SlideShare una empresa de Scribd logo
1 de 6
Field Theory
Highlights 2015
Set B
By: Roa, F. J. P.
Topics:
1 SU(2)XU(1) Construction in toy Standard Model
2 Basic Practice Calculations Involving Scalar Fields
2 Basic Practice Calculations Involving Scalar Fields
Let us do some basic practice calculations here. Conveniently, we take the scalar field as
subject for the said calculations in relevance to quantum field theories involving vacuum-
to-vacuum matrices whose forms can be given by
(19.1)
⟨0| 𝑈1(𝑇)|0⟩
The basic quantum field interpretation of these matrices is that they give probability
amplitudes that the particles (initially) in the vacuum state |0⟩ at an initial time (say, 𝑡 =
0) will still be (found) in the vacuum state at a later time 𝑇 > 0.
The time-evolution operator (teo) here 𝑈1(𝑇) comes with a system Hamiltonian 𝐻[ 𝐽( 𝑡) ]
containing time-dependent source 𝐽( 𝑡). (System Hamiltonian as obtained from the system
Lagrangian through Legendre transformation. We shall present the basic review details of
this transformation in the concluding portions of this draft. )
(19.2)
𝑈1( 𝑇) = 𝑈1( 𝑇,0) = 𝑒𝑥𝑝(−
𝑖
ℏ
∫ 𝑑𝑡 𝐻(𝑡)
𝑇
0
)
As an emphasis, we are starting with a system (Lagrangian) that does not contain yet self-
interaction terms. These terms are generated with the application of potential operator
𝑉(𝜑̂). (Note that (19.2) is an operator although we haven’t put a hat on the Hamiltonian
operator, 𝐻(𝑡). We will only put a hat on operators in situations where we are compelled
to do so in order to avoid confusion. )
In the absence of the said self-interaction terms, the (19.1) matrices can be evaluated via
Path Integrations (PI’s) although the evaluation of these matrices can be quite easily
facilitated by putting them in their factored form
(19.3)
⟨0| 𝑈1(𝑇)|0⟩ = 𝐶 [ 𝐽 = 0 ] 𝑒𝑖 𝑆𝑐 / ℏ
where 𝐶[ 𝐽 = 0] is considered as a constant factor that can be evaluated directly
(19.4)
𝐶[ 𝐽 = 0] = ⟨0|𝑒𝑥𝑝(−
𝑖
ℏ
𝑇𝐻[𝐽 = 0])|0⟩ = 𝑒𝑥𝑝(−
𝑖
ℏ
𝑇 𝐸0
0
)
As can be seen in the result this constant matrix comes with the ground state energy, 𝐸0
0
.
(We shall also give review details of this result in the later parts of this document.)
In the later portions of this draft, we shall also provide the necessary details of expressing
the classical action 𝑆𝑐 involved in (19.3) as a functional of the sources as this action is to
be given by
(19.5)
𝑆𝑐 =
1
2
1
(2𝜋)2
∫ 𝑑4
𝑥 𝑑4
𝑦 𝐽( 𝑥) 𝐺( 𝑥 − 𝑦) 𝐽(𝑦)
The classical action given by (19.5) as evaluated in terms of the sources 𝐽( 𝑥), 𝐽(𝑦) and
the Green’s function 𝐺( 𝑥 − 𝑦) which serves here as the propagator. This form follows
from the fact that the solution to the classical equation of motion in the presence of
sources can be expressed using the Green’s function and the source
(19.6)
𝜑( 𝐽, 𝑥) =
1
(2𝜋)2
∫ 𝑑4
𝑦 𝐺( 𝑥 − 𝑦)(− 𝐽(𝑦))
(19.7)
𝐺( 𝑥 − 𝑦) =
1
(2𝜋)2
∫ 𝑑4
𝑘
𝑒 𝑖𝑘 𝜎(𝑥 𝜎
− 𝑦 𝜎
)
−𝑘 𝜇 𝑘 𝜇 + 𝑀2 + 𝑖𝜖
(We shall also give basic calculation details of this in the later continuing drafts.)
When the system (with its given Lagrangian) does indeed involve self-interaction terms
the exponential potential operator
(20.1)
𝑒𝑥𝑝(−
𝑖
ℏ
∫ 𝑑4
𝑦 𝑉(𝜑̂)
𝐵
𝐴
)
can be inserted into the vacuum-to-vacuum matrix thus writing this matrix as
(20.2)
⟨0|𝑈1(𝑇)𝑒𝑥𝑝(−
𝑖
ℏ ∫ 𝑑4
𝑦 𝑉(𝜑̂)
𝐵
𝐴
)|0⟩
(It is important to show the details of arriving at (20.2) but we do this in the later portions
of this document.)
We can easily evaluate (20.2) using Path Integral so as to express this matrix in terms of
the derivative operator with respect to the given source
(20.3)
⟨0|𝑈1(𝑇)𝑒𝑥𝑝(−
𝑖
ℏ ∫ 𝑑4
𝑦 𝑉(𝜑̂)
𝐵
𝐴
)|0⟩ = 𝑒𝑥𝑝(−
𝑖
ℏ
∫ 𝑑4
𝑦 𝑉 (𝑖ℏ
𝛿
𝛿𝐽(𝑦)
)
𝐵
𝐴
) ⟨0| 𝑈1(𝑇)|0⟩
Taking note of (19.3), we can employ the Taylor/Maclaurin expansion
(20.4)
𝑒𝑥𝑝(−
𝑖
ℏ
∫ 𝑑4
𝑦 𝑉(𝑖ℏ
𝛿
𝛿𝐽(𝑦)
)
𝐵
𝐴
) 𝑒 𝑖 𝑆𝑐 / ℏ
= 1 + ∑
1
𝑚!
(
𝑖
ℏ
)
𝑚
𝑆 𝐶
𝑚
[𝐽]
∞
𝑚=1
+ ∑
(−1) 𝑛
𝑛!
(
𝑖
ℏ
)
𝑛
(∫ 𝑑4
𝑦 𝑉[𝜑( 𝐽)]
𝐵
𝐴
)
𝑛∞
𝑛=1
+ ∑
(−1) 𝑛
𝑛!
(
𝑖
ℏ
)
𝑛
∞
𝑛=1
∑
1
𝑚!
∞
𝑚=1
(∫ 𝑑4
𝑦 𝑉 [𝑖ℏ
𝛿
𝛿𝐽(𝑦)
]
𝐵
𝐴
)
𝑛
(
𝑖𝑆𝑐[ 𝐽 ]
ℏ
)
𝑚
In my personal (convenient) notation, I write the integration in 𝑆𝑐[ 𝐽 ] as a bracket
(20.5)
𝑆𝑐[ 𝐽 ] = 〈 𝐽𝑥 𝐺𝑥𝑧 𝐽𝑧〉 =
1
2
1
(2𝜋)2
∬ 𝑑4
𝑥 𝑑4
𝑧 𝐽( 𝑥) 𝐺( 𝑥 − 𝑧) 𝐽(𝑧)
Here, the bracket 〈 𝐽𝑥 𝐺𝑥𝑧 𝐽𝑧〉 means double four-spacetime integrations involving two
sources 𝐽( 𝑥) and 𝐽(𝑧), and a propagator 𝐺( 𝑥 − 𝑧) in coordinate spacetime.
As a specific case in this draft let us take the cubic self-interactions
(21.1)
𝑉[ 𝜑( 𝑥, 𝐽)] =
1
3!
𝑔(3) 𝜑3( 𝑥, 𝐽)
In my notation, I write
(21.2)
𝑆 𝐶
𝑛[ 𝐽 ] = ∏〈 𝐽𝑥 𝐺𝑥𝑧 𝐽𝑧 〉𝑖
𝑛−1
𝑖=0
where 𝑖 is specified on both x and z. Meaning,
(21.3)
〈 𝐽𝑥 𝐺𝑥𝑧 𝐽𝑧 〉𝑖 = 〈 𝐽(𝑥(𝑖)
) 𝐺(𝑥( 𝑖)
, 𝑧( 𝑖)
) 𝐽(𝑧(𝑖)
) 〉
Note here that 𝑆 𝐶
𝑛
involves 2𝑛 J’s. For 𝜑3( 𝑥, 𝐽) I shall also write this as
(21.4)
𝜑3( 𝑥, 𝐽) = ∏〈 𝐺𝑥𝑧 𝐽𝑧 〉 𝑗
2
𝑗=0
where 𝑗 is specified on z only.
When there is a need to take the derivative with respect to the source I shall specify the
replacement
(21.5)
𝜑( 𝑥) → 𝑖ℏ
𝛿
𝛿𝐽(𝑥)
Now, for (21.1) we write this as
(21.6)
𝑉[ 𝜑( 𝑥, 𝐽)] =
1
3!
𝑔(3) ∏〈 𝐺𝑥𝑧 𝐽𝑧 〉 𝑗
2
𝑗=0
and so it follows that
(21.7)
∫ 𝑑4
𝑥 𝑉[ 𝜑( 𝑥, 𝐽)] =
1
3!
𝑔(3) ∫ 𝑑4
𝑥 ∏〈 𝐺𝑥𝑧 𝐽𝑧 〉 𝑗
2
𝑗=0
𝐵
𝐴
𝐵
𝐴
where 𝑗 is specified on z only. Then raising (21.7) to the power of 𝑛
(21.8)
(∫ 𝑑4
𝑥 𝑉[ 𝜑( 𝑥, 𝐽)]
𝐵
𝐴
)
𝑛
=
1
(3!) 𝑛
𝑔(3)
𝑛
∫ ∏ 𝑑4
𝑥(𝑘)
𝑛−1
𝑘=0
𝐵
𝐴
∏ 〈 𝐺 𝑥(𝑘)
𝑧 𝐽𝑧〉 𝑗
3𝑛−1
𝑗 =0
where 𝑘 is on all x, while 𝑗 on all z.
In situations where replacement (21.5) is indicated, contrasting (21.7) we write
(21.9)
∫ 𝑑4
𝑦 𝑉 (𝑖ℏ
𝛿
𝛿𝐽(𝑦)
)
𝐵
𝐴
=
1
3!
𝑔(3) (∏ 𝑖ℏ
𝛿
𝛿𝐽(𝑣(𝑗))
3−1
𝑗=1
) ∫ 𝑑4
𝑦 𝑖ℏ
𝛿
𝛿𝐽(𝑦)
𝐵
𝐴
and raised to the power of n, this becomes
(21.10)
(∫ 𝑑4
𝑦 𝑉(𝑖ℏ
𝛿
𝛿𝐽(𝑦)
)
𝐵
𝐴
)
𝑛
=
1
(3!) 𝑛
𝑔(3)
𝑛
( ∏ 𝑖ℏ
𝛿
𝛿𝐽(𝑣(𝑗))
(3−1)𝑛
𝑗 =1
) ∫ (∏ 𝑑4
𝑦(𝑖)
𝑛−1
𝑖=0
)
𝐵
𝐴
∏ 𝑖ℏ
𝛿
𝛿𝐽(𝑦(𝑘))
𝑛−1
𝑘 = 0
where
(21.11)
∏ 𝑖ℏ
𝛿
𝛿𝐽(𝑦(𝑘))
𝑛−1
𝑘 = 0
indicates differentiation 𝑛 times, while
(21.12)
∏ 𝑖ℏ
𝛿
𝛿𝐽(𝑣(𝑗))
(3−1)𝑛
𝑗 =1
indicates differentiation (3 − 1)𝑛 times. So that combining (21.11) and (21.12) in (21.10)
(21.13)
( ∏ 𝑖ℏ
𝛿
𝛿𝐽(𝑣(𝑗))
(3−1)𝑛
𝑗=1
) ⋯ ∏ 𝑖ℏ
𝛿
𝛿𝐽(𝑦(𝑘))
𝑛−1
𝑘 = 0
indicates differentiation (3 − 1) 𝑛 + 𝑛 = 3𝑛 times.
Given (20.3), then we can proceed to evaluate this matrix upon the setting of all sources
to zero. That is,
(21.14)
⟨0|𝑈1(𝑇)𝑒𝑥𝑝(−
𝑖
ℏ ∫ 𝑑4
𝑦 𝑉(𝜑̂)
𝐵
𝐴
)|0⟩|
𝐽=0
[To be continued…]
Ref’s:
[1]W. Hollik, Quantum field theory and the Standard Model, arXiv:1012.3883v1 [hep-
ph]
[2]Baal, P., A COURSE IN FIELD THEORY,
http://www.lorentz.leidenuniv.nl/~vanbaal/FTcourse.html
[3]’t Hooft, G., THE CONCEPTUAL BASIS OF QUANTUM FIELD THEORY,
http://www.phys.uu.nl/~thooft/
[4]Siegel, W., FIELDS, arXiv:hep-th/9912205 v2
[5]Wells, J. D., Lectures on Higgs Boson Physics in the Standard Model and Beyond,
arXiv:0909.4541v1
[6]Cardy, J., Introduction to Quantum Field Theory
[7]Gaberdiel, M., Gehrmann-De Ridder, A., Quantum Field Theory

Más contenido relacionado

La actualidad más candente

Least square method
Least square methodLeast square method
Least square method
Somya Bagai
 
Method of least square
Method of least squareMethod of least square
Method of least square
Somya Bagai
 

La actualidad más candente (20)

Data Approximation in Mathematical Modelling Regression Analysis and Curve Fi...
Data Approximation in Mathematical Modelling Regression Analysis and Curve Fi...Data Approximation in Mathematical Modelling Regression Analysis and Curve Fi...
Data Approximation in Mathematical Modelling Regression Analysis and Curve Fi...
 
Least Square Optimization and Sparse-Linear Solver
Least Square Optimization and Sparse-Linear SolverLeast Square Optimization and Sparse-Linear Solver
Least Square Optimization and Sparse-Linear Solver
 
Curve fitting
Curve fittingCurve fitting
Curve fitting
 
Least square method
Least square methodLeast square method
Least square method
 
Curve Fitting
Curve FittingCurve Fitting
Curve Fitting
 
Frequency analyis i - sqrd1062016
Frequency analyis i - sqrd1062016Frequency analyis i - sqrd1062016
Frequency analyis i - sqrd1062016
 
Mathematical modeling
Mathematical modelingMathematical modeling
Mathematical modeling
 
Matlab polynimials and curve fitting
Matlab polynimials and curve fittingMatlab polynimials and curve fitting
Matlab polynimials and curve fitting
 
Very brief highlights on some key details tosssqrd
Very brief highlights on some key details tosssqrdVery brief highlights on some key details tosssqrd
Very brief highlights on some key details tosssqrd
 
Curve fitting
Curve fitting Curve fitting
Curve fitting
 
Curvefitting
CurvefittingCurvefitting
Curvefitting
 
Curve fitting - Lecture Notes
Curve fitting - Lecture NotesCurve fitting - Lecture Notes
Curve fitting - Lecture Notes
 
Method of least square
Method of least squareMethod of least square
Method of least square
 
Parallel tansport sssqrd
Parallel tansport sssqrdParallel tansport sssqrd
Parallel tansport sssqrd
 
Applied numerical methods lec6
Applied numerical methods lec6Applied numerical methods lec6
Applied numerical methods lec6
 
Non linear curve fitting
Non linear curve fitting Non linear curve fitting
Non linear curve fitting
 
METHOD OF LEAST SQURE
METHOD OF LEAST SQUREMETHOD OF LEAST SQURE
METHOD OF LEAST SQURE
 
Applications Section 1.3
Applications   Section 1.3Applications   Section 1.3
Applications Section 1.3
 
Ch 5-integration-part-1
Ch 5-integration-part-1Ch 5-integration-part-1
Ch 5-integration-part-1
 
Curve fitting of exponential curve
Curve fitting of exponential curveCurve fitting of exponential curve
Curve fitting of exponential curve
 

Similar a Fieldtheoryhighlights2015 setb

Dealinggreensfncsolft sqrd(10 5-2k16)
Dealinggreensfncsolft   sqrd(10 5-2k16)Dealinggreensfncsolft   sqrd(10 5-2k16)
Dealinggreensfncsolft sqrd(10 5-2k16)
foxtrot jp R
 
Dealinggreensfncsolft sqrd
Dealinggreensfncsolft  sqrdDealinggreensfncsolft  sqrd
Dealinggreensfncsolft sqrd
foxtrot jp R
 
One particle to_onepartlce_scattering_sqrd
One particle to_onepartlce_scattering_sqrdOne particle to_onepartlce_scattering_sqrd
One particle to_onepartlce_scattering_sqrd
foxtrot jp R
 
1+3 gr reduced_as_1+1_gravity_set_1 280521fordsply
1+3 gr reduced_as_1+1_gravity_set_1 280521fordsply1+3 gr reduced_as_1+1_gravity_set_1 280521fordsply
1+3 gr reduced_as_1+1_gravity_set_1 280521fordsply
foxtrot jp R
 
1+3 gr reduced_as_1+1_gravity_set_1_fordisplay
1+3 gr reduced_as_1+1_gravity_set_1_fordisplay1+3 gr reduced_as_1+1_gravity_set_1_fordisplay
1+3 gr reduced_as_1+1_gravity_set_1_fordisplay
foxtrot jp R
 
Higgsbosontoelectron positron decay_dsply
Higgsbosontoelectron positron decay_dsplyHiggsbosontoelectron positron decay_dsply
Higgsbosontoelectron positron decay_dsply
foxtrot jp R
 
Outgoing ingoingkleingordon 8th_jun19sqrd
Outgoing ingoingkleingordon 8th_jun19sqrdOutgoing ingoingkleingordon 8th_jun19sqrd
Outgoing ingoingkleingordon 8th_jun19sqrd
foxtrot jp R
 

Similar a Fieldtheoryhighlights2015 setb (20)

Dealinggreensfncsolft sqrd(10 5-2k16)
Dealinggreensfncsolft   sqrd(10 5-2k16)Dealinggreensfncsolft   sqrd(10 5-2k16)
Dealinggreensfncsolft sqrd(10 5-2k16)
 
Dealinggreensfncsolft sqrdb
Dealinggreensfncsolft sqrdbDealinggreensfncsolft sqrdb
Dealinggreensfncsolft sqrdb
 
Dealinggreensfncsolft
DealinggreensfncsolftDealinggreensfncsolft
Dealinggreensfncsolft
 
One particle to_onepartlce_scattering_12082020_fordisplay
One particle to_onepartlce_scattering_12082020_fordisplayOne particle to_onepartlce_scattering_12082020_fordisplay
One particle to_onepartlce_scattering_12082020_fordisplay
 
One particle to_onepartlce_scattering_5302020_pdfcpy
One particle to_onepartlce_scattering_5302020_pdfcpyOne particle to_onepartlce_scattering_5302020_pdfcpy
One particle to_onepartlce_scattering_5302020_pdfcpy
 
Dealinggreensfncsolft sqrd
Dealinggreensfncsolft  sqrdDealinggreensfncsolft  sqrd
Dealinggreensfncsolft sqrd
 
Very brief highlights on some key details 2
Very brief highlights on some key details 2Very brief highlights on some key details 2
Very brief highlights on some key details 2
 
One particle to_onepartlce_scatteringsqrdcpy1
One particle to_onepartlce_scatteringsqrdcpy1One particle to_onepartlce_scatteringsqrdcpy1
One particle to_onepartlce_scatteringsqrdcpy1
 
One particle to_onepartlce_scattering_18052020
One particle to_onepartlce_scattering_18052020One particle to_onepartlce_scattering_18052020
One particle to_onepartlce_scattering_18052020
 
One particle to_onepartlce_scattering_sqrd
One particle to_onepartlce_scattering_sqrdOne particle to_onepartlce_scattering_sqrd
One particle to_onepartlce_scattering_sqrd
 
1+3 gr reduced_as_1+1_gravity_set_1 280521fordsply
1+3 gr reduced_as_1+1_gravity_set_1 280521fordsply1+3 gr reduced_as_1+1_gravity_set_1 280521fordsply
1+3 gr reduced_as_1+1_gravity_set_1 280521fordsply
 
1+3 gr reduced_as_1+1_gravity_set_1_fordisplay
1+3 gr reduced_as_1+1_gravity_set_1_fordisplay1+3 gr reduced_as_1+1_gravity_set_1_fordisplay
1+3 gr reduced_as_1+1_gravity_set_1_fordisplay
 
Bhdpis1
Bhdpis1Bhdpis1
Bhdpis1
 
Higgsbosontoelectron positron decay_dsply
Higgsbosontoelectron positron decay_dsplyHiggsbosontoelectron positron decay_dsply
Higgsbosontoelectron positron decay_dsply
 
Parallel transport additional explorations part1&2 sqrd
Parallel transport additional explorations part1&2 sqrdParallel transport additional explorations part1&2 sqrd
Parallel transport additional explorations part1&2 sqrd
 
Parallel tansportsqrdaa
Parallel tansportsqrdaaParallel tansportsqrdaa
Parallel tansportsqrdaa
 
A Class of Polynomials Associated with Differential Operator and with a Gener...
A Class of Polynomials Associated with Differential Operator and with a Gener...A Class of Polynomials Associated with Differential Operator and with a Gener...
A Class of Polynomials Associated with Differential Operator and with a Gener...
 
Su(2)xu(1)ss
Su(2)xu(1)ssSu(2)xu(1)ss
Su(2)xu(1)ss
 
Outgoing ingoingkleingordon 8th_jun19sqrd
Outgoing ingoingkleingordon 8th_jun19sqrdOutgoing ingoingkleingordon 8th_jun19sqrd
Outgoing ingoingkleingordon 8th_jun19sqrd
 
lec14.ppt
lec14.pptlec14.ppt
lec14.ppt
 

Último

Phenolics: types, biosynthesis and functions.
Phenolics: types, biosynthesis and functions.Phenolics: types, biosynthesis and functions.
Phenolics: types, biosynthesis and functions.
Silpa
 
CYTOGENETIC MAP................ ppt.pptx
CYTOGENETIC MAP................ ppt.pptxCYTOGENETIC MAP................ ppt.pptx
CYTOGENETIC MAP................ ppt.pptx
Silpa
 
Reboulia: features, anatomy, morphology etc.
Reboulia: features, anatomy, morphology etc.Reboulia: features, anatomy, morphology etc.
Reboulia: features, anatomy, morphology etc.
Silpa
 

Último (20)

Cyanide resistant respiration pathway.pptx
Cyanide resistant respiration pathway.pptxCyanide resistant respiration pathway.pptx
Cyanide resistant respiration pathway.pptx
 
Phenolics: types, biosynthesis and functions.
Phenolics: types, biosynthesis and functions.Phenolics: types, biosynthesis and functions.
Phenolics: types, biosynthesis and functions.
 
Bhiwandi Bhiwandi ❤CALL GIRL 7870993772 ❤CALL GIRLS ESCORT SERVICE In Bhiwan...
Bhiwandi Bhiwandi ❤CALL GIRL 7870993772 ❤CALL GIRLS  ESCORT SERVICE In Bhiwan...Bhiwandi Bhiwandi ❤CALL GIRL 7870993772 ❤CALL GIRLS  ESCORT SERVICE In Bhiwan...
Bhiwandi Bhiwandi ❤CALL GIRL 7870993772 ❤CALL GIRLS ESCORT SERVICE In Bhiwan...
 
FAIRSpectra - Enabling the FAIRification of Analytical Science
FAIRSpectra - Enabling the FAIRification of Analytical ScienceFAIRSpectra - Enabling the FAIRification of Analytical Science
FAIRSpectra - Enabling the FAIRification of Analytical Science
 
module for grade 9 for distance learning
module for grade 9 for distance learningmodule for grade 9 for distance learning
module for grade 9 for distance learning
 
Dr. E. Muralinath_ Blood indices_clinical aspects
Dr. E. Muralinath_ Blood indices_clinical  aspectsDr. E. Muralinath_ Blood indices_clinical  aspects
Dr. E. Muralinath_ Blood indices_clinical aspects
 
Molecular markers- RFLP, RAPD, AFLP, SNP etc.
Molecular markers- RFLP, RAPD, AFLP, SNP etc.Molecular markers- RFLP, RAPD, AFLP, SNP etc.
Molecular markers- RFLP, RAPD, AFLP, SNP etc.
 
Climate Change Impacts on Terrestrial and Aquatic Ecosystems.pptx
Climate Change Impacts on Terrestrial and Aquatic Ecosystems.pptxClimate Change Impacts on Terrestrial and Aquatic Ecosystems.pptx
Climate Change Impacts on Terrestrial and Aquatic Ecosystems.pptx
 
CYTOGENETIC MAP................ ppt.pptx
CYTOGENETIC MAP................ ppt.pptxCYTOGENETIC MAP................ ppt.pptx
CYTOGENETIC MAP................ ppt.pptx
 
Reboulia: features, anatomy, morphology etc.
Reboulia: features, anatomy, morphology etc.Reboulia: features, anatomy, morphology etc.
Reboulia: features, anatomy, morphology etc.
 
CURRENT SCENARIO OF POULTRY PRODUCTION IN INDIA
CURRENT SCENARIO OF POULTRY PRODUCTION IN INDIACURRENT SCENARIO OF POULTRY PRODUCTION IN INDIA
CURRENT SCENARIO OF POULTRY PRODUCTION IN INDIA
 
Site Acceptance Test .
Site Acceptance Test                    .Site Acceptance Test                    .
Site Acceptance Test .
 
Zoology 5th semester notes( Sumit_yadav).pdf
Zoology 5th semester notes( Sumit_yadav).pdfZoology 5th semester notes( Sumit_yadav).pdf
Zoology 5th semester notes( Sumit_yadav).pdf
 
GBSN - Biochemistry (Unit 2) Basic concept of organic chemistry
GBSN - Biochemistry (Unit 2) Basic concept of organic chemistry GBSN - Biochemistry (Unit 2) Basic concept of organic chemistry
GBSN - Biochemistry (Unit 2) Basic concept of organic chemistry
 
Role of AI in seed science Predictive modelling and Beyond.pptx
Role of AI in seed science  Predictive modelling and  Beyond.pptxRole of AI in seed science  Predictive modelling and  Beyond.pptx
Role of AI in seed science Predictive modelling and Beyond.pptx
 
Proteomics: types, protein profiling steps etc.
Proteomics: types, protein profiling steps etc.Proteomics: types, protein profiling steps etc.
Proteomics: types, protein profiling steps etc.
 
PSYCHOSOCIAL NEEDS. in nursing II sem pptx
PSYCHOSOCIAL NEEDS. in nursing II sem pptxPSYCHOSOCIAL NEEDS. in nursing II sem pptx
PSYCHOSOCIAL NEEDS. in nursing II sem pptx
 
Thyroid Physiology_Dr.E. Muralinath_ Associate Professor
Thyroid Physiology_Dr.E. Muralinath_ Associate ProfessorThyroid Physiology_Dr.E. Muralinath_ Associate Professor
Thyroid Physiology_Dr.E. Muralinath_ Associate Professor
 
Genome sequencing,shotgun sequencing.pptx
Genome sequencing,shotgun sequencing.pptxGenome sequencing,shotgun sequencing.pptx
Genome sequencing,shotgun sequencing.pptx
 
PATNA CALL GIRLS 8617370543 LOW PRICE ESCORT SERVICE
PATNA CALL GIRLS 8617370543 LOW PRICE ESCORT SERVICEPATNA CALL GIRLS 8617370543 LOW PRICE ESCORT SERVICE
PATNA CALL GIRLS 8617370543 LOW PRICE ESCORT SERVICE
 

Fieldtheoryhighlights2015 setb

  • 1. Field Theory Highlights 2015 Set B By: Roa, F. J. P. Topics: 1 SU(2)XU(1) Construction in toy Standard Model 2 Basic Practice Calculations Involving Scalar Fields 2 Basic Practice Calculations Involving Scalar Fields Let us do some basic practice calculations here. Conveniently, we take the scalar field as subject for the said calculations in relevance to quantum field theories involving vacuum- to-vacuum matrices whose forms can be given by (19.1) ⟨0| 𝑈1(𝑇)|0⟩ The basic quantum field interpretation of these matrices is that they give probability amplitudes that the particles (initially) in the vacuum state |0⟩ at an initial time (say, 𝑡 = 0) will still be (found) in the vacuum state at a later time 𝑇 > 0. The time-evolution operator (teo) here 𝑈1(𝑇) comes with a system Hamiltonian 𝐻[ 𝐽( 𝑡) ] containing time-dependent source 𝐽( 𝑡). (System Hamiltonian as obtained from the system Lagrangian through Legendre transformation. We shall present the basic review details of this transformation in the concluding portions of this draft. ) (19.2) 𝑈1( 𝑇) = 𝑈1( 𝑇,0) = 𝑒𝑥𝑝(− 𝑖 ℏ ∫ 𝑑𝑡 𝐻(𝑡) 𝑇 0 ) As an emphasis, we are starting with a system (Lagrangian) that does not contain yet self- interaction terms. These terms are generated with the application of potential operator 𝑉(𝜑̂). (Note that (19.2) is an operator although we haven’t put a hat on the Hamiltonian operator, 𝐻(𝑡). We will only put a hat on operators in situations where we are compelled to do so in order to avoid confusion. ) In the absence of the said self-interaction terms, the (19.1) matrices can be evaluated via Path Integrations (PI’s) although the evaluation of these matrices can be quite easily facilitated by putting them in their factored form
  • 2. (19.3) ⟨0| 𝑈1(𝑇)|0⟩ = 𝐶 [ 𝐽 = 0 ] 𝑒𝑖 𝑆𝑐 / ℏ where 𝐶[ 𝐽 = 0] is considered as a constant factor that can be evaluated directly (19.4) 𝐶[ 𝐽 = 0] = ⟨0|𝑒𝑥𝑝(− 𝑖 ℏ 𝑇𝐻[𝐽 = 0])|0⟩ = 𝑒𝑥𝑝(− 𝑖 ℏ 𝑇 𝐸0 0 ) As can be seen in the result this constant matrix comes with the ground state energy, 𝐸0 0 . (We shall also give review details of this result in the later parts of this document.) In the later portions of this draft, we shall also provide the necessary details of expressing the classical action 𝑆𝑐 involved in (19.3) as a functional of the sources as this action is to be given by (19.5) 𝑆𝑐 = 1 2 1 (2𝜋)2 ∫ 𝑑4 𝑥 𝑑4 𝑦 𝐽( 𝑥) 𝐺( 𝑥 − 𝑦) 𝐽(𝑦) The classical action given by (19.5) as evaluated in terms of the sources 𝐽( 𝑥), 𝐽(𝑦) and the Green’s function 𝐺( 𝑥 − 𝑦) which serves here as the propagator. This form follows from the fact that the solution to the classical equation of motion in the presence of sources can be expressed using the Green’s function and the source (19.6) 𝜑( 𝐽, 𝑥) = 1 (2𝜋)2 ∫ 𝑑4 𝑦 𝐺( 𝑥 − 𝑦)(− 𝐽(𝑦)) (19.7) 𝐺( 𝑥 − 𝑦) = 1 (2𝜋)2 ∫ 𝑑4 𝑘 𝑒 𝑖𝑘 𝜎(𝑥 𝜎 − 𝑦 𝜎 ) −𝑘 𝜇 𝑘 𝜇 + 𝑀2 + 𝑖𝜖 (We shall also give basic calculation details of this in the later continuing drafts.) When the system (with its given Lagrangian) does indeed involve self-interaction terms the exponential potential operator
  • 3. (20.1) 𝑒𝑥𝑝(− 𝑖 ℏ ∫ 𝑑4 𝑦 𝑉(𝜑̂) 𝐵 𝐴 ) can be inserted into the vacuum-to-vacuum matrix thus writing this matrix as (20.2) ⟨0|𝑈1(𝑇)𝑒𝑥𝑝(− 𝑖 ℏ ∫ 𝑑4 𝑦 𝑉(𝜑̂) 𝐵 𝐴 )|0⟩ (It is important to show the details of arriving at (20.2) but we do this in the later portions of this document.) We can easily evaluate (20.2) using Path Integral so as to express this matrix in terms of the derivative operator with respect to the given source (20.3) ⟨0|𝑈1(𝑇)𝑒𝑥𝑝(− 𝑖 ℏ ∫ 𝑑4 𝑦 𝑉(𝜑̂) 𝐵 𝐴 )|0⟩ = 𝑒𝑥𝑝(− 𝑖 ℏ ∫ 𝑑4 𝑦 𝑉 (𝑖ℏ 𝛿 𝛿𝐽(𝑦) ) 𝐵 𝐴 ) ⟨0| 𝑈1(𝑇)|0⟩ Taking note of (19.3), we can employ the Taylor/Maclaurin expansion (20.4) 𝑒𝑥𝑝(− 𝑖 ℏ ∫ 𝑑4 𝑦 𝑉(𝑖ℏ 𝛿 𝛿𝐽(𝑦) ) 𝐵 𝐴 ) 𝑒 𝑖 𝑆𝑐 / ℏ = 1 + ∑ 1 𝑚! ( 𝑖 ℏ ) 𝑚 𝑆 𝐶 𝑚 [𝐽] ∞ 𝑚=1 + ∑ (−1) 𝑛 𝑛! ( 𝑖 ℏ ) 𝑛 (∫ 𝑑4 𝑦 𝑉[𝜑( 𝐽)] 𝐵 𝐴 ) 𝑛∞ 𝑛=1 + ∑ (−1) 𝑛 𝑛! ( 𝑖 ℏ ) 𝑛 ∞ 𝑛=1 ∑ 1 𝑚! ∞ 𝑚=1 (∫ 𝑑4 𝑦 𝑉 [𝑖ℏ 𝛿 𝛿𝐽(𝑦) ] 𝐵 𝐴 ) 𝑛 ( 𝑖𝑆𝑐[ 𝐽 ] ℏ ) 𝑚 In my personal (convenient) notation, I write the integration in 𝑆𝑐[ 𝐽 ] as a bracket (20.5) 𝑆𝑐[ 𝐽 ] = 〈 𝐽𝑥 𝐺𝑥𝑧 𝐽𝑧〉 = 1 2 1 (2𝜋)2 ∬ 𝑑4 𝑥 𝑑4 𝑧 𝐽( 𝑥) 𝐺( 𝑥 − 𝑧) 𝐽(𝑧) Here, the bracket 〈 𝐽𝑥 𝐺𝑥𝑧 𝐽𝑧〉 means double four-spacetime integrations involving two sources 𝐽( 𝑥) and 𝐽(𝑧), and a propagator 𝐺( 𝑥 − 𝑧) in coordinate spacetime. As a specific case in this draft let us take the cubic self-interactions
  • 4. (21.1) 𝑉[ 𝜑( 𝑥, 𝐽)] = 1 3! 𝑔(3) 𝜑3( 𝑥, 𝐽) In my notation, I write (21.2) 𝑆 𝐶 𝑛[ 𝐽 ] = ∏〈 𝐽𝑥 𝐺𝑥𝑧 𝐽𝑧 〉𝑖 𝑛−1 𝑖=0 where 𝑖 is specified on both x and z. Meaning, (21.3) 〈 𝐽𝑥 𝐺𝑥𝑧 𝐽𝑧 〉𝑖 = 〈 𝐽(𝑥(𝑖) ) 𝐺(𝑥( 𝑖) , 𝑧( 𝑖) ) 𝐽(𝑧(𝑖) ) 〉 Note here that 𝑆 𝐶 𝑛 involves 2𝑛 J’s. For 𝜑3( 𝑥, 𝐽) I shall also write this as (21.4) 𝜑3( 𝑥, 𝐽) = ∏〈 𝐺𝑥𝑧 𝐽𝑧 〉 𝑗 2 𝑗=0 where 𝑗 is specified on z only. When there is a need to take the derivative with respect to the source I shall specify the replacement (21.5) 𝜑( 𝑥) → 𝑖ℏ 𝛿 𝛿𝐽(𝑥) Now, for (21.1) we write this as (21.6) 𝑉[ 𝜑( 𝑥, 𝐽)] = 1 3! 𝑔(3) ∏〈 𝐺𝑥𝑧 𝐽𝑧 〉 𝑗 2 𝑗=0 and so it follows that
  • 5. (21.7) ∫ 𝑑4 𝑥 𝑉[ 𝜑( 𝑥, 𝐽)] = 1 3! 𝑔(3) ∫ 𝑑4 𝑥 ∏〈 𝐺𝑥𝑧 𝐽𝑧 〉 𝑗 2 𝑗=0 𝐵 𝐴 𝐵 𝐴 where 𝑗 is specified on z only. Then raising (21.7) to the power of 𝑛 (21.8) (∫ 𝑑4 𝑥 𝑉[ 𝜑( 𝑥, 𝐽)] 𝐵 𝐴 ) 𝑛 = 1 (3!) 𝑛 𝑔(3) 𝑛 ∫ ∏ 𝑑4 𝑥(𝑘) 𝑛−1 𝑘=0 𝐵 𝐴 ∏ 〈 𝐺 𝑥(𝑘) 𝑧 𝐽𝑧〉 𝑗 3𝑛−1 𝑗 =0 where 𝑘 is on all x, while 𝑗 on all z. In situations where replacement (21.5) is indicated, contrasting (21.7) we write (21.9) ∫ 𝑑4 𝑦 𝑉 (𝑖ℏ 𝛿 𝛿𝐽(𝑦) ) 𝐵 𝐴 = 1 3! 𝑔(3) (∏ 𝑖ℏ 𝛿 𝛿𝐽(𝑣(𝑗)) 3−1 𝑗=1 ) ∫ 𝑑4 𝑦 𝑖ℏ 𝛿 𝛿𝐽(𝑦) 𝐵 𝐴 and raised to the power of n, this becomes (21.10) (∫ 𝑑4 𝑦 𝑉(𝑖ℏ 𝛿 𝛿𝐽(𝑦) ) 𝐵 𝐴 ) 𝑛 = 1 (3!) 𝑛 𝑔(3) 𝑛 ( ∏ 𝑖ℏ 𝛿 𝛿𝐽(𝑣(𝑗)) (3−1)𝑛 𝑗 =1 ) ∫ (∏ 𝑑4 𝑦(𝑖) 𝑛−1 𝑖=0 ) 𝐵 𝐴 ∏ 𝑖ℏ 𝛿 𝛿𝐽(𝑦(𝑘)) 𝑛−1 𝑘 = 0 where (21.11) ∏ 𝑖ℏ 𝛿 𝛿𝐽(𝑦(𝑘)) 𝑛−1 𝑘 = 0 indicates differentiation 𝑛 times, while (21.12)
  • 6. ∏ 𝑖ℏ 𝛿 𝛿𝐽(𝑣(𝑗)) (3−1)𝑛 𝑗 =1 indicates differentiation (3 − 1)𝑛 times. So that combining (21.11) and (21.12) in (21.10) (21.13) ( ∏ 𝑖ℏ 𝛿 𝛿𝐽(𝑣(𝑗)) (3−1)𝑛 𝑗=1 ) ⋯ ∏ 𝑖ℏ 𝛿 𝛿𝐽(𝑦(𝑘)) 𝑛−1 𝑘 = 0 indicates differentiation (3 − 1) 𝑛 + 𝑛 = 3𝑛 times. Given (20.3), then we can proceed to evaluate this matrix upon the setting of all sources to zero. That is, (21.14) ⟨0|𝑈1(𝑇)𝑒𝑥𝑝(− 𝑖 ℏ ∫ 𝑑4 𝑦 𝑉(𝜑̂) 𝐵 𝐴 )|0⟩| 𝐽=0 [To be continued…] Ref’s: [1]W. Hollik, Quantum field theory and the Standard Model, arXiv:1012.3883v1 [hep- ph] [2]Baal, P., A COURSE IN FIELD THEORY, http://www.lorentz.leidenuniv.nl/~vanbaal/FTcourse.html [3]’t Hooft, G., THE CONCEPTUAL BASIS OF QUANTUM FIELD THEORY, http://www.phys.uu.nl/~thooft/ [4]Siegel, W., FIELDS, arXiv:hep-th/9912205 v2 [5]Wells, J. D., Lectures on Higgs Boson Physics in the Standard Model and Beyond, arXiv:0909.4541v1 [6]Cardy, J., Introduction to Quantum Field Theory [7]Gaberdiel, M., Gehrmann-De Ridder, A., Quantum Field Theory