SlideShare una empresa de Scribd logo
1 de 1
Descargar para leer sin conexión
Antonio Fernando Menezes Freire (1,2,3), Toshihiko Sugai (1), Ryo Matsumoto (2)
                                                                                                 THE STUDY OF THE GAS HYDRATE BEARING-SEDIMENTS                                                                                                                                                                                                                                                                               fernando@nenv.k.u-tokyo.ac.jp
                                                                                                                                                                                                                                                                                                                                                                    (1) Department of Natural Environmental Studies, University of Tokyo, 524, Environmental Bldg. 5-1-5, Kashiwanoha Campus, Chiba 277-8563 Japan
                                                                                                 FROM JOETSU BASIN, EASTERN MARGIN OF JAPAN SEA                                                                                                                                                                                                                                (2) Department of Earth and Planetary Science, University of Tokyo, 7-3-1, Hongo Campus, Bunkyo-ku, Tokyo 113-0033 - Japan
                                                                                                                                                                                                                                                                                                                                                                              (3) Petróleo Brasileiro S/A - PETROBRAS/E&P-EXP/GEO/MSP, Av. Chile, 65, sala 1301, 20031-912, Rio de Janeiro - RJ - Brazil




                                                                                                                                                                                                                                                                                                                                                                                                                                                               PRESENT AND FOSSIL SMI: THE GEOCHEMICAL RECORD
ABSTRACT                                                                                                                                                                                            THE NATURE OF ORGANIC MATTER: MARINE vs. TERRESTRIAL
Recently, we recognized active methane venting and gas hydrates, which are widely                                                                                                                   - TOC and δ C content indicate the origin and intensity of organic matter production.
                                                                                                                                                                                                                      13

distributed on just below the sea floor in the Joestu basin, eastern margin of Japan Sea.                                                                                                                                                                                                                                                                                                                                                                                SULFATE-METHANE INTERFACE
                                                                                                                                                                                                    -Holocene: warming of sea water and rising of sea level. Straits more deep and large promoted a                                                                                                                                                                     - Sea water and sediment pore water have a lot of ions dissolved (Figure 9);
This study has the intention to give support for future works, understanding the Late                                                                                                                 better sea water circulation (Figure 5). More species arrived from the Pacific Ocean increasing the
Quaternary history of the study area. Interbedded dark gray thinly laminites and dark                                                                                                                                                                                                                                                                                                                                                                                   - The sediment particles also have cations and anions adsorbed mainly on clay minerals;
                                                                                                                                                                                                      organic matter production.                                                                                                                                                                                                                                        - When a methane flux occurs at the sea floor, an oxidation of methane occurs. So4 , Co3 and H2S are
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               2-   2-
brown to gray bioturbated units are common throughout the Quaternary sediments of
the Japan Sea, and have been often explained in terms of glacio-eustatic sea-level                                                                                                                  - Pleistocene: cold temperatures and sea level dropping (~120m at LGM).                                                                                                                                                                                               not stable and the presence of disponible ions induce the reaction. Barite, calcite, aragonite, dolomite
                                                                                                                                                                                                       Few species were available, and the organic matter production was weak. The study area was a big                                                                                                                                                                   and pyrite are commom authigenic minerals that precipitate around the sulfate-methane interface (SMI)
changes. These layers have a very good correlation because they occur in all Japan Sea.
We used total organic carbon (TOC), nitrogen content and carbon isotopic composition of                                                                                                                bay with poor sea water circulation conditions (Figure 5);                                                                                                                                                                                                         The region where sulfate becomes to zero is called SMI (Figure 10) (Dickens, 2001).
                                                                                                                                                                                                                                                             12
the gas hydrates bearing-sediments in order to identify the nature of the organic matters                                                                                                           - As organic matter, generated by plankton, removes C selectively from the surface water, planktonic                                                                                                                                                                - Samples collected from UT-07 cruise shows some “fronts” of barite, calcite and pyrite (Figures 11, 12, 13)
                                                                                                                                                                                                                                                  13
present in the study area and to ma ke a correlation between samples collected in the Pacific                                                                                                         foraminifera tests becomes enriched in δ C (Burdige, 2006). The primary carbon source for marine                                                                                                                                                                  - Because methane flux can vary with time, SMI can be shallower or deeper accoding the flux intensity
Ocean. Associated with XRD analysis, these data helped us to locate the Holocene/Pleistocene                                                                                                          phytoplankton is seawater bicarbonate, with a δ13C of ~0‰. In contrast, land plants use atmospheric                                                                                                                                                               - Depending on the time that SMI is stable at the same depth, the reaction will be more effective.
boundary, to identify key stratigraphic surfaces, and to recognize sulfate-methane interfaces.                                                                                                        CO2 as their carbon source, with δ13C of around -7‰.
Different SMI occurs due methane flux variation with the geologic time. Age control was made                                                                                                        - As a result of all of these factors, marine organic matter generally has a δ13 C of around -17‰ to                                                                                                                                                                                 Fig.11. PC-701 SMI profile. TIC, calcite, barite, pyrire and sulfur curves show peaks at similar depths. Note that the present SMI is located
by tephra layers identification and correlation.                                                                                                                                                       -22‰ and terrestrial organic matter of around -25‰ to -28‰ [Burdige, 2006] [Lamb, 2006].
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         at the depth where SΟ 4 content is near zero and CH4 becomes high. A strong coincidence with this SMI with chemical peaks indicates
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         that it is agood parameter to identify SMI. TIC and calcite can have influence of foraminifera, but barite, pyrite and sulfur have no
                                                                                                                                                                                                    - Terrestrial Plants has relatively high C/N ratios of >12 and marine organic matter have C/N ratio                                                                                                                                                                                  contamination and can calibrate the data. Peaks above and below indicate fossil SMI, when methane flux was stronger (upper) and weaker
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         (lower). This location is a refence site and no evidence about gas hydrate was found at this place. Instead of this, methane flux is present
                                                                                                                                                                                                       <12 [Lamb, 2006]. Figures 7 and 8 show graphics with these data.                                                                                                                                                                                                                  and its δ C around -87‰indicates biogenic origin.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    13



TOTAL ORGANIC CARBON AND δ C CONCENTRATIONS       13
                                                                                                                                                                                                                                                                                                                                                                    Figure 9. Diagarm about anaerobic oxidation of methane and the formation of the
                                                                                                                                                                                                                                                                                                                                                                    of the sulfate-methane interface (SMI).                                                                              Fig.12. PC-702 SMI profile. This is a gas hydrate site located over Joetsu Knoll. Plumes and gas hydrate are present and were recovered
The Holocene/Pleistocene Boundary                                                                                                                                                                                                                                                                                                                                                                                                                                                        and analysed. Also, gas chymineis and faults have been see on seismic data. A δ13C around -50‰indicates mixed origin. Note that present
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         SMI is shallower than at PC-701, indicating that methane flux over Joetsu Knoll is stronger than at reference site.
- Clear TOC and δ13C curves increasing upward;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         Fig.13. PC-707 SMI profile. Located over Umitaka Spur gas hydrate site, this piston core shows a very shallow present SMI. The same
- This shift depth marks the boundary Holocene (higher TOC and heavier                                                                                                                                                                                                                                                                                                                                                                                                                   features occurred at Joetsu Knoll are present here and the shallower positioning of present SMI indicates that methane flux is now stronger
  d13C isotope)/Pleistocene (lower TOC and lighter d13C isotope);                                                                                                                                                                                                                                                                                                                                                                                                                        than at Joetsu Knoll. An erosion can be occurred and cut the upper SMI. High values of pyrite and sulfur near sea floor sugest erosion
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         because the sea floor is predominatily oxidized.
- The pattern is the same along Japan Sea and there is a very good                                                                                                                                                                                                                                                                                                                                                                                    Fig.10 - Scheme of SMI formation
                                                                                                                                                                                                                                                                                                                                                                                                                                                      (Dickens, 2001).
  correlation with the Pacific Ocean. So, it is possible to use this criteria
  to infer the boundary Holocene/Pelistocene (Figures 3 and 4).




                                                                                                              MAIN PURPOSES
                                                                                                              A) To understand the sedimentar history of the Late Quaternary
                   U-OKI Tephra Layer (~10.7Ka)                                                                  using the stratigraphic and geochemical records from piston-
                                                                                                                 cores collected on a gas hydrate area located on the Eastern
                                                                                                                 Margin of Japan Sea, south of the Sado Islands (Figs. 01 and 02)
                                                                                                              B) To make a correlation between these records on Japan Sea                        Fig. 07:a) Crossplot TOC x δ 13 C data from CK-06 (crosses) and UT-07 (squares). Three groups can be seen: relative higher TOC values and δ13C heavier than
                                                                                                                 and those observed on the drilling core CK-06 on the Eastern                    ~-22‰ (marine phytoplankton production); relative medium TOC and δ C between ~-22‰ and ~-25‰ (mixed or non determinate); and relative lower TOC
                                                                                                                                                                                                                                                                         13
                                                                                                                                                                                                                                                                                                                                                                    Fig. 11                                                                              Fig. 12                                                                                Fig. 13
                                                                                                                 Margin of the Pacifc Ocean, east of Shimokita Peninsula (Fig. 01).              and δ13C lighter than ~-25‰ (vascular land plants). Crossplot TOC x δ13C data from UT-07 samples. PC-701, located far from the coastal line and into a typically
                                                                                                              C) To infer the methane flux variations along the geologic time                    depositional site, shows a large range of values and indicate both terrestrial and marine organic matter source. The other cores have a small range between
                                                                                                                                                                                                 terrestrial to mixed organic matter, according Burdige [2006].                                                                                                     AKNOWLEDGEMENTS
                                                                                                                 using geochemical data.                                                                                                                                                                                                                            For our colleagues on both Department of Earth and Planetary Science and
                                                                                                                                                                                                                                                                                                                                                                    Department of Natural Environmental Studies that help us on analysis,
                                                                                                                                                                                                                                                                                                                                                                    discussions and other supports. Thanks to the crew of R/V’s Umitaka
                                                                                                                                                                                                                                                                                                                                                                    Maru and Natsushima.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            REFERENCES
                                                                                                                                                                                                                                                                                                                                                                    CONCLUSIONS                                                                                                                                             Burdige D. Geochemistry of Marine Sediments. New Jersey, Princeton University press, 2006.
                                                                                                                                                                                                                                                                                                                                                                    The late Quaternary correlation between Japan Sea and the Pacific Ocean is
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            Dickens G. R. Sulfate Profiles and Barium Fronts in Sediment on the Blake Ridge: Present and
                                                                                                                                                                                                                                                                                                                                                                    possible using TOC and δ C increased pattern. This pattern indicates more organic
                                                                                                                                                                                                                                                                                                                                                                                                 13
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            Past Methane Flux Trough a Large Gas Hydrate Reservoir. Geochimica et Cosmochimica Acta.
TERRIGENOUS MATERIAL INPUT                                                                                                                                                                                                                                                                                                                                          matter production during Holocene and the δ13C increased pattern upward suggests                                                                        Elsevier Science Ltd. V.65, n.65, n.4, p.529-543, 2001.
-The boundary Holocene/Pleistocene can be marked by using clay minerals, quartz and                                                                                                                                                                                                                                                                                 a phytoplankton organic matter production.                                                                                                              Ken I. et al. C Age of Core Samples from Middle to South East Japan Sea by AMS. Bull. Geol.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         14


  feldspars content (Figure 6);                                                                                                                                                                                                                                                                                                                                     The poor sea water circulation at Pleistocene, due to the drop of sea level at LGM,                                                                     Survey Japan. V.47(6), p.309-316, 1996.
-During the LGM, eustatic sea level lowering120m and restricted or completely blocked                                                                                                                                                                                                                                                                               caused a poor spreading of clay minerals, and, little by little, it was sunk to the                                                                     Kennett J.P. et al. Methane Hydrates in Quaternary Climate Changes: The Clathrate Gum
 the inflow into the study area [Oba et al. 1991]. River`s mouths were close to the                                                                                                                                                                                                                                                                                 sea bottom. At Holocene, the rising of the sea level induced a good sea water                                                                           Hypotesis. Washington DC: American Geophysical Union, 2003.
 slope and the discharge form ice melting with sediments in suspension occurred                                                                                                                                                                                                                                                                                     circulation and clay minerals were easily washed over seaward. At the same time,
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            Lamb L et al. A Review of Coastal Paleoclimate and Relative Sea-Level Reconstructions
 directly over this location (Figure 5);                                                                                                                                                                                                                                                                                                                            the climate warm increasing induced the snow melt on the mountains located near                                                                         Using d13C and C/N ratios in Organic Materials. Earth-Sciences Reviews, v.75, p.29-57
-At Pleistocene, the poor sea water circulation on the study area could not spread fine                                                                                                                                                                                                                                                                             the shoreline of Niigata Prefecture, causing the increasing of weathering. Because                                                                      2006.
 grain floated sediments and it stays at suspension for more time. Little by little, clay                                                                                                                                                                                                                                                                           this, quartz and feldspars were delivered by rivers, arriving to Joetsu Basin and
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            Matsumoto R., Ishida Y. Environmental Impact of Methane Seeps in Cold Waters: An Example
 minerals sunk to the sea floor.                                                                                                                                                                                                                                                                                                                                    sinking to sea floor faster than clay minerals.                                                                                                         of Giant Methane Plumes from Eastern Margin of Japan Sea. 17th International Sedimentolo-
-At the Holocene, the sea level rising induced a good sea water circulation and clay                                                                                                                                                                                                                                                                                Geochemical records of sulfate-oxidation of methane is present by several peaks                                                                         gical Congress. Fukuoka, Japan. V.B, p.7, 2006.
 minerals were washed over. At the same time, the increasing of the weathering
                                                                                                                                            vvvv
                                                                                                                                                                                                                                                                                                                                                                    of calcite, barite, pyrite and sulfur. At least two sets of peaks are present and                                                                       Nakada M. et al. Late Pleistocene and Holocene Sea-Level Changes in Japan: Implications
 because to the melt of ice in response of warmer climate, induced quartz and                                                                                                                                                                                                                                                                                       represent different stages of the sulfate methane interface (SMI). Present SMI and                                                                      for Tectonic Histories and Mantle Rheology. Paleogeography, Paleoclimatology, Paleoecology.
 feldspars transportation by rivers and rapidly precipitate to the sea floor.                                                                                                                                                                                               Figure 08 - Typical δ13 C and C/N ranges for organic inputs to coastal environments.    fossil SMI can be infered and it can infer that the flux of methane was not constant                                                                    V.85, Elsevier. P.107-122, 1991.
                                                                                                                                        Figure 06. PC-701 clay minerals, quartz, feldspars and quartz/feldspars ratio profiles.The boundary between the                     Note that some samples are located on a non determineted source because high
                                                                                                                                                                                                                                                                            nitrogen content, tipically of marine environments. The mixed and terrestrial
                                                                                                                                                                                                                                                                                                                                                                    with the geologic time. The peaks above and below present SMI indicates that                                                                            Oba T. et al. Paleoenvironmental Changes in the Japan Sea During the Last 85,000 Yeras.
                                                                                                                                        Holocene and Pleistocene could be marked by TOC and δ C isotopic concentration how discussed before but,
                                                                                                                                                                                                    13


                                                                                                                                        also, this boundary can be identified using clay minerals, quartz and feldspars content.                                            nature at Pleistocene is also clear. Modified from Lamb et al. 2006.                    methane flux was stronger (upper) and weaker (lower) than present level.                                                                                Washington DC: American Geophysical Union. Paleoceanography. V.6, n.4, p.499-518, 1991.

Más contenido relacionado

Similar a Integrated Study Low Res

Austman Et Al 2009 Open House Fraser Lakes Zone B
Austman Et Al 2009  Open  House   Fraser  Lakes   Zone  BAustman Et Al 2009  Open  House   Fraser  Lakes   Zone  B
Austman Et Al 2009 Open House Fraser Lakes Zone BChristine McKechnie
 
Poster European Cetacean Society (ECS) 2010
Poster European Cetacean Society (ECS) 2010Poster European Cetacean Society (ECS) 2010
Poster European Cetacean Society (ECS) 2010SUBMON
 
GSA 2009 - Austman et al - Fraser Lakes Zone B Granitic pegmatite and leucogr...
GSA 2009 - Austman et al - Fraser Lakes Zone B Granitic pegmatite and leucogr...GSA 2009 - Austman et al - Fraser Lakes Zone B Granitic pegmatite and leucogr...
GSA 2009 - Austman et al - Fraser Lakes Zone B Granitic pegmatite and leucogr...Christine McKechnie
 
Main global-toxicity-chemicals a-worldwide-nightmare
Main global-toxicity-chemicals a-worldwide-nightmareMain global-toxicity-chemicals a-worldwide-nightmare
Main global-toxicity-chemicals a-worldwide-nightmareMurray Thompson
 
OP03:Diversity of termites and ants along a land use gradient in a tropical f...
OP03:Diversity of termites and ants along a land use gradient in a tropical f...OP03:Diversity of termites and ants along a land use gradient in a tropical f...
OP03:Diversity of termites and ants along a land use gradient in a tropical f...CSM _BGBD biodiversity
 
Plasma diagnostics for planetary nebulae and H II regions using N II and O II
Plasma diagnostics for planetary nebulae and H II regions using N II and O IIPlasma diagnostics for planetary nebulae and H II regions using N II and O II
Plasma diagnostics for planetary nebulae and H II regions using N II and O IIAstroAtom
 
ESB 2011 - Dublin (Ireland) 01 sept 2011
ESB 2011 - Dublin (Ireland) 01 sept 2011ESB 2011 - Dublin (Ireland) 01 sept 2011
ESB 2011 - Dublin (Ireland) 01 sept 2011Saiful Irwan Zubairi
 
A VEIW ON TEMPOROMANDIBULAR JOINT
A VEIW ON TEMPOROMANDIBULAR JOINTA VEIW ON TEMPOROMANDIBULAR JOINT
A VEIW ON TEMPOROMANDIBULAR JOINTDr.Subrata Das
 
GeoCanada 2010 - Austman et al - Fraser Lakes Zone B
GeoCanada 2010 - Austman et al - Fraser Lakes Zone BGeoCanada 2010 - Austman et al - Fraser Lakes Zone B
GeoCanada 2010 - Austman et al - Fraser Lakes Zone BChristine McKechnie
 
Espinos Etal 2011 Airmon
Espinos Etal 2011 AirmonEspinos Etal 2011 Airmon
Espinos Etal 2011 Airmonhecesmo
 
Northern Barents Sea passive margin
Northern Barents Sea passive marginNorthern Barents Sea passive margin
Northern Barents Sea passive marginAlexander Minakov
 
K9 ecl ama_pres_final_2
K9 ecl ama_pres_final_2K9 ecl ama_pres_final_2
K9 ecl ama_pres_final_2k9designco
 
Poster Imcm2011
Poster Imcm2011Poster Imcm2011
Poster Imcm2011hecesmo
 
C:\fakepath\korean oil spill paper
C:\fakepath\korean oil spill paperC:\fakepath\korean oil spill paper
C:\fakepath\korean oil spill paperguest58c6ca4
 
Asms2004 Alternate Scanning Lcms
Asms2004 Alternate Scanning LcmsAsms2004 Alternate Scanning Lcms
Asms2004 Alternate Scanning Lcmsjcruzsilva
 

Similar a Integrated Study Low Res (20)

Austman Et Al 2009 Open House Fraser Lakes Zone B
Austman Et Al 2009  Open  House   Fraser  Lakes   Zone  BAustman Et Al 2009  Open  House   Fraser  Lakes   Zone  B
Austman Et Al 2009 Open House Fraser Lakes Zone B
 
Poster European Cetacean Society (ECS) 2010
Poster European Cetacean Society (ECS) 2010Poster European Cetacean Society (ECS) 2010
Poster European Cetacean Society (ECS) 2010
 
GSA 2009 - Austman et al - Fraser Lakes Zone B Granitic pegmatite and leucogr...
GSA 2009 - Austman et al - Fraser Lakes Zone B Granitic pegmatite and leucogr...GSA 2009 - Austman et al - Fraser Lakes Zone B Granitic pegmatite and leucogr...
GSA 2009 - Austman et al - Fraser Lakes Zone B Granitic pegmatite and leucogr...
 
Main global-toxicity-chemicals a-worldwide-nightmare
Main global-toxicity-chemicals a-worldwide-nightmareMain global-toxicity-chemicals a-worldwide-nightmare
Main global-toxicity-chemicals a-worldwide-nightmare
 
OP03:Diversity of termites and ants along a land use gradient in a tropical f...
OP03:Diversity of termites and ants along a land use gradient in a tropical f...OP03:Diversity of termites and ants along a land use gradient in a tropical f...
OP03:Diversity of termites and ants along a land use gradient in a tropical f...
 
Plasma diagnostics for planetary nebulae and H II regions using N II and O II
Plasma diagnostics for planetary nebulae and H II regions using N II and O IIPlasma diagnostics for planetary nebulae and H II regions using N II and O II
Plasma diagnostics for planetary nebulae and H II regions using N II and O II
 
ESB 2011 - Dublin (Ireland) 01 sept 2011
ESB 2011 - Dublin (Ireland) 01 sept 2011ESB 2011 - Dublin (Ireland) 01 sept 2011
ESB 2011 - Dublin (Ireland) 01 sept 2011
 
A VEIW ON TEMPOROMANDIBULAR JOINT
A VEIW ON TEMPOROMANDIBULAR JOINTA VEIW ON TEMPOROMANDIBULAR JOINT
A VEIW ON TEMPOROMANDIBULAR JOINT
 
GeoCanada 2010 - Austman et al - Fraser Lakes Zone B
GeoCanada 2010 - Austman et al - Fraser Lakes Zone BGeoCanada 2010 - Austman et al - Fraser Lakes Zone B
GeoCanada 2010 - Austman et al - Fraser Lakes Zone B
 
Espinos Etal 2011 Airmon
Espinos Etal 2011 AirmonEspinos Etal 2011 Airmon
Espinos Etal 2011 Airmon
 
Northern Barents Sea passive margin
Northern Barents Sea passive marginNorthern Barents Sea passive margin
Northern Barents Sea passive margin
 
Site plan
Site planSite plan
Site plan
 
Agu 2012v2
Agu 2012v2Agu 2012v2
Agu 2012v2
 
UMT Poster
UMT PosterUMT Poster
UMT Poster
 
Rr reflections
Rr reflectionsRr reflections
Rr reflections
 
K9 ecl ama_pres_final_2
K9 ecl ama_pres_final_2K9 ecl ama_pres_final_2
K9 ecl ama_pres_final_2
 
Software Manifestos
Software ManifestosSoftware Manifestos
Software Manifestos
 
Poster Imcm2011
Poster Imcm2011Poster Imcm2011
Poster Imcm2011
 
C:\fakepath\korean oil spill paper
C:\fakepath\korean oil spill paperC:\fakepath\korean oil spill paper
C:\fakepath\korean oil spill paper
 
Asms2004 Alternate Scanning Lcms
Asms2004 Alternate Scanning LcmsAsms2004 Alternate Scanning Lcms
Asms2004 Alternate Scanning Lcms
 

Más de Fernando Freire

Egg10086 aula 07-densidade e pe_2020-1
Egg10086 aula 07-densidade e pe_2020-1Egg10086 aula 07-densidade e pe_2020-1
Egg10086 aula 07-densidade e pe_2020-1Fernando Freire
 
Egg10086 aula 06-dipmeter_2020-1
Egg10086 aula 06-dipmeter_2020-1Egg10086 aula 06-dipmeter_2020-1
Egg10086 aula 06-dipmeter_2020-1Fernando Freire
 
Egg10086 aula 05-resistividade_2020-1
Egg10086 aula 05-resistividade_2020-1Egg10086 aula 05-resistividade_2020-1
Egg10086 aula 05-resistividade_2020-1Fernando Freire
 
Egg10086 aula 04-gr e gr espectral_2020-1
Egg10086 aula 04-gr e gr espectral_2020-1Egg10086 aula 04-gr e gr espectral_2020-1
Egg10086 aula 04-gr e gr espectral_2020-1Fernando Freire
 
Egg10086 aula 02-caliper_2020-1
Egg10086 aula 02-caliper_2020-1Egg10086 aula 02-caliper_2020-1
Egg10086 aula 02-caliper_2020-1Fernando Freire
 
Correlacao de eventos tectônico-magmático-deposicionais das principais bacias...
Correlacao de eventos tectônico-magmático-deposicionais das principais bacias...Correlacao de eventos tectônico-magmático-deposicionais das principais bacias...
Correlacao de eventos tectônico-magmático-deposicionais das principais bacias...Fernando Freire
 
Correlacao De Eventos Low Res
Correlacao De Eventos Low ResCorrelacao De Eventos Low Res
Correlacao De Eventos Low ResFernando Freire
 
http://www.46cbg.com.br/0510/terra/08h30_1_antonio_freire_05-10_slterra.pdf
http://www.46cbg.com.br/0510/terra/08h30_1_antonio_freire_05-10_slterra.pdfhttp://www.46cbg.com.br/0510/terra/08h30_1_antonio_freire_05-10_slterra.pdf
http://www.46cbg.com.br/0510/terra/08h30_1_antonio_freire_05-10_slterra.pdfFernando Freire
 

Más de Fernando Freire (11)

Egg10086 aula 07-densidade e pe_2020-1
Egg10086 aula 07-densidade e pe_2020-1Egg10086 aula 07-densidade e pe_2020-1
Egg10086 aula 07-densidade e pe_2020-1
 
Egg10086 aula 06-dipmeter_2020-1
Egg10086 aula 06-dipmeter_2020-1Egg10086 aula 06-dipmeter_2020-1
Egg10086 aula 06-dipmeter_2020-1
 
Egg10086 aula 05-resistividade_2020-1
Egg10086 aula 05-resistividade_2020-1Egg10086 aula 05-resistividade_2020-1
Egg10086 aula 05-resistividade_2020-1
 
Egg10086 aula 04-gr e gr espectral_2020-1
Egg10086 aula 04-gr e gr espectral_2020-1Egg10086 aula 04-gr e gr espectral_2020-1
Egg10086 aula 04-gr e gr espectral_2020-1
 
Egg10086 aula 02-caliper_2020-1
Egg10086 aula 02-caliper_2020-1Egg10086 aula 02-caliper_2020-1
Egg10086 aula 02-caliper_2020-1
 
Freire ALAGO 2017-06-21
Freire ALAGO 2017-06-21Freire ALAGO 2017-06-21
Freire ALAGO 2017-06-21
 
Correlacao de eventos tectônico-magmático-deposicionais das principais bacias...
Correlacao de eventos tectônico-magmático-deposicionais das principais bacias...Correlacao de eventos tectônico-magmático-deposicionais das principais bacias...
Correlacao de eventos tectônico-magmático-deposicionais das principais bacias...
 
#46 cgb forum f4
#46 cgb forum f4#46 cgb forum f4
#46 cgb forum f4
 
Correlacao De Eventos Low Res
Correlacao De Eventos Low ResCorrelacao De Eventos Low Res
Correlacao De Eventos Low Res
 
Poster 6th ICGH 2008
Poster 6th ICGH 2008Poster 6th ICGH 2008
Poster 6th ICGH 2008
 
http://www.46cbg.com.br/0510/terra/08h30_1_antonio_freire_05-10_slterra.pdf
http://www.46cbg.com.br/0510/terra/08h30_1_antonio_freire_05-10_slterra.pdfhttp://www.46cbg.com.br/0510/terra/08h30_1_antonio_freire_05-10_slterra.pdf
http://www.46cbg.com.br/0510/terra/08h30_1_antonio_freire_05-10_slterra.pdf
 

Integrated Study Low Res

  • 1. Antonio Fernando Menezes Freire (1,2,3), Toshihiko Sugai (1), Ryo Matsumoto (2) THE STUDY OF THE GAS HYDRATE BEARING-SEDIMENTS fernando@nenv.k.u-tokyo.ac.jp (1) Department of Natural Environmental Studies, University of Tokyo, 524, Environmental Bldg. 5-1-5, Kashiwanoha Campus, Chiba 277-8563 Japan FROM JOETSU BASIN, EASTERN MARGIN OF JAPAN SEA (2) Department of Earth and Planetary Science, University of Tokyo, 7-3-1, Hongo Campus, Bunkyo-ku, Tokyo 113-0033 - Japan (3) Petróleo Brasileiro S/A - PETROBRAS/E&P-EXP/GEO/MSP, Av. Chile, 65, sala 1301, 20031-912, Rio de Janeiro - RJ - Brazil PRESENT AND FOSSIL SMI: THE GEOCHEMICAL RECORD ABSTRACT THE NATURE OF ORGANIC MATTER: MARINE vs. TERRESTRIAL Recently, we recognized active methane venting and gas hydrates, which are widely - TOC and δ C content indicate the origin and intensity of organic matter production. 13 distributed on just below the sea floor in the Joestu basin, eastern margin of Japan Sea. SULFATE-METHANE INTERFACE -Holocene: warming of sea water and rising of sea level. Straits more deep and large promoted a - Sea water and sediment pore water have a lot of ions dissolved (Figure 9); This study has the intention to give support for future works, understanding the Late better sea water circulation (Figure 5). More species arrived from the Pacific Ocean increasing the Quaternary history of the study area. Interbedded dark gray thinly laminites and dark - The sediment particles also have cations and anions adsorbed mainly on clay minerals; organic matter production. - When a methane flux occurs at the sea floor, an oxidation of methane occurs. So4 , Co3 and H2S are 2- 2- brown to gray bioturbated units are common throughout the Quaternary sediments of the Japan Sea, and have been often explained in terms of glacio-eustatic sea-level - Pleistocene: cold temperatures and sea level dropping (~120m at LGM). not stable and the presence of disponible ions induce the reaction. Barite, calcite, aragonite, dolomite Few species were available, and the organic matter production was weak. The study area was a big and pyrite are commom authigenic minerals that precipitate around the sulfate-methane interface (SMI) changes. These layers have a very good correlation because they occur in all Japan Sea. We used total organic carbon (TOC), nitrogen content and carbon isotopic composition of bay with poor sea water circulation conditions (Figure 5); The region where sulfate becomes to zero is called SMI (Figure 10) (Dickens, 2001). 12 the gas hydrates bearing-sediments in order to identify the nature of the organic matters - As organic matter, generated by plankton, removes C selectively from the surface water, planktonic - Samples collected from UT-07 cruise shows some “fronts” of barite, calcite and pyrite (Figures 11, 12, 13) 13 present in the study area and to ma ke a correlation between samples collected in the Pacific foraminifera tests becomes enriched in δ C (Burdige, 2006). The primary carbon source for marine - Because methane flux can vary with time, SMI can be shallower or deeper accoding the flux intensity Ocean. Associated with XRD analysis, these data helped us to locate the Holocene/Pleistocene phytoplankton is seawater bicarbonate, with a δ13C of ~0‰. In contrast, land plants use atmospheric - Depending on the time that SMI is stable at the same depth, the reaction will be more effective. boundary, to identify key stratigraphic surfaces, and to recognize sulfate-methane interfaces. CO2 as their carbon source, with δ13C of around -7‰. Different SMI occurs due methane flux variation with the geologic time. Age control was made - As a result of all of these factors, marine organic matter generally has a δ13 C of around -17‰ to Fig.11. PC-701 SMI profile. TIC, calcite, barite, pyrire and sulfur curves show peaks at similar depths. Note that the present SMI is located by tephra layers identification and correlation. -22‰ and terrestrial organic matter of around -25‰ to -28‰ [Burdige, 2006] [Lamb, 2006]. at the depth where SΟ 4 content is near zero and CH4 becomes high. A strong coincidence with this SMI with chemical peaks indicates that it is agood parameter to identify SMI. TIC and calcite can have influence of foraminifera, but barite, pyrite and sulfur have no - Terrestrial Plants has relatively high C/N ratios of >12 and marine organic matter have C/N ratio contamination and can calibrate the data. Peaks above and below indicate fossil SMI, when methane flux was stronger (upper) and weaker (lower). This location is a refence site and no evidence about gas hydrate was found at this place. Instead of this, methane flux is present <12 [Lamb, 2006]. Figures 7 and 8 show graphics with these data. and its δ C around -87‰indicates biogenic origin. 13 TOTAL ORGANIC CARBON AND δ C CONCENTRATIONS 13 Figure 9. Diagarm about anaerobic oxidation of methane and the formation of the of the sulfate-methane interface (SMI). Fig.12. PC-702 SMI profile. This is a gas hydrate site located over Joetsu Knoll. Plumes and gas hydrate are present and were recovered The Holocene/Pleistocene Boundary and analysed. Also, gas chymineis and faults have been see on seismic data. A δ13C around -50‰indicates mixed origin. Note that present SMI is shallower than at PC-701, indicating that methane flux over Joetsu Knoll is stronger than at reference site. - Clear TOC and δ13C curves increasing upward; Fig.13. PC-707 SMI profile. Located over Umitaka Spur gas hydrate site, this piston core shows a very shallow present SMI. The same - This shift depth marks the boundary Holocene (higher TOC and heavier features occurred at Joetsu Knoll are present here and the shallower positioning of present SMI indicates that methane flux is now stronger d13C isotope)/Pleistocene (lower TOC and lighter d13C isotope); than at Joetsu Knoll. An erosion can be occurred and cut the upper SMI. High values of pyrite and sulfur near sea floor sugest erosion because the sea floor is predominatily oxidized. - The pattern is the same along Japan Sea and there is a very good Fig.10 - Scheme of SMI formation (Dickens, 2001). correlation with the Pacific Ocean. So, it is possible to use this criteria to infer the boundary Holocene/Pelistocene (Figures 3 and 4). MAIN PURPOSES A) To understand the sedimentar history of the Late Quaternary U-OKI Tephra Layer (~10.7Ka) using the stratigraphic and geochemical records from piston- cores collected on a gas hydrate area located on the Eastern Margin of Japan Sea, south of the Sado Islands (Figs. 01 and 02) B) To make a correlation between these records on Japan Sea Fig. 07:a) Crossplot TOC x δ 13 C data from CK-06 (crosses) and UT-07 (squares). Three groups can be seen: relative higher TOC values and δ13C heavier than and those observed on the drilling core CK-06 on the Eastern ~-22‰ (marine phytoplankton production); relative medium TOC and δ C between ~-22‰ and ~-25‰ (mixed or non determinate); and relative lower TOC 13 Fig. 11 Fig. 12 Fig. 13 Margin of the Pacifc Ocean, east of Shimokita Peninsula (Fig. 01). and δ13C lighter than ~-25‰ (vascular land plants). Crossplot TOC x δ13C data from UT-07 samples. PC-701, located far from the coastal line and into a typically C) To infer the methane flux variations along the geologic time depositional site, shows a large range of values and indicate both terrestrial and marine organic matter source. The other cores have a small range between terrestrial to mixed organic matter, according Burdige [2006]. AKNOWLEDGEMENTS using geochemical data. For our colleagues on both Department of Earth and Planetary Science and Department of Natural Environmental Studies that help us on analysis, discussions and other supports. Thanks to the crew of R/V’s Umitaka Maru and Natsushima. REFERENCES CONCLUSIONS Burdige D. Geochemistry of Marine Sediments. New Jersey, Princeton University press, 2006. The late Quaternary correlation between Japan Sea and the Pacific Ocean is Dickens G. R. Sulfate Profiles and Barium Fronts in Sediment on the Blake Ridge: Present and possible using TOC and δ C increased pattern. This pattern indicates more organic 13 Past Methane Flux Trough a Large Gas Hydrate Reservoir. Geochimica et Cosmochimica Acta. TERRIGENOUS MATERIAL INPUT matter production during Holocene and the δ13C increased pattern upward suggests Elsevier Science Ltd. V.65, n.65, n.4, p.529-543, 2001. -The boundary Holocene/Pleistocene can be marked by using clay minerals, quartz and a phytoplankton organic matter production. Ken I. et al. C Age of Core Samples from Middle to South East Japan Sea by AMS. Bull. Geol. 14 feldspars content (Figure 6); The poor sea water circulation at Pleistocene, due to the drop of sea level at LGM, Survey Japan. V.47(6), p.309-316, 1996. -During the LGM, eustatic sea level lowering120m and restricted or completely blocked caused a poor spreading of clay minerals, and, little by little, it was sunk to the Kennett J.P. et al. Methane Hydrates in Quaternary Climate Changes: The Clathrate Gum the inflow into the study area [Oba et al. 1991]. River`s mouths were close to the sea bottom. At Holocene, the rising of the sea level induced a good sea water Hypotesis. Washington DC: American Geophysical Union, 2003. slope and the discharge form ice melting with sediments in suspension occurred circulation and clay minerals were easily washed over seaward. At the same time, Lamb L et al. A Review of Coastal Paleoclimate and Relative Sea-Level Reconstructions directly over this location (Figure 5); the climate warm increasing induced the snow melt on the mountains located near Using d13C and C/N ratios in Organic Materials. Earth-Sciences Reviews, v.75, p.29-57 -At Pleistocene, the poor sea water circulation on the study area could not spread fine the shoreline of Niigata Prefecture, causing the increasing of weathering. Because 2006. grain floated sediments and it stays at suspension for more time. Little by little, clay this, quartz and feldspars were delivered by rivers, arriving to Joetsu Basin and Matsumoto R., Ishida Y. Environmental Impact of Methane Seeps in Cold Waters: An Example minerals sunk to the sea floor. sinking to sea floor faster than clay minerals. of Giant Methane Plumes from Eastern Margin of Japan Sea. 17th International Sedimentolo- -At the Holocene, the sea level rising induced a good sea water circulation and clay Geochemical records of sulfate-oxidation of methane is present by several peaks gical Congress. Fukuoka, Japan. V.B, p.7, 2006. minerals were washed over. At the same time, the increasing of the weathering vvvv of calcite, barite, pyrite and sulfur. At least two sets of peaks are present and Nakada M. et al. Late Pleistocene and Holocene Sea-Level Changes in Japan: Implications because to the melt of ice in response of warmer climate, induced quartz and represent different stages of the sulfate methane interface (SMI). Present SMI and for Tectonic Histories and Mantle Rheology. Paleogeography, Paleoclimatology, Paleoecology. feldspars transportation by rivers and rapidly precipitate to the sea floor. Figure 08 - Typical δ13 C and C/N ranges for organic inputs to coastal environments. fossil SMI can be infered and it can infer that the flux of methane was not constant V.85, Elsevier. P.107-122, 1991. Figure 06. PC-701 clay minerals, quartz, feldspars and quartz/feldspars ratio profiles.The boundary between the Note that some samples are located on a non determineted source because high nitrogen content, tipically of marine environments. The mixed and terrestrial with the geologic time. The peaks above and below present SMI indicates that Oba T. et al. Paleoenvironmental Changes in the Japan Sea During the Last 85,000 Yeras. Holocene and Pleistocene could be marked by TOC and δ C isotopic concentration how discussed before but, 13 also, this boundary can be identified using clay minerals, quartz and feldspars content. nature at Pleistocene is also clear. Modified from Lamb et al. 2006. methane flux was stronger (upper) and weaker (lower) than present level. Washington DC: American Geophysical Union. Paleoceanography. V.6, n.4, p.499-518, 1991.