SlideShare una empresa de Scribd logo
1 de 61
2DTransformations
3DTransformations
OpenGLTransformation
 The most basic ones
 Translation
 Scaling
 Rotation
 Shear
 And others, e.g., perspective transform, projection, etc
 Basic types of transformations
 Rigid-body: preserves length and angle
 Affine: preserves parallel lines, not angles or lengths
 Free-form: anything goes
 BasicTransformations
 Homogeneous coordinate system
 Composition of transformations
(4,5) (7,5)
Y
XBefore Translation






















































1
*
100
10
01
1
y
x
d
d
y
x
TPP
d
d
T
y
x
P
y
x
P
y
x
y
x
FormsHomogeniou
x’ = x + dx
y’ = y + dy
(7,1) (10,1)
X
Y
Translation by (3,-4)
(4,5) (7,5)
Y
X
(2,5/4) (7/2,5/4)
X
Y
Before Scaling Scaling by (1/2, 1/4)






















y
x
y
x
y
x
sy
sx
y
x
s
s
PPS
ysy
xsx
*
*
*
0
0
*
*
*
Types of Scaling:
Differential ( sx != sy )
Uniform ( sx = sy )

































1
*
100
00
00
1
FormsHomogeniou
y
x
s
s
y
x
y
x
 
 










sin
cos
r
r
v
 









cossinsincos
sinsincoscos
rry
rrx
expand




cossin
sincos
sin
cos
but
yxy
yxx
ry
rx














sin
cos
r
r
v
(5,2) (9,2)
Y
X
(2.1,4.9)
(4.9,7.8)
X
Y
Before Rotation Rotation of 45 deg. w.r.t. origin



















 













1
*
100
0cossin
0sincos
1
FormsHomogeniou
y
x
y
x





















 





cos*sin*
sin*cos*
*
cossin
sincos
*
yx
yx
y
x
PPR
yyx
xyx




cos*sin*
sin*cos*












100
010
001
axis-XaboutReflection
xM
yyxx












100
010
001
axis-YaboutReflection
yM
yyxx
(1,1)
(1,-1)
Y
X
(-1,1) (1,1)
X
Y

































100
01
01
100
01
001
100
010
01
b
a
SHbSH
a
SH xyyx
unit cube
Sheared in X
direction
Sheared in Y
direction
Sheared in both X
and Y direction
y
-
y
x
-
x
),(
-
(sx,sy)
(-θ
-
(θ
(-dx,-dy)
-
(dx,dy)
MM
MM
SS
RR
TT
sysx





1
1
1
)
1
)
1
:RefMirror
:Sclaing
:Rotation
:nTranslaito
11
 Translation, scaling and rotation are expressed
(non-homogeneously) as:
 translation: P = P +T
 Scale: P = S · P
 Rotate: P = R · P
 Composition is difficult to express, since translation
not expressed as a matrix multiplication
 Homogeneous coordinates allow all three to be
expressed homogeneously, using multiplication by 3
 3 matrices
 W is 1 for affine transformations in graphics
 P2d is a projection of Ph onto the w = 1 plane
 So an infinite number of points correspond to :
they constitute the whole line (tx, ty, tw)
x
y
w Ph(x,y,w)
P2d(x,y,1)
w=1
1. Rigid-body Transformation
 Preserves parallelism of lines
 Preserves angle and length
 e.g. any sequence of R() and T(dx,dy)
2. Affine Transformation
 Preserves parallelism of lines
 Doesn’t preserve angle and length
 e.g. any sequence of R(), S(sx,sy) and T(dx,dy)
unit cube 45 deg rotaton Scale in X not in Y










100
2221
1211
y
x
trr
trr
The following Matrix is Orthogonal if the upper left 2X2 matrix has the
following properties
1.A) Each row are unit vector.
sqrt(r11* r11 + r12* r12) = 1
B) Each column are unit vector.
sqrt(c11* c11 + c12* c12) = 1
2.A) Rows will be perpendicular to each other
(r11 , r12 ) . ( r21 , r22) = 0
B) Columns will be perpendicular to each other
(c11 , c12 ) . (c21 ,c22) = 0
e.g. Rotation matrix is orthogonal









 
100
0cossin
0sincos


• Orthogonal Transformation  Rigid-Body Transformation
• For any orthogonal matrix B  B-1 = BT
• In general matrix multiplication is not commutative
• For the following special cases commutativity holds i.e.
M1.M2 = M2.M1
M1 M2
Translate Translate
Scale Scale
Rotate Rotate
Uniform Scale Rotate
• Some non-commutative
Compositions:
 Non-uniform scale, Rotate
 Translate, Scale
 Rotate, Translate
Original
Transitional
Final
Create new affine transformations by multiplying sequences of
the above basic transformations.
q = CBAp
q = ( (CB) A) p = (C (B A))p = C (B (Ap) ) etc.
matrix multiplication is associative.
But to transform many points, best to do
M = CBA
then do q = Mp for any point p to be rendered.
To transform just a point, better to do q = C(B(Ap))
For geometric pipeline transformation, define M and set it up
with the model-view matrix and apply it to any vertex
subsequently defined to its setting.
R,P=
Q(x,y)
P(h,k)
Step 1: Translate P(h,k) to origin
T(-h ,-k)
Q1(x’,y’)
P1 (0,0)
Step 2: Rotate  w.r.t to origin
R*
Q2(x’,y’)
P2 (0,0)
Step 3: Translate (0,0) to P(h,k0)
T(h ,k) *
P3(h,k)
Q3(x’+h, y’ +k)
T(-h ,-k)S(sx,sy)*T(h ,k) *Ssx,sy,P=
(4,3)
(1,1) (4,1)
S3/2,1/2,(1,1)
Step 1: Translate P(h,k) to origin
(4,2)
(0,0) (4,0)
T(-1,-1)
Step 2: Scale S(sx,sy) w.r.t origin
(6,1)
(6,0)(0,0)
S(3/2,1/2)
(7,1)
Step 3: Translate (0,0) to P(h,k)
(7,2)
(1,1)
T(1,1)
Step 1: Translate (0,b) to origin
T(0 ,-b)ML =
Step 2: Rotate - degrees
Step 3: Mirror reflect about X-axis
R(-) *T(0 ,b) *
Step 4: Rotate  degrees
Step 5: Translate origin to (0,b)
M x*R() *
(0,b)
Y
X
t
O
Y
XO
Y
XO
Y
XO
Y
XO
(0,b)
Y
X
t
O
Schaum’s outline series:
Problems:
 4.1
 4.2
 4.3, 4.4, 4.5 => R,P
 4.6, 4.7, 4.8 => Ssx,sy,P
 4.9, 4.10, 4.11, 4.21 => ML
 4.12 => Shearing
1. www.willamette.edu/~gorr/classes/GeneralGraphics/Transforms/transforms2d.htm
2. http://www.cs.sfu.ca/~torsten/Teaching/Cmpt361/LectureNotes/PDF/06_2Dtrans.pdf
Basics of 3D geometry
Basic 3DTransformations
CompositeTransformations
 Thumb points to +ve Z-axis
 Fingers show +ve rotation from X toY
axis
Y
X
Z (out of page)
Y
X
Z (larger z are
away from viewer)
Right-handed orentation Left-handed orentation
 Transformation – is a function that takes a point (or vector) and
maps that point (or vector) into another point (or vector).
 A coordinate transformation of the form:
x’ = axx x + axy y + axz z + bx ,
y’ = ayx x + ayy y + ayz z + by ,
z’ = azx x + azy y + azz z + bz ,
is called a 3D affine transformation.











































11000
'
'
'
z
y
x
baaa
baaa
baaa
w
z
y
x
zzzzyzx
yyzyyyx
xxzxyxx
 The 4th row for affine transformation is always [0 0 0 1].
 Properties of affine transformation:
– translation, scaling, shearing, rotation (or any combination of them)
are examples affine transformations.
– Lines and planes are preserved.
– parallelism of lines and planes are also preserved, but not angles and
length.
PPdddT
dz
dy
dx
z
y
x
d
d
d
zyx
z
y
x
z
y
x










































*),,(
11
*
1000
100
010
001
z
y
x
dzz
dyy
dxx










































1
*
*
*
1
*
1000
000
000
000
*),,(
z
y
x
z
y
x
zyx
sz
sy
sx
z
y
x
s
s
s
PPsssS
Original
scale all axes
scaleY axis
zsz
ysy
xsx
z
y
x
*
*
*









































 


1
cos*sin*
sin*cos*
1
*
1000
0100
00cossin
00sincos
*,
z
yx
yx
z
y
x
PPR k





For 3D-Rotation 2 parameters are
needed
 Angle of rotation
 Axis of rotation
Rotation about z-axis:










































1
cos*sin*
sin*cos*
1
*
1000
0cos0sin
0010
0sin0cos
*,





zx
y
zx
z
y
x
PPR j










































1
cos*sin*
sin*cos*
1
*
1000
0cossin0
0sincos0
0001
*,





zy
zy
x
z
y
x
PPR i
About x-axis
About y-axis









































1
*
*
1
*
1000
0100
010
001
*),(
z
shzy
shzx
z
y
x
sh
sh
PPshshSH
y
x
y
x
yxxy
y
z
x
Some of the composite transformations
to be studied are:
 AV,N = aligning a vector V with a vector N
 R,L = rotation about an axis L( V, P )
 Ssx,sy,P= scaling w.r.t. point P
Av = R,i
V = aI + bJ + cK
x
y
z
b
a
c
k
22
λ
λ
cos
λ
sin
byaxis-about xRotate:1Step
cb
c
b












b
|V|

x
y
z
b
a
k
( 0, b,c)
b
|V|

x
y
z
a
k
|V|



( a, 0,)
( 0, 0,)
( 0, b,c)
Av = R,iR-,j *
22
λ
λ
cos
λ
sin
byaxis-about xRotate:1Step
cb
c
b












222
|V|
|V|
λ
)cos(
|V|
)sin(
-byaxis-yaboutVRotate:2Step
cba
a














P( a, b, c)
b
x
y
z
b
a
c
k
|V|
( a, 0,)
( 0, b,c)b
x
y
z
b
a
c
|V|
( 0, 0,|V|)
( 0, b,c)
a


 AV
-1 = AV
T
 AV,N = AN
-1 * AV














1000
0
00
0
λλ
λ
-
λ
-λ
V
c
V
b
V
a
bc
V
ac
V
ab
V
VA
Let the axis L be represented by vectorV and
passing through point P
1. Translate P to the origin
2. AlignV with vector k
3. Rotate  about k
4. Reverse step 2
5. Reverse step 1
R,L = T-PAV *R,k *AV
-1 *T-P
-1 *
V
P

Q
Q'
L
z
x
y
k
Let the plane be represented by plane normal N
and a point P in that plane
x
y
z
Let the plane be represented by plane normal N
and a point P in that plane
1. Translate P to the origin
MN,P = T-P
x
y
z
Let the plane be represented by plane normal N
and a point P in that plane
1. Translate P to the origin
2. Align N with vector k
MN,P = T-PAN *
x
y
z
Let the plane be represented by plane normal N
and a point P in that plane
1. Translate P to the origin
2. Align N with vector k
3. Reflect w.r.t xy-plane
MN,P = T-PAN *S1,1,-1 *
x
y
z
x
y
z
Let the plane be represented by plane normal N
and a point P in that plane
1. Translate P to the origin
2. Align N with vector k
3. Reflect w.r.t xy-plane
4. Reverse step 2
MN,P = T-PAN *S1,1,-1 *AN
-1 *
Let the plane be represented by plane normal N
and a point P in that plane
1. Translate P to the origin
2. Align N with vector k
3. Reflect w.r.t xy-plane
4. Reverse step 2
5. Reverse step 1
MN,P = T-PAN *S1,1,-1 *AN
-1 *T-P
-1 *
x
y
z
 The CompositeTransform must have
– Translation of P1 to Origin T
z
x
y
3P
1P
2PT
– Some Combination of Rotations  R
R
x
y
z 2P 
3P 
1P 
z
x
y
3P
1P
2P
Fig. 1 Fig. 2
 Translate points in fig. 1 into points in fig 2 such that:
– P1 is at Origin
– P1P2 is along positive z-axis
– P1P3 lies in positive y-axis half of yz plane
xx
zyx
zyx
zzz
yyy
xxx
Rx.xR
RRR
RRR
zRyRxR
zRyRxR
zRyRxR
rrr
rrr
rrr
R
R
vextorofcomponent:Note
othereachto
larperpendicuareii)
vectorsunitarei)
Transformbody-RigidisR
beLet























,,
,,
...
...
...
333231
232221
131211
 
z
z
z
z
zyx
zyx
zyx
TT
R
zR
yR
xR
zRzRzR
yRyRyR
xRxRxR
RRkR










































 
21
21
21
21
21
21
PP
PP
PP
PP
PP
PP
.
.
.
1
0
0
...
...
...
ˆ 1

R
z
x
y
3P
1P
2P
x
y
z 2P 
3P 
1P 
Rz
kˆ
k
PP
PP
R
axis-zalongPPalignsR
21
21
21
ˆ




R
x
y
z 2P 
3P 
1P 
z
x
y
3P
1P 2P
 
x
2131
2131
x
x
x
2131
2131
zyx
zyx
zyx
T
2131
2131T
R
PPPP
PPPP
zR
yR
xR
PPPP
PPPP
zRzRzR
yRyRyR
xRxRxR
RR
PPPP
PPPP
iR










































 
.
.
.
0
0
1
...
...
...
ˆ 1
 Rx
iˆ
iR
R
ˆ




2131
2131
2131
PPPP
PPPP
axis-xalongPPPPaligns
Rz
kˆ
 
yxz
y
y
y
xz
zyx
zyx
zyx
T
xz
T
RRR
zR
yR
xR
RR
zRzRzR
yRyRyR
xRxRxR
RRRRjR


































 
.
.
.
0
1
0
...
...
...
ˆ 1

  jR
R
ˆ

xz
xz
RR
axis-yalongRRaligns
R
x
y
z 2P 
3P 
1P 
z
x
y
3P
1P 2P
Rx
iˆ
Rz
kˆ
Ry
jˆ
Schaum’s outline series:
Problems:
 6.1
 6.2, 6.5, 6.9, 6.10, 6.11, 6.12  Av
 6.3, 6.4  R,L
 6.6, 6.7, 6.8  MN,P
OpenGL transformation commands
Transformation Order
Hierarchical Modeling
 OpenGL uses 3 stacks to maintain
transformation matrices:
 Model &View transformation matrix stack
 Projection matrix stack
 Texture matrix stack
 You can load, push and pop the stack
 The top most matrix from each stack is
applied to all graphics primitive until it is
changed
M N
Model-View
Matrix Stack
Projection
Matrix Stack
Graphics
Primitives
(P)
Output
N•M•P
 Specify current matrix (stack) :
 void glMatrixMode(GLenum mode)
▪ Mode : GL_MODELVIEW, GL_PROJECTION,
GL_TEXTURE
 Initialize current matrix.
 void glLoadIdentity(void)
▪ Sets the current matrix to 4X4 identity matirx
 void glLoadMatrix{f|d}(cost TYPE *M)
▪ Sets the current matrix to 4X4 matrix specified by M
Note: current matrix  Top most matrix of the current
matrix
stack
A
B
C
A
B
I
A
B
M
glLoadMatrix(M)
 ConcatenateCurrent Matrix:
 void glMultMatrix(constTYPE *M)
▪ Multiplies current matrix C, by M. i.e. C = C*M
 Caveat: OpenGL matrices are stored in
column major order.
 Best use utility function glTranslate, glRotate,
glScale for common transformation tasks.












161284
151173
141062
13951
mmmm
mmmm
mmmm
mmmm
 Each time an OpenGL transformation M is called the
current MODELVIEW matrix C is altered:
Cvv  CMvv 
glTranslatef(1.5, 0.0, 0.0);
glRotatef(45.0, 0.0, 0.0, 1.0);
CTRvv 
Note: v is any vertex placed in rendering pipeline v’ is the transformed
vertex from v.
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glTranslatef(...);
glRotatef(...);
glScalef(...);
gluCylinder(...);
As a Global System
 Objects moves but
coordinates stay the
same
 Think of transformation
in reverse order as they
appear in code
As a Local System
 Objects moves and
coordinates move with it
 Think of transformation
in same order as they
appear in code
There is aWorld Coordinate System where:
 All objects are defined
 Transformations are inWorld Coordinate space
Two Different Views
Local View
 Translate Object
 Then Rotate
glLoadIdentity();
glMultiMatrixf( T);
glMultiMatrixf( R);
draw_ the_ object( v);
v’ = ITRv
Global View
 Rotate Object
 Then Translate
Effect is same, but perception is different
glLoadIdentity();
glMultiMatrixf( R);
glMultiMatrixf( T);
draw_ the_ object( v);
v’ = ITRv
Local View
 Rotate Object
 Then Translate
Global View
 Translate Object
 Then Rotate
Effect is same, but perception is different
 Many graphical objects are structured
 Exploit structure for
 Efficient rendering
 Concise specification of model parameters
 Physical realism
 Often we need several instances of an object
 Wheels of a car
 Arms or legs of a figure
 Chess pieces
 Encapsulate basic object in a function
 Object instances are created in “standard” form
 Apply transformations to different instances
 Typical order: scaling, rotation, translation
A
B
C
C
– void glPushMatrix(void);
A
B
– void glPopMatrix(void);
A
B
C C
m
glGetFloatv
– void glGetFloatv(GL_MODELVIEW_MATRIX, *m);
A
B
C
Some of the OpenGL functions helpful for
hierarchical modeling are:
 A scene graph is a hierarchical representation of a scene
 We will use trees for representing hierarchical objects such
that:
 Nodes represent parts of an object
 Topology is maintained using parent-child relationship
 Edges represent transformations that applies to a part and all the
subparts connected to that part
typedef struct treenode {
GLfloat m[16]; // Transformation
void (*f) ( ); // Draw function
struct treenode *sibling;
struct treenode *child;
} treenode;
Scene
Sun Star X
Earth Venus Saturn
Moon Ring
 Initializing transformation matrix for node
treenode torso, head, ...;
/* in init function */
glLoadIdentity();
glRotatef(...);
glGetFloatv(GL_MODELVIEW_MATRIX, torso.m);
 Initializing pointers
torso.f = drawTorso;
torso.sibling = NULL;
torso.child = &head;
 To render the hierarchy:
 Traverse the scene graph depth-first
 Going down an edge:
▪ push the top matrix onto the stack
▪ apply the edge's transformation(s)
 At each node, render with the top matrix
 Going up an edge:
▪ pop the top matrix off the stack
 Recursive definition
void traverse (treenode *root) {
if (root == NULL) return;
glPushMatrix();
glMultMatrixf(root->m);
root->f();
if (root->child != NULL) traverse(root->child);
glPopMatrix();
if (root->sibling != NULL) traverse(root->sibling);
}
 C is really not the right language for this !!

Más contenido relacionado

La actualidad más candente

Digital image processing
Digital image processingDigital image processing
Digital image processing
manpreetgrewal
 
Intro to scan conversion
Intro to scan conversionIntro to scan conversion
Intro to scan conversion
Mohd Arif
 

La actualidad más candente (20)

Projection In Computer Graphics
Projection In Computer GraphicsProjection In Computer Graphics
Projection In Computer Graphics
 
2D Transformation
2D Transformation2D Transformation
2D Transformation
 
Lecture 3 image sampling and quantization
Lecture 3 image sampling and quantizationLecture 3 image sampling and quantization
Lecture 3 image sampling and quantization
 
3D Display
3D Display3D Display
3D Display
 
Line Drawing Algorithms - Computer Graphics - Notes
Line Drawing Algorithms - Computer Graphics - NotesLine Drawing Algorithms - Computer Graphics - Notes
Line Drawing Algorithms - Computer Graphics - Notes
 
Digital image processing
Digital image processingDigital image processing
Digital image processing
 
3D Graphics : Computer Graphics Fundamentals
3D Graphics : Computer Graphics Fundamentals3D Graphics : Computer Graphics Fundamentals
3D Graphics : Computer Graphics Fundamentals
 
Introduction to 2D/3D Graphics
Introduction to 2D/3D GraphicsIntroduction to 2D/3D Graphics
Introduction to 2D/3D Graphics
 
Applications of computer graphics
Applications of computer graphicsApplications of computer graphics
Applications of computer graphics
 
Mid point circle algorithm
Mid point circle algorithmMid point circle algorithm
Mid point circle algorithm
 
Dda algorithm
Dda algorithmDda algorithm
Dda algorithm
 
Polygon filling algorithm
Polygon filling algorithmPolygon filling algorithm
Polygon filling algorithm
 
Histogram Processing
Histogram ProcessingHistogram Processing
Histogram Processing
 
Image enhancement ppt nal2
Image enhancement ppt nal2Image enhancement ppt nal2
Image enhancement ppt nal2
 
Chapter 6 Image Processing: Image Enhancement
Chapter 6 Image Processing: Image EnhancementChapter 6 Image Processing: Image Enhancement
Chapter 6 Image Processing: Image Enhancement
 
Computer graphics basic transformation
Computer graphics basic transformationComputer graphics basic transformation
Computer graphics basic transformation
 
COMPUTER GRAPHICS-"Projection"
COMPUTER GRAPHICS-"Projection"COMPUTER GRAPHICS-"Projection"
COMPUTER GRAPHICS-"Projection"
 
Spline representations
Spline representationsSpline representations
Spline representations
 
3D Transformation
3D Transformation 3D Transformation
3D Transformation
 
Intro to scan conversion
Intro to scan conversionIntro to scan conversion
Intro to scan conversion
 

Destacado

Understandingprojectionsforarcgis 12794889760059-phpapp01
Understandingprojectionsforarcgis 12794889760059-phpapp01Understandingprojectionsforarcgis 12794889760059-phpapp01
Understandingprojectionsforarcgis 12794889760059-phpapp01
Manisha Tomar
 
7 8.math projection (2)
7 8.math projection (2)7 8.math projection (2)
7 8.math projection (2)
Riya Gupta
 
Lecture 06 geometric transformations and image registration
Lecture 06 geometric transformations and image registrationLecture 06 geometric transformations and image registration
Lecture 06 geometric transformations and image registration
obertksg
 

Destacado (13)

Understandingprojectionsforarcgis 12794889760059-phpapp01
Understandingprojectionsforarcgis 12794889760059-phpapp01Understandingprojectionsforarcgis 12794889760059-phpapp01
Understandingprojectionsforarcgis 12794889760059-phpapp01
 
Mathematics
MathematicsMathematics
Mathematics
 
1637 vector mathematics ap
1637 vector mathematics ap1637 vector mathematics ap
1637 vector mathematics ap
 
7 8.math projection (2)
7 8.math projection (2)7 8.math projection (2)
7 8.math projection (2)
 
Lecture 06 geometric transformations and image registration
Lecture 06 geometric transformations and image registrationLecture 06 geometric transformations and image registration
Lecture 06 geometric transformations and image registration
 
Raster processing
Raster processingRaster processing
Raster processing
 
Projections
ProjectionsProjections
Projections
 
Three dimensional transformations
Three dimensional transformationsThree dimensional transformations
Three dimensional transformations
 
Geodetic systems (earth, ellipsoid)
Geodetic systems (earth, ellipsoid)Geodetic systems (earth, ellipsoid)
Geodetic systems (earth, ellipsoid)
 
Understanding Coordinate Systems and Projections for ArcGIS
Understanding Coordinate Systems and Projections for ArcGISUnderstanding Coordinate Systems and Projections for ArcGIS
Understanding Coordinate Systems and Projections for ArcGIS
 
transformation 3d
transformation 3dtransformation 3d
transformation 3d
 
Notes 2D-Transformation Unit 2 Computer graphics
Notes 2D-Transformation Unit 2 Computer graphicsNotes 2D-Transformation Unit 2 Computer graphics
Notes 2D-Transformation Unit 2 Computer graphics
 
Geodesy, Map Projections - Introduction
Geodesy, Map Projections - IntroductionGeodesy, Map Projections - Introduction
Geodesy, Map Projections - Introduction
 

Similar a Transformations computer graphics

2 d transformation
2 d transformation2 d transformation
2 d transformation
Ankit Garg
 
Open GL T0074 56 sm4
Open GL T0074 56 sm4Open GL T0074 56 sm4
Open GL T0074 56 sm4
Roziq Bahtiar
 
Lecture 6-1543909797
Lecture 6-1543909797Lecture 6-1543909797
Lecture 6-1543909797
Canh Le
 

Similar a Transformations computer graphics (20)

Modeling Transformations
Modeling TransformationsModeling Transformations
Modeling Transformations
 
2 d transformation
2 d transformation2 d transformation
2 d transformation
 
Two dimensionaltransformations
Two dimensionaltransformationsTwo dimensionaltransformations
Two dimensionaltransformations
 
Computer graphics
Computer graphicsComputer graphics
Computer graphics
 
Transforms UNIt 2
Transforms UNIt 2 Transforms UNIt 2
Transforms UNIt 2
 
Open GL T0074 56 sm4
Open GL T0074 56 sm4Open GL T0074 56 sm4
Open GL T0074 56 sm4
 
Transformations
TransformationsTransformations
Transformations
 
bodeplot.pdf
bodeplot.pdfbodeplot.pdf
bodeplot.pdf
 
Laplace transforms
Laplace transformsLaplace transforms
Laplace transforms
 
Two dimensional geometric transformation
Two dimensional geometric transformationTwo dimensional geometric transformation
Two dimensional geometric transformation
 
A Dimension Abstraction Approach to Vectorization in Matlab
A Dimension Abstraction Approach to Vectorization in MatlabA Dimension Abstraction Approach to Vectorization in Matlab
A Dimension Abstraction Approach to Vectorization in Matlab
 
Cgo2007 P3 3 Birkbeck
Cgo2007 P3 3 BirkbeckCgo2007 P3 3 Birkbeck
Cgo2007 P3 3 Birkbeck
 
3 D Graphics
3 D Graphics3 D Graphics
3 D Graphics
 
ME Reference.pdf
ME Reference.pdfME Reference.pdf
ME Reference.pdf
 
2d transformations
2d transformations2d transformations
2d transformations
 
2d transformation
2d transformation2d transformation
2d transformation
 
Lecture 6-1543909797
Lecture 6-1543909797Lecture 6-1543909797
Lecture 6-1543909797
 
Maths formulae
Maths formulaeMaths formulae
Maths formulae
 
Line integral.ppt
Line integral.pptLine integral.ppt
Line integral.ppt
 
Fir 04 kinem
Fir 04 kinemFir 04 kinem
Fir 04 kinem
 

Último

Último (20)

80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
 
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdf
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdfUnit 3 Emotional Intelligence and Spiritual Intelligence.pdf
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdf
 
On National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsOn National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan Fellows
 
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
 
Graduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - EnglishGraduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - English
 
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdfUGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
 
Exploring_the_Narrative_Style_of_Amitav_Ghoshs_Gun_Island.pptx
Exploring_the_Narrative_Style_of_Amitav_Ghoshs_Gun_Island.pptxExploring_the_Narrative_Style_of_Amitav_Ghoshs_Gun_Island.pptx
Exploring_the_Narrative_Style_of_Amitav_Ghoshs_Gun_Island.pptx
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdf
 
Python Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxPython Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docx
 
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
 
Understanding Accommodations and Modifications
Understanding  Accommodations and ModificationsUnderstanding  Accommodations and Modifications
Understanding Accommodations and Modifications
 
How to Add New Custom Addons Path in Odoo 17
How to Add New Custom Addons Path in Odoo 17How to Add New Custom Addons Path in Odoo 17
How to Add New Custom Addons Path in Odoo 17
 
Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024
 
Wellbeing inclusion and digital dystopias.pptx
Wellbeing inclusion and digital dystopias.pptxWellbeing inclusion and digital dystopias.pptx
Wellbeing inclusion and digital dystopias.pptx
 
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
 
REMIFENTANIL: An Ultra short acting opioid.pptx
REMIFENTANIL: An Ultra short acting opioid.pptxREMIFENTANIL: An Ultra short acting opioid.pptx
REMIFENTANIL: An Ultra short acting opioid.pptx
 
FSB Advising Checklist - Orientation 2024
FSB Advising Checklist - Orientation 2024FSB Advising Checklist - Orientation 2024
FSB Advising Checklist - Orientation 2024
 
NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...
NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...
NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...
 
Interdisciplinary_Insights_Data_Collection_Methods.pptx
Interdisciplinary_Insights_Data_Collection_Methods.pptxInterdisciplinary_Insights_Data_Collection_Methods.pptx
Interdisciplinary_Insights_Data_Collection_Methods.pptx
 
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptxHMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
 

Transformations computer graphics