SlideShare una empresa de Scribd logo
1 de 10
Descargar para leer sin conexión
Expression System for Recombinant Human Growth Hormone Production
from Bacillus subtilis
   ¸      ¨            ¨      ¨    ¨
Tuncer H. Ozdamar, Birgul S enturk, Ozge Deniz Yilmaz, and Guzide Calık
                                                            ¨     ¸
Biochemical Reaction Engineering Laboratory, Chemical Engineering Dept., Ankara University, 06100 Ankara, Turkey

Eda Celik and Pınar Calık
    ¸               ¸
Industrial Biotechnology and Metabolic Engineering Laboratory, Chemical Engineering Dept., Middle East Technical University,
06531 Ankara, Turkey


DOI 10.1021/bp.81
Published online January 8, 2009 in Wiley InterScience (www.interscience.wiley.com).


                       We demonstrate for the first time, an expression system mimicking serine alkaline protease
                    synthesis and secretion, producing native form of human growth hormone (hGH) from Bacil-
                    lus subtilis. A hybrid-gene of two DNA fragments, i.e., signal (pre-) DNA sequence of B.
                    licheniformis serine alkaline protease gene (subC) and cDNA encoding hGH, were cloned
                    into pMK4 and expressed under deg-promoter in B. subtilis. Recombinant-hGH (rhGH) pro-
                    duced by B. subtilis carrying pMK4::pre(subC)::hGH was secreted. N-terminal sequence
                    and mass spectrometry analyses of rhGH confirm the mature hGH sequence, and indicate
                    that the signal peptide was properly processed by B. subtilis signal-peptidase. The highest
                    rhGH concentration was obtained at t ¼ 32 h as CrhGH ¼ 70 mg LÀ1 with a product yield
                    on substrate YrhGH/S ¼ 9 g kgÀ1, in a glucose based defined medium. Fermentation charac-
                    teristics and influence of hGH gene on the rhGH production were investigated by comparing
                    B. subtilis carrying pMK4::pre(subC)::hGH with that of carrying merely pMK4. Excreted
                    organic-acid concentrations were higher by B. subtilis carrying pMK4::pre(subC)::hGH,
                    whereas excreted amino-acid concentrations were higher by B. subtilis carrying pMK4. The
                    approach developed is expected to be applicable to the design of expression systems for het-
                    erologous protein production from Bacillus species. V 2009 American Institute of Chemical
                                                                         C

                    Engineers Biotechnol. Prog., 25: 75–84, 2009
                    Keywords: Bacillus, recombinant, protein, human growth hormone, degQ, signal peptide,
                    expression, secretion, MALDI-MS, fermentation




                               Introduction                             and physiology of Gram-positive bacteria, and particularly of
                                                                        sporulation and associated metabolism4; whereupon, infor-
   Human growth hormone (hGH) is anionic, nonglycosylated               mation concerning its secretion mechanism has been gath-
four helix-bundle protein known as somatotropin, having a               ered as the genome sequence was resolved.5 Nevertheless,
molar mass of 22 kDa and 191 amino acid residues. It has                the secretion of heterologous recombinant proteins from the
been used to treat hypopituitary dwarfism, injuries, bone frac-          bacilli might be inefficient. On the basis of the growing
tures, bleeding ulcers, and burns.1 Recently, it appears to be of       availability of information on genomics and proteomics of
considerable benefit to girls with Turner’s syndrome, children           B. subtilis, difficulties can now be systematically addressed
with chronic renal failure, and adults with growth hormone              and overcome.6 For the secretion of a recombinant protein
deficiency or human immunodeficiency virus (HIV) syndrome.2               produced, either protease deficient Bacillus cells7 or protease
   Bacillus species, producers of several industrial enzymes,           inhibitors are used. Westers et al.,8 in their review article,
are potential hosts for production of heterologous nonglyco-            summarised the efforts employed to improve B. subtilis as a
sylated proteins of commercial interest. The advantages of              host for protein secretion. Expression and secretion of non-
using the Gram positive bacteria, besides the ability to                glycosylated proteins in the genus Bacillus require the assis-
secrete functional extracellular proteins directly into the bio-        tance of the N-terminal signal-sequence of precursors.
reactor culture medium, are the lack of pathogenicity and the           Brockmeier et al.9 and Fu et al.10 reported the use of various
absence of lipopolysaccharides (endotoxins) from the cell               promoters and signal DNA sequences for recombinant pro-
wall.3 Amongst, Bacillus subtilis has become a model system             tein production by B. subtilis.
for the study of many aspects of the biochemistry, genetics,               Extracellular production of a recombinant foreign protein
                                                                        from a B. subtilis host requires a neat design and engineering
  Correspondence concerning this article should be addressed to T. H.   of an expression and secretion system; wherein, the choice
¨
Ozdamar at ozdamar@eng.ankara.edu.tr.                                   of the promoter and signal DNA sequence in combination

V 2009 American Institute of Chemical Engineers
C                                                                                                                                   75
76                                                                                                  Biotechnol. Prog., 2009, Vol. 25, No. 1

Table 1. Strains, Plasmids and Primers used in this Study
                    Name                                                  Description                               Reference or Source
     Strain
       Bacillus licheniformis                     Wild type carrying subC gene                                        DSM 1969 (11)
       B. subtilis                                nprÀaprÀ                                                            BGSC- 1A751
       B. subtilis                                spoÀ                                                                BGSC- 1A179
       Escherichia coli XL1Blue
     Plasmids
       pHGH107                                                                                                        (12)
       pUC19                                                                                                          (13)
       pMK4                                                                                                           (14)
       pUC19::pre(subC)::hGH                                                                                          This work
       pMK4::pre(subC)::hGH                                                                                           This work
     Primers for pre(subC)::hGH
       pre(subC) forward primer                   50 _GCT CTA GAG CGC AAT CTC CTG TCA TTC G_30
       Complimentary strand to hGH þ              50 _GGT ATA GTT GGG AAA GCA GAA GCG GAA TCG_30
          pre(subC) reverse
       Complimentary strand to pre(subC) þ        50 _GCT TCT GCT TTC CCA ACT ATA CCA CTA TCT C_30
          hGH forward primer
          hGH reverse primer                      50 _GCG GAT CCG CAC TGG GGA GGG GTC AC_30




with the DNA vector, in particular, is important. For                    accession number A00501) from Homo sapiens and antibi-
recombinant protein production using Bacillus species, there             otic resistance genes to ampicillin and tetracycline.
is no work in the literature reporting on the use of the pro-               The primers used for the amplification are given in Table
moter and signal sequence of the DNA encoding the indus-                 1. Signal DNA sequence of subC was fused in front of the
trial enzyme serine alkaline protease (SAP).                             hGH gene using gene splicing by overlap extension
   The idea in this work is based on the construction of a               method.20 XbaI restriction site was incorporated to the for-
recombinant plasmid for the synthesis and secretion of rhGH              ward primer of pre(subC) sequence, whereas BamHI restric-
that mimics the synthesis of SAP in bacilli. Thus, the                   tion site was incorporated to the reverse primer of hGH
hybrid-gene of two DNA fragments, i.e., signal (pre-) DNA                gene. To verify the cloning, nucleotide sequencing analyses
sequence of B. licheniformis serine alkaline protease (SAP)              were performed at Microsynth GmbH (Switzerland) using
gene (subC) and cDNA encoding hGH, were cloned into                      the designed primers.
pMK4 plasmid and expressed under the deg-promoter in a B.
subtilis host. Production of rhGH from B. subtilis and the
fermentation characteristics in a defined medium were inves-
                                                                         Culture maintenance and media for fermentation
tigated, using the designed hybrid-gene system.
                                                                            For the bioprocess experiments, B. subtilis BGSC-1A751
                                                                         (nprÀaprÀ) and B. subtilis BGSC-1A197 (spoÀ) stock cul-
                     Experimental Methods                                tures were maintained on agar slants that contained (g LÀ1):
                                                                         peptone, 5; beef extract, 3; agar, 15; and initial pH ¼ 7.25.
Bacterial strains, plasmids, and growth media for                        The cells on the newly prepared slants were inoculated into
genetic manipulation                                                     the preculture medium for preparation of inocula that con-
   The strains, plasmids, and primers used in this study are             tained (g LÀ1): soytryptone, 15; peptone, 5; MnSO4.2H2O,
described in Table 1. Bacterial strains, plasmids, and growth            0.010; Na2HPO4, 0.25; CaCl2, 0.100 and grown at 37 C for
media were prepared using standard techniques.15 B. licheni-             6 h. The defined reference production medium for batch-bio-
formis (DSM 1969), B. subtilis, and Escherichia coli XL1-                reactor was as follows (g LÀ1): glucose, 6.0; (NH4)2HPO4,
Blue16 were maintained and grown on LB-agar that con-                    4.7; KH2PO4, 2.0; 0.04 M Na2HPO4 and NaH2PO4; the ini-
tained (g LÀ1): tryptone, 10; NaCl, 5; yeast extract, 5; agar,           tial pH ¼ 7.25.11,21 Chloramphenicol (7 lg/mL) was used in
15 and in LB broth (without agar) at 37 C. Ampicillin (100              all bioprocess experiments of plasmid-bearing B. subtilis.
lg/mL) was used for the plasmid maintenance in E. coli                   Complete EDTA-free protease inhibitor (Roche) was used to
strains; 7 lg/mL chloramphenicol was used for plasmid                    prevent proteolytic hydrolysis of the produced rhGH.
maintenance in the recombinant B. subtilis.

                                                                         Laboratory-scale batch fermentations
Manipulation of DNA, PCR, cloning, and DNA sequencing                       Batch laboratory-scale fermentation experiments were con-
   B. licheniformis chromosomal DNA was isolated as                      ducted in orbital shakers under agitation and heating rate
described by Posprech and Neumann.17 subC gene (GenBank                  control, using air-filtered 500 mL Erlenmeyer-flasks having
Acc. No. X03341)18,19 that encodes for extracellular serine              220 mL working volume capacities. Batch-bioreactor experi-
alkaline protease (SAP) enzyme of B. licheniformis was used              ments were conducted in 1.0 L bioreactor systems (BBraun,
as the template for amplification of signal (pre-) sequence.              Germany) consisted of temperature, pH, foam, air inlet, and
HGH cDNA16 was amplified from E. coli host strain carry-                  stirring rate controls with 0.5 L working volume. Each
ing the plasmid pHGH107 (ATCC 31538; US patent no.                       experiment was conducted in two bioreactors operating in
4,342,832), featuring the growth hormone ORF (NCBI                       parallel, to check reproducibility.
Biotechnol. Prog., 2009, Vol. 25, No. 1                                                                                             77

Analyses                                                           microliters of a 10 mg mLÀ1 sinapinic acid matrix dissolved
   Cell concentrations based on dry weights were measured          in 50% acetonitrile and 0.1% TFA solution, was mixed with
with a UV-vis spectrophotometer (Shimadzu UV-160A, To-             1 lL of $10 pmol lLÀ1 sample and 1 lL of this mixture
kyo, Japan) using a calibration curve obtained at 600 nm.          was spotted on the target plate and air-dried by the ‘‘dried
Glucose consumption was followed by the glucose oxidation          droplet’’ technique.28 Cytochrome c and Humatrope (stand-
method at 505 nm with UV-vis spectrophotometer.22                  ard hGH) were used as molecular weight standards for pur-
Excreted amino acid concentrations were measured with an           poses of mass correction. Spectra were generated from the
amino acid analysis system (Waters HPLC, Milford, MA),             sum of 100–200 laser pulses and mass determinations were
using the Pico Tag method.23 Excreted organic acid concen-         made by finding the peak centroid of a smoothed signal (by
trations were measured with an HPLC (Waters, HPLC, Alli-           Savitzky-Golay algorithm) after background subtraction.29
ance 2695).24 HGH concentrations were measured using a
high-performance capillary electrophoresis (Waters HPCE,                                       Results
Quanta 4000 E, Milford, MA). The samples were analyzed
at 12 kV and 15 C with a positive power supply using 60 cm        Construction of the plasmid pMK4::pre(subC)::hGH
 75 lm silica capillary using modified 100 mM borate                  B.licheniformis (DSM 1969) chromosomal DNA and
buffer (pH ¼ 10) including zwitterions (Z1-Methyl, Waters)         pHGH107 plasmid, containing the hGH cDNA, were isolated
as the separation buffer. Proteins were detected by UV ab-         to be used as templates in PCR reactions. The two target
sorbance at 214 nm, as mentioned elsewhere.23,25 Humatrope         genes, pre(subC) of subC gene (360 bp) from B. lichenifor-
(Eli Lilly, France) was used as the standard. The Dynamic          mis chromosomal DNA and mature peptide sequence of
method26 was applied to find the oxygen uptake rate (OUR)           hGH (639 bp) from pHGH107 plasmid, were amplified by
and oxygen transfer coefficient (KLa) values.                       PCRs (Figure 1). The primers (Table 1) used at the ends to
   The physiological data for each operation were from at          be joined were designed as complementary to one another
least two independent experiments, and the average values          by including nucleotides at their 50 ends that are complemen-
were given.                                                        tary to the 30 portion of the other primer. The two PCR prod-
                                                                   ucts containing the overlapping fragments at the ends to be
Ultrafiltration and purification                                     joined were purified and, by the third PCR reaction using the
   Concentration and desalting of the production medium            external primers carrying XbaI and BamHI restriction sites,
was achieved by ultrafiltration under nitrogen gas (55 psi,         extension of the overlap by DNA polymerase has yielded the
3.8 bar) at 4 C using Amicon 400 mL stirred pressure cells        hybrid-gene product, i.e., pre(subC)::hGH (999 bp), where
(Millipore, Bedford, MA) with regenerated cellulose ultrafil-       pre(subC) DNA sequence, was fused in front of the hGH
tration membranes having MWCO of 10 kDa (Millipore,                sequence (Figure 1). The hybrid-gene pre(subC)::hGH was
Bedford, MA). Purification of rhGH was achieved by                  then cloned into the XbaI and BamHI sites of pUC19 E. coli
aptamer-based affinity chromatography. Concentrated sam-            plasmid, and transformed into E. coli XLI-Blue cells by
ples were mixed with hGH specific aptamer which was im-             CaCl2 method. Thereafter, pre(subC)::hGH was sub-cloned
mobilized onto microparticles and hGH-aptamer binding was          to pMK4 SalI and BamHI sites and expressed in the hosts B.
carried out at 25 C for 30 min, which has been developed          subtilis BGSC-1A751 (nprÀaprÀ) and B. subtilis BGSC-
and is being studied in our research group.                        1A197 (spoÀ).

SDS-PAGE, Western Blotting, and N-terminal                         SDS-PAGE, Western Blot, N-terminal, and mass
sequence analysis                                                  spectrometry analyses
   Sodium dodecyl sulfate-polyacrylamide gel electrophoresis          RhGH production potential of the recombinant cells, B. subti-
(SDS-PAGE) was performed as described by Laemmli27 by              lis BGSC-1A751 (nprÀaprÀ) carrying pMK4::pre(subC)::hGH
using 4% stacking and 12% separating polyacrylamide gel, run
on a Mini Protean II DUAL SLAB cell (Bio-Rad) according
to the manufacturer’s instructions and silver stained. For West-
ern blot analysis, polyclonal rabbit anti-human growth hor-
mone (BioMeda, USA) was used as the primary antibody and
horseradish peroxidase labeled goat-anti rabbit IgG (HþL)
(BioMeda) was used as the secondary antibody. For the N-ter-
minal analysis, rhGH was electrophoresed as described above
and transferred onto a polyvinylidene difluoride membrane
(Millipore, USA). After being stained with Coomassie blue,
the rhGH band was excised, and automated Edman degrada-
tion was performed by PROCISE 494 gas-phase/liquid-pulse
sequencer (Applied Biosystems, Foster City, CA).


MALDI-ToF mass spectrometry analysis
   The molecular weight of rhGH was determined by the use
of a MALDI-LR (Waters-Micromass, UK) instrument. Spec-             Figure 1. Agarose gel electrophoresis view for PCR amplifica-
tra were generated using a pulsed nitrogen gas laser                         tion of hGH, pre(subC), and pre(subC)::hGH.
(337 nm) in positive linear mode with a low mass gate of                      M, low range marker (Fermantas); Lane 1, hGH; Lane 2, pre
1,000 Da.25 The accelerating voltage was 15 kV. Three                         (subC)::hGH; and Lane 3, pre(subC).
78                                                                                                     Biotechnol. Prog., 2009, Vol. 25, No. 1




Figure 2. Western Blott analysis results of BGSC-1A751
          (npr2, apr2) carrying pre(subC)::hGH and BGSC-
          1A197 (spo2) carrying pre(subC)::hGH.
           Lane 1, commercial (standard) hGH; Lane 2, hGH produced by
           r-B. ‘subtilis BGSC-1A751 (nprÀ, aprÀ) carrying pMK4::pre
           (subC)::hGH; Lane 3, hGH produced by r-B. subtilis BGSC-
           1A197 (spoÀ) carrying pMK4::pre(subC)::hGH; and Lane 4,
           marker (Sigma M 0671).                                       Figure 3. SDS-PAGE analysis of rhGH, produced by r-B.subti-
                                                                                  lis BGSC-1A751 (npr2, apr2) carrying pMK4::
                                                                                  pre(subC)::hGH.
                                                                                   M, protein marker (Fermentas); Lane 1, product mixture of
and B. subtilis BGSC-1A197 (spoÀ) carrying pMK4::pre                               r-B.subtilis containing rhGH; Lane 2, 1st rhGH separation with
                                                                                   hGH specific aptamer; Lane 3, 2nd rhGH separation with hGH
(subC)::hGH were determined on a glucose (CG ¼ 6 g LÀ1)                            specific aptamer; and Lane 4, standard hGH.
based defined medium. The supernatant obtained by centrifuga-
tion at t ¼ 27 h of the fermentation was partially purified by
dead-end ultrafiltration and nearly 10-fold concentration was            the first six amino acid residues of the putative rhGH prod-
achieved. Western blot analysis showed that (Figure 2), the mo-         uct were Phe-Pro-Thr-Ile-Pro-Leu, identical to the true hGH
lecular mass of rhGH produced by B. subtilis BGSC-1A751 car-            sequence. In support of this, nucleotide sequencing results
rying pMK4::pre(subC)::hGH and B. subtilis BGSC-1A197                   were also 100% matching.
carrying pMK4::pre(subC)::hGH was 22 kDa being the same as
the standard hGH (Humatrope, Eli Lilly, France).
   For further characterization, rhGH was purified, from 10-
fold concentrated and partially purified fermentation broth              Host selection and effect of glucose concentration on
(Figure 3, Lane 1), by aptamer-based affinity chromatogra-               rhGH fermentation
phy, which has been developed and is being studied in our                  Effects of initial glucose concentration on the recombinant
research group. Concentrated samples were mixed with hGH                cells were investigated in laboratory-scale experiments by B.
specific aptamer and hGH-aptamer binding was carried out                 subtilis BGSC-1A751 and B. subtilis BGSC-1A197 carrying
at 25 C for 30 min (Figure 3, Lane 2). To obtain higher pu-            pMK4::pre(subC)::hGH, at the initial concentrations of
rification, the aptamer-affinity separation step was applied              CGo ¼ 6.0, 8.0, 10.0, and 15.0 g LÀ1. The variations in glu-
second time and after the elution step, rhGH was found to               cose, cell and rhGH concentrations with the cultivation time
be separated from the fermentation broth with 99.8% purity              by B. subtilis BGSC-1A751 carrying pMK4::pre(subC)::hGH
and 41% overall yield (Figure 3, Lane 3), the molecular                 are presented in Figures 5a–c, respectively. The cell concen-
mass of purified rhGH was determined by MALDI-ToF mass                   tration was not affected from the initial glucose concentra-
spectrometry (MS), to verify the structure of the secreted              tion at t ¼ 0–6 h. Because of the addition of the protease
recombinant hormone. A commercial preparation (standard)                inhibitor at t ¼ 6 h, an interruption in the cell growth was
of rhGH was analyzed first, and showed a spectral peak at                observed until t ¼ 15 h. However, after t ¼ 15 h the second
m/z 22,126 (Figure 4a). The stated molecular mass of the                cell growth phase was started with the initiation of rhGH
standard hormone is 22,125 Da. Thus, the detected ion was               synthesis (Figure 5c). The highest cell concentration was
[MþH]þ, with the exact molecular mass of m ¼ 22,126 Da,                 obtained at CGo ¼ 15 g LÀ1 at t ¼ 36 h as CX ¼ 2.8 g LÀ1
where the charge on the ion is z ¼ þ1. The native length of             (Figure 5a). In the first 15 h, the glucose consumption rates
the protein was obtained as the peak at m/z 22,133 (Figure              were close to each other; however at t [ 15 h, parallel to
4b), corresponding to the [MþH]þ ion of rhGH detected                   the cell growth profiles, with the increase in cell growth rate,
with just a 0.03% error, which is a reasonable error at high            the glucose consumption rate increased being the highest at
molecular weights in MALDI-ToF MS analysis. This result                 CGo ¼ 15 g LÀ1. The highest rhGH was produced at CGo ¼
indicates that rhGH molecule was synthesised by the                     8 g LÀ1 at t ¼ 36 h as CrhGH ¼ 30 mg LÀ1. On the other
recombinant construct pMK4::pre(subC)::hGH, and then                    hand, when the protease inhibitor was not used rhGH was
secreted into the fermentation medium properly.                         not detected in the fermentation broths of B. subtilis BGSC-
   The amino acid sequence of the signal peptide fused in               1A751 and B. subtilis BGSC-1A197 carrying pMK4::pre
front of the rhGH was: ‘‘MMRKKSFWLGMLTA                                 (subC)::hGH.
FMLVFTMAFSDSASA;’’ and, the N-terminal and mass                            A parallel set of experiments were conducted by B. subti-
spectrometry analyses indicated that the SAP signal peptide             lis BGSC-1A197 carrying pMK4::pre(subC)::hGH. Similar
was properly processed by the B. subtilis signal peptidase              to B. subtilis BGSC-1A751 results, the highest rhGH produc-
(Spase I), because the results of N-terminal sequencing of              tion was obtained at CGo ¼ 8 g LÀ1 but with a lower rhGH
Biotechnol. Prog., 2009, Vol. 25, No. 1                                                                                                 79




Figure 4. MALDI-ToF MS analysis.
            (a) Standard hGH (b) B. subtilis produced and purified rhGH.


value (CrhGH ¼ 26 mg LÀ1). On the basis of the results, B.                by B. subtilis carrying merely pMK4, as can be seen in Fig-
subtilis BGSC-1A751 was selected as the host.                             ure 6.
                                                                             In the process by B. subtilis carrying pMK4, the glucose
                                                                          consumption was higher until t ¼ 18 h of the fermentation,
                                                                          but after t ¼ 18 h, it was almost zero; where the highest cell
Influence of hGH gene on the physiology of r-Bacillus                      concentration and the overall cell yield on substrate (YX/S)
subtilis                                                                  were obtained as CX ¼ 1.6 g LÀ1 (t ¼ 12 h) and YX/S ¼
    To determine the influence of hGH gene on the physiol-                 0.23 g gÀ1, respectively. Contrarily, by B. subtilis carrying
ogy of the bacilli, bioreactor experiments were performed by              pMK4::pre(subC)::hGH, the glucose consumption was
B. subtilis BGSC-1A751 carrying merely pMK4, and B. sub-                  increased after t ¼ 18 h and the highest cell concentration
tilis BGSC-1A751 carrying pMK4::pre(subC)::hGH, at T ¼                    was obtained as CX ¼ 2.0 g LÀ1 (t ¼ 24 h); and the overall
37 C, pH0 ¼ 7.25, CGo ¼ 8 g LÀ1, air inlet rate of 0.5 vvm               cell yield on substrate was YX/S ¼ 0.25 g gÀ1.
and agitation rate of 800 minÀ1. The concentrations of the                   As expected, rhGH production was achieved only by B.
glucose, cell, extracellular rhGH, the by-products amino and              subtilis carrying pMK4::pre(subC)::hGH. RhGH synthesis
organic acids, together with the oxygen-uptake (OUR) rates,               started at t ¼ 18 h of the batch-bioprocess and increased
oxygen-transfer coefficients (KLa), and yield coefficients                  with the cultivation time reaching the value CrhGH ¼ 70 mg
were determined throughout the fermentations.                             LÀ1 at t ¼ 32 h. The highest product yield on substrate was
    The variations in dissolved oxygen concentration (CO) and             obtained at 24  t  32 h as YrhGH/S ¼ 0.65 g gÀ1, while
pH with the cultivation time are presented in Figure 6; and the           the overall rhGH yield on substrate was YrhGH/S ¼ 9 g kgÀ1.
variations in glucose, cell, and rhGH concentrations are pre-                The excreted amino acids that were detected at considerable
sented in Figure 7. The loci of the CO vs. t profiles obtained             concentrations in both fermentations are leucine, isoleucine,
in the two fermentation processes were similar until t ¼ 18 h,            and phenylalanine. The highest concentrations of leucine, iso-
where considerable decrease in dissolved oxygen concentration             leucine, and phenylalanine by B. subtilis carrying pMK4::pre
was observed at t ¼ 0–4 h. However, in the process by B. sub-             (subC)::hGH were 0.191, 0.096, and 0.132 g LÀ1; whereas by
tilis carrying pMK4::pre(subC)::hGH, a considerable decrease              B. subtilis carrying pMK4 were as 0.214, 0.107, and 0.281 g
in CO between t ¼ 18 h and t ¼ 22 h was detected due to                   LÀ1, respectively. Nevertheless, alanine, arginine, asparagine,
rhGH synthesis that induced the cell growth. By the termina-              aspartic acid, glutamic acid, glycine, histidine, methionine, ly-
tion of the cell formation, a breakthrough in dissolved oxygen            sine, valine, treonine, and tryptophan were not detected in the
concentration at t ¼ 22 h is observed.                                    broths of the two fermentation processes. Thus, the total
    The pH in both fermentation media decreased until t ¼                 excreted amino acid concentrations were higher in the fermen-
18 h. After t ¼ 18h, pH continued to decrease by depicting                tation by B. subtilis carrying merely pMK4.
a characteristic curve by B. subtilis carrying pMK4::pre                     Variations in excreted organic acid concentration produced
(subC)::hGH; contrarily, pH was increased in the bioreactor               by B. subtilis carrying pMK4::pre(subC)::hGH and B.
80                                                                                                Biotechnol. Prog., 2009, Vol. 25, No. 1




Figure 5. (a) Variation in cell concentration with the cultivation time for B. subtilis BGSC-1A751 (npr2apr2) carrying pMK4::pre
          (subC)::hGH with the initial glucose concentration. CGo(g L21): (^) 6.0; () 8.0; (~) 10.0; (*) 15.0. (b) Variation in glu-
          cose concentration with the cultivation time for B. subtilis BGSC-1A751 (npr2apr2) carrying pMK4::pre(subC)::hGH with
          the initial glucose concentration. CGo(g L21): (^) 6.0; () 8.0; (~) 10.0; (*) 15.0. (c) Variation in rhGH concentration
          with the cultivation time for B. subtilis BGSC-1A751 (npr2apr2) carrying pMK4::pre(subC)::hGH with the initial glucose
          concentration. CGo(g L21): (^) 6.0; () 8.0; (~) 10.0; (*) 15.0 as in 5c.



subtilis carrying pMK4 are presented in Figures 8a,b, respec-        Fermentation characteristics
tively. Oxaloacetic acid, which is known to be produced in              The variations in KLa and the oxygen uptake rate (OUR)
cell regeneration, was not excreted in both fermentations. In        are presented in Table 2. Considering the characteristic cell
the fermentation by B. subtilis carrying pMK4::pre
                                                                     and rhGH concentration profiles of B. subtilis carrying
(subC)::hGH, the main extracellular by-products were suc-
                                                                     pMK4::pre(subC)::hGH, the bioprocess was divided into five
cinic, gluconic and formic acid (Figure 8a). Lactic, oxalic,
                                                                     periods. 0  t  4 h is the cell first-growth-phase; 4  t 
citric acids are the organic acids having lower concentra-
                                                                     12 h is the growth-interruption-phase; 12  t  16 h is the
tions, i.e., ca. 0.1 g LÀ1; moreover, pyruvic, a-ketoglutaric,
and acetic acids were detected at a concentration of ca.             lag-phase where rhGH synthesis starts; 16  t  24 h is the
0.01 g LÀ1. Indeed, the organic acid profiles obtained by B.          second-cell-growth-phase where rhGH synthesis increases;
subtilis carrying pMK4::pre(subC)::hGH are different than            and 24  t  32 h is the end of the growth-phase where
that of B. subtilis carrying pMK4; where in the latter, the          rhGH synthesis was the highest.
main excreted by-products were malic and gluconic acids                 In both fermentation processes, the oxygen transfer coeffi-
(Figure 8b), and the concentration of the other organic acids        cient, KLa, increased with the increase in the cultivation
were lower than 0.01 g LÀ1. Thus, the amount of total or-            time, and then decreased. At 0  t  4 h of the bioprocess,
ganic acids excreted by B. subtilis carrying pMK4::pre               KLa and oxygen uptake rate of B. subtilis carrying pMK4
(subC)::hGH were higher.                                             was higher than that of B. subtilis carrying hGH gene.
Biotechnol. Prog., 2009, Vol. 25, No. 1                                                                                      81




Figure 6. Variations in dissolved oxygen concentration and pH
          with the cultivation time by B.subtilis BGSC-1A751      Figure 7. Variations in glucose, cell, and hGH concentrations
          (npr2apr2) carrying pMK4::pre(subC)::hGH (r-                      with the cultivation time by B. subtilis BGSC-1A751
          pMK4) and BGSC-1A751 (npr2apr2) carrying                          (npr2apr2) carrying pMK4::pre(subC)::hGH and
          pMK4. Co: continuous lines, pH: dashed lines.                     BGSC-1A751 (npr2apr2) carrying pMK4. Glucose
                                                                            concentration: (--n--) pMK4; () pMK4::pre
                                                                            (subC)::hGH, Cell concentration: (--l--) pMK4; (*)
Throughout the bioprocess, the highest KLa value was                        pMK4::pre(subC)::hGH, rhGH concentration: (~)
obtained by B. subtilis carrying merely pMK4 as KLa¼                        pMK4::pre(subC)::hGH.
0.028 sÀ1 at 0  t  4 h; however, due to low oxygen con-
centrations within t ¼ 4–16 h in the production medium, the
dynamic method could not be applied. Related with B. subti-       spectrometry analyses indicate that the signal peptidase has
lis carrying pMK4::pre(subC)::hGH, the highest OUR values         cut at the site within Spase I group. Thus, the system
were obtained in the first growth- (0  t  4 h) and second-       designed functioned with its intended purpose effectively in
cell-growth- phases (16  t  24 h) (Table 2).                    expression and cleavage of the recombinant product.
                                                                     The other peak in Figure 4b at m/z 25,854 is possibly an
                                                                  unspecifically bound impurity protein to the hGH-ligand during
                 Discussion and Conclusions                       purification. From the facts that MALDI-ToF MS can not be
                                                                  used in quantitation of proteins because protein detection
   An expression system producing therapeutic protein             depends on ionisation efficiency and that even femto-mole
human growth hormone that conceptually mimics the extrac-         amounts can be detected, and from SDS-PAGE (Figure 3,
ellular serine alkaline protease synthesis in the genus Bacil-    Lane 3) analysis where a 25.8 kDa band was not detected, it
lus was designed and implemented. For the extracellular           was concluded that the impurity was in negligible amounts.
production of human growth hormone by B. subtilis, a              Furthermore, the peaks detected at m/z 20.4 kDa in Figures
recombinant plasmid carrying the hybrid-gene of two DNA           4a,b, are possibly the cleaved 20 kDa forms of hGH.32
fragments, i.e., signal (pre-) DNA sequence of a Bacillus            The constructed expression system produces extracellular
licheniformis extracellular SAP enzyme gene (subC) and the        rhGH from B. subtilis starting from the beginning of the fer-
DNA encoding hGH, was constructed and transferred into            mentation process parallel to the cell growth, giving a break-
two host Bacillus strains, namely B. subtilis BGSC-1A751          through at t ¼ 12 h. RhGH concentration was the highest at
(nprÀaprÀ) and B. subtilis BGSC-1A197 (spoÀ). These               t ¼ 32 h as CrhGH ¼ 70 mg LÀ1 and overall specific-product
strains were selected for their deficiencies in two protease       yield on substrate was YrhGH/S ¼ 9 g kgÀ1, in the defined
genes and sporulation gene, respectively. RhGH, expressed         medium with sole carbon source glucose. Nakayama et al.,33
by the hybrid-gene pre(subC)::hGH cloned into pMK4 in             reported rhGH secretion level of 40 mg LÀ1 which is 1.75-
both hosts, was secreted.                                         fold lower than that obtained in this study. Kajino et al.,34
   The approach developed is expected to be applicable to         modified the ‘‘middle wall protein (MWP) signal peptide’’ of
the design of expression systems for heterologous protein         B. brevis and constructed a hGH expression system and
productions from Bacillus. As the rhGH concentration              reported rhGH secretion from B. brevis with an overall spe-
obtained from the protease-deficient host B. subtilis BGSC-        cific-product yield on glucoseþpolypeptone YrhGH/S ¼ 4 g
1A751 was higher than that of the host B. subtilis BGSC-          kgÀ1 which is 2.25-fold lower than the value reported in this
1A197, the first was selected as the host owing to two gene        work. Related with a different expression system for human
deletions targeting the decrease in protease activities.          interleukin-3, Westers et al.,35 reported 0.1 g LÀ1 recombi-
   Secreted proteins are generally synthesised as precursors      nant human interleukin-3 secretion by an eight-protease-defi-
with a cleavable signal peptide, and then the signal peptide      cient B. subtilis, using a semi-defined enriched medium;
is removed by signal peptidases, where preprotein processing      where the overall specific-product yield on substrate was
by signal peptidases are essential for bacterial growth and vi-   lower then the YrhGH/S value reported in this work. There-
ability.30,31 The native length of rhGH was detected in SDS-      fore, we conclude that the expression system designed,
PAGE (Figure 2, Lane 2), Western blot (Figure 3, Lane 3)          which is based on the idea of using the ribosomal binding
and MALDI-ToF MS analysis as the peak at m/z 22,133               site- promoter- and the signal peptide of serine alkaline pro-
(Figure 4b) with just a 0.03% error, which is a reasonable        tease enzyme gene subC, is successful for the extracellular
error at high molecular weights. The N-terminal and mass          recombinant protein production.
82                                                                                                    Biotechnol. Prog., 2009, Vol. 25, No. 1




Figure 8. (a) Variation in organic acid concentrations with the cultivation time by B. subtilis BGSC-1A751 (npr2apr2) carrying
          pMK4::pre(subC)::hGH. (b) Variation in organic acid concentrations with the cultivation time by B.subtilis BGSC-1A751
          (npr2apr2) carrying pMK4.


Table 2. Variation in Oxygen Transfer Characteristics with the Cultivation Time
                                                                                                                              OUR*103
             Microorganism                                       Period                             KLa (sÀ1)               (mol mÀ3 sÀ1)
     BGSC-1A751 (nprÀaprÀ)                       First growth phase, 0  t  4 h                      0.017                      3.5
      carrying pMK4::pre(subC)::hGH              Growth-interruption-phase, 4  t  12 h              0.018                      3.0
                                                 Lag-phase and rhGH                                   0.014                      2.4
                                                    synthesis phase, 12  t  16 h
                                                 Second cell growth and rhGH                          0.015                      3.5
                                                    synthesis phase, 16  t  24 h
                                                 End of the growth and rhGH                           0.010                      0.4
                                                    synthesis phase, 24  t  32 h
                    À   À
     BGSC-1A751 (npr apr )                        0t4 h                                             0.028                      4.6
      carrying pMK4                               4  t  12 h                                          –                         –
                                                 12  t  16 h                                          –                         –
                                                 16  t  24 h                                        0.013                      0.4
                                                 24  t  32 h                                        0.010                      0.3




   The transcription for rhGH synthesis by B. subtilis BGSC-              (subC)::hGH, on glucose as sole carbon source. The results
1A751 (nprÀaprÀ) carrying the hybrid-gene pre                             reveal that the expression of rhGH influences the physiology
(subC)::hGH is under the control of degQ promoter; there-                 of the r-Bacillus cells, as expected. The cell concentration
fore, the synthesis and secretion pattern of rhGH mimics the              profile of B. subtilis carrying pMK4::pre(subC)::hGH shows
synthesis and secretion of SAP enzyme in B. lichenifor-                   a perturbed biphasic variation because of the introduction of
mis.11,21,36 Because the ribosomal binding site, promoter,                a protease inhibitor at t ¼ 4 h, where a drastic decrease in
and signal peptide of the SAP gene (subC) were used in the                the growth rate occurs until t ¼ 16 h, that proceeds with an
constructed expression system for the synthesis and secretion             increase in the growth rate until ca. t ¼ 24 h.
of rhGH, a similar rhGH concentration profile to that of                      RhGH synthesis and secretion proceeded until t ¼ 32 h,
the SAP productions from B. licheniformis carrying                        giving the highest concentration as CrhGH ¼ 70 mg LÀ1. As
pHV1431::subC21 and B. subtilis carrying pHV1431::subC11                  expected, there was no rhGH production by the microorgan-
was obtained. The slight difference observed in the concen-               ism that does not carry hGH gene.
tration profiles was likely due to an interruption caused by                  Due to the introduction of new biochemical reactions into
the addition of protease inhibitors. Therefore, we conclude               the intracellular reaction network producing the heterologous
that the expression and secretion system constructed for                  extracellular protein, the fermentation and oxygen transfer
rhGH production from the genus Bacillus is dependent on                   characteristics and by-product distributions of B. subtilis car-
the bioreactor operation conditions (which is being studied),             rying pMK4::pre(subC)::hGH were different than that of the
similar to that of SAP production by Bacillus species.37                  B. subtilis carrying merely pMK4. Moreover, higher concen-
   To investigate the influence and perturbation effect of                 trations of organic acids detected in the broth of B. subtilis
hGH gene on the physiology of r-B. subtilis, comparative                  carrying pMK4::pre(subC)::hGH, and higher concentrations
bioreactor experiments were performed by B. subtilis carry-               of amino acids detected in the broth of B. subtilis carrying
ing merely pMK4 and B. subtilis carrying pMK4::pre                        pMK4, reveal the impact of the structure of the plasmids on
Biotechnol. Prog., 2009, Vol. 25, No. 1                                                                                                   83

the synthesis capacity of the host throughout the                           Moestl D, Nakai S, Noback M, Noone D, OReilly M, Ogawa
fermentation.                                                               K, Ogiwara A, Oudega B, Park SH, Parro V, Pohl TM, Por-
                                                                            tetelle D, Porwollik S, Prescott AM, Presecan E, Pujic P,
   The expression system carrying the foreign gene, hGH, in                 Purnelle B, Rapoport G, Rey M, Reynolds S, Rieger M, Riv-
the hybrid-gene fused behind the signal (pre-) DNA                          olta C, Rocha E, Roche B, Rose M, Sadaie Y, Sato T, Scan-
sequence, i.e., pre(subC), synthesizing and secreting rhGH                  lan E, Schleich S, Schroeter R, Scoffone F, Sekiguchi J,
from B. subtilis carrying pMK4::pre(subC)::hGH, was influ-                   Sekowska A, Seror SJ, Serror P, Shin BS, Soldo B, Sorokin
enced by the bioreactor operation conditions which, in turn                 A, Tacconi E, Takagi T, Takahashi H, Takemaru K, Takeuchi
effects the oxygen transfer characteristics of the fermentation             M, Tamakoshi A, Tanaka T, Terpstra P, Tognoni A, Tosato
                                                                            V, Uchiyama S, Vandenbol M, Vannier F, Vassarotti A, Viari
process, in the defined medium based on sole carbon source                   A, Wambutt R, Wedler E, Wedler H, Weitzenegger T, Win-
glucose. In the first cell growth phase, the oxygen uptake                   ters P, Wipat A, Yamamoto H, Yamane K, Yasumoto K,
and glucose uptake rates by B. subtilis carrying pMK4::pre                  Yata K, Yoshida K, Yoshikawa HF, Zumstein E, Yoshikawa
(subC)::hGH cells were lower than that of B. subtilis carry-                H, Danchin, A. The complete genome sequence of the gram-
ing pMK4, which resulted in lower KLa values. Furthermore,                  positive bacterium Bacillus subtilis. Nature. 1997;390:249–
after the second-cell-growth-phase where rhGH synthesis                     256.
                                                                       6.   Kobayashi K, Ehrlich SD, Albertini A, Amati G, Andersen KK,
starts, the oxygen uptake rates were higher by B. subtilis car-
                                                                            Arnaud M, Asai K, Ashikaga S, Aymerich S, Bessieres P,
rying pMK4::pre(subC)::hGH.                                                 Boland F, Brignell SC, Bron S, Bunai K, Chapui J, Christiansen
   The bioreactor operation conditions applied for the                      LC, Danchin A, Debarbouille M, Dervyn E, Deuerling E,
fermentation experiments were the favourable conditions                     Devine K, Devine SK, Dreesen O, Errington J, Fillinger S, Fos-
that were found for the SAP production by B. licheniformis                  ter SJ, Fujita Y, Galizzi A, Gardan R, Eschevins C, Fukushima
                                                                            T, Haga K, Harwood CR, Hecker M, Hosoya D, Hullo MF,
carrying pHV1431::subC21 and B. subtilis carrying
                                                                            Kakeshita H, Karamata D, Kasahara Y, Kawamura F, Koga K,
pHV1431::subC.11 The fermentation and oxygen-transfer                       Koski P, Kuwana R, Imamura D, Ishimaru M, Ishikawa S, Ishio
characteristics reveal that the extracellular rhGH production               I, Le Coq D, Masson A, Mauel C, Meima R, Mellado RP, Moir
proceeds through the constructed expression system by form-                 A, Moriya S, Nagakawa E, Nanamiya H, Nakai S, Nygaard P,
ing unique intracellular reaction pathways with different in-               Ogura M, Ohanan T, O’Reilly M, O’Rourke M, Pragai Z, Poo-
tracellular reaction rates compared to that of SAP                          ley HM, Rapoport G, Rawlins JP, Rivas LA, Rivolta C, Sadaie
production. Thus, these results encourage metabolic flux                     A, Sadaie Y, Sarvas M, Sato T, Saxild HH, Scanlan E, Schu-
                                                                            mann W, Seegers JFML, Sekiguchi J, Sekowska A, Seror SJ,
analysis using the recombinant B. subtilis carrying the con-                Simon M, Stragier P, Studer R, Takamatsu H, Tanaka T, Takeu-
structed expression system encoding extracellular rhGH,                     chi M, Thomaides HB, Vagner V, van Dijl JM, Watabe K,
which is being studied.                                                     Wipat A, Yamamoto H, Yamamoto M, Yamamoto Y, Yamane
                                                                            K, Yata K, Yoshida K, Yoshikawa H, Zuber U, Ogasawara, N.
                                                                            Essential Bacillus subtilis genes. Proc Natl Acad Sci USA.
                       Acknowledgments                                      2003;100:4678–4683.
                                                                       7.   Ye R, Kim BG, Szarka S, Sihota E, Wong SL. High-level
   This work was supported by the Scientific and Technical                   secretory production of intact, biologically active staphylo-
Research Council of Turkey (TUBITAK) through the projects                   kinase from Bacillus subtilis. Biotechnol Bioeng. 1999;62:87–
104M012 and 107M420. Ankara University Biotechnology                        96.
Institute is gratefully acknowledged for providing the mass            8.   Westers L, Westers H, Quax JW. Bacillus subtilis as cell fac-
spectrometer. Humatrope was supplied kindly by Pharmacist                   tory for pharmaceutical proteins: a biotechnological approach to
                                                                            optimize the host organism. Biochim Biophys Acta. 2004;
  ¨           ˘
Tulay Latifoglu. E, Celik’s contribution was performing the
                       ¸                                                    1694:299–310.
MALDI-ToF analysis.                                                    9.   Brockmeier U, Caspers M, Freudl R, Jockwer A, Noll T, Eggert
                                                                            T. Systematic screening of all signal peptides from Bacillus sub-
                                                                            tilis: a powerful strategy in optimizing heterologous protein
                         Literature Cited                                   secretion in gram-positive bacteria. J Mol Biol. 2006;362:393–
                                                                            402.
 1. Tritos NA, Mantzoros CS. Recombinant human growth hor-            10.   Fu LL, Xu ZR, Li WF, Shuai JB, Lu P, Hu CX. Protein secre-
    mone: old and novel uses. Am J Med. 1998;105:44–57.                     tion pathways in Bacillus subtilis: implication for optimization
 2. Baulieu E, Kelly PA. Hormones from Molecules to Disease.                of heterologous protein secretion. Biotechnol Adv. 2007;25:1–
    New York: Herman Press; 1990.                                           12.
 3. Simonen M, Palva I. Protein secretion in Bacillus species.        11.                            ¨
                                                                            Calık P, Kalender N, Ozdamar TH. Overexpression of serine
                                                                             ¸
    Microbiol Rev. 1993;57:109–137.                                         alkaline protease encoding gene in Bacillus species: perform-
 4. Harwood CR. Bacillus subtilis and its relatives: molecular bio-         ance analyses. Enzyme Microb Technol. 2003;33:967–974.
    logical and industrial workhorses. Trends Biotechnol. 1992;10:    12.   Goeddel DV, Heyneker HL, Hozumi T, Arentzen R, Itakura K,
    247–256.                                                                Yansura DG, Ross MJ, Miozzari G, Crea R, Seeburg PH. Direct
 5. Kunst F, Ogasawara N, Moszer I, Albertini AM, Alloni G,                 expression in Escherichia coli of a DNA sequence coding for
    Azevedo V, Bertero MG, Bessieres P, Bolotin A, Borchert S,              human growth hormone. Nature. 1979;281:544–548.
    Borriss R, Boursier L, Brans A, Braun M, Brignell SC, Bron        13.   Yanisch-Perron C, Viera J, Messing, J. Improved M13 phage
    S, Brouillet S, Bruschi CV, Caldwell B, Capuano V, Carter               cloning vectors and host strains: nucleotide sequences of the
    NM, Choi SK, Codani JJ, Connerton IF, Cummings NJ, Dan-                 M13mp18 and pUC19 vectors. Gene. 1985;33:103–119.
    iel RA, Denizot F, Devine KM, Dusterhoft A, Ehrlich SD,           14.       ¨
                                                                            Bruckner R. A series of shuttle vectors for Bacillus subtilis and
    Emmerson PT, Entian KD, Errington J, Fapret C, Ferrari E,               Escherichia coli. Gene. 1992;122:187–192.
    Foulger D, Fritz C, Fujita M, Fujita Y, Fuma S, Galizzi A,        15.   Maniatis T, Fritsch EF, Sambrook J. Molecular Cloning—A
    Galleron N, Ghim SY, Glaser P, Goffeau A, Golightly EJ,                 Laboratory Manual. NY, USA: Cold Spring Harbor Laboratory;
    Grandi G, Guiseppi G, Guy BJ, Haga K, Haiech J, Harwood                 1982.
    CR, Henaut A, Hilbert H, Holsappel S, Hosono S, Hullo MF,         16.   Bullock WO, Fernandez JM, Short JM. XL1-Blue—a high-effi-
    Itaya M, Jones L, Joris B, Karamata D, Kasahara Y, Klaerr               ciency plasmid transforming recA Escherishia coli strain with
    Blanchard M, Klein C, Kobayashi Y, Koetter P, Koningstein               beta-galactosidase selection. Biotechniques. 1987;5:376.
    G, Krogh S, Kumano M, Kurita K, Lapidus A, Lardinois S,           17.   Posprech A, Neumann B. A versatile quick-prep of genomic
    Lauber J, Lazarevic V, Lee SM, Levine A, Liu H, Masuda                  DNA from gram-positive bacteria. Trends Genet. 1995;11:217–
    S, Mauel C, Medigue C, Medina N, Mellado RP, Mizuno M,                  218.
84                                                                                                      Biotechnol. Prog., 2009, Vol. 25, No. 1

18. Jacobs M. Expression of the subtilisin carlsberg-encoding gene      29. Celik E, Calık P, Halloran M, Oliver SG. Production of
                                                                             ¸            ¸
    in Bacillus licheniformis and Bacillus subtilis. Gene. 1995;152:        recombinant human erythropoietin from Pichia pastoris and its
    69–74.                                                                  structural analysis. J Appl Microbiol. 2007;103:2084–2094.
19. Jacobs M, Elisson M, Uhlen M, Flock JI. Cloning, sequencing         30. van Roosmalen ML, Geukens N, Jongloed JDH, Tjalsma H,
    and expression of subtilisin carlsberg from Bacillus lichenifor-        Dubois J-YF, Bron S, Van Dijl JM, Anne J. Type I signal pepti-
    mis. Nucleic Acids Res. 1985;13:8913–8926.                              dases of gram-positive bacteria. Biochem Biophys Acta. 2004;
20. Ho NS, Hunt DH, Horton MR, Pullen KJ, Pease RL. Site-                   1694:279–297.
    directed mutagenesis by overlap extension using the polymerase      31. Tjalsma H, Bolhuis A, Jongbloed JDH, Bron S, Van Dijl JM.
    chain reaction. Gene. 1989;77:51–59.                                    Signal peptide-dependent protein transport in Bacillus subtilis: a
                                 ¨
21. Calık P, Bilir E, Calık G, Ozdamar TH. Bioreactor operation
     ¸                  ¸                                                   genome-based survey of the secretome. Microbiol Mol Biol Rev.
    parameters as tools for metabolic regulations in serine alkaline        2000;64:515–547.
    protease production: influence of pH conditions. Chem Eng Sci.                                              ˜
                                                                        32. Grigorian AL, Bustamante JJ, Munoz J, Aguilar RM, Martinez AO,
    2003;58:759–766.                                                        Haro LS. Preparative alkaline urea gradient PAGE: application to pu-
22. Boyaci IH. A new approach for determination of enzyme kinetic           rification of extraordinarily-stable disulfide-linked homodimer of
    constants using response surface methodology. Biochem Eng J.            human growth hormone. Electrophoresis. 2007;28:3829–3836.
    2005;25:55–62.                                                      33. Nakayama A, Ando K, Kawamura K, Mita I, Fukazawa K, Hori
     ¸        ¸         ¨
23. Calık P, Calık G, Ozdamar TH. Oxygen transfer effects in ser-           M, Honjo M, Furutani Y. Efficient secretion of the authentic
    ine alkaline protease fermentation by Bacillus licheniformis: use       mature human growth hormone by Bacillus subtilis. J Biotech-
    of citric acid as the carbon source. Enzyme Microb Technol.             nol. 1988;8:123–134.
    1998;23:451–461.                                                    34. Kajino T, Saito Y, Asami O, Yamada Y, Hirai M, Udata S.
    _
24. Ileri N, Calık P. Effects of pH strategy on endo- and exo-
              ¸                                                             Extracellular production of an intact and biologically active
    metabolome profiles and sodium potassium hydrogen ports of               human growth hormone by the Bacillus brevis system. J Ind
    beta-lactamase producing Bacillus licheniformis. Biotechnol             Microbiol Biotechnol. 1997;19:227–231.
    Prog. 2006;22:411–419.                                              35. Westers L, Dijkstra SD, Westers H, van Dijl MJ, Quax JW.
25. Calık P, Orman MA, Celik E, Halloran M, Calık G, Ozdamar
     ¸                      ¸                      ¸         ¨              Secretion of functional human interleukin-3 from Bacillus subti-
    TH. Expression system for synthesis and purification of                  lis. J Biotechnol. 2006;123:211–224.
    recombinant human growth hormone in Pichia pastoris and                                                   ¨
                                                                        36. Calık P, Tomlin G, Oliver SG, Ozdamar TH. Overexpression of
                                                                             ¸
    structural analysis by MALDI-ToF mass spectrometry. Biotech-            a serine alkaline protease in Bacillus licheniformis and its
    nol Prog. 2008;24:221–226.                                              impact on the metabolic reaction network. Enzyme Microb
26. Bandyopadhyay B, Humprey AE. Dynamic measurement of the                 Technol. 2003;32:706–720.
    volumetric oxygen transfer coefficient in fermentation systems.                                ¨
                                                                        37. Calık P, Calık G, Ozdamar TH. Bioprocess development for
                                                                             ¸          ¸
    Biotechnol Bioeng. 1967;9:533–544.                                      serine alkaline protease production: a review. Chem Eng.
27. Laemmli UK. Cleavage of structural proteins during assembly             2001;17:1–62.Suppl. S.
    of head of bacteriophage-T4. Nature. 1970;227:680.
28. Karas M, Hillenkamp F. Laser desorption ionization of proteins
    with molecular masses exceeding 10000 daltons. Anal Chem.           Manuscript received Jan. 8, 2008, and revision received May 5,
    1998;60:2299–2301.                                                  2008.

Más contenido relacionado

La actualidad más candente

Expression of Soluble Proteins with NativeFolderTM
Expression of Soluble Proteins with NativeFolderTMExpression of Soluble Proteins with NativeFolderTM
Expression of Soluble Proteins with NativeFolderTMMolecular Depot LLC
 
Adc 7 a. baumannii resistance (1)
Adc 7 a. baumannii resistance (1)Adc 7 a. baumannii resistance (1)
Adc 7 a. baumannii resistance (1)jeanniekane
 
Next generation biotherapeutics production system Trichoderma reesei
Next generation biotherapeutics production system Trichoderma reeseiNext generation biotherapeutics production system Trichoderma reesei
Next generation biotherapeutics production system Trichoderma reeseiChristopher Landowski
 
Improved vector design eases cell line development workflow in the CHOZN GS-/...
Improved vector design eases cell line development workflow in the CHOZN GS-/...Improved vector design eases cell line development workflow in the CHOZN GS-/...
Improved vector design eases cell line development workflow in the CHOZN GS-/...Merck Life Sciences
 
UIowa 2005 - Iowa City, IA
UIowa 2005 - Iowa City, IAUIowa 2005 - Iowa City, IA
UIowa 2005 - Iowa City, IARandy Simpson
 
20081217 06李利 紅麴菌G蛋白Alpha亞基Mga1介導的信號轉導 (Pp Tminimizer)
20081217 06李利 紅麴菌G蛋白Alpha亞基Mga1介導的信號轉導 (Pp Tminimizer)20081217 06李利 紅麴菌G蛋白Alpha亞基Mga1介導的信號轉導 (Pp Tminimizer)
20081217 06李利 紅麴菌G蛋白Alpha亞基Mga1介導的信號轉導 (Pp Tminimizer)Monascus2008
 
PCUBE--Protein Production Platform for mAb generation. Part I
PCUBE--Protein Production Platform for mAb generation. Part IPCUBE--Protein Production Platform for mAb generation. Part I
PCUBE--Protein Production Platform for mAb generation. Part Icarlociatto
 
Expression of Fusarium threhalose synthase genes, TPS1 and TPS2 enhance salin...
Expression of Fusarium threhalose synthase genes, TPS1 and TPS2 enhance salin...Expression of Fusarium threhalose synthase genes, TPS1 and TPS2 enhance salin...
Expression of Fusarium threhalose synthase genes, TPS1 and TPS2 enhance salin...CIMMYT
 
Paracoccus carotenoid gene cluster
Paracoccus carotenoid gene clusterParacoccus carotenoid gene cluster
Paracoccus carotenoid gene clusterArunkumar K.R.
 
IvaKurtelovaThesis
IvaKurtelovaThesisIvaKurtelovaThesis
IvaKurtelovaThesisIva ABBOTT
 
Improved Platforms for CHO Cell Line Development
Improved Platforms for CHO Cell Line Development  Improved Platforms for CHO Cell Line Development
Improved Platforms for CHO Cell Line Development Merck Life Sciences
 
Introduction to Antibiotic Therapy II Dr. N. Lill, 71:111 February 11, 2004
Introduction to Antibiotic Therapy II Dr. N. Lill, 71:111 February 11, 2004Introduction to Antibiotic Therapy II Dr. N. Lill, 71:111 February 11, 2004
Introduction to Antibiotic Therapy II Dr. N. Lill, 71:111 February 11, 2004Riyad Banayot
 
Accessing genetically tagged heterocycle libraries via a chemoresistant DNA s...
Accessing genetically tagged heterocycle libraries via a chemoresistant DNA s...Accessing genetically tagged heterocycle libraries via a chemoresistant DNA s...
Accessing genetically tagged heterocycle libraries via a chemoresistant DNA s...Laura Berry
 

La actualidad más candente (20)

Expression of Soluble Proteins with NativeFolderTM
Expression of Soluble Proteins with NativeFolderTMExpression of Soluble Proteins with NativeFolderTM
Expression of Soluble Proteins with NativeFolderTM
 
Adc 7 a. baumannii resistance (1)
Adc 7 a. baumannii resistance (1)Adc 7 a. baumannii resistance (1)
Adc 7 a. baumannii resistance (1)
 
吳譽茱
吳譽茱吳譽茱
吳譽茱
 
Next generation biotherapeutics production system Trichoderma reesei
Next generation biotherapeutics production system Trichoderma reeseiNext generation biotherapeutics production system Trichoderma reesei
Next generation biotherapeutics production system Trichoderma reesei
 
Fulltext
FulltextFulltext
Fulltext
 
Characterization of Multidrug
Characterization of MultidrugCharacterization of Multidrug
Characterization of Multidrug
 
Improved vector design eases cell line development workflow in the CHOZN GS-/...
Improved vector design eases cell line development workflow in the CHOZN GS-/...Improved vector design eases cell line development workflow in the CHOZN GS-/...
Improved vector design eases cell line development workflow in the CHOZN GS-/...
 
UIowa 2005 - Iowa City, IA
UIowa 2005 - Iowa City, IAUIowa 2005 - Iowa City, IA
UIowa 2005 - Iowa City, IA
 
20081217 06李利 紅麴菌G蛋白Alpha亞基Mga1介導的信號轉導 (Pp Tminimizer)
20081217 06李利 紅麴菌G蛋白Alpha亞基Mga1介導的信號轉導 (Pp Tminimizer)20081217 06李利 紅麴菌G蛋白Alpha亞基Mga1介導的信號轉導 (Pp Tminimizer)
20081217 06李利 紅麴菌G蛋白Alpha亞基Mga1介導的信號轉導 (Pp Tminimizer)
 
PCUBE--Protein Production Platform for mAb generation. Part I
PCUBE--Protein Production Platform for mAb generation. Part IPCUBE--Protein Production Platform for mAb generation. Part I
PCUBE--Protein Production Platform for mAb generation. Part I
 
Expression of Fusarium threhalose synthase genes, TPS1 and TPS2 enhance salin...
Expression of Fusarium threhalose synthase genes, TPS1 and TPS2 enhance salin...Expression of Fusarium threhalose synthase genes, TPS1 and TPS2 enhance salin...
Expression of Fusarium threhalose synthase genes, TPS1 and TPS2 enhance salin...
 
LAB REPORT
LAB REPORTLAB REPORT
LAB REPORT
 
Ex Bio 2016 poster
Ex Bio 2016 posterEx Bio 2016 poster
Ex Bio 2016 poster
 
Paracoccus carotenoid gene cluster
Paracoccus carotenoid gene clusterParacoccus carotenoid gene cluster
Paracoccus carotenoid gene cluster
 
IvaKurtelovaThesis
IvaKurtelovaThesisIvaKurtelovaThesis
IvaKurtelovaThesis
 
Improved Platforms for CHO Cell Line Development
Improved Platforms for CHO Cell Line Development  Improved Platforms for CHO Cell Line Development
Improved Platforms for CHO Cell Line Development
 
Introduction to Antibiotic Therapy II Dr. N. Lill, 71:111 February 11, 2004
Introduction to Antibiotic Therapy II Dr. N. Lill, 71:111 February 11, 2004Introduction to Antibiotic Therapy II Dr. N. Lill, 71:111 February 11, 2004
Introduction to Antibiotic Therapy II Dr. N. Lill, 71:111 February 11, 2004
 
Lawrence Chibandamabwe thesis
Lawrence Chibandamabwe thesisLawrence Chibandamabwe thesis
Lawrence Chibandamabwe thesis
 
Accessing genetically tagged heterocycle libraries via a chemoresistant DNA s...
Accessing genetically tagged heterocycle libraries via a chemoresistant DNA s...Accessing genetically tagged heterocycle libraries via a chemoresistant DNA s...
Accessing genetically tagged heterocycle libraries via a chemoresistant DNA s...
 
2nd Rotation Report
2nd Rotation Report2nd Rotation Report
2nd Rotation Report
 

Destacado

Gecko Information Hotel
Gecko Information HotelGecko Information Hotel
Gecko Information Hoteljsradel
 
World Future Society talk on Work/Technologh Global 2050 scenarios
World Future Society talk on Work/Technologh Global 2050 scenariosWorld Future Society talk on Work/Technologh Global 2050 scenarios
World Future Society talk on Work/Technologh Global 2050 scenariosJerome Glenn
 
Introduction to Data Mining for Newbies
Introduction to Data Mining for NewbiesIntroduction to Data Mining for Newbies
Introduction to Data Mining for NewbiesEunjeong (Lucy) Park
 
Technology vs Humanity: key themes from Futurist Gerd Leonhard's new book
Technology vs Humanity: key themes from Futurist Gerd Leonhard's new bookTechnology vs Humanity: key themes from Futurist Gerd Leonhard's new book
Technology vs Humanity: key themes from Futurist Gerd Leonhard's new bookGerd Leonhard
 

Destacado (6)

Gecko Information Hotel
Gecko Information HotelGecko Information Hotel
Gecko Information Hotel
 
World Future Society talk on Work/Technologh Global 2050 scenarios
World Future Society talk on Work/Technologh Global 2050 scenariosWorld Future Society talk on Work/Technologh Global 2050 scenarios
World Future Society talk on Work/Technologh Global 2050 scenarios
 
The Futures Agency
The Futures AgencyThe Futures Agency
The Futures Agency
 
Human augmentation
Human augmentationHuman augmentation
Human augmentation
 
Introduction to Data Mining for Newbies
Introduction to Data Mining for NewbiesIntroduction to Data Mining for Newbies
Introduction to Data Mining for Newbies
 
Technology vs Humanity: key themes from Futurist Gerd Leonhard's new book
Technology vs Humanity: key themes from Futurist Gerd Leonhard's new bookTechnology vs Humanity: key themes from Futurist Gerd Leonhard's new book
Technology vs Humanity: key themes from Futurist Gerd Leonhard's new book
 

Similar a H gh power resources

Proposal march 2012
Proposal march 2012Proposal march 2012
Proposal march 2012valrivera
 
Bacteria Induced Cryptic Meroterpenoid Pathway in Pathogenic Aspergillus fumi...
Bacteria Induced Cryptic Meroterpenoid Pathway in Pathogenic Aspergillus fumi...Bacteria Induced Cryptic Meroterpenoid Pathway in Pathogenic Aspergillus fumi...
Bacteria Induced Cryptic Meroterpenoid Pathway in Pathogenic Aspergillus fumi...Debanjan Chatterjee
 
Synthetic Biology Of Plant Specialised Metabolism Using NGS Information Of No...
Synthetic Biology Of Plant Specialised Metabolism Using NGS Information Of No...Synthetic Biology Of Plant Specialised Metabolism Using NGS Information Of No...
Synthetic Biology Of Plant Specialised Metabolism Using NGS Information Of No...Fabio Caligaris
 
Molecular Cloning of the Structural Gene for Exopolygalacturonate
Molecular Cloning of the Structural Gene for ExopolygalacturonateMolecular Cloning of the Structural Gene for Exopolygalacturonate
Molecular Cloning of the Structural Gene for ExopolygalacturonateAlan Brooks
 
DNA Vaccine + Nanoparticles
DNA Vaccine + NanoparticlesDNA Vaccine + Nanoparticles
DNA Vaccine + NanoparticlesHamid Salari
 
Proposal final
Proposal finalProposal final
Proposal finalvalrivera
 
20081217 05邵彥春 與紅麴菌菌絲發育相關基因的克隆及序列分析
20081217 05邵彥春 與紅麴菌菌絲發育相關基因的克隆及序列分析20081217 05邵彥春 與紅麴菌菌絲發育相關基因的克隆及序列分析
20081217 05邵彥春 與紅麴菌菌絲發育相關基因的克隆及序列分析Monascus2008
 
Transformation of signal sequence in Escherichia coli by reporter gene fusion
Transformation of signal sequence in Escherichia coli by reporter gene fusionTransformation of signal sequence in Escherichia coli by reporter gene fusion
Transformation of signal sequence in Escherichia coli by reporter gene fusionOpen Access Research Paper
 
Hepatitis C
Hepatitis CHepatitis C
Hepatitis Cmafsana
 
Reprint Microbiology-UK Aug 2014
Reprint Microbiology-UK Aug 2014Reprint Microbiology-UK Aug 2014
Reprint Microbiology-UK Aug 2014Shreya Dasgupta
 
Dna assembly 2
Dna assembly 2Dna assembly 2
Dna assembly 2marafawi
 
20081216 05袁國芳 紅麴菌基因體計畫及基因研究
20081216 05袁國芳 紅麴菌基因體計畫及基因研究20081216 05袁國芳 紅麴菌基因體計畫及基因研究
20081216 05袁國芳 紅麴菌基因體計畫及基因研究Monascus2008
 
Whole genome sequencing of Bacillus subtilis a gram positive organism
Whole genome sequencing of Bacillus subtilis a gram positive organismWhole genome sequencing of Bacillus subtilis a gram positive organism
Whole genome sequencing of Bacillus subtilis a gram positive organismAshajyothi Mushineni
 
DNA construct instability in bacteria used for Agrobacterium mediated plant t...
DNA construct instability in bacteria used for Agrobacterium mediated plant t...DNA construct instability in bacteria used for Agrobacterium mediated plant t...
DNA construct instability in bacteria used for Agrobacterium mediated plant t...iosrjce
 
Eddie Senior Seminar! 1
Eddie Senior Seminar! 1Eddie Senior Seminar! 1
Eddie Senior Seminar! 1eddie moat
 
Eddie Senior Seminar! 1
Eddie Senior Seminar! 1Eddie Senior Seminar! 1
Eddie Senior Seminar! 1eddie moat
 
Strategies for Recombinant protein production in E.coli
Strategies for Recombinant protein production in E.coliStrategies for Recombinant protein production in E.coli
Strategies for Recombinant protein production in E.coliUka Tarsadia University
 
BioSmalltalk
BioSmalltalkBioSmalltalk
BioSmalltalkESUG
 

Similar a H gh power resources (20)

Proposal march 2012
Proposal march 2012Proposal march 2012
Proposal march 2012
 
Bacteria Induced Cryptic Meroterpenoid Pathway in Pathogenic Aspergillus fumi...
Bacteria Induced Cryptic Meroterpenoid Pathway in Pathogenic Aspergillus fumi...Bacteria Induced Cryptic Meroterpenoid Pathway in Pathogenic Aspergillus fumi...
Bacteria Induced Cryptic Meroterpenoid Pathway in Pathogenic Aspergillus fumi...
 
Synthetic Biology Of Plant Specialised Metabolism Using NGS Information Of No...
Synthetic Biology Of Plant Specialised Metabolism Using NGS Information Of No...Synthetic Biology Of Plant Specialised Metabolism Using NGS Information Of No...
Synthetic Biology Of Plant Specialised Metabolism Using NGS Information Of No...
 
Molecular Cloning of the Structural Gene for Exopolygalacturonate
Molecular Cloning of the Structural Gene for ExopolygalacturonateMolecular Cloning of the Structural Gene for Exopolygalacturonate
Molecular Cloning of the Structural Gene for Exopolygalacturonate
 
DNA Vaccine + Nanoparticles
DNA Vaccine + NanoparticlesDNA Vaccine + Nanoparticles
DNA Vaccine + Nanoparticles
 
Proposal final
Proposal finalProposal final
Proposal final
 
20081217 05邵彥春 與紅麴菌菌絲發育相關基因的克隆及序列分析
20081217 05邵彥春 與紅麴菌菌絲發育相關基因的克隆及序列分析20081217 05邵彥春 與紅麴菌菌絲發育相關基因的克隆及序列分析
20081217 05邵彥春 與紅麴菌菌絲發育相關基因的克隆及序列分析
 
Transformation of signal sequence in Escherichia coli by reporter gene fusion
Transformation of signal sequence in Escherichia coli by reporter gene fusionTransformation of signal sequence in Escherichia coli by reporter gene fusion
Transformation of signal sequence in Escherichia coli by reporter gene fusion
 
Hepatitis C
Hepatitis CHepatitis C
Hepatitis C
 
Reprint Microbiology-UK Aug 2014
Reprint Microbiology-UK Aug 2014Reprint Microbiology-UK Aug 2014
Reprint Microbiology-UK Aug 2014
 
Dna assembly 2
Dna assembly 2Dna assembly 2
Dna assembly 2
 
20081216 05袁國芳 紅麴菌基因體計畫及基因研究
20081216 05袁國芳 紅麴菌基因體計畫及基因研究20081216 05袁國芳 紅麴菌基因體計畫及基因研究
20081216 05袁國芳 紅麴菌基因體計畫及基因研究
 
Whole genome sequencing of Bacillus subtilis a gram positive organism
Whole genome sequencing of Bacillus subtilis a gram positive organismWhole genome sequencing of Bacillus subtilis a gram positive organism
Whole genome sequencing of Bacillus subtilis a gram positive organism
 
DNA construct instability in bacteria used for Agrobacterium mediated plant t...
DNA construct instability in bacteria used for Agrobacterium mediated plant t...DNA construct instability in bacteria used for Agrobacterium mediated plant t...
DNA construct instability in bacteria used for Agrobacterium mediated plant t...
 
Eddie Senior Seminar! 1
Eddie Senior Seminar! 1Eddie Senior Seminar! 1
Eddie Senior Seminar! 1
 
Eddie Senior Seminar! 1
Eddie Senior Seminar! 1Eddie Senior Seminar! 1
Eddie Senior Seminar! 1
 
Sudheer's Publication
Sudheer's PublicationSudheer's Publication
Sudheer's Publication
 
Poster mariecurieconferencewarsawfinal
Poster mariecurieconferencewarsawfinalPoster mariecurieconferencewarsawfinal
Poster mariecurieconferencewarsawfinal
 
Strategies for Recombinant protein production in E.coli
Strategies for Recombinant protein production in E.coliStrategies for Recombinant protein production in E.coli
Strategies for Recombinant protein production in E.coli
 
BioSmalltalk
BioSmalltalkBioSmalltalk
BioSmalltalk
 

Último

Vertex AI Gemini Prompt Engineering Tips
Vertex AI Gemini Prompt Engineering TipsVertex AI Gemini Prompt Engineering Tips
Vertex AI Gemini Prompt Engineering TipsMiki Katsuragi
 
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek SchlawackFwdays
 
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Mark Simos
 
Developer Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQLDeveloper Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQLScyllaDB
 
Story boards and shot lists for my a level piece
Story boards and shot lists for my a level pieceStory boards and shot lists for my a level piece
Story boards and shot lists for my a level piececharlottematthew16
 
Commit 2024 - Secret Management made easy
Commit 2024 - Secret Management made easyCommit 2024 - Secret Management made easy
Commit 2024 - Secret Management made easyAlfredo García Lavilla
 
Beyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
Beyond Boundaries: Leveraging No-Code Solutions for Industry InnovationBeyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
Beyond Boundaries: Leveraging No-Code Solutions for Industry InnovationSafe Software
 
My INSURER PTE LTD - Insurtech Innovation Award 2024
My INSURER PTE LTD - Insurtech Innovation Award 2024My INSURER PTE LTD - Insurtech Innovation Award 2024
My INSURER PTE LTD - Insurtech Innovation Award 2024The Digital Insurer
 
Ensuring Technical Readiness For Copilot in Microsoft 365
Ensuring Technical Readiness For Copilot in Microsoft 365Ensuring Technical Readiness For Copilot in Microsoft 365
Ensuring Technical Readiness For Copilot in Microsoft 3652toLead Limited
 
Powerpoint exploring the locations used in television show Time Clash
Powerpoint exploring the locations used in television show Time ClashPowerpoint exploring the locations used in television show Time Clash
Powerpoint exploring the locations used in television show Time Clashcharlottematthew16
 
Leverage Zilliz Serverless - Up to 50X Saving for Your Vector Storage Cost
Leverage Zilliz Serverless - Up to 50X Saving for Your Vector Storage CostLeverage Zilliz Serverless - Up to 50X Saving for Your Vector Storage Cost
Leverage Zilliz Serverless - Up to 50X Saving for Your Vector Storage CostZilliz
 
Streamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project SetupStreamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project SetupFlorian Wilhelm
 
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...Integration and Automation in Practice: CI/CD in Mule Integration and Automat...
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...Patryk Bandurski
 
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmaticsKotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmaticscarlostorres15106
 
Anypoint Exchange: It’s Not Just a Repo!
Anypoint Exchange: It’s Not Just a Repo!Anypoint Exchange: It’s Not Just a Repo!
Anypoint Exchange: It’s Not Just a Repo!Manik S Magar
 
Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?Mattias Andersson
 
SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024Lorenzo Miniero
 
"Federated learning: out of reach no matter how close",Oleksandr Lapshyn
"Federated learning: out of reach no matter how close",Oleksandr Lapshyn"Federated learning: out of reach no matter how close",Oleksandr Lapshyn
"Federated learning: out of reach no matter how close",Oleksandr LapshynFwdays
 
Dev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio WebDev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio WebUiPathCommunity
 

Último (20)

Vertex AI Gemini Prompt Engineering Tips
Vertex AI Gemini Prompt Engineering TipsVertex AI Gemini Prompt Engineering Tips
Vertex AI Gemini Prompt Engineering Tips
 
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
 
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
 
Developer Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQLDeveloper Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQL
 
Story boards and shot lists for my a level piece
Story boards and shot lists for my a level pieceStory boards and shot lists for my a level piece
Story boards and shot lists for my a level piece
 
Commit 2024 - Secret Management made easy
Commit 2024 - Secret Management made easyCommit 2024 - Secret Management made easy
Commit 2024 - Secret Management made easy
 
Beyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
Beyond Boundaries: Leveraging No-Code Solutions for Industry InnovationBeyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
Beyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
 
My INSURER PTE LTD - Insurtech Innovation Award 2024
My INSURER PTE LTD - Insurtech Innovation Award 2024My INSURER PTE LTD - Insurtech Innovation Award 2024
My INSURER PTE LTD - Insurtech Innovation Award 2024
 
Ensuring Technical Readiness For Copilot in Microsoft 365
Ensuring Technical Readiness For Copilot in Microsoft 365Ensuring Technical Readiness For Copilot in Microsoft 365
Ensuring Technical Readiness For Copilot in Microsoft 365
 
Powerpoint exploring the locations used in television show Time Clash
Powerpoint exploring the locations used in television show Time ClashPowerpoint exploring the locations used in television show Time Clash
Powerpoint exploring the locations used in television show Time Clash
 
DMCC Future of Trade Web3 - Special Edition
DMCC Future of Trade Web3 - Special EditionDMCC Future of Trade Web3 - Special Edition
DMCC Future of Trade Web3 - Special Edition
 
Leverage Zilliz Serverless - Up to 50X Saving for Your Vector Storage Cost
Leverage Zilliz Serverless - Up to 50X Saving for Your Vector Storage CostLeverage Zilliz Serverless - Up to 50X Saving for Your Vector Storage Cost
Leverage Zilliz Serverless - Up to 50X Saving for Your Vector Storage Cost
 
Streamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project SetupStreamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project Setup
 
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...Integration and Automation in Practice: CI/CD in Mule Integration and Automat...
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...
 
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmaticsKotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
 
Anypoint Exchange: It’s Not Just a Repo!
Anypoint Exchange: It’s Not Just a Repo!Anypoint Exchange: It’s Not Just a Repo!
Anypoint Exchange: It’s Not Just a Repo!
 
Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?
 
SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024
 
"Federated learning: out of reach no matter how close",Oleksandr Lapshyn
"Federated learning: out of reach no matter how close",Oleksandr Lapshyn"Federated learning: out of reach no matter how close",Oleksandr Lapshyn
"Federated learning: out of reach no matter how close",Oleksandr Lapshyn
 
Dev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio WebDev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio Web
 

H gh power resources

  • 1. Expression System for Recombinant Human Growth Hormone Production from Bacillus subtilis ¸ ¨ ¨ ¨ ¨ Tuncer H. Ozdamar, Birgul S enturk, Ozge Deniz Yilmaz, and Guzide Calık ¨ ¸ Biochemical Reaction Engineering Laboratory, Chemical Engineering Dept., Ankara University, 06100 Ankara, Turkey Eda Celik and Pınar Calık ¸ ¸ Industrial Biotechnology and Metabolic Engineering Laboratory, Chemical Engineering Dept., Middle East Technical University, 06531 Ankara, Turkey DOI 10.1021/bp.81 Published online January 8, 2009 in Wiley InterScience (www.interscience.wiley.com). We demonstrate for the first time, an expression system mimicking serine alkaline protease synthesis and secretion, producing native form of human growth hormone (hGH) from Bacil- lus subtilis. A hybrid-gene of two DNA fragments, i.e., signal (pre-) DNA sequence of B. licheniformis serine alkaline protease gene (subC) and cDNA encoding hGH, were cloned into pMK4 and expressed under deg-promoter in B. subtilis. Recombinant-hGH (rhGH) pro- duced by B. subtilis carrying pMK4::pre(subC)::hGH was secreted. N-terminal sequence and mass spectrometry analyses of rhGH confirm the mature hGH sequence, and indicate that the signal peptide was properly processed by B. subtilis signal-peptidase. The highest rhGH concentration was obtained at t ¼ 32 h as CrhGH ¼ 70 mg LÀ1 with a product yield on substrate YrhGH/S ¼ 9 g kgÀ1, in a glucose based defined medium. Fermentation charac- teristics and influence of hGH gene on the rhGH production were investigated by comparing B. subtilis carrying pMK4::pre(subC)::hGH with that of carrying merely pMK4. Excreted organic-acid concentrations were higher by B. subtilis carrying pMK4::pre(subC)::hGH, whereas excreted amino-acid concentrations were higher by B. subtilis carrying pMK4. The approach developed is expected to be applicable to the design of expression systems for het- erologous protein production from Bacillus species. V 2009 American Institute of Chemical C Engineers Biotechnol. Prog., 25: 75–84, 2009 Keywords: Bacillus, recombinant, protein, human growth hormone, degQ, signal peptide, expression, secretion, MALDI-MS, fermentation Introduction and physiology of Gram-positive bacteria, and particularly of sporulation and associated metabolism4; whereupon, infor- Human growth hormone (hGH) is anionic, nonglycosylated mation concerning its secretion mechanism has been gath- four helix-bundle protein known as somatotropin, having a ered as the genome sequence was resolved.5 Nevertheless, molar mass of 22 kDa and 191 amino acid residues. It has the secretion of heterologous recombinant proteins from the been used to treat hypopituitary dwarfism, injuries, bone frac- bacilli might be inefficient. On the basis of the growing tures, bleeding ulcers, and burns.1 Recently, it appears to be of availability of information on genomics and proteomics of considerable benefit to girls with Turner’s syndrome, children B. subtilis, difficulties can now be systematically addressed with chronic renal failure, and adults with growth hormone and overcome.6 For the secretion of a recombinant protein deficiency or human immunodeficiency virus (HIV) syndrome.2 produced, either protease deficient Bacillus cells7 or protease Bacillus species, producers of several industrial enzymes, inhibitors are used. Westers et al.,8 in their review article, are potential hosts for production of heterologous nonglyco- summarised the efforts employed to improve B. subtilis as a sylated proteins of commercial interest. The advantages of host for protein secretion. Expression and secretion of non- using the Gram positive bacteria, besides the ability to glycosylated proteins in the genus Bacillus require the assis- secrete functional extracellular proteins directly into the bio- tance of the N-terminal signal-sequence of precursors. reactor culture medium, are the lack of pathogenicity and the Brockmeier et al.9 and Fu et al.10 reported the use of various absence of lipopolysaccharides (endotoxins) from the cell promoters and signal DNA sequences for recombinant pro- wall.3 Amongst, Bacillus subtilis has become a model system tein production by B. subtilis. for the study of many aspects of the biochemistry, genetics, Extracellular production of a recombinant foreign protein from a B. subtilis host requires a neat design and engineering Correspondence concerning this article should be addressed to T. H. of an expression and secretion system; wherein, the choice ¨ Ozdamar at ozdamar@eng.ankara.edu.tr. of the promoter and signal DNA sequence in combination V 2009 American Institute of Chemical Engineers C 75
  • 2. 76 Biotechnol. Prog., 2009, Vol. 25, No. 1 Table 1. Strains, Plasmids and Primers used in this Study Name Description Reference or Source Strain Bacillus licheniformis Wild type carrying subC gene DSM 1969 (11) B. subtilis nprÀaprÀ BGSC- 1A751 B. subtilis spoÀ BGSC- 1A179 Escherichia coli XL1Blue Plasmids pHGH107 (12) pUC19 (13) pMK4 (14) pUC19::pre(subC)::hGH This work pMK4::pre(subC)::hGH This work Primers for pre(subC)::hGH pre(subC) forward primer 50 _GCT CTA GAG CGC AAT CTC CTG TCA TTC G_30 Complimentary strand to hGH þ 50 _GGT ATA GTT GGG AAA GCA GAA GCG GAA TCG_30 pre(subC) reverse Complimentary strand to pre(subC) þ 50 _GCT TCT GCT TTC CCA ACT ATA CCA CTA TCT C_30 hGH forward primer hGH reverse primer 50 _GCG GAT CCG CAC TGG GGA GGG GTC AC_30 with the DNA vector, in particular, is important. For accession number A00501) from Homo sapiens and antibi- recombinant protein production using Bacillus species, there otic resistance genes to ampicillin and tetracycline. is no work in the literature reporting on the use of the pro- The primers used for the amplification are given in Table moter and signal sequence of the DNA encoding the indus- 1. Signal DNA sequence of subC was fused in front of the trial enzyme serine alkaline protease (SAP). hGH gene using gene splicing by overlap extension The idea in this work is based on the construction of a method.20 XbaI restriction site was incorporated to the for- recombinant plasmid for the synthesis and secretion of rhGH ward primer of pre(subC) sequence, whereas BamHI restric- that mimics the synthesis of SAP in bacilli. Thus, the tion site was incorporated to the reverse primer of hGH hybrid-gene of two DNA fragments, i.e., signal (pre-) DNA gene. To verify the cloning, nucleotide sequencing analyses sequence of B. licheniformis serine alkaline protease (SAP) were performed at Microsynth GmbH (Switzerland) using gene (subC) and cDNA encoding hGH, were cloned into the designed primers. pMK4 plasmid and expressed under the deg-promoter in a B. subtilis host. Production of rhGH from B. subtilis and the fermentation characteristics in a defined medium were inves- Culture maintenance and media for fermentation tigated, using the designed hybrid-gene system. For the bioprocess experiments, B. subtilis BGSC-1A751 (nprÀaprÀ) and B. subtilis BGSC-1A197 (spoÀ) stock cul- Experimental Methods tures were maintained on agar slants that contained (g LÀ1): peptone, 5; beef extract, 3; agar, 15; and initial pH ¼ 7.25. Bacterial strains, plasmids, and growth media for The cells on the newly prepared slants were inoculated into genetic manipulation the preculture medium for preparation of inocula that con- The strains, plasmids, and primers used in this study are tained (g LÀ1): soytryptone, 15; peptone, 5; MnSO4.2H2O, described in Table 1. Bacterial strains, plasmids, and growth 0.010; Na2HPO4, 0.25; CaCl2, 0.100 and grown at 37 C for media were prepared using standard techniques.15 B. licheni- 6 h. The defined reference production medium for batch-bio- formis (DSM 1969), B. subtilis, and Escherichia coli XL1- reactor was as follows (g LÀ1): glucose, 6.0; (NH4)2HPO4, Blue16 were maintained and grown on LB-agar that con- 4.7; KH2PO4, 2.0; 0.04 M Na2HPO4 and NaH2PO4; the ini- tained (g LÀ1): tryptone, 10; NaCl, 5; yeast extract, 5; agar, tial pH ¼ 7.25.11,21 Chloramphenicol (7 lg/mL) was used in 15 and in LB broth (without agar) at 37 C. Ampicillin (100 all bioprocess experiments of plasmid-bearing B. subtilis. lg/mL) was used for the plasmid maintenance in E. coli Complete EDTA-free protease inhibitor (Roche) was used to strains; 7 lg/mL chloramphenicol was used for plasmid prevent proteolytic hydrolysis of the produced rhGH. maintenance in the recombinant B. subtilis. Laboratory-scale batch fermentations Manipulation of DNA, PCR, cloning, and DNA sequencing Batch laboratory-scale fermentation experiments were con- B. licheniformis chromosomal DNA was isolated as ducted in orbital shakers under agitation and heating rate described by Posprech and Neumann.17 subC gene (GenBank control, using air-filtered 500 mL Erlenmeyer-flasks having Acc. No. X03341)18,19 that encodes for extracellular serine 220 mL working volume capacities. Batch-bioreactor experi- alkaline protease (SAP) enzyme of B. licheniformis was used ments were conducted in 1.0 L bioreactor systems (BBraun, as the template for amplification of signal (pre-) sequence. Germany) consisted of temperature, pH, foam, air inlet, and HGH cDNA16 was amplified from E. coli host strain carry- stirring rate controls with 0.5 L working volume. Each ing the plasmid pHGH107 (ATCC 31538; US patent no. experiment was conducted in two bioreactors operating in 4,342,832), featuring the growth hormone ORF (NCBI parallel, to check reproducibility.
  • 3. Biotechnol. Prog., 2009, Vol. 25, No. 1 77 Analyses microliters of a 10 mg mLÀ1 sinapinic acid matrix dissolved Cell concentrations based on dry weights were measured in 50% acetonitrile and 0.1% TFA solution, was mixed with with a UV-vis spectrophotometer (Shimadzu UV-160A, To- 1 lL of $10 pmol lLÀ1 sample and 1 lL of this mixture kyo, Japan) using a calibration curve obtained at 600 nm. was spotted on the target plate and air-dried by the ‘‘dried Glucose consumption was followed by the glucose oxidation droplet’’ technique.28 Cytochrome c and Humatrope (stand- method at 505 nm with UV-vis spectrophotometer.22 ard hGH) were used as molecular weight standards for pur- Excreted amino acid concentrations were measured with an poses of mass correction. Spectra were generated from the amino acid analysis system (Waters HPLC, Milford, MA), sum of 100–200 laser pulses and mass determinations were using the Pico Tag method.23 Excreted organic acid concen- made by finding the peak centroid of a smoothed signal (by trations were measured with an HPLC (Waters, HPLC, Alli- Savitzky-Golay algorithm) after background subtraction.29 ance 2695).24 HGH concentrations were measured using a high-performance capillary electrophoresis (Waters HPCE, Results Quanta 4000 E, Milford, MA). The samples were analyzed at 12 kV and 15 C with a positive power supply using 60 cm Construction of the plasmid pMK4::pre(subC)::hGH Â 75 lm silica capillary using modified 100 mM borate B.licheniformis (DSM 1969) chromosomal DNA and buffer (pH ¼ 10) including zwitterions (Z1-Methyl, Waters) pHGH107 plasmid, containing the hGH cDNA, were isolated as the separation buffer. Proteins were detected by UV ab- to be used as templates in PCR reactions. The two target sorbance at 214 nm, as mentioned elsewhere.23,25 Humatrope genes, pre(subC) of subC gene (360 bp) from B. lichenifor- (Eli Lilly, France) was used as the standard. The Dynamic mis chromosomal DNA and mature peptide sequence of method26 was applied to find the oxygen uptake rate (OUR) hGH (639 bp) from pHGH107 plasmid, were amplified by and oxygen transfer coefficient (KLa) values. PCRs (Figure 1). The primers (Table 1) used at the ends to The physiological data for each operation were from at be joined were designed as complementary to one another least two independent experiments, and the average values by including nucleotides at their 50 ends that are complemen- were given. tary to the 30 portion of the other primer. The two PCR prod- ucts containing the overlapping fragments at the ends to be Ultrafiltration and purification joined were purified and, by the third PCR reaction using the Concentration and desalting of the production medium external primers carrying XbaI and BamHI restriction sites, was achieved by ultrafiltration under nitrogen gas (55 psi, extension of the overlap by DNA polymerase has yielded the 3.8 bar) at 4 C using Amicon 400 mL stirred pressure cells hybrid-gene product, i.e., pre(subC)::hGH (999 bp), where (Millipore, Bedford, MA) with regenerated cellulose ultrafil- pre(subC) DNA sequence, was fused in front of the hGH tration membranes having MWCO of 10 kDa (Millipore, sequence (Figure 1). The hybrid-gene pre(subC)::hGH was Bedford, MA). Purification of rhGH was achieved by then cloned into the XbaI and BamHI sites of pUC19 E. coli aptamer-based affinity chromatography. Concentrated sam- plasmid, and transformed into E. coli XLI-Blue cells by ples were mixed with hGH specific aptamer which was im- CaCl2 method. Thereafter, pre(subC)::hGH was sub-cloned mobilized onto microparticles and hGH-aptamer binding was to pMK4 SalI and BamHI sites and expressed in the hosts B. carried out at 25 C for 30 min, which has been developed subtilis BGSC-1A751 (nprÀaprÀ) and B. subtilis BGSC- and is being studied in our research group. 1A197 (spoÀ). SDS-PAGE, Western Blotting, and N-terminal SDS-PAGE, Western Blot, N-terminal, and mass sequence analysis spectrometry analyses Sodium dodecyl sulfate-polyacrylamide gel electrophoresis RhGH production potential of the recombinant cells, B. subti- (SDS-PAGE) was performed as described by Laemmli27 by lis BGSC-1A751 (nprÀaprÀ) carrying pMK4::pre(subC)::hGH using 4% stacking and 12% separating polyacrylamide gel, run on a Mini Protean II DUAL SLAB cell (Bio-Rad) according to the manufacturer’s instructions and silver stained. For West- ern blot analysis, polyclonal rabbit anti-human growth hor- mone (BioMeda, USA) was used as the primary antibody and horseradish peroxidase labeled goat-anti rabbit IgG (HþL) (BioMeda) was used as the secondary antibody. For the N-ter- minal analysis, rhGH was electrophoresed as described above and transferred onto a polyvinylidene difluoride membrane (Millipore, USA). After being stained with Coomassie blue, the rhGH band was excised, and automated Edman degrada- tion was performed by PROCISE 494 gas-phase/liquid-pulse sequencer (Applied Biosystems, Foster City, CA). MALDI-ToF mass spectrometry analysis The molecular weight of rhGH was determined by the use of a MALDI-LR (Waters-Micromass, UK) instrument. Spec- Figure 1. Agarose gel electrophoresis view for PCR amplifica- tra were generated using a pulsed nitrogen gas laser tion of hGH, pre(subC), and pre(subC)::hGH. (337 nm) in positive linear mode with a low mass gate of M, low range marker (Fermantas); Lane 1, hGH; Lane 2, pre 1,000 Da.25 The accelerating voltage was 15 kV. Three (subC)::hGH; and Lane 3, pre(subC).
  • 4. 78 Biotechnol. Prog., 2009, Vol. 25, No. 1 Figure 2. Western Blott analysis results of BGSC-1A751 (npr2, apr2) carrying pre(subC)::hGH and BGSC- 1A197 (spo2) carrying pre(subC)::hGH. Lane 1, commercial (standard) hGH; Lane 2, hGH produced by r-B. ‘subtilis BGSC-1A751 (nprÀ, aprÀ) carrying pMK4::pre (subC)::hGH; Lane 3, hGH produced by r-B. subtilis BGSC- 1A197 (spoÀ) carrying pMK4::pre(subC)::hGH; and Lane 4, marker (Sigma M 0671). Figure 3. SDS-PAGE analysis of rhGH, produced by r-B.subti- lis BGSC-1A751 (npr2, apr2) carrying pMK4:: pre(subC)::hGH. M, protein marker (Fermentas); Lane 1, product mixture of and B. subtilis BGSC-1A197 (spoÀ) carrying pMK4::pre r-B.subtilis containing rhGH; Lane 2, 1st rhGH separation with hGH specific aptamer; Lane 3, 2nd rhGH separation with hGH (subC)::hGH were determined on a glucose (CG ¼ 6 g LÀ1) specific aptamer; and Lane 4, standard hGH. based defined medium. The supernatant obtained by centrifuga- tion at t ¼ 27 h of the fermentation was partially purified by dead-end ultrafiltration and nearly 10-fold concentration was the first six amino acid residues of the putative rhGH prod- achieved. Western blot analysis showed that (Figure 2), the mo- uct were Phe-Pro-Thr-Ile-Pro-Leu, identical to the true hGH lecular mass of rhGH produced by B. subtilis BGSC-1A751 car- sequence. In support of this, nucleotide sequencing results rying pMK4::pre(subC)::hGH and B. subtilis BGSC-1A197 were also 100% matching. carrying pMK4::pre(subC)::hGH was 22 kDa being the same as the standard hGH (Humatrope, Eli Lilly, France). For further characterization, rhGH was purified, from 10- fold concentrated and partially purified fermentation broth Host selection and effect of glucose concentration on (Figure 3, Lane 1), by aptamer-based affinity chromatogra- rhGH fermentation phy, which has been developed and is being studied in our Effects of initial glucose concentration on the recombinant research group. Concentrated samples were mixed with hGH cells were investigated in laboratory-scale experiments by B. specific aptamer and hGH-aptamer binding was carried out subtilis BGSC-1A751 and B. subtilis BGSC-1A197 carrying at 25 C for 30 min (Figure 3, Lane 2). To obtain higher pu- pMK4::pre(subC)::hGH, at the initial concentrations of rification, the aptamer-affinity separation step was applied CGo ¼ 6.0, 8.0, 10.0, and 15.0 g LÀ1. The variations in glu- second time and after the elution step, rhGH was found to cose, cell and rhGH concentrations with the cultivation time be separated from the fermentation broth with 99.8% purity by B. subtilis BGSC-1A751 carrying pMK4::pre(subC)::hGH and 41% overall yield (Figure 3, Lane 3), the molecular are presented in Figures 5a–c, respectively. The cell concen- mass of purified rhGH was determined by MALDI-ToF mass tration was not affected from the initial glucose concentra- spectrometry (MS), to verify the structure of the secreted tion at t ¼ 0–6 h. Because of the addition of the protease recombinant hormone. A commercial preparation (standard) inhibitor at t ¼ 6 h, an interruption in the cell growth was of rhGH was analyzed first, and showed a spectral peak at observed until t ¼ 15 h. However, after t ¼ 15 h the second m/z 22,126 (Figure 4a). The stated molecular mass of the cell growth phase was started with the initiation of rhGH standard hormone is 22,125 Da. Thus, the detected ion was synthesis (Figure 5c). The highest cell concentration was [MþH]þ, with the exact molecular mass of m ¼ 22,126 Da, obtained at CGo ¼ 15 g LÀ1 at t ¼ 36 h as CX ¼ 2.8 g LÀ1 where the charge on the ion is z ¼ þ1. The native length of (Figure 5a). In the first 15 h, the glucose consumption rates the protein was obtained as the peak at m/z 22,133 (Figure were close to each other; however at t [ 15 h, parallel to 4b), corresponding to the [MþH]þ ion of rhGH detected the cell growth profiles, with the increase in cell growth rate, with just a 0.03% error, which is a reasonable error at high the glucose consumption rate increased being the highest at molecular weights in MALDI-ToF MS analysis. This result CGo ¼ 15 g LÀ1. The highest rhGH was produced at CGo ¼ indicates that rhGH molecule was synthesised by the 8 g LÀ1 at t ¼ 36 h as CrhGH ¼ 30 mg LÀ1. On the other recombinant construct pMK4::pre(subC)::hGH, and then hand, when the protease inhibitor was not used rhGH was secreted into the fermentation medium properly. not detected in the fermentation broths of B. subtilis BGSC- The amino acid sequence of the signal peptide fused in 1A751 and B. subtilis BGSC-1A197 carrying pMK4::pre front of the rhGH was: ‘‘MMRKKSFWLGMLTA (subC)::hGH. FMLVFTMAFSDSASA;’’ and, the N-terminal and mass A parallel set of experiments were conducted by B. subti- spectrometry analyses indicated that the SAP signal peptide lis BGSC-1A197 carrying pMK4::pre(subC)::hGH. Similar was properly processed by the B. subtilis signal peptidase to B. subtilis BGSC-1A751 results, the highest rhGH produc- (Spase I), because the results of N-terminal sequencing of tion was obtained at CGo ¼ 8 g LÀ1 but with a lower rhGH
  • 5. Biotechnol. Prog., 2009, Vol. 25, No. 1 79 Figure 4. MALDI-ToF MS analysis. (a) Standard hGH (b) B. subtilis produced and purified rhGH. value (CrhGH ¼ 26 mg LÀ1). On the basis of the results, B. by B. subtilis carrying merely pMK4, as can be seen in Fig- subtilis BGSC-1A751 was selected as the host. ure 6. In the process by B. subtilis carrying pMK4, the glucose consumption was higher until t ¼ 18 h of the fermentation, but after t ¼ 18 h, it was almost zero; where the highest cell Influence of hGH gene on the physiology of r-Bacillus concentration and the overall cell yield on substrate (YX/S) subtilis were obtained as CX ¼ 1.6 g LÀ1 (t ¼ 12 h) and YX/S ¼ To determine the influence of hGH gene on the physiol- 0.23 g gÀ1, respectively. Contrarily, by B. subtilis carrying ogy of the bacilli, bioreactor experiments were performed by pMK4::pre(subC)::hGH, the glucose consumption was B. subtilis BGSC-1A751 carrying merely pMK4, and B. sub- increased after t ¼ 18 h and the highest cell concentration tilis BGSC-1A751 carrying pMK4::pre(subC)::hGH, at T ¼ was obtained as CX ¼ 2.0 g LÀ1 (t ¼ 24 h); and the overall 37 C, pH0 ¼ 7.25, CGo ¼ 8 g LÀ1, air inlet rate of 0.5 vvm cell yield on substrate was YX/S ¼ 0.25 g gÀ1. and agitation rate of 800 minÀ1. The concentrations of the As expected, rhGH production was achieved only by B. glucose, cell, extracellular rhGH, the by-products amino and subtilis carrying pMK4::pre(subC)::hGH. RhGH synthesis organic acids, together with the oxygen-uptake (OUR) rates, started at t ¼ 18 h of the batch-bioprocess and increased oxygen-transfer coefficients (KLa), and yield coefficients with the cultivation time reaching the value CrhGH ¼ 70 mg were determined throughout the fermentations. LÀ1 at t ¼ 32 h. The highest product yield on substrate was The variations in dissolved oxygen concentration (CO) and obtained at 24 t 32 h as YrhGH/S ¼ 0.65 g gÀ1, while pH with the cultivation time are presented in Figure 6; and the the overall rhGH yield on substrate was YrhGH/S ¼ 9 g kgÀ1. variations in glucose, cell, and rhGH concentrations are pre- The excreted amino acids that were detected at considerable sented in Figure 7. The loci of the CO vs. t profiles obtained concentrations in both fermentations are leucine, isoleucine, in the two fermentation processes were similar until t ¼ 18 h, and phenylalanine. The highest concentrations of leucine, iso- where considerable decrease in dissolved oxygen concentration leucine, and phenylalanine by B. subtilis carrying pMK4::pre was observed at t ¼ 0–4 h. However, in the process by B. sub- (subC)::hGH were 0.191, 0.096, and 0.132 g LÀ1; whereas by tilis carrying pMK4::pre(subC)::hGH, a considerable decrease B. subtilis carrying pMK4 were as 0.214, 0.107, and 0.281 g in CO between t ¼ 18 h and t ¼ 22 h was detected due to LÀ1, respectively. Nevertheless, alanine, arginine, asparagine, rhGH synthesis that induced the cell growth. By the termina- aspartic acid, glutamic acid, glycine, histidine, methionine, ly- tion of the cell formation, a breakthrough in dissolved oxygen sine, valine, treonine, and tryptophan were not detected in the concentration at t ¼ 22 h is observed. broths of the two fermentation processes. Thus, the total The pH in both fermentation media decreased until t ¼ excreted amino acid concentrations were higher in the fermen- 18 h. After t ¼ 18h, pH continued to decrease by depicting tation by B. subtilis carrying merely pMK4. a characteristic curve by B. subtilis carrying pMK4::pre Variations in excreted organic acid concentration produced (subC)::hGH; contrarily, pH was increased in the bioreactor by B. subtilis carrying pMK4::pre(subC)::hGH and B.
  • 6. 80 Biotechnol. Prog., 2009, Vol. 25, No. 1 Figure 5. (a) Variation in cell concentration with the cultivation time for B. subtilis BGSC-1A751 (npr2apr2) carrying pMK4::pre (subC)::hGH with the initial glucose concentration. CGo(g L21): (^) 6.0; () 8.0; (~) 10.0; (*) 15.0. (b) Variation in glu- cose concentration with the cultivation time for B. subtilis BGSC-1A751 (npr2apr2) carrying pMK4::pre(subC)::hGH with the initial glucose concentration. CGo(g L21): (^) 6.0; () 8.0; (~) 10.0; (*) 15.0. (c) Variation in rhGH concentration with the cultivation time for B. subtilis BGSC-1A751 (npr2apr2) carrying pMK4::pre(subC)::hGH with the initial glucose concentration. CGo(g L21): (^) 6.0; () 8.0; (~) 10.0; (*) 15.0 as in 5c. subtilis carrying pMK4 are presented in Figures 8a,b, respec- Fermentation characteristics tively. Oxaloacetic acid, which is known to be produced in The variations in KLa and the oxygen uptake rate (OUR) cell regeneration, was not excreted in both fermentations. In are presented in Table 2. Considering the characteristic cell the fermentation by B. subtilis carrying pMK4::pre and rhGH concentration profiles of B. subtilis carrying (subC)::hGH, the main extracellular by-products were suc- pMK4::pre(subC)::hGH, the bioprocess was divided into five cinic, gluconic and formic acid (Figure 8a). Lactic, oxalic, periods. 0 t 4 h is the cell first-growth-phase; 4 t citric acids are the organic acids having lower concentra- 12 h is the growth-interruption-phase; 12 t 16 h is the tions, i.e., ca. 0.1 g LÀ1; moreover, pyruvic, a-ketoglutaric, and acetic acids were detected at a concentration of ca. lag-phase where rhGH synthesis starts; 16 t 24 h is the 0.01 g LÀ1. Indeed, the organic acid profiles obtained by B. second-cell-growth-phase where rhGH synthesis increases; subtilis carrying pMK4::pre(subC)::hGH are different than and 24 t 32 h is the end of the growth-phase where that of B. subtilis carrying pMK4; where in the latter, the rhGH synthesis was the highest. main excreted by-products were malic and gluconic acids In both fermentation processes, the oxygen transfer coeffi- (Figure 8b), and the concentration of the other organic acids cient, KLa, increased with the increase in the cultivation were lower than 0.01 g LÀ1. Thus, the amount of total or- time, and then decreased. At 0 t 4 h of the bioprocess, ganic acids excreted by B. subtilis carrying pMK4::pre KLa and oxygen uptake rate of B. subtilis carrying pMK4 (subC)::hGH were higher. was higher than that of B. subtilis carrying hGH gene.
  • 7. Biotechnol. Prog., 2009, Vol. 25, No. 1 81 Figure 6. Variations in dissolved oxygen concentration and pH with the cultivation time by B.subtilis BGSC-1A751 Figure 7. Variations in glucose, cell, and hGH concentrations (npr2apr2) carrying pMK4::pre(subC)::hGH (r- with the cultivation time by B. subtilis BGSC-1A751 pMK4) and BGSC-1A751 (npr2apr2) carrying (npr2apr2) carrying pMK4::pre(subC)::hGH and pMK4. Co: continuous lines, pH: dashed lines. BGSC-1A751 (npr2apr2) carrying pMK4. Glucose concentration: (--n--) pMK4; () pMK4::pre (subC)::hGH, Cell concentration: (--l--) pMK4; (*) Throughout the bioprocess, the highest KLa value was pMK4::pre(subC)::hGH, rhGH concentration: (~) obtained by B. subtilis carrying merely pMK4 as KLa¼ pMK4::pre(subC)::hGH. 0.028 sÀ1 at 0 t 4 h; however, due to low oxygen con- centrations within t ¼ 4–16 h in the production medium, the dynamic method could not be applied. Related with B. subti- spectrometry analyses indicate that the signal peptidase has lis carrying pMK4::pre(subC)::hGH, the highest OUR values cut at the site within Spase I group. Thus, the system were obtained in the first growth- (0 t 4 h) and second- designed functioned with its intended purpose effectively in cell-growth- phases (16 t 24 h) (Table 2). expression and cleavage of the recombinant product. The other peak in Figure 4b at m/z 25,854 is possibly an unspecifically bound impurity protein to the hGH-ligand during Discussion and Conclusions purification. From the facts that MALDI-ToF MS can not be used in quantitation of proteins because protein detection An expression system producing therapeutic protein depends on ionisation efficiency and that even femto-mole human growth hormone that conceptually mimics the extrac- amounts can be detected, and from SDS-PAGE (Figure 3, ellular serine alkaline protease synthesis in the genus Bacil- Lane 3) analysis where a 25.8 kDa band was not detected, it lus was designed and implemented. For the extracellular was concluded that the impurity was in negligible amounts. production of human growth hormone by B. subtilis, a Furthermore, the peaks detected at m/z 20.4 kDa in Figures recombinant plasmid carrying the hybrid-gene of two DNA 4a,b, are possibly the cleaved 20 kDa forms of hGH.32 fragments, i.e., signal (pre-) DNA sequence of a Bacillus The constructed expression system produces extracellular licheniformis extracellular SAP enzyme gene (subC) and the rhGH from B. subtilis starting from the beginning of the fer- DNA encoding hGH, was constructed and transferred into mentation process parallel to the cell growth, giving a break- two host Bacillus strains, namely B. subtilis BGSC-1A751 through at t ¼ 12 h. RhGH concentration was the highest at (nprÀaprÀ) and B. subtilis BGSC-1A197 (spoÀ). These t ¼ 32 h as CrhGH ¼ 70 mg LÀ1 and overall specific-product strains were selected for their deficiencies in two protease yield on substrate was YrhGH/S ¼ 9 g kgÀ1, in the defined genes and sporulation gene, respectively. RhGH, expressed medium with sole carbon source glucose. Nakayama et al.,33 by the hybrid-gene pre(subC)::hGH cloned into pMK4 in reported rhGH secretion level of 40 mg LÀ1 which is 1.75- both hosts, was secreted. fold lower than that obtained in this study. Kajino et al.,34 The approach developed is expected to be applicable to modified the ‘‘middle wall protein (MWP) signal peptide’’ of the design of expression systems for heterologous protein B. brevis and constructed a hGH expression system and productions from Bacillus. As the rhGH concentration reported rhGH secretion from B. brevis with an overall spe- obtained from the protease-deficient host B. subtilis BGSC- cific-product yield on glucoseþpolypeptone YrhGH/S ¼ 4 g 1A751 was higher than that of the host B. subtilis BGSC- kgÀ1 which is 2.25-fold lower than the value reported in this 1A197, the first was selected as the host owing to two gene work. Related with a different expression system for human deletions targeting the decrease in protease activities. interleukin-3, Westers et al.,35 reported 0.1 g LÀ1 recombi- Secreted proteins are generally synthesised as precursors nant human interleukin-3 secretion by an eight-protease-defi- with a cleavable signal peptide, and then the signal peptide cient B. subtilis, using a semi-defined enriched medium; is removed by signal peptidases, where preprotein processing where the overall specific-product yield on substrate was by signal peptidases are essential for bacterial growth and vi- lower then the YrhGH/S value reported in this work. There- ability.30,31 The native length of rhGH was detected in SDS- fore, we conclude that the expression system designed, PAGE (Figure 2, Lane 2), Western blot (Figure 3, Lane 3) which is based on the idea of using the ribosomal binding and MALDI-ToF MS analysis as the peak at m/z 22,133 site- promoter- and the signal peptide of serine alkaline pro- (Figure 4b) with just a 0.03% error, which is a reasonable tease enzyme gene subC, is successful for the extracellular error at high molecular weights. The N-terminal and mass recombinant protein production.
  • 8. 82 Biotechnol. Prog., 2009, Vol. 25, No. 1 Figure 8. (a) Variation in organic acid concentrations with the cultivation time by B. subtilis BGSC-1A751 (npr2apr2) carrying pMK4::pre(subC)::hGH. (b) Variation in organic acid concentrations with the cultivation time by B.subtilis BGSC-1A751 (npr2apr2) carrying pMK4. Table 2. Variation in Oxygen Transfer Characteristics with the Cultivation Time OUR*103 Microorganism Period KLa (sÀ1) (mol mÀ3 sÀ1) BGSC-1A751 (nprÀaprÀ) First growth phase, 0 t 4 h 0.017 3.5 carrying pMK4::pre(subC)::hGH Growth-interruption-phase, 4 t 12 h 0.018 3.0 Lag-phase and rhGH 0.014 2.4 synthesis phase, 12 t 16 h Second cell growth and rhGH 0.015 3.5 synthesis phase, 16 t 24 h End of the growth and rhGH 0.010 0.4 synthesis phase, 24 t 32 h À À BGSC-1A751 (npr apr ) 0t4 h 0.028 4.6 carrying pMK4 4 t 12 h – – 12 t 16 h – – 16 t 24 h 0.013 0.4 24 t 32 h 0.010 0.3 The transcription for rhGH synthesis by B. subtilis BGSC- (subC)::hGH, on glucose as sole carbon source. The results 1A751 (nprÀaprÀ) carrying the hybrid-gene pre reveal that the expression of rhGH influences the physiology (subC)::hGH is under the control of degQ promoter; there- of the r-Bacillus cells, as expected. The cell concentration fore, the synthesis and secretion pattern of rhGH mimics the profile of B. subtilis carrying pMK4::pre(subC)::hGH shows synthesis and secretion of SAP enzyme in B. lichenifor- a perturbed biphasic variation because of the introduction of mis.11,21,36 Because the ribosomal binding site, promoter, a protease inhibitor at t ¼ 4 h, where a drastic decrease in and signal peptide of the SAP gene (subC) were used in the the growth rate occurs until t ¼ 16 h, that proceeds with an constructed expression system for the synthesis and secretion increase in the growth rate until ca. t ¼ 24 h. of rhGH, a similar rhGH concentration profile to that of RhGH synthesis and secretion proceeded until t ¼ 32 h, the SAP productions from B. licheniformis carrying giving the highest concentration as CrhGH ¼ 70 mg LÀ1. As pHV1431::subC21 and B. subtilis carrying pHV1431::subC11 expected, there was no rhGH production by the microorgan- was obtained. The slight difference observed in the concen- ism that does not carry hGH gene. tration profiles was likely due to an interruption caused by Due to the introduction of new biochemical reactions into the addition of protease inhibitors. Therefore, we conclude the intracellular reaction network producing the heterologous that the expression and secretion system constructed for extracellular protein, the fermentation and oxygen transfer rhGH production from the genus Bacillus is dependent on characteristics and by-product distributions of B. subtilis car- the bioreactor operation conditions (which is being studied), rying pMK4::pre(subC)::hGH were different than that of the similar to that of SAP production by Bacillus species.37 B. subtilis carrying merely pMK4. Moreover, higher concen- To investigate the influence and perturbation effect of trations of organic acids detected in the broth of B. subtilis hGH gene on the physiology of r-B. subtilis, comparative carrying pMK4::pre(subC)::hGH, and higher concentrations bioreactor experiments were performed by B. subtilis carry- of amino acids detected in the broth of B. subtilis carrying ing merely pMK4 and B. subtilis carrying pMK4::pre pMK4, reveal the impact of the structure of the plasmids on
  • 9. Biotechnol. Prog., 2009, Vol. 25, No. 1 83 the synthesis capacity of the host throughout the Moestl D, Nakai S, Noback M, Noone D, OReilly M, Ogawa fermentation. K, Ogiwara A, Oudega B, Park SH, Parro V, Pohl TM, Por- tetelle D, Porwollik S, Prescott AM, Presecan E, Pujic P, The expression system carrying the foreign gene, hGH, in Purnelle B, Rapoport G, Rey M, Reynolds S, Rieger M, Riv- the hybrid-gene fused behind the signal (pre-) DNA olta C, Rocha E, Roche B, Rose M, Sadaie Y, Sato T, Scan- sequence, i.e., pre(subC), synthesizing and secreting rhGH lan E, Schleich S, Schroeter R, Scoffone F, Sekiguchi J, from B. subtilis carrying pMK4::pre(subC)::hGH, was influ- Sekowska A, Seror SJ, Serror P, Shin BS, Soldo B, Sorokin enced by the bioreactor operation conditions which, in turn A, Tacconi E, Takagi T, Takahashi H, Takemaru K, Takeuchi effects the oxygen transfer characteristics of the fermentation M, Tamakoshi A, Tanaka T, Terpstra P, Tognoni A, Tosato V, Uchiyama S, Vandenbol M, Vannier F, Vassarotti A, Viari process, in the defined medium based on sole carbon source A, Wambutt R, Wedler E, Wedler H, Weitzenegger T, Win- glucose. In the first cell growth phase, the oxygen uptake ters P, Wipat A, Yamamoto H, Yamane K, Yasumoto K, and glucose uptake rates by B. subtilis carrying pMK4::pre Yata K, Yoshida K, Yoshikawa HF, Zumstein E, Yoshikawa (subC)::hGH cells were lower than that of B. subtilis carry- H, Danchin, A. The complete genome sequence of the gram- ing pMK4, which resulted in lower KLa values. Furthermore, positive bacterium Bacillus subtilis. Nature. 1997;390:249– after the second-cell-growth-phase where rhGH synthesis 256. 6. Kobayashi K, Ehrlich SD, Albertini A, Amati G, Andersen KK, starts, the oxygen uptake rates were higher by B. subtilis car- Arnaud M, Asai K, Ashikaga S, Aymerich S, Bessieres P, rying pMK4::pre(subC)::hGH. Boland F, Brignell SC, Bron S, Bunai K, Chapui J, Christiansen The bioreactor operation conditions applied for the LC, Danchin A, Debarbouille M, Dervyn E, Deuerling E, fermentation experiments were the favourable conditions Devine K, Devine SK, Dreesen O, Errington J, Fillinger S, Fos- that were found for the SAP production by B. licheniformis ter SJ, Fujita Y, Galizzi A, Gardan R, Eschevins C, Fukushima T, Haga K, Harwood CR, Hecker M, Hosoya D, Hullo MF, carrying pHV1431::subC21 and B. subtilis carrying Kakeshita H, Karamata D, Kasahara Y, Kawamura F, Koga K, pHV1431::subC.11 The fermentation and oxygen-transfer Koski P, Kuwana R, Imamura D, Ishimaru M, Ishikawa S, Ishio characteristics reveal that the extracellular rhGH production I, Le Coq D, Masson A, Mauel C, Meima R, Mellado RP, Moir proceeds through the constructed expression system by form- A, Moriya S, Nagakawa E, Nanamiya H, Nakai S, Nygaard P, ing unique intracellular reaction pathways with different in- Ogura M, Ohanan T, O’Reilly M, O’Rourke M, Pragai Z, Poo- tracellular reaction rates compared to that of SAP ley HM, Rapoport G, Rawlins JP, Rivas LA, Rivolta C, Sadaie production. Thus, these results encourage metabolic flux A, Sadaie Y, Sarvas M, Sato T, Saxild HH, Scanlan E, Schu- mann W, Seegers JFML, Sekiguchi J, Sekowska A, Seror SJ, analysis using the recombinant B. subtilis carrying the con- Simon M, Stragier P, Studer R, Takamatsu H, Tanaka T, Takeu- structed expression system encoding extracellular rhGH, chi M, Thomaides HB, Vagner V, van Dijl JM, Watabe K, which is being studied. Wipat A, Yamamoto H, Yamamoto M, Yamamoto Y, Yamane K, Yata K, Yoshida K, Yoshikawa H, Zuber U, Ogasawara, N. Essential Bacillus subtilis genes. Proc Natl Acad Sci USA. Acknowledgments 2003;100:4678–4683. 7. Ye R, Kim BG, Szarka S, Sihota E, Wong SL. High-level This work was supported by the Scientific and Technical secretory production of intact, biologically active staphylo- Research Council of Turkey (TUBITAK) through the projects kinase from Bacillus subtilis. Biotechnol Bioeng. 1999;62:87– 104M012 and 107M420. Ankara University Biotechnology 96. Institute is gratefully acknowledged for providing the mass 8. Westers L, Westers H, Quax JW. Bacillus subtilis as cell fac- spectrometer. Humatrope was supplied kindly by Pharmacist tory for pharmaceutical proteins: a biotechnological approach to optimize the host organism. Biochim Biophys Acta. 2004; ¨ ˘ Tulay Latifoglu. E, Celik’s contribution was performing the ¸ 1694:299–310. MALDI-ToF analysis. 9. Brockmeier U, Caspers M, Freudl R, Jockwer A, Noll T, Eggert T. Systematic screening of all signal peptides from Bacillus sub- tilis: a powerful strategy in optimizing heterologous protein Literature Cited secretion in gram-positive bacteria. J Mol Biol. 2006;362:393– 402. 1. Tritos NA, Mantzoros CS. Recombinant human growth hor- 10. Fu LL, Xu ZR, Li WF, Shuai JB, Lu P, Hu CX. Protein secre- mone: old and novel uses. Am J Med. 1998;105:44–57. tion pathways in Bacillus subtilis: implication for optimization 2. Baulieu E, Kelly PA. Hormones from Molecules to Disease. of heterologous protein secretion. Biotechnol Adv. 2007;25:1– New York: Herman Press; 1990. 12. 3. Simonen M, Palva I. Protein secretion in Bacillus species. 11. ¨ Calık P, Kalender N, Ozdamar TH. Overexpression of serine ¸ Microbiol Rev. 1993;57:109–137. alkaline protease encoding gene in Bacillus species: perform- 4. Harwood CR. Bacillus subtilis and its relatives: molecular bio- ance analyses. Enzyme Microb Technol. 2003;33:967–974. logical and industrial workhorses. Trends Biotechnol. 1992;10: 12. Goeddel DV, Heyneker HL, Hozumi T, Arentzen R, Itakura K, 247–256. Yansura DG, Ross MJ, Miozzari G, Crea R, Seeburg PH. Direct 5. Kunst F, Ogasawara N, Moszer I, Albertini AM, Alloni G, expression in Escherichia coli of a DNA sequence coding for Azevedo V, Bertero MG, Bessieres P, Bolotin A, Borchert S, human growth hormone. Nature. 1979;281:544–548. Borriss R, Boursier L, Brans A, Braun M, Brignell SC, Bron 13. Yanisch-Perron C, Viera J, Messing, J. Improved M13 phage S, Brouillet S, Bruschi CV, Caldwell B, Capuano V, Carter cloning vectors and host strains: nucleotide sequences of the NM, Choi SK, Codani JJ, Connerton IF, Cummings NJ, Dan- M13mp18 and pUC19 vectors. Gene. 1985;33:103–119. iel RA, Denizot F, Devine KM, Dusterhoft A, Ehrlich SD, 14. ¨ Bruckner R. A series of shuttle vectors for Bacillus subtilis and Emmerson PT, Entian KD, Errington J, Fapret C, Ferrari E, Escherichia coli. Gene. 1992;122:187–192. Foulger D, Fritz C, Fujita M, Fujita Y, Fuma S, Galizzi A, 15. Maniatis T, Fritsch EF, Sambrook J. Molecular Cloning—A Galleron N, Ghim SY, Glaser P, Goffeau A, Golightly EJ, Laboratory Manual. NY, USA: Cold Spring Harbor Laboratory; Grandi G, Guiseppi G, Guy BJ, Haga K, Haiech J, Harwood 1982. CR, Henaut A, Hilbert H, Holsappel S, Hosono S, Hullo MF, 16. Bullock WO, Fernandez JM, Short JM. XL1-Blue—a high-effi- Itaya M, Jones L, Joris B, Karamata D, Kasahara Y, Klaerr ciency plasmid transforming recA Escherishia coli strain with Blanchard M, Klein C, Kobayashi Y, Koetter P, Koningstein beta-galactosidase selection. Biotechniques. 1987;5:376. G, Krogh S, Kumano M, Kurita K, Lapidus A, Lardinois S, 17. Posprech A, Neumann B. A versatile quick-prep of genomic Lauber J, Lazarevic V, Lee SM, Levine A, Liu H, Masuda DNA from gram-positive bacteria. Trends Genet. 1995;11:217– S, Mauel C, Medigue C, Medina N, Mellado RP, Mizuno M, 218.
  • 10. 84 Biotechnol. Prog., 2009, Vol. 25, No. 1 18. Jacobs M. Expression of the subtilisin carlsberg-encoding gene 29. Celik E, Calık P, Halloran M, Oliver SG. Production of ¸ ¸ in Bacillus licheniformis and Bacillus subtilis. Gene. 1995;152: recombinant human erythropoietin from Pichia pastoris and its 69–74. structural analysis. J Appl Microbiol. 2007;103:2084–2094. 19. Jacobs M, Elisson M, Uhlen M, Flock JI. Cloning, sequencing 30. van Roosmalen ML, Geukens N, Jongloed JDH, Tjalsma H, and expression of subtilisin carlsberg from Bacillus lichenifor- Dubois J-YF, Bron S, Van Dijl JM, Anne J. Type I signal pepti- mis. Nucleic Acids Res. 1985;13:8913–8926. dases of gram-positive bacteria. Biochem Biophys Acta. 2004; 20. Ho NS, Hunt DH, Horton MR, Pullen KJ, Pease RL. Site- 1694:279–297. directed mutagenesis by overlap extension using the polymerase 31. Tjalsma H, Bolhuis A, Jongbloed JDH, Bron S, Van Dijl JM. chain reaction. Gene. 1989;77:51–59. Signal peptide-dependent protein transport in Bacillus subtilis: a ¨ 21. Calık P, Bilir E, Calık G, Ozdamar TH. Bioreactor operation ¸ ¸ genome-based survey of the secretome. Microbiol Mol Biol Rev. parameters as tools for metabolic regulations in serine alkaline 2000;64:515–547. protease production: influence of pH conditions. Chem Eng Sci. ˜ 32. Grigorian AL, Bustamante JJ, Munoz J, Aguilar RM, Martinez AO, 2003;58:759–766. Haro LS. Preparative alkaline urea gradient PAGE: application to pu- 22. Boyaci IH. A new approach for determination of enzyme kinetic rification of extraordinarily-stable disulfide-linked homodimer of constants using response surface methodology. Biochem Eng J. human growth hormone. Electrophoresis. 2007;28:3829–3836. 2005;25:55–62. 33. Nakayama A, Ando K, Kawamura K, Mita I, Fukazawa K, Hori ¸ ¸ ¨ 23. Calık P, Calık G, Ozdamar TH. Oxygen transfer effects in ser- M, Honjo M, Furutani Y. Efficient secretion of the authentic ine alkaline protease fermentation by Bacillus licheniformis: use mature human growth hormone by Bacillus subtilis. J Biotech- of citric acid as the carbon source. Enzyme Microb Technol. nol. 1988;8:123–134. 1998;23:451–461. 34. Kajino T, Saito Y, Asami O, Yamada Y, Hirai M, Udata S. _ 24. Ileri N, Calık P. Effects of pH strategy on endo- and exo- ¸ Extracellular production of an intact and biologically active metabolome profiles and sodium potassium hydrogen ports of human growth hormone by the Bacillus brevis system. J Ind beta-lactamase producing Bacillus licheniformis. Biotechnol Microbiol Biotechnol. 1997;19:227–231. Prog. 2006;22:411–419. 35. Westers L, Dijkstra SD, Westers H, van Dijl MJ, Quax JW. 25. Calık P, Orman MA, Celik E, Halloran M, Calık G, Ozdamar ¸ ¸ ¸ ¨ Secretion of functional human interleukin-3 from Bacillus subti- TH. Expression system for synthesis and purification of lis. J Biotechnol. 2006;123:211–224. recombinant human growth hormone in Pichia pastoris and ¨ 36. Calık P, Tomlin G, Oliver SG, Ozdamar TH. Overexpression of ¸ structural analysis by MALDI-ToF mass spectrometry. Biotech- a serine alkaline protease in Bacillus licheniformis and its nol Prog. 2008;24:221–226. impact on the metabolic reaction network. Enzyme Microb 26. Bandyopadhyay B, Humprey AE. Dynamic measurement of the Technol. 2003;32:706–720. volumetric oxygen transfer coefficient in fermentation systems. ¨ 37. Calık P, Calık G, Ozdamar TH. Bioprocess development for ¸ ¸ Biotechnol Bioeng. 1967;9:533–544. serine alkaline protease production: a review. Chem Eng. 27. Laemmli UK. Cleavage of structural proteins during assembly 2001;17:1–62.Suppl. S. of head of bacteriophage-T4. Nature. 1970;227:680. 28. Karas M, Hillenkamp F. Laser desorption ionization of proteins with molecular masses exceeding 10000 daltons. Anal Chem. Manuscript received Jan. 8, 2008, and revision received May 5, 1998;60:2299–2301. 2008.