SlideShare una empresa de Scribd logo
1 de 70
 
Index ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Why Accelerators ,[object Object],[object Object],[object Object],[object Object]
Accelerators and Neutrons ,[object Object],[object Object],[object Object],[object Object]
Accelerators and Neutrons ,[object Object],[object Object],[object Object],[object Object]
Accelerators and Neutrons ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Neutron generation 1/3 ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Neutron generation 2/3 ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
[object Object],[object Object],[object Object],Neutron generation 3/3 ,[object Object],[object Object],Proton beam Proton beam
Applications 1/3 ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Applications 2/3 ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Application 3/3 ,[object Object],[object Object],[object Object],[object Object],[object Object]
The accelerators ~ dm 2 ~ dm 2 ~ dm 2 Beam dimension 14 MeV Wide spectrum Wide spectrum Neutron energy 10 MW 1.4 MW ~ 20 MW Total beam power 2 * 125 mA 1.4 mA 20-40 mA Average beam current Continuous Pulsed: 60 Hz – 695 ns Continuous Beam operation Stripping deuton - Litium Spallation on liquid mercury Spallation on liquid lead/bismuth Neutron production deutons H-, converted in p at accumulator ring protons Accelerates With window With window Windowless Target area ~ 40 MeV ~ 1 GeV ~ 600-1000 MeV Beam energy IFMIF SNS ADS
Index ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Particle Accelerators ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Basic Concepts: Fields ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Some Milestones for Accelerators  ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Accelerators evolution: the Livingston chart  ,[object Object],[object Object],[object Object],[object Object],future E = m c 2
[object Object],[object Object],[object Object],[object Object],Linac RF acceleration concept Traveling wave V ph  ≈ c   and  Vg < c   Standing wave V ph  = 0  and  Vg = c      mode bunches Electric field
RF Linac Overview Particle Source Linac structure : Acceleration (cavities) Transverse focusing (magnets) Electric power Vacuum Cooling RF power and controls Output beam   (experiments,  users,  applications ...) Subsystems SNS - ORNL TTF - DESY
Energy gain and dissipated power ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],U is the energy stored in the cavity  P diss  is the power dissipated on its surface Δ V is the voltage seen by the beam “ r over Q ” is purely  a geometrical factor ,[object Object],[object Object],L R C
Why Superconductivity in RF linacs? ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Superconductivity whenever possible  ,[object Object],[object Object],[object Object],[object Object],SC SuperConducting NC   or RT NormalConducting Nb Cu
Superconductivity whenever possible  ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Index ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
ADS proton beam requirements ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
The proton linacs
Linac or cyclotron 1/2 ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Linac or cyclotron 2/2 ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
The ADS Linac ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Reference Linac Design Proton  Source RFQ Medium energy ISCL linac 3 sections high energy SC linac 80 keV 5 MeV ~ 100 MeV 200 MeV 500 MeV >1000 MeV ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],5   -  85/100  MeV SC linac Spoke cavities   (352 MHz) Lambda/4 cavities  (176 MHz) Reentrant cavities   (352 MHz) or NC Drift Tube Linac (DTL)  High transmission 90% 30 mA, 5 MeV   (352 MHz) Microwave  RF Source High current (3 5  mA) 80  keV High Energy  SC  Linac ISCL RFQ Source
Linac Design ,[object Object],[object Object],[object Object]
Injector, an example: LEDA at LANL RFQ Concept 1.2 MW (structure) 670 kW (beam) RF Power 8 m (4 sections) Length 6.7 MeV Final Energy 100 mA (95 %) Beam current LEDA RFQ: One Section of LEDA-RFQ The LEDA-RFQ fully installed
High energy section: the test module  Elliptical   =0.47 cavities have been produced, vertically tested and will be equipped to be tested in an horizontal test module by INFN - LASA
The Reliability Issue ,[object Object],[object Object]
Some Remarks  on  Linac  Reliability ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Index ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
SNS Guiding Principles ,[object Object],[object Object],[object Object],[object Object],[object Object]
The Spallation Neutron Source
Neutron generation ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Power Ramp-up Progress ,[object Object],160 KW: ISIS Power Record
Beam Target and Neutron Moderation ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Layout of RF Linac 805 MHz, 0.55 MW klystron 805 MHz, 5 MW   klystron 402.5 MHz, 2.5 MW klystron SRF, ß=0.61, 33 cavities 1 from  CCL 186 MeV 86.8 MeV 2.5  MeV RFQ (1) DTL (6) CCL (4) SRF, ß=0.81, 48 cavities 1000  MeV (81 total powered) 379 MeV Warm Linac SCL Linac
Normal Conducting Linac ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Superconducting Linac ,[object Object],[object Object],[object Object],[object Object],[object Object],Medium beta cavity High beta cavity
Others SNS Parameters ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
SNS Instruments
Q-   Diagram for Inelastic Instruments adapted from “Neutron Scattering Instrumentation for a High-Powered Spallation Source” R. Hjelm, et al., LA0-UR 97-1272 Momentum Distributions Itinerant Magnets Crystal  Fields Molecular Vibrations Lattice Vibrations Small Molecule Diffusion Large Scale Motions Polymers and Biological Systems Tunneling Spectroscopy Electron-Phonon Interactions Hydrogen Modes Molecular Reorientation Ultracold Neutrons Fundamental Physics Slower Motions Larger Objects ARCS THERMAL CHOPPER SPECT COLD NEUTRON CHOPPER SPECT BACKSCATTERING SPECTROMETER
SNS Reflectometers R min < 5×10 -10 Q max  ~ 1.5 Å -1  (Liquids)   ~ 7 Å -1  (Magnetism) d min ~ 7 Å 50-100× NIST NG-1 Magnetism: vertical sample Liquids: horizontal sample
Diffraction ,[object Object],[object Object]
High Pressure Cells Limit Sample Volume ,[object Object]
Index ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
IFMIF general information ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
ITER 3 dpa/lifetime IFMIF 20-55 dpa/year Plasma Facing Materials Structural Materials Functional Materials Advanced Materials are at a critical path DEMO 30 dpa/year
IFMIF Main Objectives ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],neutron flux coolant flow (He) 200 50 50 [mm]
IFMIF Principles RFQ HWR HEBT ,[object Object],[object Object],[object Object],[object Object],Source Accelerator (x 2) Test Cell Low flux (< 1 dpa/an, > 8 L) Medium flux (20 – 1 dpa/an, 6 L) Lithium target High flux (> 20 dpa/an, 0.5 L)
IFMIF “Artist View” Ion Source RF Quadrupole Post Irradiation Experiment Facilities High Energy Beam Transport Li Target Li Loop Test Modules inside Test Cells Half-wave resonators  0  20  40 m
IFMIF Accelerator ,[object Object],[object Object],[object Object],[object Object]
IFMIF EVEDA design ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],~ ~
Accelerator Reference Design High Energy Beam Transport (HEBT) Large Bore Quad & Dipoles, 43 m long SC Half-wave resonators acceleration to 40 MeV Radio Frequency Quadrupole (RFQ) bunching & acceleration 5 MeV;  MS to DTL RF Power System 175 MHz 12 RF amplifiers, 1MW CW 100 keV Injector Ion Source 140 mA D + , 100 keV LEBT transfer/match to RFQ 5 MeV 40 MeV 125 mA deuton beam Control Command  2
Injector - Conception ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Injector – Initial LEBT design Cone Cameras ACCT Cameras Neutron detector Emittance Monitor  DC toroid on HV cable Movable ConFlat Species identification* Thermocouples *fluorescence + shifted   Doppler lines analysis
Radio-Frequency Quadrupole ,[object Object],[object Object],[object Object],[object Object],[object Object],RF study started Cu brazing joints e-beam & laser welding alternatives under study Mechanical design in a test phase
Old design: DTL and Matching Section 1st tank parameters Conventional Alvarez technology 1 RF coupler / tank RF Frequency 175 MHz Input energy 5.02 MeV Output energy 9.02 MeV Internal length 4.67 m Internal diameter 1.074 m Number of cells 33 Total power 680 kW Power dissipation 180 kW Efficiency 73.5 % Power coupler Stem-box Cover Tuning Slug Post Coupler Drift Tube  Stem Drift Tube To vacuum pump Bulk Tuner
Present design:  Half-wave resonators (HWR)  IFMIF/EVEDA Project Committee meeting (10-11 October 2007) Accelerator Facility Project Plan Superconducting solution: existing modules module double of the one currently operating at SOREQ    L~ 5 m group cavities in long cryostats and conservative gradients Take 175 MHz HWR with big aperture 8-10-12 6 4.5 MV/m 40-50 mm SC IFMIF 5.5 MV/m 30 mm SARAF* project
Lithium target ,[object Object],The Lithium circuit The Lithium target Quench Tank Deuteron Beams Li Target ( T 2.5 cm,  W 26 cm) EM Pump HX(Li / Organic Oil) Dump Tank (9 m 3 -Li) HX(Organic Oil / Water) 130 L/s, 250   C Cold Trap (220   C) N Hot Trap (600   C) T Hot Trap (250   C)
Principle of Test Modules 2 m D + Medium Flux Test Modules High Flux Test Module Low Flux Irradiation Tubes Lithium Target Lithium Tank Shield plug
Irradiation modules overview VIT MF-CF MF-LBV MF-TR Upper internal flange Upper reflector Lateral reflector 12 rigs Lower reflector Helium inlet duct Helium exit duct HFTM
IFMIF Medium Flux Test Module 3 independent samples in creep fatigue
Conclusions ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]

Más contenido relacionado

La actualidad más candente

La actualidad más candente (20)

Plasma Antenna Report
Plasma  Antenna ReportPlasma  Antenna Report
Plasma Antenna Report
 
Travelling Wave Tube
Travelling Wave TubeTravelling Wave Tube
Travelling Wave Tube
 
Phy 310 chapter 1
Phy 310   chapter 1Phy 310   chapter 1
Phy 310 chapter 1
 
Gauss gun
Gauss gunGauss gun
Gauss gun
 
Introduction to Plasma antenna ppt
Introduction to Plasma antenna pptIntroduction to Plasma antenna ppt
Introduction to Plasma antenna ppt
 
X-ray production & emission
X-ray production & emissionX-ray production & emission
X-ray production & emission
 
Particle Accelerators
Particle AcceleratorsParticle Accelerators
Particle Accelerators
 
Presentation2
Presentation2Presentation2
Presentation2
 
Plasma antenna
Plasma antennaPlasma antenna
Plasma antenna
 
Plasma antenna 1 cet final year
Plasma antenna 1 cet final yearPlasma antenna 1 cet final year
Plasma antenna 1 cet final year
 
Plasma anteena
Plasma anteenaPlasma anteena
Plasma anteena
 
Plasma antenna
Plasma antennaPlasma antenna
Plasma antenna
 
Plasma antennas
Plasma antennasPlasma antennas
Plasma antennas
 
Plasma Antenna and its applications
Plasma Antenna and its applicationsPlasma Antenna and its applications
Plasma Antenna and its applications
 
plasma antenna
plasma antennaplasma antenna
plasma antenna
 
Introduction of travelling wave & magnetrons
Introduction of travelling wave & magnetronsIntroduction of travelling wave & magnetrons
Introduction of travelling wave & magnetrons
 
Electric Rocket Propulsion
Electric Rocket PropulsionElectric Rocket Propulsion
Electric Rocket Propulsion
 
Chapter 5a
Chapter 5aChapter 5a
Chapter 5a
 
Plasma silicon antenna
Plasma silicon antennaPlasma silicon antenna
Plasma silicon antenna
 
Chapter 002
Chapter 002Chapter 002
Chapter 002
 

Similar a Serena barbanotti INFN milano

Romiya_HR_presenetation
Romiya_HR_presenetationRomiya_HR_presenetation
Romiya_HR_presenetationRomiya Bose
 
UNIT V RADAR TRANSMITTERS AND RECEIVERS 14.11.23.pdf
UNIT V RADAR TRANSMITTERS AND RECEIVERS 14.11.23.pdfUNIT V RADAR TRANSMITTERS AND RECEIVERS 14.11.23.pdf
UNIT V RADAR TRANSMITTERS AND RECEIVERS 14.11.23.pdfdevicaf983
 
Linear Accelerator working and construction
Linear Accelerator working and constructionLinear Accelerator working and construction
Linear Accelerator working and constructionBDRRISHIKESHVLOGS
 
Transmissions line power system btech notes
Transmissions line power system btech notesTransmissions line power system btech notes
Transmissions line power system btech notesShivamRai624135
 
Swift Heavy Ion Irradiation
Swift Heavy Ion IrradiationSwift Heavy Ion Irradiation
Swift Heavy Ion Irradiationkrishslide
 
Radar 2009 a 17 transmitters and receivers
Radar 2009 a 17 transmitters and receiversRadar 2009 a 17 transmitters and receivers
Radar 2009 a 17 transmitters and receiversForward2025
 
Piezo electric transducer
Piezo electric transducerPiezo electric transducer
Piezo electric transducerarvind venkat
 
Nuclear micro battery
Nuclear micro batteryNuclear micro battery
Nuclear micro batteryVishnu M T
 
Linear accelerator
Linear acceleratorLinear accelerator
Linear acceleratorNeena John
 
introduction to laser and introductory concepts
introduction to laser and introductory conceptsintroduction to laser and introductory concepts
introduction to laser and introductory conceptsUOG PHYSICISTS !!!!!
 

Similar a Serena barbanotti INFN milano (20)

M1 accelerators
M1 acceleratorsM1 accelerators
M1 accelerators
 
Solar Photovoltaic.ppt
Solar Photovoltaic.pptSolar Photovoltaic.ppt
Solar Photovoltaic.ppt
 
Romiya_HR_presenetation
Romiya_HR_presenetationRomiya_HR_presenetation
Romiya_HR_presenetation
 
LIANS_accelerators.ppt
LIANS_accelerators.pptLIANS_accelerators.ppt
LIANS_accelerators.ppt
 
Linac presentation
Linac presentationLinac presentation
Linac presentation
 
UNIT V RADAR TRANSMITTERS AND RECEIVERS 14.11.23.pdf
UNIT V RADAR TRANSMITTERS AND RECEIVERS 14.11.23.pdfUNIT V RADAR TRANSMITTERS AND RECEIVERS 14.11.23.pdf
UNIT V RADAR TRANSMITTERS AND RECEIVERS 14.11.23.pdf
 
PET Cyclotron
PET Cyclotron PET Cyclotron
PET Cyclotron
 
Linear Accelerator working and construction
Linear Accelerator working and constructionLinear Accelerator working and construction
Linear Accelerator working and construction
 
Nantenna
NantennaNantenna
Nantenna
 
Transmissions line power system btech notes
Transmissions line power system btech notesTransmissions line power system btech notes
Transmissions line power system btech notes
 
Swift Heavy Ion Irradiation
Swift Heavy Ion IrradiationSwift Heavy Ion Irradiation
Swift Heavy Ion Irradiation
 
Radar 2009 a 17 transmitters and receivers
Radar 2009 a 17 transmitters and receiversRadar 2009 a 17 transmitters and receivers
Radar 2009 a 17 transmitters and receivers
 
Piezo electric transducer
Piezo electric transducerPiezo electric transducer
Piezo electric transducer
 
Nanomaterials
NanomaterialsNanomaterials
Nanomaterials
 
ULTRASONICS
ULTRASONICSULTRASONICS
ULTRASONICS
 
adaindiv1
adaindiv1adaindiv1
adaindiv1
 
Nuclear micro battery
Nuclear micro batteryNuclear micro battery
Nuclear micro battery
 
Linear accelerator
Linear acceleratorLinear accelerator
Linear accelerator
 
Laser matter interaction
Laser matter interactionLaser matter interaction
Laser matter interaction
 
introduction to laser and introductory concepts
introduction to laser and introductory conceptsintroduction to laser and introductory concepts
introduction to laser and introductory concepts
 

Más de adamas comunicazione (12)

Repubblica
RepubblicaRepubblica
Repubblica
 
Il Giornaledel Piemonte
Il Giornaledel PiemonteIl Giornaledel Piemonte
Il Giornaledel Piemonte
 
Stampa It
Stampa ItStampa It
Stampa It
 
La Stampa
La StampaLa Stampa
La Stampa
 
Repubblica Iron Bike
Repubblica Iron BikeRepubblica Iron Bike
Repubblica Iron Bike
 
To7
To7To7
To7
 
Tsunami (Definitivo)
Tsunami (Definitivo)Tsunami (Definitivo)
Tsunami (Definitivo)
 
Schede Asta Party Beneficenza "A Torino Correre va di Moda 2008"
Schede Asta Party Beneficenza "A Torino Correre va di Moda 2008"Schede Asta Party Beneficenza "A Torino Correre va di Moda 2008"
Schede Asta Party Beneficenza "A Torino Correre va di Moda 2008"
 
Torino Presentation Barletta 5 23 2008
Torino Presentation Barletta 5 23 2008Torino Presentation Barletta 5 23 2008
Torino Presentation Barletta 5 23 2008
 
Turin Workshop, Cng Eurosea001
Turin Workshop, Cng Eurosea001Turin Workshop, Cng Eurosea001
Turin Workshop, Cng Eurosea001
 
Turinworkshop 2 Leung
Turinworkshop 2 LeungTurinworkshop 2 Leung
Turinworkshop 2 Leung
 
Turin Bnct Moss
Turin Bnct MossTurin Bnct Moss
Turin Bnct Moss
 

Último

IAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI SolutionsIAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI SolutionsEnterprise Knowledge
 
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdfThe Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdfEnterprise Knowledge
 
Salesforce Community Group Quito, Salesforce 101
Salesforce Community Group Quito, Salesforce 101Salesforce Community Group Quito, Salesforce 101
Salesforce Community Group Quito, Salesforce 101Paola De la Torre
 
Boost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivityBoost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivityPrincipled Technologies
 
Kalyanpur ) Call Girls in Lucknow Finest Escorts Service 🍸 8923113531 🎰 Avail...
Kalyanpur ) Call Girls in Lucknow Finest Escorts Service 🍸 8923113531 🎰 Avail...Kalyanpur ) Call Girls in Lucknow Finest Escorts Service 🍸 8923113531 🎰 Avail...
Kalyanpur ) Call Girls in Lucknow Finest Escorts Service 🍸 8923113531 🎰 Avail...gurkirankumar98700
 
Breaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path MountBreaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path MountPuma Security, LLC
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerThousandEyes
 
08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking MenDelhi Call girls
 
Histor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slideHistor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slidevu2urc
 
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law DevelopmentsTrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law DevelopmentsTrustArc
 
🐬 The future of MySQL is Postgres 🐘
🐬  The future of MySQL is Postgres   🐘🐬  The future of MySQL is Postgres   🐘
🐬 The future of MySQL is Postgres 🐘RTylerCroy
 
[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdfhans926745
 
A Call to Action for Generative AI in 2024
A Call to Action for Generative AI in 2024A Call to Action for Generative AI in 2024
A Call to Action for Generative AI in 2024Results
 
A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)Gabriella Davis
 
Partners Life - Insurer Innovation Award 2024
Partners Life - Insurer Innovation Award 2024Partners Life - Insurer Innovation Award 2024
Partners Life - Insurer Innovation Award 2024The Digital Insurer
 
Automating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps ScriptAutomating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps Scriptwesley chun
 
Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024The Digital Insurer
 
Slack Application Development 101 Slides
Slack Application Development 101 SlidesSlack Application Development 101 Slides
Slack Application Development 101 Slidespraypatel2
 
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationFrom Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationSafe Software
 
Exploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone ProcessorsExploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone Processorsdebabhi2
 

Último (20)

IAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI SolutionsIAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI Solutions
 
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdfThe Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
 
Salesforce Community Group Quito, Salesforce 101
Salesforce Community Group Quito, Salesforce 101Salesforce Community Group Quito, Salesforce 101
Salesforce Community Group Quito, Salesforce 101
 
Boost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivityBoost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivity
 
Kalyanpur ) Call Girls in Lucknow Finest Escorts Service 🍸 8923113531 🎰 Avail...
Kalyanpur ) Call Girls in Lucknow Finest Escorts Service 🍸 8923113531 🎰 Avail...Kalyanpur ) Call Girls in Lucknow Finest Escorts Service 🍸 8923113531 🎰 Avail...
Kalyanpur ) Call Girls in Lucknow Finest Escorts Service 🍸 8923113531 🎰 Avail...
 
Breaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path MountBreaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path Mount
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected Worker
 
08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men
 
Histor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slideHistor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slide
 
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law DevelopmentsTrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
 
🐬 The future of MySQL is Postgres 🐘
🐬  The future of MySQL is Postgres   🐘🐬  The future of MySQL is Postgres   🐘
🐬 The future of MySQL is Postgres 🐘
 
[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf
 
A Call to Action for Generative AI in 2024
A Call to Action for Generative AI in 2024A Call to Action for Generative AI in 2024
A Call to Action for Generative AI in 2024
 
A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)
 
Partners Life - Insurer Innovation Award 2024
Partners Life - Insurer Innovation Award 2024Partners Life - Insurer Innovation Award 2024
Partners Life - Insurer Innovation Award 2024
 
Automating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps ScriptAutomating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps Script
 
Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024
 
Slack Application Development 101 Slides
Slack Application Development 101 SlidesSlack Application Development 101 Slides
Slack Application Development 101 Slides
 
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationFrom Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
 
Exploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone ProcessorsExploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone Processors
 

Serena barbanotti INFN milano

  • 1.  
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.
  • 8.
  • 9.
  • 10.
  • 11.
  • 12.
  • 13. The accelerators ~ dm 2 ~ dm 2 ~ dm 2 Beam dimension 14 MeV Wide spectrum Wide spectrum Neutron energy 10 MW 1.4 MW ~ 20 MW Total beam power 2 * 125 mA 1.4 mA 20-40 mA Average beam current Continuous Pulsed: 60 Hz – 695 ns Continuous Beam operation Stripping deuton - Litium Spallation on liquid mercury Spallation on liquid lead/bismuth Neutron production deutons H-, converted in p at accumulator ring protons Accelerates With window With window Windowless Target area ~ 40 MeV ~ 1 GeV ~ 600-1000 MeV Beam energy IFMIF SNS ADS
  • 14.
  • 15.
  • 16.
  • 17.
  • 18.
  • 19.
  • 20. RF Linac Overview Particle Source Linac structure : Acceleration (cavities) Transverse focusing (magnets) Electric power Vacuum Cooling RF power and controls Output beam (experiments, users, applications ...) Subsystems SNS - ORNL TTF - DESY
  • 21.
  • 22.
  • 23.
  • 24.
  • 25.
  • 26.
  • 28.
  • 29.
  • 30.
  • 31.
  • 32.
  • 33. Injector, an example: LEDA at LANL RFQ Concept 1.2 MW (structure) 670 kW (beam) RF Power 8 m (4 sections) Length 6.7 MeV Final Energy 100 mA (95 %) Beam current LEDA RFQ: One Section of LEDA-RFQ The LEDA-RFQ fully installed
  • 34. High energy section: the test module Elliptical  =0.47 cavities have been produced, vertically tested and will be equipped to be tested in an horizontal test module by INFN - LASA
  • 35.
  • 36.
  • 37.
  • 38.
  • 40.
  • 41.
  • 42.
  • 43. Layout of RF Linac 805 MHz, 0.55 MW klystron 805 MHz, 5 MW klystron 402.5 MHz, 2.5 MW klystron SRF, ß=0.61, 33 cavities 1 from CCL 186 MeV 86.8 MeV 2.5 MeV RFQ (1) DTL (6) CCL (4) SRF, ß=0.81, 48 cavities 1000 MeV (81 total powered) 379 MeV Warm Linac SCL Linac
  • 44.
  • 45.
  • 46.
  • 48. Q-  Diagram for Inelastic Instruments adapted from “Neutron Scattering Instrumentation for a High-Powered Spallation Source” R. Hjelm, et al., LA0-UR 97-1272 Momentum Distributions Itinerant Magnets Crystal Fields Molecular Vibrations Lattice Vibrations Small Molecule Diffusion Large Scale Motions Polymers and Biological Systems Tunneling Spectroscopy Electron-Phonon Interactions Hydrogen Modes Molecular Reorientation Ultracold Neutrons Fundamental Physics Slower Motions Larger Objects ARCS THERMAL CHOPPER SPECT COLD NEUTRON CHOPPER SPECT BACKSCATTERING SPECTROMETER
  • 49. SNS Reflectometers R min < 5×10 -10 Q max ~ 1.5 Å -1 (Liquids) ~ 7 Å -1 (Magnetism) d min ~ 7 Å 50-100× NIST NG-1 Magnetism: vertical sample Liquids: horizontal sample
  • 50.
  • 51.
  • 52.
  • 53.
  • 54. ITER 3 dpa/lifetime IFMIF 20-55 dpa/year Plasma Facing Materials Structural Materials Functional Materials Advanced Materials are at a critical path DEMO 30 dpa/year
  • 55.
  • 56.
  • 57. IFMIF “Artist View” Ion Source RF Quadrupole Post Irradiation Experiment Facilities High Energy Beam Transport Li Target Li Loop Test Modules inside Test Cells Half-wave resonators 0 20 40 m
  • 58.
  • 59.
  • 60. Accelerator Reference Design High Energy Beam Transport (HEBT) Large Bore Quad & Dipoles, 43 m long SC Half-wave resonators acceleration to 40 MeV Radio Frequency Quadrupole (RFQ) bunching & acceleration 5 MeV; MS to DTL RF Power System 175 MHz 12 RF amplifiers, 1MW CW 100 keV Injector Ion Source 140 mA D + , 100 keV LEBT transfer/match to RFQ 5 MeV 40 MeV 125 mA deuton beam Control Command  2
  • 61.
  • 62. Injector – Initial LEBT design Cone Cameras ACCT Cameras Neutron detector Emittance Monitor DC toroid on HV cable Movable ConFlat Species identification* Thermocouples *fluorescence + shifted Doppler lines analysis
  • 63.
  • 64. Old design: DTL and Matching Section 1st tank parameters Conventional Alvarez technology 1 RF coupler / tank RF Frequency 175 MHz Input energy 5.02 MeV Output energy 9.02 MeV Internal length 4.67 m Internal diameter 1.074 m Number of cells 33 Total power 680 kW Power dissipation 180 kW Efficiency 73.5 % Power coupler Stem-box Cover Tuning Slug Post Coupler Drift Tube Stem Drift Tube To vacuum pump Bulk Tuner
  • 65. Present design: Half-wave resonators (HWR) IFMIF/EVEDA Project Committee meeting (10-11 October 2007) Accelerator Facility Project Plan Superconducting solution: existing modules module double of the one currently operating at SOREQ  L~ 5 m group cavities in long cryostats and conservative gradients Take 175 MHz HWR with big aperture 8-10-12 6 4.5 MV/m 40-50 mm SC IFMIF 5.5 MV/m 30 mm SARAF* project
  • 66.
  • 67. Principle of Test Modules 2 m D + Medium Flux Test Modules High Flux Test Module Low Flux Irradiation Tubes Lithium Target Lithium Tank Shield plug
  • 68. Irradiation modules overview VIT MF-CF MF-LBV MF-TR Upper internal flange Upper reflector Lateral reflector 12 rigs Lower reflector Helium inlet duct Helium exit duct HFTM
  • 69. IFMIF Medium Flux Test Module 3 independent samples in creep fatigue
  • 70.