) • .Options ITL4=1000 • Step size: 0.01s Copyright (C) Bee Technologies Inc. 2010 26
  • 27. 4.3.2 Simulation Result (SOC1=70) PV generated current 1.0A 0A I(pv) PV module charge the battery 17.5V 2.0A 1 2 V=Lopen (7.6750,15.199) Battery voltage 15.0V 0A Battery current V=Lclose SEL>> (5.1850,14.000) 12.5V -2.0A Battery supplies current when solar 1 V(batt) 2 I(U1:PLUS) power drops. 100V SOC1=70 75V Battery SOC Fully charged, 50V stop charging 25V 10.152m,69.889) 0V V(X_U1.SOC) 7.5V 1.0A Shutdown DC output voltage 1 2 5.0V DC/DC input current 0.5A 2.5V >> Reconnect 0V 0A 0s 4s 8s 12s 16s 20s 24s 1 V(out_dc) 2 I(IN) Charging Time time • C1: IC=16.4 • Run to time: 24s (24hours in real world) • .Options ITL4=1000 • Step size: 0.01s • SKIPBP Copyright (C) Bee Technologies Inc. 2010 27
  • 28. 4.3.3 Simulation Result (SOC1=30) PV generated current 1.0A 0A I(pv) PV module charge the battery 17.5V 2.0A 1 2 (7.6150,15.193) Battery voltage V=Lopen 15.0V 0A Battery current >> V=Lclose (1.6328,14.004) Battery supplies current when solar 12.5V -2.0A 1 V(batt) 2 I(U1:PLUS) power drops. 100V Battery SOC (12.800m,29.854) Fully charged, SOC1=30 stop charging SEL>> 0V V(X_U1.SOC) 7.5V 1.0A DC output voltage 1 2 5.0V Shutdown DC/DC input current 0.5A 2.5V Reconnect >> 0V 0A 0s 4s 8s 12s 16s 20s 24s 1 V(out_dc) 2 I(IN) Charging time Time • C1: IC=15 • Run to time: 24s (24hours in real world) • .Options ITL4=1000 • Step size: 0.01s • Total job time = 2s Copyright (C) Bee Technologies Inc. 2010 28
  • 29. 4.3.4 Simulation Result (SOC1=10) PV generated current 1.0A 0A I(pv) PV module charge the battery 17.5V 2.0A 1 2 (7.6163,15.200) Battery voltage 15.0V 0A Battery current SEL>> V=Lclose 12.5V -2.0A Battery supplies current when solar 1 V(batt) 2 I(U1:PLUS) power drops. 100V Battery SOC Fully charged, SOC1=10 stop charging 0V V(X_U1.SOC) 7.5V 1.0A DC output voltage 1 2 5.0V Shutdown DC/DC input current 0.5A 2.5V Reconnect >> 0V 0A 0s 4s 8s 12s 16s 20s 24s 1 V(out_dc) 2 I(IN) Charging time Time • C1: IC=14.4 • Run to time: 24s (24hours in real world) • .Options RELTOL=0.01 • Step size: 0.01s • .Options ITL4=1000 • SKIPBP Copyright (C) Bee Technologies Inc. 2010 29
  • 30. 4.3.5 Simulation Result (SOC1=100, IL=3A or 15W load) PV generated current 1.0A 0A I(pv) PV module charge the battery 17.5V 2.0A V=Lopen 1 2 Battery voltage V=Lopen (7.6086,15.200) (3.8973,14.000) (20.473,14.003) 15.0V 0A Battery current SEL>> 12.5V -2.0A 1 V(batt) 2 I(U1:PLUS) Battery supplies current when solar 100V power drops. 75V Battery SOC SOC1=100 Fully charged, 50V stop charging 25V 0V V(X_U1.SOC) 7.5V 2.0A DC output voltage 1 2 Shutdown 5.0V Shutdown DC/DC input current 1.0A 2.5V >> 0V 0A 0s 4s 8s 12s 16s 20s 24s 1 V(out_dc) 2 I(IN) Charging Time time • C1: IC=16.4 • Run to time: 24s (24hours in real world) • .Options ITL4=1000 • Step size: 0.001s Copyright (C) Bee Technologies Inc. 2010 30
  • 31. 4.3.4 Simulation Result (Example of Conclusion) The simulation start from midnight(time=0). The system supplies DC load 7.5W. • If initial SOC is 100%, – this system will never shutdown. • If initial SOC is 70%, – this system will shutdown after 5.185 hours (about 5:11AM.). – system load will reconnect again at 7:40AM (Morning). • If initial SOC is 30%, – this system will shutdown after 1.633 hours (about 1:38AM.). – system load will reconnect again at 7:37AM (Morning). • If initial SOC is 10%, – this system will start shutdown. – this system will reconnect again at 7:37AM (Morning). • With the PV generated current profile, battery will fully charged in about 4.25 hours. Copyright (C) Bee Technologies Inc. 2010 31
  • 32. 4.3.4 Simulation Result (Example of Conclusion) The simulation start from midnight(time=0). The system supplies DC load 15W. • If initial SOC is 100%, – this system will shutdown after 3.897 hours (about 3:54AM.). – system load will reconnect again at 7:37AM (Morning). – this system will shutdown again at 8:28 PM (Night). • With the PV generated current profile, battery will fully charged in about 5.5 hours. Copyright (C) Bee Technologies Inc. 2010 32
  • 33. Bee Technologies Group デバイスモデリング スパイス・パーク(スパイスモデル・ライブラリー) デザインキット デバイスモデリング教材 【本社】 本ドキュメントは予告なき変更をする場合がございます。 ご了承下さい。また、本文中に登場する製品及びサービス 株式会社ビー・テクノロジー の名称は全て関係各社または個人の各国における商標 〒105-0012 東京都港区芝大門二丁目2番7号 7セントラルビル4階 または登録商標です。本原稿に関するお問い合わせは、 代表電話: 03-5401-3851 当社にご連絡下さい。 設立日:2002年9月10日 資本金:8,830万円 【子会社】 お問合わせ先) Bee Technologies Corporation (アメリカ) Siam Bee Technologies Co.,Ltd. (タイランド) info@bee-tech.com Copyright (C) Bee Technologies Inc. 2010 33