SlideShare una empresa de Scribd logo
1 de 23
Descargar para leer sin conexión
UNIVERSIDADE DO ESTADO DO RIO DE JANEIRO
INSTITUTO POLITÉCNICO
Graduação em Engenharia Mecânica
Disciplinas:
Mecânica dos Materiais 2 – 6º Período
E
Dinâmica e Projeto de Máquinas 2-10º Período
Professor: Dr. Damiano da Silva Militão.
Tema de aula 2: Transformação da Deformação
SEQUÊNCIA DE ABORDAGENS:
• 2.1 Estado Plano de Deformações
• 2.2 Equações Gerais de Transformação para o Estado Plano de Deformações
• 2.3 Círculo de Mohr — Estado Plano de Deformações
• 2.4 Deformação por Cisalhamento Máxima Absoluta
• 2.5 Rosetas
• 2.6 Relações Material-Propriedade
OBJETIVOS:
• Mostrar utilização de métodos semelhantes aos de transformação de tensão.
• Apresentar maneiras de medição das deformações
“Não é conhecer muito, mas o que é útil, que torna um homem sábio.”
THOMAS FULLER, M.D.
2.1 Estado plano de deformações
O estado geral de deformação também é caracterizado por seis componentes, três normais εx,
εy e εz (adimensionais) que ocorrem nas direções dos eixos x, y e z e três por cisalhamento γ
xy, γ yz e γxz (variação angular [rad] entre os pares de eixos especificados);
No estado plano de deformações desconsideramos as componentes εz, γyz e γxz, teremos;
Convenção:
. γ (+) -> (fecha).
. γ (-) ->(abre).
As componentes de deformação são avaliadas por extensômetros e tem valores específicos em
cada direção observada.
Mas devido ao efeito Poisson, o estado plano de tensões não
causa necessariamente um estado plano de deformações e vice-versa.
2.2 Equações gerais de transformação para o estado plano de deformações
Baseado nestas deformações, buscamos as deformações
de um elemento em x’y’ rotacionado em relação a xy;
Na direção y’ defasamos = +90º, e teremos;
Consideraremos o elemento infinitesimal com deformações normais εx e εy nas direções x e y e
deformações total cisalhantes γxy ;
Para a deformação normal em x’ teremos a equação geral;
Para a deformação cisalhante em x’y’ teremos
a equação geral;
Como no estado plano de tensões
podemos geometricamente deduzir
expressões para obter εx’, εy’, γ x’y’
nos eixos x’y’.
EXEMPLO: O elemento infinitesimal do suporte está sujeito a um estado plano de deformações
com os seguintes componentes: εx = 150 (10-6), εy = 200 (10-6), e γxy= -700 (10-6). Usar as
equações de transformação e determinar as deformações planas equivalentes em um elemento
orientado a 30° no sentido horário em relação à posição original. Esquematizar no plano x-y o
elemento distorcido em virtude dessas deformações.
Solução:
Vemos que há uma def. cis. Negativa (abre ângulo entre x’
e y’), uma def. normal positiva em x’ (alonga) e negativa
em y’ (contrai), logo esboçamos o elemento deformado:
DEFORMAÇÕES PRINCIPAIS;
 Obtemos as expressões de maneira análoga as tensões principais
 Deformações normais principais também ocorrem em orientações de deformações cisalhantes
nulas.
 A deformação cisalhante máxima também ocorre em planos a 45º, onde atua uma deformação
normal média.
 Em materiais isotrópicos os eixos das deformações principais coincidem com a orientação dos eixos
das tensões principais.
Fazer: O estado de deformação no ponto do dente da engrenagem tem
componentes εx=850(10-6), εy=480(10-6), γxy = 650(10-6), Usar as
equações de transformação da deformação para determinar (a) as
deformações principais no plano e (b) a deformação por cisalhamento
máxima no plano e a deformação normal média. Especificar em cada caso
a orientação do elemento e mostrar no plano x-y como as deformações o
distorcem.
2.3 Circulo de Mohr - Estado plano de deformações
A equação do circulo de Mohr de deformações é obtida analogamente às de tensões;
Com atenção para o fato do eixo das ordenadas representar metade da deformação por
cisalhamento.
Centro e raio serão;
onde , e o pt de referência pode ser
Exemplo: O estado de deformação no ponto da chave tem componentes εx=260(10-6),
εy=320(10-6) e γxy= 180(10-6). Usar o circulo de Mohr para determinar (a) as deformações
principais no plano e (b) a deformação por cisalhamento máxima no plano e a deformação
normal média. Especificar em cada caso a orientação do elemento e mostrar no plano x-y como
as deformações o distorcem.
Sol; obtendo metade da def. cis. podemos marcar o
pt de referência A,
Com a def. normal média obtemos o centro,
No próximo slide mostramos o círculo construído com o centro e pt de referência dados,
Dados; εx=260(10-6), εy=320(10-6) e γxy= 180(10-6)
Temos o circulo;
O raio será;
B e D dão as deformações principais;
A orientação do plano principal de
def. normal min. por tang. é;
Logo θp2=35.8º no sentido horário, e a máxima defasado
portanto observando o círculo
θp1=90-35.8=54.2º anti-hor. p/ a def.
normal máx.
Com o raio obtemos a def. cis. max.
no circulo, entre AC e CE dá o ângulo da orientação da def. cis máx por tg.;
sentido anti-horário, com fechamento angular (γ+).
Como vemos, a deformação de cisalhamento máxima absoluta será
como ela ocorre no plano x’z’, seu elemento está orientado à 45º em torno de y’(σint).
Temos ainda a deformação normal média;
2.4 Deformação por cisalhamento máxima absoluta
Em materiais homogêneos e isotrópicos, estas tensões
submetem as deformações principais
nestas direções;
Analisando cada plano
separadamente,
construímos o círculo de
Mohr que cruza o eixo das
abcissas nas def. principais dadas
(pts de ordenadas def. cis.=0)
Como vimos, um elem. em um estado de tensão tridimensional xyz;
terá uma orientação x’y’z’ onde atuam as tensões
principais (triaxiais)
ATENÇÂO: Planos onde não há def. cis. estão com
as def. normais principais.
Sol; para obter as tensões principais vamos utilizar o ciclo de Mohr para deformações,
inicialmente no plano xy;
Lembrando que;
Fazemos;
assim teremos as deformações principais no
plano x’y’;
que serão respectivamente εmax e εint, pois se trata de estado plano
com εz’=0=εmin, então fazemos o ciclo simultaneamente com as
deformações principais em cada um dos plano x’y´, x´z´e z´ý´;
Vemos que a def. cis. máxima no plano x’y’ será;
Vemos que def. cis. máxima absoluta ocorre no plano x’z’
(círculo maior) e será;
Exemplo: A deformação no ponto A do suporte tem componentes εx=300(10-6), εy=550(10-6) ,
γxy= -650(10-6) e εz= 0. Determinar (a) as deformações principais em A, (b) a deformação por
cisalhamento máxima no plano x-y e (c) a deformação por cisalhamento máxima absoluta.
Lembre-se: Planos que
não tiverem def. cis. tem
as def. normais principais
(xz e yz neste caso)
2.5 Rosetas
São extensômetros de resistência elétrica;
para padrão de 3 extensômetros;
Em uma superfície xy ela mede as deformações εx’
(εa, εb e εc) respectivamente nas direções θ (θa, θb
e θc) representadas acima.
Trata-se de um problema inverso (temos (εx’)’s e
θ’s, e buscamos εx, εy e γxy) montando um sistema
com a equação geral de transformação ;
(reescrita sem as identidades trigonométricas; sen 2θ = 2 sen
θ cos θ, cos2 θ = (1+ cos 2 θ)/2 e sen2 θ + cos2 θ = 1).
O sistema terá a forma;
Determinados εx, εy e γxy utilizamos Mohr ou
Eq. gerais para obter as deformações principais
e cisalhante máxima.
Para facilitar convém orientar as rosetas
nas formas:
Assim o sistema;
Substituindo os valores de sen e cos
reescrevemos respectivamente:
θa=0º
θb=45º
θc=90º
θa=0º
θb=60º
θc=120º
Exemplo: O estado de deformação no ponto A do suporte da Figura-a é medido com o uso da
roseta mostrada na Figura -b. Devido às cargas, as leituras nos aferidores dão εa=60(10-6),
εb=135(10-6) , εc = 264(10-6). Determinar as deformações principais no plano nesse ponto e as
direções em que cada uma atua. Sol; poderíamos usar o sistema reescrito mais
simples, mas montando o sistema inteiro;
Cuja solução será;
ou
Por trigonometria (tg) obtemos o menor ângulo principal (2θp2) de AC até a direção da deformação principal
mínima no sentido anti-horário;
Logo a orientação será;
Montaremos o ciclo de Mohr;
Fazer: A roseta montada no elo da retroescavadeira fez as seguintes aferições; εa=650(10-6),
εb=-300(10-6) , εc = 480(10-6). Determinar (a) as deformações principais no plano, (b) a
deformação por cisalhamento máxima no plano e a deformação normal média associada.
Supondo materiais homogêneos e isotrópicos na região linear elástica;
Lei de Hooke Generalizada;
Em tensões triaxiais para obter as deformações devemos considerar Poisson
, (cada deformação sofre influência da def. perpendicular a ela).
Ex: Vamos buscar εx:
Pela lei de Hooke uniaxial (Cap 3), quando σx é aplicada o elemento deforma-se ε'x em x;
Mas como σy é aplicada; por Poisson ele tb deforma-se ε‘’x em x;
Mas como σz é aplicada; por Poisson ele tb deforma-se ε‘’’x em x;
Portanto a deformação final εx será a superposição (soma) das três, ou seja;
Analogamente para y e z faremos;
LEI DE HOOKE GENERALIZADA TRIAXIAL->
2.6 Relações Material Propriedade
Obs: Não existe efeito Poisson no cisalhamento,
Cada tensão τxy (plano x e direção y), apenas deforma o ângulo γxy
, (entre os eixos x e y)
assim, para cisalhamento, a lei de Hooke não se altera;
O módulo de elasticidade (E), o módulo de cisalhamento (ou módulo de rigidez) (G) e o
coeficiente de Poisson (ν) se relacionam pela Equação:
Deformação Volumétrica (e) (ou dilatação) ;
Tensões normais num elemento de volume inicial V0=dV=dxdydz;
causam variações de volume δV=V-V0
desprezando os produtos das deformações,
Deformação volumétrica ou dilatação
é simplesmente a razão adimensional;
Substituindo a Lei de Hooke generalizada nas deformações (ε’s):
Módulo de elasticidade do volume (ou compressibilidade) (k);
Dado um elemento submetido a uma pressão hidrostática
positiva (p) de compressão;
Teremos as tensões normais;
Substituíndo estas na equação da def. volumétrica, reescrevemos:
O termo constante do lado direito é o k;
(un: Pa ou ksi)
Obs:
, K>0 , (pois pressão hidrostática (p) positiva é compressão, e causa def. vol. (e) negativa)
Isso mostra que Poisson tem valor limitante máximo ν 0.5 (veja o denominador de k)
Esse é o valor de ν usado para escoamento plástico, quando o módulo de compressibilidade K é
máximo significando não haver mais mudança de volume, só da forma.
Fazer: A barra de cloreto de polivinil (Epvc = 800x103 psi) está sujeita a uma força axial de 900 lb.
Supondo que ela tenha as dimensões originais mostradas, se o ângulo θ decrescer Δθ = 0,01°
depois que a carga for aplicada, determinar:
a)as deformações normais εx, εy em função de (νpvc).
b)o coeficiente de Poisson (νpvc).
c)o módulo de cisalhamento (G).
d)a deformação volumétrica (e).
e)o módulo de compressibilidade (k).
MUITO OBRIGADO PELA ATENÇÃO!
– Bibliografia:
– R. C. Hibbeler – Resistência dos materiais – 5º Edição.

Más contenido relacionado

La actualidad más candente

Resistência dos materiais - Exercícios Resolvidos
Resistência dos materiais - Exercícios ResolvidosResistência dos materiais - Exercícios Resolvidos
Resistência dos materiais - Exercícios ResolvidosMoreira1972
 
Exercícios sobre reações de apoio
Exercícios sobre reações de apoioExercícios sobre reações de apoio
Exercícios sobre reações de apoioRaimundo Cesário
 
Exercicios resolvidos -_hidraulica_basic
Exercicios resolvidos -_hidraulica_basicExercicios resolvidos -_hidraulica_basic
Exercicios resolvidos -_hidraulica_basicGerson Justino
 
Solução dos exercícios de mecânica dos fluidos franco brunetti capitulo7
Solução dos exercícios de mecânica dos fluidos   franco brunetti capitulo7Solução dos exercícios de mecânica dos fluidos   franco brunetti capitulo7
Solução dos exercícios de mecânica dos fluidos franco brunetti capitulo7Cristiano Figueiras
 
Exercicios resolvidos
Exercicios resolvidosExercicios resolvidos
Exercicios resolvidosTiesco
 
Fluidos problemas resolvidos e propostos
Fluidos problemas resolvidos e propostosFluidos problemas resolvidos e propostos
Fluidos problemas resolvidos e propostosValdineilao Lao
 
Beer mecanica de_materiales_5e_manual_de_soluciones_c01_y_c02
Beer mecanica de_materiales_5e_manual_de_soluciones_c01_y_c02Beer mecanica de_materiales_5e_manual_de_soluciones_c01_y_c02
Beer mecanica de_materiales_5e_manual_de_soluciones_c01_y_c02Eduardo Spech
 
111272491 exercicios-resolvidos-termo-ii
111272491 exercicios-resolvidos-termo-ii111272491 exercicios-resolvidos-termo-ii
111272491 exercicios-resolvidos-termo-iitwolipa
 
1 resistencia materiais-estaticas_estruturas - importantíssimo - usar este
1   resistencia materiais-estaticas_estruturas - importantíssimo - usar este1   resistencia materiais-estaticas_estruturas - importantíssimo - usar este
1 resistencia materiais-estaticas_estruturas - importantíssimo - usar esteturmacivil51
 
Transformacao de tensoes
Transformacao de tensoesTransformacao de tensoes
Transformacao de tensoesBianca Alencar
 
Exercicios de torção
Exercicios de torçãoExercicios de torção
Exercicios de torçãoRomualdo SF
 
Flexão normal simples e composta
Flexão normal simples e compostaFlexão normal simples e composta
Flexão normal simples e compostaEDER OLIVEIRA
 
Tabela de dimensões e unidades
Tabela de dimensões e unidadesTabela de dimensões e unidades
Tabela de dimensões e unidadesDaniellycc
 
Exercícios de torque
Exercícios de torqueExercícios de torque
Exercícios de torqueRobsoncn
 

La actualidad más candente (20)

Critérios
CritériosCritérios
Critérios
 
Resistência dos materiais - Exercícios Resolvidos
Resistência dos materiais - Exercícios ResolvidosResistência dos materiais - Exercícios Resolvidos
Resistência dos materiais - Exercícios Resolvidos
 
Exercícios sobre reações de apoio
Exercícios sobre reações de apoioExercícios sobre reações de apoio
Exercícios sobre reações de apoio
 
Exercicios resolvidos -_hidraulica_basic
Exercicios resolvidos -_hidraulica_basicExercicios resolvidos -_hidraulica_basic
Exercicios resolvidos -_hidraulica_basic
 
Solução dos exercícios de mecânica dos fluidos franco brunetti capitulo7
Solução dos exercícios de mecânica dos fluidos   franco brunetti capitulo7Solução dos exercícios de mecânica dos fluidos   franco brunetti capitulo7
Solução dos exercícios de mecânica dos fluidos franco brunetti capitulo7
 
Exercicios resolvidos
Exercicios resolvidosExercicios resolvidos
Exercicios resolvidos
 
Fluidos problemas resolvidos e propostos
Fluidos problemas resolvidos e propostosFluidos problemas resolvidos e propostos
Fluidos problemas resolvidos e propostos
 
Beer mecanica de_materiales_5e_manual_de_soluciones_c01_y_c02
Beer mecanica de_materiales_5e_manual_de_soluciones_c01_y_c02Beer mecanica de_materiales_5e_manual_de_soluciones_c01_y_c02
Beer mecanica de_materiales_5e_manual_de_soluciones_c01_y_c02
 
111272491 exercicios-resolvidos-termo-ii
111272491 exercicios-resolvidos-termo-ii111272491 exercicios-resolvidos-termo-ii
111272491 exercicios-resolvidos-termo-ii
 
Aula18(3)
Aula18(3)Aula18(3)
Aula18(3)
 
1 resistencia materiais-estaticas_estruturas - importantíssimo - usar este
1   resistencia materiais-estaticas_estruturas - importantíssimo - usar este1   resistencia materiais-estaticas_estruturas - importantíssimo - usar este
1 resistencia materiais-estaticas_estruturas - importantíssimo - usar este
 
Transformacao de tensoes
Transformacao de tensoesTransformacao de tensoes
Transformacao de tensoes
 
Exercicios de torção
Exercicios de torçãoExercicios de torção
Exercicios de torção
 
Momento de-inercia-prof.-ferreira
Momento de-inercia-prof.-ferreiraMomento de-inercia-prof.-ferreira
Momento de-inercia-prof.-ferreira
 
Flexão normal simples e composta
Flexão normal simples e compostaFlexão normal simples e composta
Flexão normal simples e composta
 
Resistência dos Materiais II
Resistência dos Materiais IIResistência dos Materiais II
Resistência dos Materiais II
 
Tabela de dimensões e unidades
Tabela de dimensões e unidadesTabela de dimensões e unidades
Tabela de dimensões e unidades
 
Ciclo de mohr
Ciclo de mohrCiclo de mohr
Ciclo de mohr
 
F flexao simples
F   flexao simplesF   flexao simples
F flexao simples
 
Exercícios de torque
Exercícios de torqueExercícios de torque
Exercícios de torque
 

Similar a Transformação da Deformação e Relações Materiais

Similar a Transformação da Deformação e Relações Materiais (20)

Estado triplo-tensao
Estado triplo-tensaoEstado triplo-tensao
Estado triplo-tensao
 
Capitulo1 parte1
Capitulo1 parte1Capitulo1 parte1
Capitulo1 parte1
 
Tensoes
TensoesTensoes
Tensoes
 
Capítulo 2 mecânica da conformação
Capítulo 2 mecânica da conformaçãoCapítulo 2 mecânica da conformação
Capítulo 2 mecânica da conformação
 
Cap 02 análise de tensões e deformações
Cap 02   análise de tensões e deformaçõesCap 02   análise de tensões e deformações
Cap 02 análise de tensões e deformações
 
Flexao plana.pdf
Flexao plana.pdfFlexao plana.pdf
Flexao plana.pdf
 
Capítulo 2 mecânica da conformação plástica dos metais
Capítulo 2 mecânica da conformação plástica dos metaisCapítulo 2 mecânica da conformação plástica dos metais
Capítulo 2 mecânica da conformação plástica dos metais
 
resumao resistencia dos materiais
resumao resistencia dos materiaisresumao resistencia dos materiais
resumao resistencia dos materiais
 
Aula11
Aula11Aula11
Aula11
 
2017420_10293_Passo+a+Passo+do+Círculo+de+Morh.ppt
2017420_10293_Passo+a+Passo+do+Círculo+de+Morh.ppt2017420_10293_Passo+a+Passo+do+Círculo+de+Morh.ppt
2017420_10293_Passo+a+Passo+do+Círculo+de+Morh.ppt
 
Texto complementar nº 1 - Gráficos
Texto complementar nº 1 - GráficosTexto complementar nº 1 - Gráficos
Texto complementar nº 1 - Gráficos
 
Metodo dos Esforços
Metodo dos EsforçosMetodo dos Esforços
Metodo dos Esforços
 
Exp 3 vibrações alef
Exp 3 vibrações alefExp 3 vibrações alef
Exp 3 vibrações alef
 
St2
St2St2
St2
 
St2
St2St2
St2
 
Apostila st 402
Apostila   st 402Apostila   st 402
Apostila st 402
 
Apostila estruturas
Apostila estruturasApostila estruturas
Apostila estruturas
 
Conicas
ConicasConicas
Conicas
 
Apostila Teoria das Estruturas
Apostila Teoria das EstruturasApostila Teoria das Estruturas
Apostila Teoria das Estruturas
 
Cap. 08
Cap. 08Cap. 08
Cap. 08
 

Último

2° ANO - ENSINO FUNDAMENTAL ENSINO RELIGIOSO
2° ANO - ENSINO FUNDAMENTAL ENSINO RELIGIOSO2° ANO - ENSINO FUNDAMENTAL ENSINO RELIGIOSO
2° ANO - ENSINO FUNDAMENTAL ENSINO RELIGIOSOLeloIurk1
 
PROJETO DE EXTENSÃO I - TECNOLOGIA DA INFORMAÇÃO Relatório Final de Atividade...
PROJETO DE EXTENSÃO I - TECNOLOGIA DA INFORMAÇÃO Relatório Final de Atividade...PROJETO DE EXTENSÃO I - TECNOLOGIA DA INFORMAÇÃO Relatório Final de Atividade...
PROJETO DE EXTENSÃO I - TECNOLOGIA DA INFORMAÇÃO Relatório Final de Atividade...HELENO FAVACHO
 
PRÉDIOS HISTÓRICOS DE ASSARÉ Prof. Francisco Leite.pdf
PRÉDIOS HISTÓRICOS DE ASSARÉ Prof. Francisco Leite.pdfPRÉDIOS HISTÓRICOS DE ASSARÉ Prof. Francisco Leite.pdf
PRÉDIOS HISTÓRICOS DE ASSARÉ Prof. Francisco Leite.pdfprofesfrancleite
 
Jogo de Rimas - Para impressão em pdf a ser usado para crianças
Jogo de Rimas - Para impressão em pdf a ser usado para criançasJogo de Rimas - Para impressão em pdf a ser usado para crianças
Jogo de Rimas - Para impressão em pdf a ser usado para criançasSocorro Machado
 
DeClara n.º 75 Abril 2024 - O Jornal digital do Agrupamento de Escolas Clara ...
DeClara n.º 75 Abril 2024 - O Jornal digital do Agrupamento de Escolas Clara ...DeClara n.º 75 Abril 2024 - O Jornal digital do Agrupamento de Escolas Clara ...
DeClara n.º 75 Abril 2024 - O Jornal digital do Agrupamento de Escolas Clara ...IsabelPereira2010
 
ENSINO RELIGIOSO 7º ANO INOVE NA ESCOLA.pdf
ENSINO RELIGIOSO 7º ANO INOVE NA ESCOLA.pdfENSINO RELIGIOSO 7º ANO INOVE NA ESCOLA.pdf
ENSINO RELIGIOSO 7º ANO INOVE NA ESCOLA.pdfLeloIurk1
 
Atividade - Letra da música Esperando na Janela.
Atividade -  Letra da música Esperando na Janela.Atividade -  Letra da música Esperando na Janela.
Atividade - Letra da música Esperando na Janela.Mary Alvarenga
 
Revolução russa e mexicana. Slides explicativos e atividades
Revolução russa e mexicana. Slides explicativos e atividadesRevolução russa e mexicana. Slides explicativos e atividades
Revolução russa e mexicana. Slides explicativos e atividadesFabianeMartins35
 
Projeto_de_Extensão_Agronomia_adquira_ja_(91)_98764-0830.pdf
Projeto_de_Extensão_Agronomia_adquira_ja_(91)_98764-0830.pdfProjeto_de_Extensão_Agronomia_adquira_ja_(91)_98764-0830.pdf
Projeto_de_Extensão_Agronomia_adquira_ja_(91)_98764-0830.pdfHELENO FAVACHO
 
Nós Propomos! " Pinhais limpos, mundo saudável"
Nós Propomos! " Pinhais limpos, mundo saudável"Nós Propomos! " Pinhais limpos, mundo saudável"
Nós Propomos! " Pinhais limpos, mundo saudável"Ilda Bicacro
 
PROVA - ESTUDO CONTEMPORÂNEO E TRANSVERSAL: LEITURA DE IMAGENS, GRÁFICOS E MA...
PROVA - ESTUDO CONTEMPORÂNEO E TRANSVERSAL: LEITURA DE IMAGENS, GRÁFICOS E MA...PROVA - ESTUDO CONTEMPORÂNEO E TRANSVERSAL: LEITURA DE IMAGENS, GRÁFICOS E MA...
PROVA - ESTUDO CONTEMPORÂNEO E TRANSVERSAL: LEITURA DE IMAGENS, GRÁFICOS E MA...azulassessoria9
 
421243121-Apostila-Ensino-Religioso-Do-1-ao-5-ano.pdf
421243121-Apostila-Ensino-Religioso-Do-1-ao-5-ano.pdf421243121-Apostila-Ensino-Religioso-Do-1-ao-5-ano.pdf
421243121-Apostila-Ensino-Religioso-Do-1-ao-5-ano.pdfLeloIurk1
 
Construção (C)erta - Nós Propomos! Sertã
Construção (C)erta - Nós Propomos! SertãConstrução (C)erta - Nós Propomos! Sertã
Construção (C)erta - Nós Propomos! SertãIlda Bicacro
 
Slides Lição 05, Central Gospel, A Grande Tribulação, 1Tr24.pptx
Slides Lição 05, Central Gospel, A Grande Tribulação, 1Tr24.pptxSlides Lição 05, Central Gospel, A Grande Tribulação, 1Tr24.pptx
Slides Lição 05, Central Gospel, A Grande Tribulação, 1Tr24.pptxLuizHenriquedeAlmeid6
 
PRÁTICAS PEDAGÓGICAS GESTÃO DA APRENDIZAGEM
PRÁTICAS PEDAGÓGICAS GESTÃO DA APRENDIZAGEMPRÁTICAS PEDAGÓGICAS GESTÃO DA APRENDIZAGEM
PRÁTICAS PEDAGÓGICAS GESTÃO DA APRENDIZAGEMHELENO FAVACHO
 
PROJETO DE EXTENÇÃO - GESTÃO DE RECURSOS HUMANOS.pdf
PROJETO DE EXTENÇÃO - GESTÃO DE RECURSOS HUMANOS.pdfPROJETO DE EXTENÇÃO - GESTÃO DE RECURSOS HUMANOS.pdf
PROJETO DE EXTENÇÃO - GESTÃO DE RECURSOS HUMANOS.pdfHELENO FAVACHO
 
Slides Lição 6, CPAD, As Nossas Armas Espirituais, 2Tr24.pptx
Slides Lição 6, CPAD, As Nossas Armas Espirituais, 2Tr24.pptxSlides Lição 6, CPAD, As Nossas Armas Espirituais, 2Tr24.pptx
Slides Lição 6, CPAD, As Nossas Armas Espirituais, 2Tr24.pptxLuizHenriquedeAlmeid6
 
Análise poema país de abril (Mauel alegre)
Análise poema país de abril (Mauel alegre)Análise poema país de abril (Mauel alegre)
Análise poema país de abril (Mauel alegre)ElliotFerreira
 
PROJETO DE EXTENSÃO I - AGRONOMIA.pdf AGRONOMIAAGRONOMIA
PROJETO DE EXTENSÃO I - AGRONOMIA.pdf AGRONOMIAAGRONOMIAPROJETO DE EXTENSÃO I - AGRONOMIA.pdf AGRONOMIAAGRONOMIA
PROJETO DE EXTENSÃO I - AGRONOMIA.pdf AGRONOMIAAGRONOMIAHELENO FAVACHO
 
aula de bioquímica bioquímica dos carboidratos.ppt
aula de bioquímica bioquímica dos carboidratos.pptaula de bioquímica bioquímica dos carboidratos.ppt
aula de bioquímica bioquímica dos carboidratos.pptssuser2b53fe
 

Último (20)

2° ANO - ENSINO FUNDAMENTAL ENSINO RELIGIOSO
2° ANO - ENSINO FUNDAMENTAL ENSINO RELIGIOSO2° ANO - ENSINO FUNDAMENTAL ENSINO RELIGIOSO
2° ANO - ENSINO FUNDAMENTAL ENSINO RELIGIOSO
 
PROJETO DE EXTENSÃO I - TECNOLOGIA DA INFORMAÇÃO Relatório Final de Atividade...
PROJETO DE EXTENSÃO I - TECNOLOGIA DA INFORMAÇÃO Relatório Final de Atividade...PROJETO DE EXTENSÃO I - TECNOLOGIA DA INFORMAÇÃO Relatório Final de Atividade...
PROJETO DE EXTENSÃO I - TECNOLOGIA DA INFORMAÇÃO Relatório Final de Atividade...
 
PRÉDIOS HISTÓRICOS DE ASSARÉ Prof. Francisco Leite.pdf
PRÉDIOS HISTÓRICOS DE ASSARÉ Prof. Francisco Leite.pdfPRÉDIOS HISTÓRICOS DE ASSARÉ Prof. Francisco Leite.pdf
PRÉDIOS HISTÓRICOS DE ASSARÉ Prof. Francisco Leite.pdf
 
Jogo de Rimas - Para impressão em pdf a ser usado para crianças
Jogo de Rimas - Para impressão em pdf a ser usado para criançasJogo de Rimas - Para impressão em pdf a ser usado para crianças
Jogo de Rimas - Para impressão em pdf a ser usado para crianças
 
DeClara n.º 75 Abril 2024 - O Jornal digital do Agrupamento de Escolas Clara ...
DeClara n.º 75 Abril 2024 - O Jornal digital do Agrupamento de Escolas Clara ...DeClara n.º 75 Abril 2024 - O Jornal digital do Agrupamento de Escolas Clara ...
DeClara n.º 75 Abril 2024 - O Jornal digital do Agrupamento de Escolas Clara ...
 
ENSINO RELIGIOSO 7º ANO INOVE NA ESCOLA.pdf
ENSINO RELIGIOSO 7º ANO INOVE NA ESCOLA.pdfENSINO RELIGIOSO 7º ANO INOVE NA ESCOLA.pdf
ENSINO RELIGIOSO 7º ANO INOVE NA ESCOLA.pdf
 
Atividade - Letra da música Esperando na Janela.
Atividade -  Letra da música Esperando na Janela.Atividade -  Letra da música Esperando na Janela.
Atividade - Letra da música Esperando na Janela.
 
Revolução russa e mexicana. Slides explicativos e atividades
Revolução russa e mexicana. Slides explicativos e atividadesRevolução russa e mexicana. Slides explicativos e atividades
Revolução russa e mexicana. Slides explicativos e atividades
 
Projeto_de_Extensão_Agronomia_adquira_ja_(91)_98764-0830.pdf
Projeto_de_Extensão_Agronomia_adquira_ja_(91)_98764-0830.pdfProjeto_de_Extensão_Agronomia_adquira_ja_(91)_98764-0830.pdf
Projeto_de_Extensão_Agronomia_adquira_ja_(91)_98764-0830.pdf
 
Nós Propomos! " Pinhais limpos, mundo saudável"
Nós Propomos! " Pinhais limpos, mundo saudável"Nós Propomos! " Pinhais limpos, mundo saudável"
Nós Propomos! " Pinhais limpos, mundo saudável"
 
PROVA - ESTUDO CONTEMPORÂNEO E TRANSVERSAL: LEITURA DE IMAGENS, GRÁFICOS E MA...
PROVA - ESTUDO CONTEMPORÂNEO E TRANSVERSAL: LEITURA DE IMAGENS, GRÁFICOS E MA...PROVA - ESTUDO CONTEMPORÂNEO E TRANSVERSAL: LEITURA DE IMAGENS, GRÁFICOS E MA...
PROVA - ESTUDO CONTEMPORÂNEO E TRANSVERSAL: LEITURA DE IMAGENS, GRÁFICOS E MA...
 
421243121-Apostila-Ensino-Religioso-Do-1-ao-5-ano.pdf
421243121-Apostila-Ensino-Religioso-Do-1-ao-5-ano.pdf421243121-Apostila-Ensino-Religioso-Do-1-ao-5-ano.pdf
421243121-Apostila-Ensino-Religioso-Do-1-ao-5-ano.pdf
 
Construção (C)erta - Nós Propomos! Sertã
Construção (C)erta - Nós Propomos! SertãConstrução (C)erta - Nós Propomos! Sertã
Construção (C)erta - Nós Propomos! Sertã
 
Slides Lição 05, Central Gospel, A Grande Tribulação, 1Tr24.pptx
Slides Lição 05, Central Gospel, A Grande Tribulação, 1Tr24.pptxSlides Lição 05, Central Gospel, A Grande Tribulação, 1Tr24.pptx
Slides Lição 05, Central Gospel, A Grande Tribulação, 1Tr24.pptx
 
PRÁTICAS PEDAGÓGICAS GESTÃO DA APRENDIZAGEM
PRÁTICAS PEDAGÓGICAS GESTÃO DA APRENDIZAGEMPRÁTICAS PEDAGÓGICAS GESTÃO DA APRENDIZAGEM
PRÁTICAS PEDAGÓGICAS GESTÃO DA APRENDIZAGEM
 
PROJETO DE EXTENÇÃO - GESTÃO DE RECURSOS HUMANOS.pdf
PROJETO DE EXTENÇÃO - GESTÃO DE RECURSOS HUMANOS.pdfPROJETO DE EXTENÇÃO - GESTÃO DE RECURSOS HUMANOS.pdf
PROJETO DE EXTENÇÃO - GESTÃO DE RECURSOS HUMANOS.pdf
 
Slides Lição 6, CPAD, As Nossas Armas Espirituais, 2Tr24.pptx
Slides Lição 6, CPAD, As Nossas Armas Espirituais, 2Tr24.pptxSlides Lição 6, CPAD, As Nossas Armas Espirituais, 2Tr24.pptx
Slides Lição 6, CPAD, As Nossas Armas Espirituais, 2Tr24.pptx
 
Análise poema país de abril (Mauel alegre)
Análise poema país de abril (Mauel alegre)Análise poema país de abril (Mauel alegre)
Análise poema país de abril (Mauel alegre)
 
PROJETO DE EXTENSÃO I - AGRONOMIA.pdf AGRONOMIAAGRONOMIA
PROJETO DE EXTENSÃO I - AGRONOMIA.pdf AGRONOMIAAGRONOMIAPROJETO DE EXTENSÃO I - AGRONOMIA.pdf AGRONOMIAAGRONOMIA
PROJETO DE EXTENSÃO I - AGRONOMIA.pdf AGRONOMIAAGRONOMIA
 
aula de bioquímica bioquímica dos carboidratos.ppt
aula de bioquímica bioquímica dos carboidratos.pptaula de bioquímica bioquímica dos carboidratos.ppt
aula de bioquímica bioquímica dos carboidratos.ppt
 

Transformação da Deformação e Relações Materiais

  • 1. UNIVERSIDADE DO ESTADO DO RIO DE JANEIRO INSTITUTO POLITÉCNICO Graduação em Engenharia Mecânica Disciplinas: Mecânica dos Materiais 2 – 6º Período E Dinâmica e Projeto de Máquinas 2-10º Período Professor: Dr. Damiano da Silva Militão.
  • 2. Tema de aula 2: Transformação da Deformação SEQUÊNCIA DE ABORDAGENS: • 2.1 Estado Plano de Deformações • 2.2 Equações Gerais de Transformação para o Estado Plano de Deformações • 2.3 Círculo de Mohr — Estado Plano de Deformações • 2.4 Deformação por Cisalhamento Máxima Absoluta • 2.5 Rosetas • 2.6 Relações Material-Propriedade OBJETIVOS: • Mostrar utilização de métodos semelhantes aos de transformação de tensão. • Apresentar maneiras de medição das deformações “Não é conhecer muito, mas o que é útil, que torna um homem sábio.” THOMAS FULLER, M.D.
  • 3. 2.1 Estado plano de deformações O estado geral de deformação também é caracterizado por seis componentes, três normais εx, εy e εz (adimensionais) que ocorrem nas direções dos eixos x, y e z e três por cisalhamento γ xy, γ yz e γxz (variação angular [rad] entre os pares de eixos especificados); No estado plano de deformações desconsideramos as componentes εz, γyz e γxz, teremos; Convenção: . γ (+) -> (fecha). . γ (-) ->(abre). As componentes de deformação são avaliadas por extensômetros e tem valores específicos em cada direção observada. Mas devido ao efeito Poisson, o estado plano de tensões não causa necessariamente um estado plano de deformações e vice-versa.
  • 4. 2.2 Equações gerais de transformação para o estado plano de deformações Baseado nestas deformações, buscamos as deformações de um elemento em x’y’ rotacionado em relação a xy; Na direção y’ defasamos = +90º, e teremos; Consideraremos o elemento infinitesimal com deformações normais εx e εy nas direções x e y e deformações total cisalhantes γxy ; Para a deformação normal em x’ teremos a equação geral; Para a deformação cisalhante em x’y’ teremos a equação geral; Como no estado plano de tensões podemos geometricamente deduzir expressões para obter εx’, εy’, γ x’y’ nos eixos x’y’.
  • 5. EXEMPLO: O elemento infinitesimal do suporte está sujeito a um estado plano de deformações com os seguintes componentes: εx = 150 (10-6), εy = 200 (10-6), e γxy= -700 (10-6). Usar as equações de transformação e determinar as deformações planas equivalentes em um elemento orientado a 30° no sentido horário em relação à posição original. Esquematizar no plano x-y o elemento distorcido em virtude dessas deformações. Solução: Vemos que há uma def. cis. Negativa (abre ângulo entre x’ e y’), uma def. normal positiva em x’ (alonga) e negativa em y’ (contrai), logo esboçamos o elemento deformado:
  • 6. DEFORMAÇÕES PRINCIPAIS;  Obtemos as expressões de maneira análoga as tensões principais  Deformações normais principais também ocorrem em orientações de deformações cisalhantes nulas.  A deformação cisalhante máxima também ocorre em planos a 45º, onde atua uma deformação normal média.  Em materiais isotrópicos os eixos das deformações principais coincidem com a orientação dos eixos das tensões principais.
  • 7. Fazer: O estado de deformação no ponto do dente da engrenagem tem componentes εx=850(10-6), εy=480(10-6), γxy = 650(10-6), Usar as equações de transformação da deformação para determinar (a) as deformações principais no plano e (b) a deformação por cisalhamento máxima no plano e a deformação normal média. Especificar em cada caso a orientação do elemento e mostrar no plano x-y como as deformações o distorcem.
  • 8.
  • 9. 2.3 Circulo de Mohr - Estado plano de deformações A equação do circulo de Mohr de deformações é obtida analogamente às de tensões; Com atenção para o fato do eixo das ordenadas representar metade da deformação por cisalhamento. Centro e raio serão; onde , e o pt de referência pode ser Exemplo: O estado de deformação no ponto da chave tem componentes εx=260(10-6), εy=320(10-6) e γxy= 180(10-6). Usar o circulo de Mohr para determinar (a) as deformações principais no plano e (b) a deformação por cisalhamento máxima no plano e a deformação normal média. Especificar em cada caso a orientação do elemento e mostrar no plano x-y como as deformações o distorcem. Sol; obtendo metade da def. cis. podemos marcar o pt de referência A, Com a def. normal média obtemos o centro, No próximo slide mostramos o círculo construído com o centro e pt de referência dados,
  • 10. Dados; εx=260(10-6), εy=320(10-6) e γxy= 180(10-6) Temos o circulo; O raio será; B e D dão as deformações principais; A orientação do plano principal de def. normal min. por tang. é; Logo θp2=35.8º no sentido horário, e a máxima defasado portanto observando o círculo θp1=90-35.8=54.2º anti-hor. p/ a def. normal máx. Com o raio obtemos a def. cis. max. no circulo, entre AC e CE dá o ângulo da orientação da def. cis máx por tg.; sentido anti-horário, com fechamento angular (γ+).
  • 11. Como vemos, a deformação de cisalhamento máxima absoluta será como ela ocorre no plano x’z’, seu elemento está orientado à 45º em torno de y’(σint). Temos ainda a deformação normal média; 2.4 Deformação por cisalhamento máxima absoluta Em materiais homogêneos e isotrópicos, estas tensões submetem as deformações principais nestas direções; Analisando cada plano separadamente, construímos o círculo de Mohr que cruza o eixo das abcissas nas def. principais dadas (pts de ordenadas def. cis.=0) Como vimos, um elem. em um estado de tensão tridimensional xyz; terá uma orientação x’y’z’ onde atuam as tensões principais (triaxiais) ATENÇÂO: Planos onde não há def. cis. estão com as def. normais principais.
  • 12. Sol; para obter as tensões principais vamos utilizar o ciclo de Mohr para deformações, inicialmente no plano xy; Lembrando que; Fazemos; assim teremos as deformações principais no plano x’y’; que serão respectivamente εmax e εint, pois se trata de estado plano com εz’=0=εmin, então fazemos o ciclo simultaneamente com as deformações principais em cada um dos plano x’y´, x´z´e z´ý´; Vemos que a def. cis. máxima no plano x’y’ será; Vemos que def. cis. máxima absoluta ocorre no plano x’z’ (círculo maior) e será; Exemplo: A deformação no ponto A do suporte tem componentes εx=300(10-6), εy=550(10-6) , γxy= -650(10-6) e εz= 0. Determinar (a) as deformações principais em A, (b) a deformação por cisalhamento máxima no plano x-y e (c) a deformação por cisalhamento máxima absoluta. Lembre-se: Planos que não tiverem def. cis. tem as def. normais principais (xz e yz neste caso)
  • 13. 2.5 Rosetas São extensômetros de resistência elétrica; para padrão de 3 extensômetros; Em uma superfície xy ela mede as deformações εx’ (εa, εb e εc) respectivamente nas direções θ (θa, θb e θc) representadas acima. Trata-se de um problema inverso (temos (εx’)’s e θ’s, e buscamos εx, εy e γxy) montando um sistema com a equação geral de transformação ; (reescrita sem as identidades trigonométricas; sen 2θ = 2 sen θ cos θ, cos2 θ = (1+ cos 2 θ)/2 e sen2 θ + cos2 θ = 1). O sistema terá a forma; Determinados εx, εy e γxy utilizamos Mohr ou Eq. gerais para obter as deformações principais e cisalhante máxima. Para facilitar convém orientar as rosetas nas formas:
  • 14. Assim o sistema; Substituindo os valores de sen e cos reescrevemos respectivamente: θa=0º θb=45º θc=90º θa=0º θb=60º θc=120º Exemplo: O estado de deformação no ponto A do suporte da Figura-a é medido com o uso da roseta mostrada na Figura -b. Devido às cargas, as leituras nos aferidores dão εa=60(10-6), εb=135(10-6) , εc = 264(10-6). Determinar as deformações principais no plano nesse ponto e as direções em que cada uma atua. Sol; poderíamos usar o sistema reescrito mais simples, mas montando o sistema inteiro; Cuja solução será; ou
  • 15. Por trigonometria (tg) obtemos o menor ângulo principal (2θp2) de AC até a direção da deformação principal mínima no sentido anti-horário; Logo a orientação será; Montaremos o ciclo de Mohr;
  • 16. Fazer: A roseta montada no elo da retroescavadeira fez as seguintes aferições; εa=650(10-6), εb=-300(10-6) , εc = 480(10-6). Determinar (a) as deformações principais no plano, (b) a deformação por cisalhamento máxima no plano e a deformação normal média associada.
  • 17.
  • 18. Supondo materiais homogêneos e isotrópicos na região linear elástica; Lei de Hooke Generalizada; Em tensões triaxiais para obter as deformações devemos considerar Poisson , (cada deformação sofre influência da def. perpendicular a ela). Ex: Vamos buscar εx: Pela lei de Hooke uniaxial (Cap 3), quando σx é aplicada o elemento deforma-se ε'x em x; Mas como σy é aplicada; por Poisson ele tb deforma-se ε‘’x em x; Mas como σz é aplicada; por Poisson ele tb deforma-se ε‘’’x em x; Portanto a deformação final εx será a superposição (soma) das três, ou seja; Analogamente para y e z faremos; LEI DE HOOKE GENERALIZADA TRIAXIAL-> 2.6 Relações Material Propriedade
  • 19. Obs: Não existe efeito Poisson no cisalhamento, Cada tensão τxy (plano x e direção y), apenas deforma o ângulo γxy , (entre os eixos x e y) assim, para cisalhamento, a lei de Hooke não se altera; O módulo de elasticidade (E), o módulo de cisalhamento (ou módulo de rigidez) (G) e o coeficiente de Poisson (ν) se relacionam pela Equação: Deformação Volumétrica (e) (ou dilatação) ; Tensões normais num elemento de volume inicial V0=dV=dxdydz; causam variações de volume δV=V-V0 desprezando os produtos das deformações, Deformação volumétrica ou dilatação é simplesmente a razão adimensional; Substituindo a Lei de Hooke generalizada nas deformações (ε’s):
  • 20. Módulo de elasticidade do volume (ou compressibilidade) (k); Dado um elemento submetido a uma pressão hidrostática positiva (p) de compressão; Teremos as tensões normais; Substituíndo estas na equação da def. volumétrica, reescrevemos: O termo constante do lado direito é o k; (un: Pa ou ksi) Obs: , K>0 , (pois pressão hidrostática (p) positiva é compressão, e causa def. vol. (e) negativa) Isso mostra que Poisson tem valor limitante máximo ν 0.5 (veja o denominador de k) Esse é o valor de ν usado para escoamento plástico, quando o módulo de compressibilidade K é máximo significando não haver mais mudança de volume, só da forma.
  • 21. Fazer: A barra de cloreto de polivinil (Epvc = 800x103 psi) está sujeita a uma força axial de 900 lb. Supondo que ela tenha as dimensões originais mostradas, se o ângulo θ decrescer Δθ = 0,01° depois que a carga for aplicada, determinar: a)as deformações normais εx, εy em função de (νpvc). b)o coeficiente de Poisson (νpvc). c)o módulo de cisalhamento (G). d)a deformação volumétrica (e). e)o módulo de compressibilidade (k).
  • 22.
  • 23. MUITO OBRIGADO PELA ATENÇÃO! – Bibliografia: – R. C. Hibbeler – Resistência dos materiais – 5º Edição.