SlideShare una empresa de Scribd logo
1 de 41
Special Techniques for Calculating Potential
3.1 Laplace’s Equation
3.2 The Method of Images
3.3 Separation of Variables
3.4 Multipole Expansion
3.1 Laplace’s Equation
3.1.1 Introduction
3.1.2 Laplace’s Equation in One Dimension
3.1.3 Laplace’s Equation in Two Dimensions
3.1.4 Laplace’s Equation in Three Dimensions
3.1.5 Boundary Conditions and Uniqueness
Theorems
3.1.6 Conducts and the Second Uniqueness
Theorem
3.1.1 Introduction
The primary task of electrostatics is to study the interaction
(force) of a given stationary charges.
since
this integrals can be difficult (unless there is symmetry)
we usually calculate
This integral is often too tough to handle analytically.
2
0
ˆ1 ( )
4
F q Etest
RE d
R
ρ τ
πε
=
= ∫
v v
v
ˆˆ ˆx y zE E x E y E z= + + +×××
v
0
1 1( )
4
V d
R
E V
ρ τ
πε
= ∫
= −∇
v
∴
Q
In differential form
Eq.(2.21): Poisson’s eq.
Laplace’s eq
or
The solutions of Laplace’s eq are called harmonic function.
3.1.1
2
0
V
ρ
ε
∇ = −
2
0V∇ =
2
2 2 2
2 2 2
1 10 ( )
0
i
k i i i
k
TV A
h q h q
V V V
x y z
∂ ∂= ∇ =
∂ ∂∏
∂ ∂ ∂
+ + =
∂ ∂ ∂
 to solve a differential eq. we need boundary conditions.
 In case of ρ = 0, Poisson’s eq. reduces to
3.1.2 Laplace’s Equation in One Dimension
2
2
0
d V
V mx b
dx
= ⇒ = +
m, b are to be determined by B.C.s
e.q.,
1. V(x) is the average of V(x + R) and V(x - R), for any R:
2. Laplace’s equation tolerates no local maxima or minima.
( 1) 4 1
5
( 5) 0 5
V x m
V x
V x b
= = = − 
⇒ ⇒ = − + 
= = = 
V=4 V=0
1 5 x
[ ]1
2
( ) ( ) ( )V x V x R V x R= + + −
Method of relaxation:
3.1.2 (2)
 A numerical method to solve Laplace equation.
 Starting V at the boundary and guess V on a grid of interior points.
Reassign each point with the average of its nearest neighbors.
Repeat this process till they converge.
3.1.2 (3)
The example of relaxation
n V(x=0)V(x=1)V(x=2)V(x=3)V(x=4)
0 4 0 0 0 0
1 4 2 0 0 0
2 4 2 1 0 0
3 4 1 0
4 4 0
5 4 0
6 4 0
7 4 0
8 4 0
9 4 0
10 4 0
4 3 2 1 0
3.1.3 Laplace’s Equation in Two Dimensions
A partial differential eq. :
There is no general solution. The solution will be given in 3.3.
We discuss certain general properties for now.
1. The value of V at a point (x, y) is the average of those around
the point.
2. V has no local maxima or minima; all
extreme occur at the boundaries.
3. The method of relaxation can be applied.
2 2
2 2
0
V V
x y
∂ ∂
+ =
∂ ∂
1( , )
2 circle
V x y Vdl
Rπ
= ∫Ñ
3.1.4 Laplace’s Equation in Three Dimensions
1. The value of V at point P is the average value of V
over a spherical surface of radius R centered at P:
The same for a collection of q by the superposition principle.
2. As a consequence, V can have no local maxima or minima;
the extreme values of V must occur at the boundaries.
3. The method of relaxation can be applied.
2
1( )
4 sphere
V p Vda
Rπ
= ∫Ñ
2 2 2
0
1 , 2 cos
4
q
V r R rR θ
πε
= = + −
r r
1
2 2 22
2
0
1 [ 2 cos ] sin
44
ave
q
V r R rR R d d
R
θ θ θ ϕ
πεπ
−
= + −∫
2 2
0
1 2 cos 04 2
q
r R rR
rR
πθ
πε
= + −
( ) ( ) at the center of the sphere
0 0
1 1
4 2 4
q q
r R r R V
rR rπε πε
 = + − − = = 
3.1.5 Boundary Conditions and Uniqueness Theorems
in 1D,
•
one end
Va
•
the other end
Vb
V is uniquely determined by its value at the boundary.
First uniqueness theorem :
the solution to Laplace’s equation in some region is uniquely
determined, if the value of V is specified on all their surfaces;
the outer boundary could be at infinity, where V is ordinarily taken
to be zero.
V mx b= +
3.1.5
Proof: Suppose V1 , V2 are solutions
at boundary at boundary.
V3 = 0 everywhere
hence V1 = V2 everywhere
2
1 0V∇ = 2
2 0V∇ = 1 2 ?V V=
3 1 2V V V= −
2 2 2
3 1 2 0V V V∇ = ∇ −∇ =
1 2 3 0V V V= ⇒ =
∴
Proof.
at boundary.
Corollary : The potential in some region is uniquely determined if
(a) the charge density throughout the region, and
(b) the value of V on all boundaries, are specified.
3.1.5
The first uniqueness theorem applies to regions with charge.
2
1
0
V
ρ
ε
∇ = − 2
2
0
V
ρ
ε
∇ = −
3 1 2V V V= −
2 2 2
3 1 2
0 0
0V V V
ρ ρ
ε ε
∇ = ∇ −∇ = − + =
3 1 2
3
0
0, . ., 1 2
V V V
V i e V V
= − =
∴ = =
3.1.6 Conductors and the Second Uniqueness Theorem
 Second uniqueness
theorem:
Proof:
Suppose both and are satisfied.
and
0
1
1E ε
ρ∇× =
v
0
1
2E ε
ρ∇× =
v
In a region containing conductors and filled
with a specified charge density ρ,
the electric field is uniquely determined if the
total charge on each conductor is given.
(The region as a whole can be bounded by
another conductor, or else unbounded.)
2E
v
1E
v
0 0
1 1
1 1 2 2,
ith conducting ith conducting
surface surface
i iE da Q E da Qε ε
× = × =∫ ∫
v vv v
Ñ Ñ
0 0
1 1
1 2,
outer bourndary outer bourndary
tot totE da Q E da Qε ε
× = × =∫ ∫
v vv v
Ñ Ñ
for V3 is a constant over each conducting surface
define
3.1.6
3 1 2E E E= −
v v v
0 0
3 1 2 1 2( ) 0E E E E E
ρ ρ
ε ε
∇× = ∇× − = ∇× −∇× = − =
rv v v v
3 1 2 0E da E da E da× = × − × =∫ ∫ ∫
v v vv v v
Ñ Ñ Ñ
2
3 3 3 3 3 3 3( ) ( ) ( )V E V E E V E∇× = ∇× + ∇ = −
v v v
2
3 3 3 3 3( )
volume surface
E d V E d V E daτ τ= − ∇× = − ×∫ ∫ ∫
v v v
Ñ
3 3 0
surface
V E da= − × =∫
v v
Ñ
3 1 20E E E∴ = =
v v v
i.e.,
3.2 The Method of Images
3.2.1 The Classical Image Problem
3.2.2 The Induced Surface Charge
3.2.3 Force and Energy
3.2.4 Other Image Problems
3.2.1 The Classical Image Problem
What is V (z>0) ?
( )
2 2 2 2
1. 0 0
2. 0
V z
V for x y z d
= =
→ + + >>
B.C.
The first uniqueness theorem guarantees that
there is only one solution.
If we can get one any means, that is the only answer.
Trick :
Only care
z > 0
z < 0
is not of
concern
3.2.1
in original
problem
for
V(z=0) = const = 0
( )0 0E z < =
v
0z ≥
( ) ( )2 22 2 2 20
1
( , , )
4
q q
V x y z
x y z d x y z dπε
 
− = +
 
+ + − + + +  
ˆ
0
0
0
z
x y
E E z
E E
at z
or E
= −
= = 
 ÷
= 
=P
v
3.2.2 The Induced Surface Charge
Eq.(2.49)
0
ˆˆ
V
E z V z
z
σ
ε
∂
= = −∇ = −
∂
v
0
0z
V
z
σ ε
=
∂
= −
∂
0 0
z z
A
E A E
σ σ
ε ε
×
− = = −
0
0
Q
E da at z
ε
× = ≅∫
v v
QÑ
( ) ( )2 22 2 2 2
0
1
4
z
q q
z x y z d x y z d
σ
π
=
 
− ∂  
= − 
∂  + + − + + + 
total induced surface charge
3.2.2
Q=-q
3 3
2 2 2 2 2 22 2
0
1 1
2( ) 2( )
2 2
4
( ) ( )
z
z d z dq
x y z d x y z d
π
=
 
− × − − × + −  
= − 
    + + − + + +     
3/2 3/22 2 2 2 2
2 2
qd qd
x y d r d
σ
π π
− −
= =
   + + +
   
01/22 2
1
qd q
r d
∞−
= − = −
 +
 
2
3/20 0 2 2
2
qd
Q da rdrd
r d
π
σ θ
π
∞ −
= =
 +
 
∫ ∫ ∫
3.2.3 Force and Energy
The charge q is attracted toward the plane.
The force of attraction is
With 2 point charges and no conducting plane, the energy is
Eq.(2.36)
( )
( ) ( )
2
2 2
0 0
1 1
ˆˆ
4 4 2
q q q
F z z
dd dπε πε
−
= = −
 − − 
v
( )
( ) ( )
( )
( )
2
1
20 0
2
0
1
2
1 1 1
2 4 4
1
4 2
i i i
i
W q V p
q q
q q
d d d d
q
d
πε πε
πε
=
=
  
    = × − + − ×    +  − −   
= −
∑
3.2.3 (2)
or
For point charge q and the conducting plane at z = 0 the energy
is half of the energy given at above, because the field exist
only at z ≥ 0 ,and is zero at z < 0 ; that is
( )
2
0
1
4 4
q
W
dπε
= −
( )
( )
2
2
0
2 2
0 0
1
4 2
1 1
4 4 4 4
d d
d
q
W F dl dz
z
q q
z d
πε
πε πε
∞ ∞
∞
= × =
 
= − = − ÷ ÷
 
∫ ∫
vv
ˆ( )dl dlz= −
v
Q
3.2.4 Other Image Problems
Stationary distribution of charge
1
q
2
q
3
q
1
q−
2
q−
3
q−
3.2.4 (2)
Conducting sphere of radius R
Image charge
at
R
q q
a
′ = −
2
R
b
a
=
( )
0
0
0
1
,
4
1
ˆˆˆˆ4
1
4 ˆˆˆˆ
q q
V r
q q
rr as rr bs
q q
a r
r r s b r s
r b
θ
πε
πε
πε
′ 
= + ÷
 
 ′
= + ÷
− − 
 
 ÷′
= + ÷
 ÷− − ÷
 
′r r
1
2 2 22 cosr a ra θ = + −
 
r
1
2 2 22 cosr b rb θ = + −
 ′r
Force
[Note : how about conducting circular cylinder?]
3.2.4 (3)
( )
0
1
, 0
4
ˆˆˆˆ
q q
V R
a R
R r s b r s
R b
θ
πε
 
 ÷′
= + = ÷
 ÷− − ÷
 
q q
R b
′
= −
b R
q q q
R a
′ = − = −
a R
R b
=
2
R
b
a
=
( ) ( )
2
2 22 20 0
1 1
4 4
qq q Ra
F
a b a R
πε πε
′
= = −
− −
3.3 Separation of Variables
3.3.0 Fourier series and Fourier transform
3.3.1 Cartesian Coordinate
3.3.2 Spherical Coordinate
ˆˆ ˆ, ,x y zare unique because
3.3.0 Fourier series and Fourier transform
Basic set of unit vectors in a certain coordinate can express
any vector uniquely in the space represented by the coordinate.e.g.
Completeness: a set of function ( )xfn
( ) ( )xfCxf n
n
n∑
∞
=
=
1
( )xf
is complete.
if for any function
Orthogonal: a set of functions is orthogonal
if ( ) ( ) 0=∫ dxxfxf m
b
a
n
mn ≠
=const
for
for mn =
in 3D. Cartesian Coordinate.zVyVxViVV zyx
N
i
i ˆˆˆˆ
1
++== ∑=

zyx VVV ,, are orthogonal.
ji ˆˆ ⋅ = i j=
i j≠0
1
3.3.0 (2)
A complete and orthogonal set of functions forms
a basic set of functions.
e.g.
Nnk ∈,
( ) ( )sin sinkx kx− = −
( ) ( )cos coskx kx− =
odd
{ nkif
nkifdxnxkx ≠
=
−∫ = 0
coscos π
π
π
0cossin∫−
=
π
π
dxnxkx
{ nkif
nkifdxnxkx ≠
=
−∫ = 0
sinsin π
π
π
even
sin(nx) is a basic set of functions for any odd function.
cos(nx) is a basic set of functions for any even function.
sin(nx) and cos(nx) are a basic set of functions for any functions.





for any ( )xf ( ) ( ) ( )
2
xfxf
xg
−−
= ( ) ( ) ( )
2
xfxf
xh
−+
=odd
( ) ( ) ( )xhxgxf +=
even
3.3.0 (3)
,
↑
odd
↑
even
[sinkx] [coskx]
Fourier transform and Fourier series
( ) ( )
0
(*) sin cosn n
n
f x A nx B nx
∞
=
= +∑
( ) ( )
1
sinnA f x nx dx
π
ππ −
= ∫
( ) ( )
1
cosnB f x nx dx
π
ππ −
= ∫
( ) 0
2
1
00 == ∫−
AdxxfB
π
ππ
} ∞⋅⋅⋅⋅= ,2,1n
;
3.3.0 (4)
Proof
( ) ( )
( )
* sin
sin
kx dx
f x kxdx
π
π
π
π
−
−
×
⇒ ×
∫
∫
( ) ( )
0
sin cos sinn n
n
A nx B nx kx dx
π
π
∞
−
=
= +∑ ∫
( ) ( )
0
sin sinn
n
A nx kx dx
π
π
∞
−
=
= ∑ ∫
( ) ( )0
1
sinkA f x kx dx
π
π
∴ = ∫
if 0kA kπ= ≠
0
cos cosn
n
B nx kx dx
π
π
∞
−
=
= ∑ ∫
( ) ( )
( ) ( )
* cos
cos
kx dx
f x kx dx
π
π
π
π
−
−
×
⇒
∫
∫
( ) ( )
0
sin cos cosn n
n
A nx B nx kx dx
π
π
∞
−
=
= +∑ ∫
( )0
1
2
B f x dx
π
ππ −
= ∫
{=
( ) ( )
1
cosnB f x nx dx
π
ππ −
∴ = ∫
3.3.0 (5)
B0 2π for k = 0
Bk π for k = 1, 2, …
3.3.1 Cartesian Coordinate
Use the method of separation of variables to solve the Laplace’s eq.
Example 3
0)(
)()0(
0)(
0)0(
0
→∞→
==
==
==
xV
yVxV
yV
yV
π
Find the potential inside this “slot”?
Laplace’s eq.
2 2
2 2
0
V V
x y
∂ ∂
+ =
∂ ∂
set )()(),( yYxXyxV =
2 2
2 2
0
X Y
Y X
x y
∂ ∂
+ =
∂ ∂
0
11
)(
2
2
)(
2
2
=
∂
∂
+
∂
∂

onlyydepedentygonlyxdepedentxf
y
Y
Yx
X
X
f and g are constant
1 2 0C C+ =
12
2
1
)( C
dx
Xd
X
xf ==
2
22
1
( )
d Y
g y C
Y dy
= =
2
21 kCC =−=set
so Xk
dx
Xd 2
2
2
=
2
2
2
d Y
k Y
dy
= −
kyDkyCyYBeAexX kxkx
cossin)(,)( +=+= −
=),( yxV )( kxkx
BeAe −
+ )cossin( kyDkyC +
3.3.1 (2)
1 2, are constant
( ) ( ) 0
C C
f x g y+ =
3.3.1 (3)
B.C. (iv) ( ) 0 0, 0V x A k→ ∞ → ⇒ = >
B.C. (i) ( 0) 0 0V y D= = ⇒ =
=),( yxV kx
e−
)cossin( kyDkyC +
( , ) sinkx
V x y Ce ky−
=
B.C. (ii) ( ) 0 sin 0 1,2,3V y k kπ π= = ⇒ = = L
B.C. (iii) )()0( 0 yVxV ==
=)(0 yV
1
sinkx
k
k
C e ky
∞
−
=
∑ A fourier series for odd function
00
2
( )sinkC V y ky dyπ
π
= ∫
The principle of superposition =),( yxV
1
sinkx
k
Ce ky
∞
−
=
∑
3.3.1 (4)
For antconstVyV == 00 )(
0
0
0
4 0
2
sin
0
2
(1 cos )
k
V
k
V
C ky dy
if k even
V
k
k if k odd
π
π
π
π
π
=
=

= − = 
=
∫
sin10 0
sinh
1,3,5,
4 21
( , ) sin tan ( )
yk
x
k
V V
V x y e ky
kπ π
− −
=
= =∑
L
3.4 Multipole Expansion
3.4.1 Approximate Potentials at Large distances
3.4.2 The Monopole and Dipole Terms
3.4.3 Origin of Coordinates
in Multipole Expansions
3.4.4 The Electric Field of a Dipole
1 1
2
1 cos
24 0
( ) cos
( )
d
r
qd
r
V p
θ
πε
θ− ≅
≅
r r+ -
3.4.1 Approximate Potentials at Large distances
Example 3.10 A dipole (Fig 3.27). Find the approximate potential
at points far from the dipole.
⇒
1
4 0
( ) ( )
q q
V p
πε + −
= −
r r
2 2 2
2
( ) cos
d
r rd θ± = + mr
2
2
24
(1 cos )
d d
r r
r θ= ± +
2
(1 cos )
r d
d
r
r θ
>>
≅ m
1
1 1 12
2
(1 cos ) (1 cos )
d d
r r r r
θ θ
−
±
≅ ≅ ±m
r
3.4.1
Example 3.10 For an arbitrary localized charge distribution.
Find a systematic expansion of the potential?
0
1 1
( )
4
V p dρ τ
πε
= ∫ r
2 2 2
2 2
2 cos
[1 ( ) 2( )cos ]
r r
r r
r r rr
r
θ
θ
′ ′
′ ′= + −
= + −
r
1 ( )( 2cos )
r r
r r
r θ
′ ′
= +∈ ∈= −r
3.4.1(2)
1 1 3 52 2 3 3
2 8 16
[1 ( )( 2cos ) ( ) ( 2cos ) ( ) ( 2cos ) ]
r r r r r r
r r r r r r r
θ θ θ
′ ′ ′ ′ ′ ′
= − − + − − − +L
1 3 1 5 32 2 3 3
2 2 2 2
[1 ( )cos ( ) ( cos ) ( ) ( cos cos ) ]
r r r
r r r r
θ θ θ θ
′ ′ ′
= + + − + − +L
1
0
( ) (cos )
r n
nr r
n
P dθ ρ τ
∞
′
=
′= ∑
Monopole term Dipole term Quadrupole term
Multipole expansion
1
1 1 1 1 3 52 32
2 8 16
(1 ) (1 )
r r
−
∈ ∈ ∈= +∈ = − + − +L
r
1
( 1)4 0 0
1 1 1 1 3 12
2 34 2 20
1
( ) ( ) (cos )
[ cos ( ) ( cos ) ]
n
nn
n
r r r
V r r P d
r
d r d r d
πε
πε
θ ρ τ
ρ τ θ ρ τ θ ρ τ
∞
+
=
′=
′ ′= + + − +
∑ ∫
∫ ∫ ∫ L
3.4.2 The Monopole and Dipole Terms
monopole
dipole
dominates if r >> 1
dipole moment (vector)
A physical dipole is consist of a pair of equal and
opposite charge,
1
4 0
( )
Q
mon r
V p
πε
=
1 1
24 0
1 1
24 0
( ) cos
ˆ
dip
r
r
P
V p r d
r r d
πε
πε
θ ρ τ
ρ τ
′=
′= ×
∫
∫
v
v
14243
ˆcosr r rθ′ ′= ×
v
ˆ1
24 0
1
( )
p r
dip
r
n
i i
i
V p
p r d q r
πε
ρ τ
×
=
=
′ ′= = ∑∫
v
v v v
q±
( )p qr qr q r r qd+ − + −′ ′ ′ ′= − = − =
vv v v v v
3.4.3 Origin of Coordinates in Multipole Expansions
if
( )
p r d
r d d
r d d d
p dQ
ρ τ
ρ τ
ρ τ ρ τ
′=
′= −
′= −
= −
∫
∫
∫ ∫
vv
vv
vv
0Q p p= =
v
3.4.4 The Electric Field of a Dipole
A pure dipole
ˆ cos
2 24 40 0
2 cos
34 0
1 sin
34 0
1
sin
34 0
( , )
0
ˆˆ( , ) (2cos sin )
P r P
dip
r r
V P
r r r
V P
r r
V
r
P
dip
r
V r
E
E
E
E r r
θ
πε πε
θ
πε
θ
θ θ πε
ϕ θ ϕ
πε
θ
θ θ θ θ
×
∂
−
∂
∂
−
∂
∂
−
∂
= =
= =
= =
= =
= +
v
v

Más contenido relacionado

La actualidad más candente

Kronig penny model_computational_phyics
Kronig penny model_computational_phyicsKronig penny model_computational_phyics
Kronig penny model_computational_phyicsNeerajKumarMeena5
 
Independence, basis and dimension
Independence, basis and dimensionIndependence, basis and dimension
Independence, basis and dimensionATUL KUMAR YADAV
 
linear transformation
linear transformationlinear transformation
linear transformationmansi acharya
 
Complex analysis
Complex analysisComplex analysis
Complex analysissujathavvv
 
Vector calculus
Vector calculusVector calculus
Vector calculusraghu ram
 
Ph 101-9 QUANTUM MACHANICS
Ph 101-9 QUANTUM MACHANICSPh 101-9 QUANTUM MACHANICS
Ph 101-9 QUANTUM MACHANICSChandan Singh
 
Schrodinger equation and its applications: Chapter 2
Schrodinger equation and its applications: Chapter 2Schrodinger equation and its applications: Chapter 2
Schrodinger equation and its applications: Chapter 2Dr.Pankaj Khirade
 
Tensor 1
Tensor  1Tensor  1
Tensor 1BAIJU V
 
Linear transformation.ppt
Linear transformation.pptLinear transformation.ppt
Linear transformation.pptRaj Parekh
 
Application of Gauss,Green and Stokes Theorem
Application of Gauss,Green and Stokes TheoremApplication of Gauss,Green and Stokes Theorem
Application of Gauss,Green and Stokes TheoremSamiul Ehsan
 
Linear dependence & independence vectors
Linear dependence & independence vectorsLinear dependence & independence vectors
Linear dependence & independence vectorsRakib Hossain
 
Potentials and fields
Potentials and fieldsPotentials and fields
Potentials and fieldsAvie Tavianna
 
INTEGRAL TEST, COMPARISON TEST, RATIO TEST AND ROOT TEST
INTEGRAL TEST, COMPARISON TEST, RATIO TEST AND ROOT TESTINTEGRAL TEST, COMPARISON TEST, RATIO TEST AND ROOT TEST
INTEGRAL TEST, COMPARISON TEST, RATIO TEST AND ROOT TESTJAYDEV PATEL
 
Methods of solving ODE
Methods of solving ODEMethods of solving ODE
Methods of solving ODEkishor pokar
 

La actualidad más candente (20)

Kronig penny model_computational_phyics
Kronig penny model_computational_phyicsKronig penny model_computational_phyics
Kronig penny model_computational_phyics
 
Independence, basis and dimension
Independence, basis and dimensionIndependence, basis and dimension
Independence, basis and dimension
 
linear transformation
linear transformationlinear transformation
linear transformation
 
Quantum
QuantumQuantum
Quantum
 
Complex analysis
Complex analysisComplex analysis
Complex analysis
 
Poisson's equation 2nd 4
Poisson's equation 2nd 4Poisson's equation 2nd 4
Poisson's equation 2nd 4
 
Vector calculus
Vector calculusVector calculus
Vector calculus
 
Ph 101-9 QUANTUM MACHANICS
Ph 101-9 QUANTUM MACHANICSPh 101-9 QUANTUM MACHANICS
Ph 101-9 QUANTUM MACHANICS
 
Fourier series
Fourier seriesFourier series
Fourier series
 
Gamma function
Gamma functionGamma function
Gamma function
 
Schrodinger equation and its applications: Chapter 2
Schrodinger equation and its applications: Chapter 2Schrodinger equation and its applications: Chapter 2
Schrodinger equation and its applications: Chapter 2
 
Tensor 1
Tensor  1Tensor  1
Tensor 1
 
Linear transformation.ppt
Linear transformation.pptLinear transformation.ppt
Linear transformation.ppt
 
Application of Gauss,Green and Stokes Theorem
Application of Gauss,Green and Stokes TheoremApplication of Gauss,Green and Stokes Theorem
Application of Gauss,Green and Stokes Theorem
 
Energy bands and gaps in semiconductor
Energy bands and gaps in semiconductorEnergy bands and gaps in semiconductor
Energy bands and gaps in semiconductor
 
Linear dependence & independence vectors
Linear dependence & independence vectorsLinear dependence & independence vectors
Linear dependence & independence vectors
 
Potentials and fields
Potentials and fieldsPotentials and fields
Potentials and fields
 
Vector space
Vector spaceVector space
Vector space
 
INTEGRAL TEST, COMPARISON TEST, RATIO TEST AND ROOT TEST
INTEGRAL TEST, COMPARISON TEST, RATIO TEST AND ROOT TESTINTEGRAL TEST, COMPARISON TEST, RATIO TEST AND ROOT TEST
INTEGRAL TEST, COMPARISON TEST, RATIO TEST AND ROOT TEST
 
Methods of solving ODE
Methods of solving ODEMethods of solving ODE
Methods of solving ODE
 

Similar a Laplace equation

Newton Raphson method for load flow analysis
Newton Raphson method for load flow analysisNewton Raphson method for load flow analysis
Newton Raphson method for load flow analysisdivyanshuprakashrock
 
Partial Differential Equation - Notes
Partial Differential Equation - NotesPartial Differential Equation - Notes
Partial Differential Equation - NotesDr. Nirav Vyas
 
2d beam element with combined loading bending axial and torsion
2d beam element with combined loading bending axial and torsion2d beam element with combined loading bending axial and torsion
2d beam element with combined loading bending axial and torsionrro7560
 
Random Matrix Theory and Machine Learning - Part 3
Random Matrix Theory and Machine Learning - Part 3Random Matrix Theory and Machine Learning - Part 3
Random Matrix Theory and Machine Learning - Part 3Fabian Pedregosa
 
complex variable PPT ( SEM 2 / CH -2 / GTU)
complex variable PPT ( SEM 2 / CH -2 / GTU)complex variable PPT ( SEM 2 / CH -2 / GTU)
complex variable PPT ( SEM 2 / CH -2 / GTU)tejaspatel1997
 
Spm add-maths-formula-list-form4-091022090639-phpapp01
Spm add-maths-formula-list-form4-091022090639-phpapp01Spm add-maths-formula-list-form4-091022090639-phpapp01
Spm add-maths-formula-list-form4-091022090639-phpapp01Asad Bukhari
 
Spm add-maths-formula-list-form4-091022090639-phpapp01
Spm add-maths-formula-list-form4-091022090639-phpapp01Spm add-maths-formula-list-form4-091022090639-phpapp01
Spm add-maths-formula-list-form4-091022090639-phpapp01Nur Kamila
 
Additional Mathematics form 4 (formula)
Additional Mathematics form 4 (formula)Additional Mathematics form 4 (formula)
Additional Mathematics form 4 (formula)Fatini Adnan
 
Partial diferential good
Partial diferential goodPartial diferential good
Partial diferential goodgenntmbr
 
Capitulo 4, 7ma edición
Capitulo 4, 7ma ediciónCapitulo 4, 7ma edición
Capitulo 4, 7ma ediciónSohar Carr
 
Matlab lab manual
Matlab lab manualMatlab lab manual
Matlab lab manualnmahi96
 
about power system operation and control13197214.ppt
about power system operation and control13197214.pptabout power system operation and control13197214.ppt
about power system operation and control13197214.pptMohammedAhmed66819
 
Circular and gavitational force
Circular and gavitational forceCircular and gavitational force
Circular and gavitational forceeshwar360
 
Solution to schrodinger equation with dirac comb potential
Solution to schrodinger equation with dirac comb potential Solution to schrodinger equation with dirac comb potential
Solution to schrodinger equation with dirac comb potential slides
 
Second-order Cosmological Perturbations Engendered by Point-like Masses
Second-order Cosmological Perturbations Engendered by Point-like MassesSecond-order Cosmological Perturbations Engendered by Point-like Masses
Second-order Cosmological Perturbations Engendered by Point-like MassesMaxim Eingorn
 
Integrability and weak diffraction in a two-particle Bose-Hubbard model
 Integrability and weak diffraction in a two-particle Bose-Hubbard model  Integrability and weak diffraction in a two-particle Bose-Hubbard model
Integrability and weak diffraction in a two-particle Bose-Hubbard model jiang-min zhang
 

Similar a Laplace equation (20)

Newton Raphson method for load flow analysis
Newton Raphson method for load flow analysisNewton Raphson method for load flow analysis
Newton Raphson method for load flow analysis
 
Partial Differential Equation - Notes
Partial Differential Equation - NotesPartial Differential Equation - Notes
Partial Differential Equation - Notes
 
2d beam element with combined loading bending axial and torsion
2d beam element with combined loading bending axial and torsion2d beam element with combined loading bending axial and torsion
2d beam element with combined loading bending axial and torsion
 
Random Matrix Theory and Machine Learning - Part 3
Random Matrix Theory and Machine Learning - Part 3Random Matrix Theory and Machine Learning - Part 3
Random Matrix Theory and Machine Learning - Part 3
 
complex variable PPT ( SEM 2 / CH -2 / GTU)
complex variable PPT ( SEM 2 / CH -2 / GTU)complex variable PPT ( SEM 2 / CH -2 / GTU)
complex variable PPT ( SEM 2 / CH -2 / GTU)
 
Scalar and vector differentiation
Scalar and vector differentiationScalar and vector differentiation
Scalar and vector differentiation
 
Spm add-maths-formula-list-form4-091022090639-phpapp01
Spm add-maths-formula-list-form4-091022090639-phpapp01Spm add-maths-formula-list-form4-091022090639-phpapp01
Spm add-maths-formula-list-form4-091022090639-phpapp01
 
Spm add-maths-formula-list-form4-091022090639-phpapp01
Spm add-maths-formula-list-form4-091022090639-phpapp01Spm add-maths-formula-list-form4-091022090639-phpapp01
Spm add-maths-formula-list-form4-091022090639-phpapp01
 
Additional Mathematics form 4 (formula)
Additional Mathematics form 4 (formula)Additional Mathematics form 4 (formula)
Additional Mathematics form 4 (formula)
 
Partial diferential good
Partial diferential goodPartial diferential good
Partial diferential good
 
A05330107
A05330107A05330107
A05330107
 
Capitulo 4, 7ma edición
Capitulo 4, 7ma ediciónCapitulo 4, 7ma edición
Capitulo 4, 7ma edición
 
EM_Theory.pdf
EM_Theory.pdfEM_Theory.pdf
EM_Theory.pdf
 
Matlab lab manual
Matlab lab manualMatlab lab manual
Matlab lab manual
 
about power system operation and control13197214.ppt
about power system operation and control13197214.pptabout power system operation and control13197214.ppt
about power system operation and control13197214.ppt
 
Circular and gavitational force
Circular and gavitational forceCircular and gavitational force
Circular and gavitational force
 
Solution to schrodinger equation with dirac comb potential
Solution to schrodinger equation with dirac comb potential Solution to schrodinger equation with dirac comb potential
Solution to schrodinger equation with dirac comb potential
 
Second-order Cosmological Perturbations Engendered by Point-like Masses
Second-order Cosmological Perturbations Engendered by Point-like MassesSecond-order Cosmological Perturbations Engendered by Point-like Masses
Second-order Cosmological Perturbations Engendered by Point-like Masses
 
Integrability and weak diffraction in a two-particle Bose-Hubbard model
 Integrability and weak diffraction in a two-particle Bose-Hubbard model  Integrability and weak diffraction in a two-particle Bose-Hubbard model
Integrability and weak diffraction in a two-particle Bose-Hubbard model
 
Simple harmonic motion1
Simple harmonic motion1Simple harmonic motion1
Simple harmonic motion1
 

Último

Graduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - EnglishGraduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - Englishneillewis46
 
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...christianmathematics
 
Understanding Accommodations and Modifications
Understanding  Accommodations and ModificationsUnderstanding  Accommodations and Modifications
Understanding Accommodations and ModificationsMJDuyan
 
Vishram Singh - Textbook of Anatomy Upper Limb and Thorax.. Volume 1 (1).pdf
Vishram Singh - Textbook of Anatomy  Upper Limb and Thorax.. Volume 1 (1).pdfVishram Singh - Textbook of Anatomy  Upper Limb and Thorax.. Volume 1 (1).pdf
Vishram Singh - Textbook of Anatomy Upper Limb and Thorax.. Volume 1 (1).pdfssuserdda66b
 
Sociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning ExhibitSociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning Exhibitjbellavia9
 
Fostering Friendships - Enhancing Social Bonds in the Classroom
Fostering Friendships - Enhancing Social Bonds  in the ClassroomFostering Friendships - Enhancing Social Bonds  in the Classroom
Fostering Friendships - Enhancing Social Bonds in the ClassroomPooky Knightsmith
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxheathfieldcps1
 
ComPTIA Overview | Comptia Security+ Book SY0-701
ComPTIA Overview | Comptia Security+ Book SY0-701ComPTIA Overview | Comptia Security+ Book SY0-701
ComPTIA Overview | Comptia Security+ Book SY0-701bronxfugly43
 
FSB Advising Checklist - Orientation 2024
FSB Advising Checklist - Orientation 2024FSB Advising Checklist - Orientation 2024
FSB Advising Checklist - Orientation 2024Elizabeth Walsh
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsTechSoup
 
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptxMaritesTamaniVerdade
 
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...pradhanghanshyam7136
 
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptxHMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptxEsquimalt MFRC
 
Towards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptxTowards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptxJisc
 
This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.christianmathematics
 
SOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning PresentationSOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning Presentationcamerronhm
 
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxBasic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxDenish Jangid
 
How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17Celine George
 
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...ZurliaSoop
 

Último (20)

Graduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - EnglishGraduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - English
 
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
 
Understanding Accommodations and Modifications
Understanding  Accommodations and ModificationsUnderstanding  Accommodations and Modifications
Understanding Accommodations and Modifications
 
Vishram Singh - Textbook of Anatomy Upper Limb and Thorax.. Volume 1 (1).pdf
Vishram Singh - Textbook of Anatomy  Upper Limb and Thorax.. Volume 1 (1).pdfVishram Singh - Textbook of Anatomy  Upper Limb and Thorax.. Volume 1 (1).pdf
Vishram Singh - Textbook of Anatomy Upper Limb and Thorax.. Volume 1 (1).pdf
 
Sociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning ExhibitSociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning Exhibit
 
Fostering Friendships - Enhancing Social Bonds in the Classroom
Fostering Friendships - Enhancing Social Bonds  in the ClassroomFostering Friendships - Enhancing Social Bonds  in the Classroom
Fostering Friendships - Enhancing Social Bonds in the Classroom
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
 
Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024
 
ComPTIA Overview | Comptia Security+ Book SY0-701
ComPTIA Overview | Comptia Security+ Book SY0-701ComPTIA Overview | Comptia Security+ Book SY0-701
ComPTIA Overview | Comptia Security+ Book SY0-701
 
FSB Advising Checklist - Orientation 2024
FSB Advising Checklist - Orientation 2024FSB Advising Checklist - Orientation 2024
FSB Advising Checklist - Orientation 2024
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The Basics
 
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
 
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
 
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptxHMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
 
Towards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptxTowards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptx
 
This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.
 
SOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning PresentationSOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning Presentation
 
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxBasic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
 
How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17
 
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
 

Laplace equation

  • 1. Special Techniques for Calculating Potential 3.1 Laplace’s Equation 3.2 The Method of Images 3.3 Separation of Variables 3.4 Multipole Expansion
  • 2. 3.1 Laplace’s Equation 3.1.1 Introduction 3.1.2 Laplace’s Equation in One Dimension 3.1.3 Laplace’s Equation in Two Dimensions 3.1.4 Laplace’s Equation in Three Dimensions 3.1.5 Boundary Conditions and Uniqueness Theorems 3.1.6 Conducts and the Second Uniqueness Theorem
  • 3. 3.1.1 Introduction The primary task of electrostatics is to study the interaction (force) of a given stationary charges. since this integrals can be difficult (unless there is symmetry) we usually calculate This integral is often too tough to handle analytically. 2 0 ˆ1 ( ) 4 F q Etest RE d R ρ τ πε = = ∫ v v v ˆˆ ˆx y zE E x E y E z= + + +××× v 0 1 1( ) 4 V d R E V ρ τ πε = ∫ = −∇ v ∴ Q
  • 4. In differential form Eq.(2.21): Poisson’s eq. Laplace’s eq or The solutions of Laplace’s eq are called harmonic function. 3.1.1 2 0 V ρ ε ∇ = − 2 0V∇ = 2 2 2 2 2 2 2 1 10 ( ) 0 i k i i i k TV A h q h q V V V x y z ∂ ∂= ∇ = ∂ ∂∏ ∂ ∂ ∂ + + = ∂ ∂ ∂  to solve a differential eq. we need boundary conditions.  In case of ρ = 0, Poisson’s eq. reduces to
  • 5. 3.1.2 Laplace’s Equation in One Dimension 2 2 0 d V V mx b dx = ⇒ = + m, b are to be determined by B.C.s e.q., 1. V(x) is the average of V(x + R) and V(x - R), for any R: 2. Laplace’s equation tolerates no local maxima or minima. ( 1) 4 1 5 ( 5) 0 5 V x m V x V x b = = = −  ⇒ ⇒ = − +  = = =  V=4 V=0 1 5 x [ ]1 2 ( ) ( ) ( )V x V x R V x R= + + −
  • 6. Method of relaxation: 3.1.2 (2)  A numerical method to solve Laplace equation.  Starting V at the boundary and guess V on a grid of interior points. Reassign each point with the average of its nearest neighbors. Repeat this process till they converge.
  • 7. 3.1.2 (3) The example of relaxation n V(x=0)V(x=1)V(x=2)V(x=3)V(x=4) 0 4 0 0 0 0 1 4 2 0 0 0 2 4 2 1 0 0 3 4 1 0 4 4 0 5 4 0 6 4 0 7 4 0 8 4 0 9 4 0 10 4 0 4 3 2 1 0
  • 8. 3.1.3 Laplace’s Equation in Two Dimensions A partial differential eq. : There is no general solution. The solution will be given in 3.3. We discuss certain general properties for now. 1. The value of V at a point (x, y) is the average of those around the point. 2. V has no local maxima or minima; all extreme occur at the boundaries. 3. The method of relaxation can be applied. 2 2 2 2 0 V V x y ∂ ∂ + = ∂ ∂ 1( , ) 2 circle V x y Vdl Rπ = ∫Ñ
  • 9. 3.1.4 Laplace’s Equation in Three Dimensions 1. The value of V at point P is the average value of V over a spherical surface of radius R centered at P: The same for a collection of q by the superposition principle. 2. As a consequence, V can have no local maxima or minima; the extreme values of V must occur at the boundaries. 3. The method of relaxation can be applied. 2 1( ) 4 sphere V p Vda Rπ = ∫Ñ 2 2 2 0 1 , 2 cos 4 q V r R rR θ πε = = + − r r 1 2 2 22 2 0 1 [ 2 cos ] sin 44 ave q V r R rR R d d R θ θ θ ϕ πεπ − = + −∫ 2 2 0 1 2 cos 04 2 q r R rR rR πθ πε = + − ( ) ( ) at the center of the sphere 0 0 1 1 4 2 4 q q r R r R V rR rπε πε  = + − − = = 
  • 10. 3.1.5 Boundary Conditions and Uniqueness Theorems in 1D, • one end Va • the other end Vb V is uniquely determined by its value at the boundary. First uniqueness theorem : the solution to Laplace’s equation in some region is uniquely determined, if the value of V is specified on all their surfaces; the outer boundary could be at infinity, where V is ordinarily taken to be zero. V mx b= +
  • 11. 3.1.5 Proof: Suppose V1 , V2 are solutions at boundary at boundary. V3 = 0 everywhere hence V1 = V2 everywhere 2 1 0V∇ = 2 2 0V∇ = 1 2 ?V V= 3 1 2V V V= − 2 2 2 3 1 2 0V V V∇ = ∇ −∇ = 1 2 3 0V V V= ⇒ = ∴
  • 12. Proof. at boundary. Corollary : The potential in some region is uniquely determined if (a) the charge density throughout the region, and (b) the value of V on all boundaries, are specified. 3.1.5 The first uniqueness theorem applies to regions with charge. 2 1 0 V ρ ε ∇ = − 2 2 0 V ρ ε ∇ = − 3 1 2V V V= − 2 2 2 3 1 2 0 0 0V V V ρ ρ ε ε ∇ = ∇ −∇ = − + = 3 1 2 3 0 0, . ., 1 2 V V V V i e V V = − = ∴ = =
  • 13. 3.1.6 Conductors and the Second Uniqueness Theorem  Second uniqueness theorem: Proof: Suppose both and are satisfied. and 0 1 1E ε ρ∇× = v 0 1 2E ε ρ∇× = v In a region containing conductors and filled with a specified charge density ρ, the electric field is uniquely determined if the total charge on each conductor is given. (The region as a whole can be bounded by another conductor, or else unbounded.) 2E v 1E v 0 0 1 1 1 1 2 2, ith conducting ith conducting surface surface i iE da Q E da Qε ε × = × =∫ ∫ v vv v Ñ Ñ 0 0 1 1 1 2, outer bourndary outer bourndary tot totE da Q E da Qε ε × = × =∫ ∫ v vv v Ñ Ñ
  • 14. for V3 is a constant over each conducting surface define 3.1.6 3 1 2E E E= − v v v 0 0 3 1 2 1 2( ) 0E E E E E ρ ρ ε ε ∇× = ∇× − = ∇× −∇× = − = rv v v v 3 1 2 0E da E da E da× = × − × =∫ ∫ ∫ v v vv v v Ñ Ñ Ñ 2 3 3 3 3 3 3 3( ) ( ) ( )V E V E E V E∇× = ∇× + ∇ = − v v v 2 3 3 3 3 3( ) volume surface E d V E d V E daτ τ= − ∇× = − ×∫ ∫ ∫ v v v Ñ 3 3 0 surface V E da= − × =∫ v v Ñ 3 1 20E E E∴ = = v v v i.e.,
  • 15. 3.2 The Method of Images 3.2.1 The Classical Image Problem 3.2.2 The Induced Surface Charge 3.2.3 Force and Energy 3.2.4 Other Image Problems
  • 16. 3.2.1 The Classical Image Problem What is V (z>0) ? ( ) 2 2 2 2 1. 0 0 2. 0 V z V for x y z d = = → + + >> B.C. The first uniqueness theorem guarantees that there is only one solution. If we can get one any means, that is the only answer.
  • 17. Trick : Only care z > 0 z < 0 is not of concern 3.2.1 in original problem for V(z=0) = const = 0 ( )0 0E z < = v 0z ≥ ( ) ( )2 22 2 2 20 1 ( , , ) 4 q q V x y z x y z d x y z dπε   − = +   + + − + + +   ˆ 0 0 0 z x y E E z E E at z or E = − = =   ÷ =  =P v
  • 18. 3.2.2 The Induced Surface Charge Eq.(2.49) 0 ˆˆ V E z V z z σ ε ∂ = = −∇ = − ∂ v 0 0z V z σ ε = ∂ = − ∂ 0 0 z z A E A E σ σ ε ε × − = = − 0 0 Q E da at z ε × = ≅∫ v v QÑ ( ) ( )2 22 2 2 2 0 1 4 z q q z x y z d x y z d σ π =   − ∂   = −  ∂  + + − + + + 
  • 19. total induced surface charge 3.2.2 Q=-q 3 3 2 2 2 2 2 22 2 0 1 1 2( ) 2( ) 2 2 4 ( ) ( ) z z d z dq x y z d x y z d π =   − × − − × + −   = −      + + − + + +      3/2 3/22 2 2 2 2 2 2 qd qd x y d r d σ π π − − = =    + + +     01/22 2 1 qd q r d ∞− = − = −  +   2 3/20 0 2 2 2 qd Q da rdrd r d π σ θ π ∞ − = =  +   ∫ ∫ ∫
  • 20. 3.2.3 Force and Energy The charge q is attracted toward the plane. The force of attraction is With 2 point charges and no conducting plane, the energy is Eq.(2.36) ( ) ( ) ( ) 2 2 2 0 0 1 1 ˆˆ 4 4 2 q q q F z z dd dπε πε − = = −  − −  v ( ) ( ) ( ) ( ) ( ) 2 1 20 0 2 0 1 2 1 1 1 2 4 4 1 4 2 i i i i W q V p q q q q d d d d q d πε πε πε = =        = × − + − ×    +  − −    = − ∑
  • 21. 3.2.3 (2) or For point charge q and the conducting plane at z = 0 the energy is half of the energy given at above, because the field exist only at z ≥ 0 ,and is zero at z < 0 ; that is ( ) 2 0 1 4 4 q W dπε = − ( ) ( ) 2 2 0 2 2 0 0 1 4 2 1 1 4 4 4 4 d d d q W F dl dz z q q z d πε πε πε ∞ ∞ ∞ = × =   = − = − ÷ ÷   ∫ ∫ vv ˆ( )dl dlz= − v Q
  • 22. 3.2.4 Other Image Problems Stationary distribution of charge 1 q 2 q 3 q 1 q− 2 q− 3 q−
  • 23. 3.2.4 (2) Conducting sphere of radius R Image charge at R q q a ′ = − 2 R b a = ( ) 0 0 0 1 , 4 1 ˆˆˆˆ4 1 4 ˆˆˆˆ q q V r q q rr as rr bs q q a r r r s b r s r b θ πε πε πε ′  = + ÷    ′ = + ÷ − −     ÷′ = + ÷  ÷− − ÷   ′r r 1 2 2 22 cosr a ra θ = + −   r 1 2 2 22 cosr b rb θ = + −  ′r
  • 24. Force [Note : how about conducting circular cylinder?] 3.2.4 (3) ( ) 0 1 , 0 4 ˆˆˆˆ q q V R a R R r s b r s R b θ πε    ÷′ = + = ÷  ÷− − ÷   q q R b ′ = − b R q q q R a ′ = − = − a R R b = 2 R b a = ( ) ( ) 2 2 22 20 0 1 1 4 4 qq q Ra F a b a R πε πε ′ = = − − −
  • 25. 3.3 Separation of Variables 3.3.0 Fourier series and Fourier transform 3.3.1 Cartesian Coordinate 3.3.2 Spherical Coordinate
  • 26. ˆˆ ˆ, ,x y zare unique because 3.3.0 Fourier series and Fourier transform Basic set of unit vectors in a certain coordinate can express any vector uniquely in the space represented by the coordinate.e.g. Completeness: a set of function ( )xfn ( ) ( )xfCxf n n n∑ ∞ = = 1 ( )xf is complete. if for any function Orthogonal: a set of functions is orthogonal if ( ) ( ) 0=∫ dxxfxf m b a n mn ≠ =const for for mn = in 3D. Cartesian Coordinate.zVyVxViVV zyx N i i ˆˆˆˆ 1 ++== ∑=  zyx VVV ,, are orthogonal. ji ˆˆ ⋅ = i j= i j≠0 1
  • 27. 3.3.0 (2) A complete and orthogonal set of functions forms a basic set of functions. e.g. Nnk ∈, ( ) ( )sin sinkx kx− = − ( ) ( )cos coskx kx− = odd { nkif nkifdxnxkx ≠ = −∫ = 0 coscos π π π 0cossin∫− = π π dxnxkx { nkif nkifdxnxkx ≠ = −∫ = 0 sinsin π π π even sin(nx) is a basic set of functions for any odd function. cos(nx) is a basic set of functions for any even function. sin(nx) and cos(nx) are a basic set of functions for any functions.
  • 28.      for any ( )xf ( ) ( ) ( ) 2 xfxf xg −− = ( ) ( ) ( ) 2 xfxf xh −+ =odd ( ) ( ) ( )xhxgxf += even 3.3.0 (3) , ↑ odd ↑ even [sinkx] [coskx] Fourier transform and Fourier series ( ) ( ) 0 (*) sin cosn n n f x A nx B nx ∞ = = +∑ ( ) ( ) 1 sinnA f x nx dx π ππ − = ∫ ( ) ( ) 1 cosnB f x nx dx π ππ − = ∫ ( ) 0 2 1 00 == ∫− AdxxfB π ππ } ∞⋅⋅⋅⋅= ,2,1n ;
  • 29. 3.3.0 (4) Proof ( ) ( ) ( ) * sin sin kx dx f x kxdx π π π π − − × ⇒ × ∫ ∫ ( ) ( ) 0 sin cos sinn n n A nx B nx kx dx π π ∞ − = = +∑ ∫ ( ) ( ) 0 sin sinn n A nx kx dx π π ∞ − = = ∑ ∫ ( ) ( )0 1 sinkA f x kx dx π π ∴ = ∫ if 0kA kπ= ≠
  • 30. 0 cos cosn n B nx kx dx π π ∞ − = = ∑ ∫ ( ) ( ) ( ) ( ) * cos cos kx dx f x kx dx π π π π − − × ⇒ ∫ ∫ ( ) ( ) 0 sin cos cosn n n A nx B nx kx dx π π ∞ − = = +∑ ∫ ( )0 1 2 B f x dx π ππ − = ∫ {= ( ) ( ) 1 cosnB f x nx dx π ππ − ∴ = ∫ 3.3.0 (5) B0 2π for k = 0 Bk π for k = 1, 2, …
  • 31. 3.3.1 Cartesian Coordinate Use the method of separation of variables to solve the Laplace’s eq. Example 3 0)( )()0( 0)( 0)0( 0 →∞→ == == == xV yVxV yV yV π Find the potential inside this “slot”? Laplace’s eq. 2 2 2 2 0 V V x y ∂ ∂ + = ∂ ∂ set )()(),( yYxXyxV = 2 2 2 2 0 X Y Y X x y ∂ ∂ + = ∂ ∂
  • 32. 0 11 )( 2 2 )( 2 2 = ∂ ∂ + ∂ ∂  onlyydepedentygonlyxdepedentxf y Y Yx X X f and g are constant 1 2 0C C+ = 12 2 1 )( C dx Xd X xf == 2 22 1 ( ) d Y g y C Y dy = = 2 21 kCC =−=set so Xk dx Xd 2 2 2 = 2 2 2 d Y k Y dy = − kyDkyCyYBeAexX kxkx cossin)(,)( +=+= − =),( yxV )( kxkx BeAe − + )cossin( kyDkyC + 3.3.1 (2) 1 2, are constant ( ) ( ) 0 C C f x g y+ =
  • 33. 3.3.1 (3) B.C. (iv) ( ) 0 0, 0V x A k→ ∞ → ⇒ = > B.C. (i) ( 0) 0 0V y D= = ⇒ = =),( yxV kx e− )cossin( kyDkyC + ( , ) sinkx V x y Ce ky− = B.C. (ii) ( ) 0 sin 0 1,2,3V y k kπ π= = ⇒ = = L B.C. (iii) )()0( 0 yVxV == =)(0 yV 1 sinkx k k C e ky ∞ − = ∑ A fourier series for odd function 00 2 ( )sinkC V y ky dyπ π = ∫ The principle of superposition =),( yxV 1 sinkx k Ce ky ∞ − = ∑
  • 34. 3.3.1 (4) For antconstVyV == 00 )( 0 0 0 4 0 2 sin 0 2 (1 cos ) k V k V C ky dy if k even V k k if k odd π π π π π = =  = − =  = ∫ sin10 0 sinh 1,3,5, 4 21 ( , ) sin tan ( ) yk x k V V V x y e ky kπ π − − = = =∑ L
  • 35. 3.4 Multipole Expansion 3.4.1 Approximate Potentials at Large distances 3.4.2 The Monopole and Dipole Terms 3.4.3 Origin of Coordinates in Multipole Expansions 3.4.4 The Electric Field of a Dipole
  • 36. 1 1 2 1 cos 24 0 ( ) cos ( ) d r qd r V p θ πε θ− ≅ ≅ r r+ - 3.4.1 Approximate Potentials at Large distances Example 3.10 A dipole (Fig 3.27). Find the approximate potential at points far from the dipole. ⇒ 1 4 0 ( ) ( ) q q V p πε + − = − r r 2 2 2 2 ( ) cos d r rd θ± = + mr 2 2 24 (1 cos ) d d r r r θ= ± + 2 (1 cos ) r d d r r θ >> ≅ m 1 1 1 12 2 (1 cos ) (1 cos ) d d r r r r θ θ − ± ≅ ≅ ±m r
  • 37. 3.4.1 Example 3.10 For an arbitrary localized charge distribution. Find a systematic expansion of the potential? 0 1 1 ( ) 4 V p dρ τ πε = ∫ r 2 2 2 2 2 2 cos [1 ( ) 2( )cos ] r r r r r r rr r θ θ ′ ′ ′ ′= + − = + − r 1 ( )( 2cos ) r r r r r θ ′ ′ = +∈ ∈= −r
  • 38. 3.4.1(2) 1 1 3 52 2 3 3 2 8 16 [1 ( )( 2cos ) ( ) ( 2cos ) ( ) ( 2cos ) ] r r r r r r r r r r r r r θ θ θ ′ ′ ′ ′ ′ ′ = − − + − − − +L 1 3 1 5 32 2 3 3 2 2 2 2 [1 ( )cos ( ) ( cos ) ( ) ( cos cos ) ] r r r r r r r θ θ θ θ ′ ′ ′ = + + − + − +L 1 0 ( ) (cos ) r n nr r n P dθ ρ τ ∞ ′ = ′= ∑ Monopole term Dipole term Quadrupole term Multipole expansion 1 1 1 1 1 3 52 32 2 8 16 (1 ) (1 ) r r − ∈ ∈ ∈= +∈ = − + − +L r 1 ( 1)4 0 0 1 1 1 1 3 12 2 34 2 20 1 ( ) ( ) (cos ) [ cos ( ) ( cos ) ] n nn n r r r V r r P d r d r d r d πε πε θ ρ τ ρ τ θ ρ τ θ ρ τ ∞ + = ′= ′ ′= + + − + ∑ ∫ ∫ ∫ ∫ L
  • 39. 3.4.2 The Monopole and Dipole Terms monopole dipole dominates if r >> 1 dipole moment (vector) A physical dipole is consist of a pair of equal and opposite charge, 1 4 0 ( ) Q mon r V p πε = 1 1 24 0 1 1 24 0 ( ) cos ˆ dip r r P V p r d r r d πε πε θ ρ τ ρ τ ′= ′= × ∫ ∫ v v 14243 ˆcosr r rθ′ ′= × v ˆ1 24 0 1 ( ) p r dip r n i i i V p p r d q r πε ρ τ × = = ′ ′= = ∑∫ v v v v q± ( )p qr qr q r r qd+ − + −′ ′ ′ ′= − = − = vv v v v v
  • 40. 3.4.3 Origin of Coordinates in Multipole Expansions if ( ) p r d r d d r d d d p dQ ρ τ ρ τ ρ τ ρ τ ′= ′= − ′= − = − ∫ ∫ ∫ ∫ vv vv vv 0Q p p= = v
  • 41. 3.4.4 The Electric Field of a Dipole A pure dipole ˆ cos 2 24 40 0 2 cos 34 0 1 sin 34 0 1 sin 34 0 ( , ) 0 ˆˆ( , ) (2cos sin ) P r P dip r r V P r r r V P r r V r P dip r V r E E E E r r θ πε πε θ πε θ θ θ πε ϕ θ ϕ πε θ θ θ θ θ × ∂ − ∂ ∂ − ∂ ∂ − ∂ = = = = = = = = = + v v