SlideShare una empresa de Scribd logo
1 de 10
Descargar para leer sin conexión
Interdiscip Sci Comput Life Sci (2009) 1: 81–90
DOI: 10.1007/s12539-009-0036-7
Electromagnetic Signals Are Produced by Aqueous Nanostructures
Derived from Bacterial DNA Sequences
Luc MONTAGNIER1,2∗
, Jamal A¨ISSA1
, St´ephane FERRIS1
,
Jean-Luc MONTAGNIER1
, Claude LAVALL´EE1
1
(Nanectis Biotechnologies, S.A. 98 rue Albert Calmette, F78350 Jouy en Josas, France)
2
(Vironix LLC, L. Montagnier 40 Central Park South, New York, NY 10019, USA)
Recevied 3 January 2009 / Revised 5 January 2009 / Accepted 6 January 2009
Abstract: A novel property of DNA is described: the capacity of some bacterial DNA sequences to induce
electromagnetic waves at high aqueous dilutions. It appears to be a resonance phenomenon triggered by the
ambient electromagnetic background of very low frequency waves. The genomic DNA of most pathogenic bacteria
contains sequences which are able to generate such signals. This opens the way to the development of highly
sensitive detection system for chronic bacterial infections in human and animal diseases.
Key words: DNA, electromagnetic signals, bacteria.
Pathogenic microorganisms in this day of age are not
only submitted to high selective pressure by the im-
mune defenses of their hosts but also have to survive un-
der highly active antiviral or antibiotic treatments. Not
surprisingly, they have evolved in finding many ways to
escape these hostile conditions, such as mutations of re-
sistance, hypervariability of surface antigens, protective
biofilms, latency inside cells and tissues.
We initially observed (Montagnier and Lavallee, per-
sonal communication) that some filtration procedures
aimed at sterilizing biological fluids can yield under
some defined conditions the infectious microorganism
which was present before the filtration step. Thus, fil-
tration of a culture supernatant of human lymphocytes
infected with Mycoplasma pirum, a microorganism of
about 300 nM in size, through filters of 100 nM or
20 nM porosities, yielded apparently sterile fluid. The
latter however was able to regenerate the original my-
coplasma when incubated with a mycoplasma negative
culture of human lymphocytes within 2 to 3 weeks.
Similarly, a 20 nM filtration did not retain a minor in-
fective fraction of HIV, the causal agent of AIDS, whose
viral particles have a diameter averaging 100-120 nM.
In the course of investigating the nature of such filter-
ing infectious forms, we found another property of the
filtrates, which may or may not be related to the former:
their capacity to produce some electromagnetic waves
of low frequency in a reproducible manner after appro-
*Corresponding author.
E-mail: nadiacpt@yahoo.fr
priate dilutions in water. The emission of such waves is
likely to represent a resonance phenomenon depending
on excitation by the ambient electromagnetic noise. It
is associated with the presence in the aqueous dilutions
of polymeric nanostructures of defined size. The super-
natant of uninfected eukaryotic cells used as controls
did not exhibit this property.
In this paper we provide a first characterization of the
electromagnetic signals (EMS) and of their underlying
nanostructures produced by some purified bacteria.
In addition to M. pirum, a more classical bacterium,
E. Coli, was utilized for the purpose of the analysis.
The nanostructures produced by HIV will be the sub-
ject of another paper.
M. pirum is a peer-shaped small bacterial cell,
ressembling M. pneumoniae, which can be grown in syn-
thetic enriched medium (SP4) (Tully et al., 1977) but
also mutiplies at the surface of human T lymphocytes.
The strain (Ber) used in our experiments was isolated
from a T lymphocyte culture derived from the blood
of an apparently healthy subject (Grau et al., 1993).
The strong mycoplasma adherence to lymphocytes is
mediated by a specific adhesin, whose gene had been
previously cloned and sequenced by the authors (Tham
et al., 1994).
We used as primary source of the mycoplasma, super-
natants of infected human T lymphocyte cultures or of
cultures of the CEM tumor T cell line. All cell cultures
were first tested for the lack of M. pirum contamination
by polymerase chain reaction (PCR) and nested PCR,
before starting the experiments. Titers of 106
-107
infec-
Escuela Nacional de Medicina y Homeopatía IPN México
Rafael Avila
82 Interdiscip Sci Comput Life Sci (2009) 1: 81–90
tious Units/ml of M. pirum were readily achieved after
5-6 days of incubation following deliberate infection of
both types of cultures.
Filtration of the clarified supernatant was first per-
formed on 0.45 µM (450 nM) Millipore filters to remove
debris, and subsequently on 0.1 µM (100 nM) Milli-
pore filters or on 0.02 µM (20 nM) Whatman filters,
to remove mycoplasma cells. Indeed, the two 100 nM
and 20 nM filtrates were confirmed sterile when aliquots
were incubated for several weeks in SP4 medium. Re-
peated search for traces of mycoplasma DNA by PCR
and nested PCR using specific primers for the adhesin
gene or for the 16S ribosomal gene was consistently neg-
ative.
However when the filtrates were incubated for two
weeks (100 nM filtrate) or three weeks (20 nM filtrate)
with a culture of human activated T lymphocytes, the
mycoplasma was recovered in the medium with all its
original characteristics as previously observed.
The same filtrates were analyzed just after filtra-
tion for production of electromagnetic waves of low fre-
quency. For this purpose we used a device previously
designed by Benveniste and Coll (1996; 2003) for the
detection of signals produced by isolated molecules en-
dowed with biological activity. The principle of this
technology is shown in Fig. 1.
Fig. 1 Device for the capture and analysis of electromag-
netic signals (EMS): (1) Coil: a bobbin of copper
wire, impedance 300 Ohms; (2) Plastic stoppered
tube containing 1 mL of the solution to be analyzed;
(3) Amplifier; (4) Computer with softwares.
Briefly, the 100 nM or 20 nM filtrates are serially di-
luted 1 in 10 (0,1 +0,9 in sterile water (medical grade).
The first 2 dilutions (1/10 and 1/100) are done in
serum-free RPMI medium, in order to avoid eventual
protein precipitation in deionized water.
Each dilution is done in 1.5 mL Eppendorf plastic
tubes, which are then tightly stoppered and strongly
agitated on a Vortex apparatus for 15 seconds . This
step has been found critical for the generation of signals.
After all dilutions have been made (generally 15-20
decimal dilutions), the stoppered tubes are read one by
one on an electromagnetic coil, connected to a Sound
Blaster Card itself connected to a laptop computer,
preferentially powered by its 12 volt battery. Each
emission is recorded twice for 6 seconds, amplified 500
times and processed with different softwares for vizual-
ization of the signals on the computer’s screen (Fig. 1).
The main harmonics of the complex signals were an-
alyzed by utilizing several softwares of Fourier transfor-
mation.
In each experiment, the internal noise generated by
the different pieces of the reading system was first
recorded (coil alone, coil with a tube filled with water).
Fourier analysis shows (Fig. 2(c, d)) that the noise was
predominantly composed of very low frequencies, prob-
ably generated at least in part by the 50/60 Hz ambi-
ent electric current. The use of the 12 V battery for the
computer power supply did reduce, but not abolish this
noise, which was found to be necessary for the induc-
tion of the resonance signals from the specific nanos-
tructures.
When dilutions of the M. pirum filtrate were recorded
for wave emission, the first obvious phenomenon ob-
served was an increase of the overall amplitude of
the signals at certain dilutions over the background
noise (Fig. 2(a)) and also an increase in frequencies
(Fig. 2(b)). This change was abolished if the tube to be
analyzed was placed inside a box sheltered with sheets
of copper and mumetal (David, 1998).
Fourier analysis of the M. pirum signals showed a
shift towards higher frequencies close to 1000 Hz and
multiples of it. Profiles were identical for all the dilu-
tions showing an increase in amplitude (Fig. 2(c) and
2(d)).
The first low dilutions were usually negative, showing
the background noise only. Positive signals were usu-
ally obtained at dilutions ranging from 10−5
to 10−8
or
10−12
. Higher dilutions were again negative (Fig. 3).
The positive dilutions varied according to the type of
filtration, the 20 nM filtrate being generally positive at
dilutions higher than those of the 100 nM filtrate.
The original unfiltered suspension was negative at all
dilutions, a phenomenon observed for all the microor-
ganisms studied.
Size and density of the structures producing the
signals in the aqueous dilutions:
An aliquot of the 20 nM filtrate was layered on the
top of a 5-20% (w/v) sucrose gradient in water and
centrifuged for 2 hours at 35,000 rpm in a swinging
bucket rotor. These conditions had previously been
used to obtain the density equilibrium of the intact my-
coplasma cells wich formed a sharp bound at 1,21 den-
sity. Fractions were collected from the bottom of the
tubes, pooled 2 by 2 and assayed for signal emission.
Fig. 4 shows that the signal emitting structures were
distributed in a large range of densities from 1.15 to
1.25 and also had a high sedimentation coefficient.
Interdiscip Sci Comput Life Sci (2009) 1: 81–90 83
Fig. 2 Detection of EMS from a suspension of Mycoplasma pirum: Left: background noise (from an unfiltered suspension or
a negative low dilution). Right: positive signal (from a high dilution D-7 (10-7)). (a) actual recording (2 seconds from
a 6 second recording) after WaveLab (Steinberg) treatment; (b) detailed analysis of the signal (scale in millisecondes);
(c) Matlab 3D Fourier transform analyzis (abcissa: 0-20 kHz, ordinate: relative intensity, 3D dimension: recording at
different times); Frequencies are visualized in different colors; (d) Sigview Fourier transform: note the new harmonics
in the range of 1 000-3 000 Hz.
Fig. 3 A typical recording of signals from aqueous dilutions of M. Pirum (Matlab software): note the positive signals from
D-7 to D-12 dilutions.
84 Interdiscip Sci Comput Life Sci (2009) 1: 81–90
107
106
105
104
1.20
1.30
1.10
1.25
1.20
1.15
Density
1 2 3 4 5 6 7 8 9 10 11 12 13
SN CEM/M.pirum
Filtered 0.02μ
E.M.S.naneons
Fig. 4 Sucrose density centrifugation (35 000 rpm, 2 Hr)
of a 0.02µ filtrate of Mycoplasma pirum suspension.
The collected fractions were pooled 2 by 2 and di-
luted up to D-15 and tested for EMS. The bars in-
dicate the fractions positive for EMS.
We then turned to a more classical bacterium, E.
Coli, using the laboratory strain K1.
A culture of E. Coli in agitated (oxygenated) con-
ditions, yielded 109
bacterial units/mL, measured by
spectrometry. The suspension was then centrifuged at
10,000 rpm for 15 minutes, the supernatant was fil-
tered on 450 nM filter and the resulting filtrate was
filtered again on a 100 nM filter. The final filtrate was
found sterile, when plated on nutrient agar medium and
was analyzed for electromagnetic wave emission, as de-
scribed above for M. pirum. Signal producing dilutions
usually range from 10−8
to 10−12
, with profiles upon
Fourier transformation, similar to those of M. Pirum
(Fig. 5). In one experiment, some very high dilutions
were found positive, ranging from 10−9
to 10−18
. An
aliquot of the unfiltered supernatant did not show any
signals above background up to the 10−38
dilution, in-
dicating again the critical importance of the filtration
step for the generation of specific signals.
The only difference with M. pirum was that no sig-
nal appeared after filtration on 20 nM filters, suggesting
that the structures associated with the signals were re-
tained by these filters and, therefore, had a size greater
than 20 nM and lower than 100 nM.
We then asked why the lower dilutions, which
logically should contain a larger number of signal-
producing structures, were “silent”. When we added
0.1 mL of a negative low dilution (e.g. 10−3
) to 0.4
mL or 0.9 mL of a positive dilution (10−8
), the latter
became negative. This indicate that the ”silent” low
dilutions are self-inhibitory, probably by interference of
the multiple sources emitting in the same wave length
or slightly out of phase, like a radio jamming. Alterna-
tively, the abundance of nanostructures can form a gel
in water and therefore are prevented to vibrate.
-Evidence for homologous “cross talk” between
dilutions
We then wonder whether or not it was possible to
generate new signal-emitting structures from tube to
tube by using wave transfer. The following experiment
Interdiscip Sci Comput Life Sci (2009) 1: 81–90 85
Fig. 5 EMS from E. Coli 0.1 µ filtrate. EMS positive from dilution D-8 to D-11: (a) Actual recording; (b) millisecond
analysis; (c) Fourier transform analysis Matlab; (d) Fourier transform analysis SigView. NF: not filtered.
86 Interdiscip Sci Comput Life Sci (2009) 1: 81–90
which was repeated several times showed that indeed
this was the case.
A donor tube of a low “silent” dilution of E. Coli
(10−3
) was placed side by side close to a receiver tube of
the positive “loud” highest dilution of the same prepa-
ration (10−9
). Both tubes were placed in a mumetal
box for 24 hours at room temperature, so that the tubes
were not exposed to external electromagnetic noise, and
only exposed to the signals generated by the structures
present in the tubes themselves.
The tubes were then read again by the signal detect-
ing device: the donor tube was still silent, however the
receiver tube became also silent.
Moreover, when further dilutions were made from the
receiver tube (10−10
, 10−11
, 10−12
), these dilutions had
became positive (Fig. 6). These results suggest that the
receiver tube was made silent by formation of an excess
of new nanostructures, which could emit signals upon
further dilution.
Fig. 6 Cross-talk between dilutions (from an E. Coli 0.1 µ
filtrate), see explanation in the text.
This effect was suppressed by interposing a sheat of
mumetal between the two tubes during the 24 hours
contact period, pointing to a role of low frequency waves
in the phenomenon.
Emission of similar electromagnetic signals was
also observed with some other bacterial species such
as: Streptococcus B, Staphylococcus aureus, Pseu-
domonas aeroginosa, Proteus mirabilis, Bacillus sub-
tilis, Salmonella, Clostridium perfringens, all in the
same range of dilutions observed for E. Coli, and only
after filtration at 100 nM (and not at 20 nM).
Importantly, the transfer effect between two tubes,
one silent, one loud, was only observed if both contained
dilutions of the same bacterial species. In other words,
a Staphylococcus donor tube could only “talk” with
a receiver tube containing a Staphylococcus dilution,
and not with a tube of Streptococcus or E. Coli, and
reciprocally.
These results indicate that the transfer effect is medi-
ated by species-specific signals, the frequencies of which
remain to be analyzed.
Finally, two others problems were investigated in the
E. Coli system: the first was the role of the initial
number of bacterial cells in the induction of the fil-
terable signal-producing structures. For this a station-
ary culture of E. Coli was counted and adjusted to 109
cells/mL and serial dilutions from 100 to 100 were done
down to 1 cell/mL. Each dilution was filtered at 100
nM and then analyzed for signal emission. Surprisingly,
the range of positive dilutions were not strictly depen-
dent on the initial concentration of E. Coli cells, being
roughly the same from 109
cells down to 10 cells, sug-
gesting that the same final number of nanostructures
was reached at all concentrations. Thus, paradoxically,
10 cells are giving the same signals than 109
cells.
We were also concerned by the possible personal in-
fluence of the operator in the reading.
To address this point, two healthy operators were
asked to measure independantly the same dilutions of
E. Coli, each one unknowing the results of the other.
The results of their readings were identical.
In addition, the results were independant of the order
in which the samples were read, whether in descending
dilutions from to the lowest to the highest or in ascend-
ing the dilutions from the highest to the lowest.
Finally an other laboratory worker placed the diluted
samples in a random order, the labels being unknown
from the person reading the samples. The same range
of positive dilutions was detected again provided each
tube was well separated from the other, to avoid their
“cross talk”.
We also found that the results were also indepen-
dant of the location of the reading site: starting from
the same unfiltered preparation of E. Coli, positive di-
lutions of the filtrates were found to be the same in
two different locations in France (Paris center and sub-
urb), one in Canada (Montreal), and one in Cameroun
(Yaound´e).
As shown in the figures, the background noise was
variable, according to the location and time of record-
ing. It was generally higher in large cities than in iso-
lated aeras. However, positive signals always clearly
differenciate over the background by higher frequency
peaks.
Nature of the aqueous nanostructures:
Treatments by RNAseA (Promega, 1 µg/ml, 37 ℃ 1
h), Dnase I (Invitrogen, 10 U/µg DNA, 37 ℃, 18 h),
Lysozyme (Fisher, 1 mg/mL, 37℃ 10 min), Proteinase
K (Promega, 0.12 mg/mL, in 1% sodium dodecyl sul-
phate, 56 ℃ 1 h) did not suppress the EMS produc-
ing activity of the “loud” dilutions nor did activate the
“silent” dilutions.
However, heating at 70 ℃ for 30 min suppressed irre-
versiblly the activity, as well as did freezing for 1 hour
at −20 ℃ or −60 ℃. DMSO (10%), and formamide
(10%) had no effect.
Treatment with lithium cations, known to affect the
Interdiscip Sci Comput Life Sci (2009) 1: 81–90 87
hydrogen bonding of water molecules, was able to re-
duce the intensity of the signals, while the range of the
positive dilutions remained unchanged.
Nature of the bacterial molecules at the origin
of the nanostructures:
In preliminary experiments, we had observed that
a pretreatment of a suspension of E. Coli by 1%
formaldehyde did not alter its capacity to induce the
electromagnetic signals, while killing the bacteria. This
treatment alters the surface proteins of the bacte-
rial cells without attacking their genetic material, i.e.
double- helical DNA. This suggested that the source of
the signals may be the DNA itself.
Indeed, DNA extracted from the bacterial suspension
by the classical phenol: chloroform technique was able
upon filtration and appropriate dilutions in water to
emit EMS similar to those produced by intact bacteria
under the same conditions. DNAse treatment of the
extracted DNA solution abolishes its capacity to emit
signals, at the condition that the nanostructures pre-
viously induced by the DNA are destroyed. A typical
experiment is described as follows:
E. Coli DNA was treated by Proteinase K in the
presence of SDS (sodium dodecyl sulfate) and further
deproteinized by phenol-chloroform mixture. The pel-
let obtained by ethanol precipitation was resuspended
in Tris 10-2 M, pH 7,6 and an aliquot was diluted 1/100
in water. The dilution (10−2
) was filtered first through
a 450 nM filter and the resulting filtrate was then fil-
tered again on a 100 nM filter. The filtrate was further
diluted in serial decimal dilutions in water as previously
described.
As for the intact microorganisms, the filtration step
was found to be essential for detection of the EMS in
the DNA dilutions. In its absence, no signals could be
detected at any dilutions.
In contrast to the microorganism suspension, where
the filtration was supposed to retain the intact cells,
the filtration at 100 nM did not retain the DNA, which
was still present in the filtrate, as measured by optical
density. However, filtration with a 20 nM Whatman
filter retained the nanostructures emitting the EMS,
suggesting that they have the same range of sizes than
those originating from intact bacteria.
In the case of DNA, the role of the 100 nM filtration
is probably to dissociate the network of nanostructures
organized in a gel-like liquid crystal at high concen-
trations in water, allowing their dispersion in further
dilutions. As shown in Fig. 7, the dilutions positive for
EMS were in the same range that those observed for
the intact bacteria, generally between 10−7
to 10−13
.
Fig. 7 DNAse effect on EMS production. The DNAse treated E. Coli DNA solution and the untreated DNA are diluted
from D-2 to D-15. Analyzis of the EMS as described in Fig. 5. D-2 dilution (negative for EMS) is shown as control.
D-9 is positive for EMS (from a range of positive dilutions D-8 to D-11). Note the signal disappearance in the DNAse
treated DNA.
88 Interdiscip Sci Comput Life Sci (2009) 1: 81–90
At the high dilution of 10−13
, calculations indicate that
there is no DNA molecule of MW larger than 105
in
the solution, making it unlikely that the EMS are pro-
duced directely by the DNA itself, but rather by the
self-sustained nanostructures induced by the DNA.
Generally, all the bacterial species shown to be posi-
tive for EMS yielded also DNA preparations positive for
EMS. Further demonstration that the EMS produced
by bacteria come from their DNA was shown by their
disappearance after DNAse treatement.
This inactivation was however only complete when
the nanostructures induced in the DNA solution which
are themselves resistant to DNAse were previously fully
destroyed.
This destruction was obtained either by freezing the
DNA solution at −20 ℃ for 1 hour or heating it at
90 ℃ for 30 minutes.
After slow cooling to allow the heated DNA to re-
anneal, DNAse 1 at a final concentration of 10 U/µg
of DNA was added and the mixture was incubated at
37 ℃ for 18 hours in the presence of 5 mM of MgCl2.
An aliquot of the untreated DNA solution was kept as
a positive control.
The DNAse-treated preparation was found com-
pletely devoid of EMS emission at any dilution (Fig. 7).
Treatment of the DNA solution by a restriction en-
zyme acting at many sites of E. Coli DNA (EcoRV) did
not suppress the production of EMS, suggesting that
this emission is linked to rather short sequences or is
associated with rare sequences.
Nature of the DNA sequences at the origin of
the EMS:
A non exhaustive survey of the bacterial species and
of their DNA able to display EMS suggests that most
of bacteria pathogenic for humans are in this category.
By contrast, probiotic “good” bacteria as Lactobacil-
lus and their DNA are negative for EMS emission.
In the case of E. Coli, we found that some strains
used to carry plasmids for gene cloning were also nega-
tive (Fig. 8).
This suggested that only some sequences of DNA are
at the origin of the EMS.
As pathogenicity is often associated with the capac-
ity of the microorganism to bind eukaryotic cells, par-
ticulary mucosal cells, we focussed our analysis again
to M. pirum DNA, where a single gene (adhesin: 126-
kDa protein) is responsible for the adhesion of the my-
coplasma to human cells.
Fig. 8 EMS produced by the 1.5 kb fragment of the adhesin DNA of M. Pirum. The plasmid DNA containing the 1.5 Kb
fragment was used to transform an E. Coli vector, XL1blue. The whole DNA was extracted and diluted for EMS
analysis. Left: control background noise of a negative dilution (D-2). Right: positive signal at D-10 (range from
D-9 to D-12). Bottom: Note the lack of EMS produced by the DNA extracted from the strain transformed by the
plasmid alone.
Interdiscip Sci Comput Life Sci (2009) 1: 81–90 89
This gene had previously been cloned and sequenced
in our laboratory (Tham et al., 1994). The cloned DNA
existed as two fragments in two plasmids, corresponding
respectively to the N terminal (1.5 Kbp) and the C
terminal (5 Kbp) of the protein.
The two plasmids (pBluescript SK, Stratagene) con-
taining the DNA fragments were amplified in a E. Coli
strain, XL1blue.
The DNA of the E. Coli strain (with or without the
plasmid) alone did not yield EMS at any dilutions.
By contrast when the strain was transformed with ei-
ther plasmids carrying an adhesin gene fragment, EMS
were produced (Fig. 8).
The two adhesin DNA fragments were then cut by
specific restriction enzymes (N Terminal: 1.5 kbp/SpeI-
EcoRI) (C Terminal: 5 kbp/HindIII-XbaI) and isolated
by electrophoresis in 0.8% agarose gel. Each DNA frag-
ment was able to induce EMS (not shown).
We also purified a large fraction of the adhesin DNA
from the whole mycoplasma genomic DNA using spe-
cific primers and amplification by PCR.
Again this fragment induced EMS, thus indicating
that no contaminant DNA coming from the plasmid
carried by E. Coli was involved (not shown).
Discussion
We have discovered a novel property of DNA, that
is the capacity of some sequences to emit electromag-
netic waves in resonance after excitation by the ambient
electromagnetic background.
Owing to the low sensitivity and specificity of our
signal capture and analysis, the frequencies emitted are
all alike, regardless of the bacterial species involved.
However, the experiments of transfer of information
through plastic tubes suggest that, by refining the
analysis and eliminating the variability of the excit-
ing signals, we might detect specific differences between
species, and even between sequences. Indeed, this prop-
erty may be a general one shared by all double-helical
DNAs, including human DNA.
But in our conditions of detection, it seems to be
associated with only certain bacterial sequences.
It remains to be seen whether they are restricted to
some genes involved in diseases.
Experiments to be reported elsewhere indeed indi-
cate that this detection applies also at the scale of the
human body: we have detected the same EMS in the
plasma and in the DNA extracted from the plasma of
patients suffering of Alzheimer, Parkinson disease, mul-
tiple Sclerosis and Rheumatoid Arthritis. This would
suggest that bacterial infections are present in these
diseases.
Morever, EMS can be detected also from RNA
viruses, such as HIV, influenza virus A, Hepatitis C
Virus. In these cases, optimal filtration for detection
of EMS requires prior 20 nM filtration suggesting that
the nanostructures produced are smaller that those pro-
duced by bacterial DNA.
In patients infected with HIV, EMS can be detected
mostly in patients treated by antiretroviral therapy and
having a very low viral load in their plasma. Such
nanostructures persisting in the plasma may contribute
to the viral reservoir which escapes the antiviral treat-
ment, assuming that they carry genetic information of
the virus.
The physical nature of the nanostructures which sup-
port the EMS resonance remains to be determined.
It is known from the very early X-ray diffraction stud-
ies of DNA, that water molecules are tightly associated
with the double helix, and any beginner in molecular
biology knows that DNA in water solution forms gels
associating a larger number of water molecules.
Moreover, a number of physical studies have reported
that water molecules can form long polymers of dipoles
associated by hydrogen bonds (Ruan et al., 2004; Wer-
net et al., 2004).
However these associations appear to be very short-
lived (Cowan et al., 2005). Could they live longer, being
self-maintained by the electromagnetic radiations they
are emitting as previously postulated by Del Guidice,
Preparata and Vitielo (1988)?
We have studied the decay with time of the capac-
ity of dilutions for emitting EMS, after they have been
removed (in mumetal boxes) from exposure to the exci-
tation by the background. This capacity lasts at least
several hours, some time up to 48 hours, indicating the
relative stability of the nanostructures.
Are the latter sufficiently specific of DNA sequences
to be able to carry some genetic information?
If so, what could be their role in pathogenicity, par-
ticularly in the genesis of chronic diseases?
Further studies involving close collaboration between
physicists and biologists are obviously needed to resolve
these problems.
Acknowledgments We thank Dr A. Blanchard for
gift of Mycoplasma pirum DNA and Drs D. Guillonnet,
R. Olivier, L. Thibodeau and J. Varon for helpful dis-
cussion.
References
[1] Benveniste, J., Jurgens, P., A¨ıssa, J. 1996. Digital
recording/ transmission of the cholinergic signal. Faseb
Journal 10, A1479.
[2] Benveniste, J., Guillonnet, D. 2003. Method, system
and device for producing signals from a substance bi-
ological and/or chemical activity. US Patent N◦
6 541,
978 B1.
90 Interdiscip Sci Comput Life Sci (2009) 1: 81–90
[3] Cowan, M.L., Bruner, B.D., Huse, N., Dwyer, J.R.,
Chugh, B., Nibbering, E.T., Elsaesser, T., Miller, R.J.
2005. Ultrafast memory loss and energy redistribution
in the hydrogen bond network of liquid H2O. Nature
434, 199–202.
[4] David, J. 1998. Introduction to Magnetism and Mag-
netic Materials. CRC Press. 354.
[5] Del Guidice, E., Preparata, G., Vitielo, G. 1988. Water
as a free electric dipole laser. Physical Review Letters
61, 1085–1088.
[6] Grau, O., Kovacic, R., Griffais, R., Montagnier, L.
1993. Development of a selective and sensitive poly-
merase chain reaction assay for the detection of My-
coplasma pirum. FEMS Microbiology Letters 106,
327–334.
[7] Ruan, C.Y., Lobastov, V.A., Vigliotti, F., Chen, S.,
Zewall, A.H. 2004. Ultrafast electron crystallography
of interfacial water. Science 304, 80–84.
[8] Tham, T.N., Ferris, S., Bahraoui, E., Canarelli, S.,
Montagnier, L., Blanchard, A. 1994. Molecular char-
acterization of the P1-like adhesin gene from My-
coplasma pirum. Journal of Bacteriology, 781–788.
[9] Tully, J.G., Whitcomb, R.G., Clark, H.F., Williamson,
D.L. 1977. Pathogenic mycoplasmas: cultivation and
vertebrate pathogenicity of a new spiroplasma. Science
195, 892–894.
[10] Wernet, P., Nordlund, D., Bergmann, U., Caval-
leri, M., Odelius, M., Ogasawara, H., N¨aslund, L.A.,
Hirsch, T.K., Ojam¨ae, L., Glatzel, P., Pettersson, L.G.,
Nilsson, A. 2004. The structure of the first coordina-
tion shell in liquid water. Science 304, 995–999.

Más contenido relacionado

La actualidad más candente

Jeffrey Noland Publication 2013
Jeffrey Noland Publication 2013Jeffrey Noland Publication 2013
Jeffrey Noland Publication 2013Jeffrey Noland
 
Gene transfer by physical methods
Gene transfer by physical methodsGene transfer by physical methods
Gene transfer by physical methodsJirainneSerra
 
EVE 161 Winter 2018 Class 10
EVE 161 Winter 2018 Class 10EVE 161 Winter 2018 Class 10
EVE 161 Winter 2018 Class 10Jonathan Eisen
 
Vectors for gene transfer in animals: Retro virus
Vectors for gene transfer in animals: Retro virusVectors for gene transfer in animals: Retro virus
Vectors for gene transfer in animals: Retro virusKhushbu
 
Finally its Over! Feeling Happy.
Finally its Over! Feeling Happy.Finally its Over! Feeling Happy.
Finally its Over! Feeling Happy.Dhirend N. Singh
 
Genetic engineering
Genetic engineering Genetic engineering
Genetic engineering Diya Khan
 
Yishun Junior College_Lou Wei Hao Darren_ SSEF report_BC020
Yishun Junior College_Lou Wei Hao Darren_ SSEF report_BC020Yishun Junior College_Lou Wei Hao Darren_ SSEF report_BC020
Yishun Junior College_Lou Wei Hao Darren_ SSEF report_BC020Darren Wei Hao Lou
 
Gene transfer methods
Gene transfer methodsGene transfer methods
Gene transfer methodsAbhinava J V
 
Applications of biotechnology in forensic sciences
Applications of biotechnology in forensic sciencesApplications of biotechnology in forensic sciences
Applications of biotechnology in forensic sciencesZahra Naz
 
MFF Poster-GRBaV-AC.pptx
MFF Poster-GRBaV-AC.pptxMFF Poster-GRBaV-AC.pptx
MFF Poster-GRBaV-AC.pptxAntonio Cerullo
 
Assessment of immunomolecular_expression_and_prognostic_role_of_tlr7_among_pa...
Assessment of immunomolecular_expression_and_prognostic_role_of_tlr7_among_pa...Assessment of immunomolecular_expression_and_prognostic_role_of_tlr7_among_pa...
Assessment of immunomolecular_expression_and_prognostic_role_of_tlr7_among_pa...dr.Ihsan alsaimary
 
Transgenic plants and their Application
Transgenic plants and their ApplicationTransgenic plants and their Application
Transgenic plants and their ApplicationAFSATH
 
Rapid identification of dermatophyte species by 28S rDNA Polymerase Chain Rea...
Rapid identification of dermatophyte species by 28S rDNA Polymerase Chain Rea...Rapid identification of dermatophyte species by 28S rDNA Polymerase Chain Rea...
Rapid identification of dermatophyte species by 28S rDNA Polymerase Chain Rea...iosrjce
 

La actualidad más candente (17)

Chapter26
Chapter26Chapter26
Chapter26
 
NSF highlight
NSF highlightNSF highlight
NSF highlight
 
Jeffrey Noland Publication 2013
Jeffrey Noland Publication 2013Jeffrey Noland Publication 2013
Jeffrey Noland Publication 2013
 
Gene transfer by physical methods
Gene transfer by physical methodsGene transfer by physical methods
Gene transfer by physical methods
 
EVE 161 Winter 2018 Class 10
EVE 161 Winter 2018 Class 10EVE 161 Winter 2018 Class 10
EVE 161 Winter 2018 Class 10
 
Vectors for gene transfer in animals: Retro virus
Vectors for gene transfer in animals: Retro virusVectors for gene transfer in animals: Retro virus
Vectors for gene transfer in animals: Retro virus
 
Finally its Over! Feeling Happy.
Finally its Over! Feeling Happy.Finally its Over! Feeling Happy.
Finally its Over! Feeling Happy.
 
Genetic engineering
Genetic engineering Genetic engineering
Genetic engineering
 
Yishun Junior College_Lou Wei Hao Darren_ SSEF report_BC020
Yishun Junior College_Lou Wei Hao Darren_ SSEF report_BC020Yishun Junior College_Lou Wei Hao Darren_ SSEF report_BC020
Yishun Junior College_Lou Wei Hao Darren_ SSEF report_BC020
 
Direct Gene Transfer Methods
Direct Gene Transfer MethodsDirect Gene Transfer Methods
Direct Gene Transfer Methods
 
Gene transfer methods
Gene transfer methodsGene transfer methods
Gene transfer methods
 
Applications of biotechnology in forensic sciences
Applications of biotechnology in forensic sciencesApplications of biotechnology in forensic sciences
Applications of biotechnology in forensic sciences
 
MFF Poster-GRBaV-AC.pptx
MFF Poster-GRBaV-AC.pptxMFF Poster-GRBaV-AC.pptx
MFF Poster-GRBaV-AC.pptx
 
Assessment of immunomolecular_expression_and_prognostic_role_of_tlr7_among_pa...
Assessment of immunomolecular_expression_and_prognostic_role_of_tlr7_among_pa...Assessment of immunomolecular_expression_and_prognostic_role_of_tlr7_among_pa...
Assessment of immunomolecular_expression_and_prognostic_role_of_tlr7_among_pa...
 
Electroporation
ElectroporationElectroporation
Electroporation
 
Transgenic plants and their Application
Transgenic plants and their ApplicationTransgenic plants and their Application
Transgenic plants and their Application
 
Rapid identification of dermatophyte species by 28S rDNA Polymerase Chain Rea...
Rapid identification of dermatophyte species by 28S rDNA Polymerase Chain Rea...Rapid identification of dermatophyte species by 28S rDNA Polymerase Chain Rea...
Rapid identification of dermatophyte species by 28S rDNA Polymerase Chain Rea...
 

Destacado

Malala Yousafzai UGBA 192AC Final Presentation
Malala Yousafzai UGBA 192AC Final PresentationMalala Yousafzai UGBA 192AC Final Presentation
Malala Yousafzai UGBA 192AC Final PresentationMichelle Nie
 
Nobel Prize Presentation 2
Nobel Prize Presentation 2Nobel Prize Presentation 2
Nobel Prize Presentation 2Jeremy Moore
 
Nobel peace prize
Nobel peace prizeNobel peace prize
Nobel peace prizeQamar Iqbal
 
Nobel Prize
Nobel PrizeNobel Prize
Nobel Prizerajasv
 

Destacado (8)

Alfred nobel
Alfred nobelAlfred nobel
Alfred nobel
 
Malala Yousafzai UGBA 192AC Final Presentation
Malala Yousafzai UGBA 192AC Final PresentationMalala Yousafzai UGBA 192AC Final Presentation
Malala Yousafzai UGBA 192AC Final Presentation
 
Nobel Prize Presentation 2
Nobel Prize Presentation 2Nobel Prize Presentation 2
Nobel Prize Presentation 2
 
Nobel peace prize
Nobel peace prizeNobel peace prize
Nobel peace prize
 
Nobel prize
Nobel prizeNobel prize
Nobel prize
 
Nobel prize
Nobel prizeNobel prize
Nobel prize
 
Nobel Prize
Nobel PrizeNobel Prize
Nobel Prize
 
Nobel Prize
Nobel PrizeNobel Prize
Nobel Prize
 

Similar a Research paper of Noble prize winner Luc montagnier work on electromagnetic signals: Explaining the Homoeopathy medical science

Electromagnetic Signals Are Produced by Aqueous Nanostructures Derived from B...
Electromagnetic Signals Are Produced by Aqueous Nanostructures Derived from B...Electromagnetic Signals Are Produced by Aqueous Nanostructures Derived from B...
Electromagnetic Signals Are Produced by Aqueous Nanostructures Derived from B...Francisco Navarro
 
Presentation1
Presentation1Presentation1
Presentation1kdizzle
 
1993 yonemoto resistance of yeast and bacterial spores to high voltage eletri...
1993 yonemoto resistance of yeast and bacterial spores to high voltage eletri...1993 yonemoto resistance of yeast and bacterial spores to high voltage eletri...
1993 yonemoto resistance of yeast and bacterial spores to high voltage eletri...TOP Technology Talks (TOP b.v.)
 
Control of metabolic activities of E.coli and S. aureus bacteria by Electric ...
Control of metabolic activities of E.coli and S. aureus bacteria by Electric ...Control of metabolic activities of E.coli and S. aureus bacteria by Electric ...
Control of metabolic activities of E.coli and S. aureus bacteria by Electric ...inventy
 
Control of metabolic activities of E.coli and S. aureus bacteria by Electric ...
Control of metabolic activities of E.coli and S. aureus bacteria by Electric ...Control of metabolic activities of E.coli and S. aureus bacteria by Electric ...
Control of metabolic activities of E.coli and S. aureus bacteria by Electric ...researchinventy
 
Cells & Cellphones - Looking deep at the molecular level
Cells & Cellphones - Looking deep at the molecular levelCells & Cellphones - Looking deep at the molecular level
Cells & Cellphones - Looking deep at the molecular levelThe Radiation Doctor
 
Bio-impedance detector for Staphylococcus aureus exposed to magnetic fields
Bio-impedance detector for Staphylococcus aureus exposed to magnetic fieldsBio-impedance detector for Staphylococcus aureus exposed to magnetic fields
Bio-impedance detector for Staphylococcus aureus exposed to magnetic fieldsجنة الربيع
 
FRACTAL ANALYSIS OF MACROPHAGE WHOLE CELL RECORDINGS PROVIDES MORE INFORMATI...
FRACTAL  ANALYSIS OF MACROPHAGE WHOLE CELL RECORDINGS PROVIDES MORE INFORMATI...FRACTAL  ANALYSIS OF MACROPHAGE WHOLE CELL RECORDINGS PROVIDES MORE INFORMATI...
FRACTAL ANALYSIS OF MACROPHAGE WHOLE CELL RECORDINGS PROVIDES MORE INFORMATI...Mariela Marín
 
general microbiology
general microbiologygeneral microbiology
general microbiologyzana
 
Distribution of virus aem00050 0269
Distribution of virus aem00050 0269Distribution of virus aem00050 0269
Distribution of virus aem00050 0269528Hz TRUTH
 
Poster on microtube bacterial encapsulation
Poster on microtube bacterial encapsulationPoster on microtube bacterial encapsulation
Poster on microtube bacterial encapsulationChaitanya kumar
 
CDAC 2018 Dubini microfluidic technologies for single cell manipulation
CDAC 2018 Dubini microfluidic technologies for single cell manipulationCDAC 2018 Dubini microfluidic technologies for single cell manipulation
CDAC 2018 Dubini microfluidic technologies for single cell manipulationMarco Antoniotti
 
EFFECTS OF ELECTRICITY ON CELL BIOLOGY, PHYSIOLOGY AND ON THIS BASIS INVESTIG...
EFFECTS OF ELECTRICITY ON CELL BIOLOGY, PHYSIOLOGY AND ON THIS BASIS INVESTIG...EFFECTS OF ELECTRICITY ON CELL BIOLOGY, PHYSIOLOGY AND ON THIS BASIS INVESTIG...
EFFECTS OF ELECTRICITY ON CELL BIOLOGY, PHYSIOLOGY AND ON THIS BASIS INVESTIG...ertunç şimdi
 

Similar a Research paper of Noble prize winner Luc montagnier work on electromagnetic signals: Explaining the Homoeopathy medical science (20)

Electromagnetic Signals Are Produced by Aqueous Nanostructures Derived from B...
Electromagnetic Signals Are Produced by Aqueous Nanostructures Derived from B...Electromagnetic Signals Are Produced by Aqueous Nanostructures Derived from B...
Electromagnetic Signals Are Produced by Aqueous Nanostructures Derived from B...
 
Dna waves and water
Dna waves and waterDna waves and water
Dna waves and water
 
Dna waves and water
Dna waves and waterDna waves and water
Dna waves and water
 
Presentation1
Presentation1Presentation1
Presentation1
 
1993 yonemoto resistance of yeast and bacterial spores to high voltage eletri...
1993 yonemoto resistance of yeast and bacterial spores to high voltage eletri...1993 yonemoto resistance of yeast and bacterial spores to high voltage eletri...
1993 yonemoto resistance of yeast and bacterial spores to high voltage eletri...
 
Carbone’S Lab
Carbone’S LabCarbone’S Lab
Carbone’S Lab
 
Control of metabolic activities of E.coli and S. aureus bacteria by Electric ...
Control of metabolic activities of E.coli and S. aureus bacteria by Electric ...Control of metabolic activities of E.coli and S. aureus bacteria by Electric ...
Control of metabolic activities of E.coli and S. aureus bacteria by Electric ...
 
Control of metabolic activities of E.coli and S. aureus bacteria by Electric ...
Control of metabolic activities of E.coli and S. aureus bacteria by Electric ...Control of metabolic activities of E.coli and S. aureus bacteria by Electric ...
Control of metabolic activities of E.coli and S. aureus bacteria by Electric ...
 
Cells & Cellphones - Looking deep at the molecular level
Cells & Cellphones - Looking deep at the molecular levelCells & Cellphones - Looking deep at the molecular level
Cells & Cellphones - Looking deep at the molecular level
 
Bio-impedance detector for Staphylococcus aureus exposed to magnetic fields
Bio-impedance detector for Staphylococcus aureus exposed to magnetic fieldsBio-impedance detector for Staphylococcus aureus exposed to magnetic fields
Bio-impedance detector for Staphylococcus aureus exposed to magnetic fields
 
SACNAS '13 poster
SACNAS '13 posterSACNAS '13 poster
SACNAS '13 poster
 
FRACTAL ANALYSIS OF MACROPHAGE WHOLE CELL RECORDINGS PROVIDES MORE INFORMATI...
FRACTAL  ANALYSIS OF MACROPHAGE WHOLE CELL RECORDINGS PROVIDES MORE INFORMATI...FRACTAL  ANALYSIS OF MACROPHAGE WHOLE CELL RECORDINGS PROVIDES MORE INFORMATI...
FRACTAL ANALYSIS OF MACROPHAGE WHOLE CELL RECORDINGS PROVIDES MORE INFORMATI...
 
general microbiology
general microbiologygeneral microbiology
general microbiology
 
Patch clamp ppt by kp
Patch clamp ppt by kpPatch clamp ppt by kp
Patch clamp ppt by kp
 
Radiotherapy
RadiotherapyRadiotherapy
Radiotherapy
 
Distribution of virus aem00050 0269
Distribution of virus aem00050 0269Distribution of virus aem00050 0269
Distribution of virus aem00050 0269
 
Poster on microtube bacterial encapsulation
Poster on microtube bacterial encapsulationPoster on microtube bacterial encapsulation
Poster on microtube bacterial encapsulation
 
CDAC 2018 Dubini microfluidic technologies for single cell manipulation
CDAC 2018 Dubini microfluidic technologies for single cell manipulationCDAC 2018 Dubini microfluidic technologies for single cell manipulation
CDAC 2018 Dubini microfluidic technologies for single cell manipulation
 
EFFECTS OF ELECTRICITY ON CELL BIOLOGY, PHYSIOLOGY AND ON THIS BASIS INVESTIG...
EFFECTS OF ELECTRICITY ON CELL BIOLOGY, PHYSIOLOGY AND ON THIS BASIS INVESTIG...EFFECTS OF ELECTRICITY ON CELL BIOLOGY, PHYSIOLOGY AND ON THIS BASIS INVESTIG...
EFFECTS OF ELECTRICITY ON CELL BIOLOGY, PHYSIOLOGY AND ON THIS BASIS INVESTIG...
 
Project presentation
Project presentationProject presentation
Project presentation
 

Más de DrAnkit Srivastav

Bartholin's Cyst with Secondry Infection within 2 months Treatment
Bartholin's Cyst with Secondry Infection within 2 months TreatmentBartholin's Cyst with Secondry Infection within 2 months Treatment
Bartholin's Cyst with Secondry Infection within 2 months TreatmentDrAnkit Srivastav
 
Fatty Liver, Bowel Inflammation & Inflammatory Bowel Disease within 1 month t...
Fatty Liver, Bowel Inflammation & Inflammatory Bowel Disease within 1 month t...Fatty Liver, Bowel Inflammation & Inflammatory Bowel Disease within 1 month t...
Fatty Liver, Bowel Inflammation & Inflammatory Bowel Disease within 1 month t...DrAnkit Srivastav
 
17mm Myoma (Tumor in Uterus) & 21 mm, 14mm Cysts in Left Ovary treatment
 17mm Myoma (Tumor in Uterus) & 21 mm, 14mm Cysts in Left Ovary treatment 17mm Myoma (Tumor in Uterus) & 21 mm, 14mm Cysts in Left Ovary treatment
17mm Myoma (Tumor in Uterus) & 21 mm, 14mm Cysts in Left Ovary treatmentDrAnkit Srivastav
 
Cervicitis, B/L Adnexa Swelling, Excessive Bowel Gas, Bulky Uterus, P.I.D. Tr...
Cervicitis, B/L Adnexa Swelling, Excessive Bowel Gas, Bulky Uterus, P.I.D. Tr...Cervicitis, B/L Adnexa Swelling, Excessive Bowel Gas, Bulky Uterus, P.I.D. Tr...
Cervicitis, B/L Adnexa Swelling, Excessive Bowel Gas, Bulky Uterus, P.I.D. Tr...DrAnkit Srivastav
 
Kidney stone (Renal Calculi), Hydronephrosis (गुर्दे की पथरी, किडनी में पानी ...
Kidney stone (Renal Calculi), Hydronephrosis (गुर्दे की पथरी, किडनी में पानी ...Kidney stone (Renal Calculi), Hydronephrosis (गुर्दे की पथरी, किडनी में पानी ...
Kidney stone (Renal Calculi), Hydronephrosis (गुर्दे की पथरी, किडनी में पानी ...DrAnkit Srivastav
 
Pancreatic calcification, Raised Serum Amylase, 6.8 mm Kidney stone & Homoeop...
Pancreatic calcification, Raised Serum Amylase, 6.8 mm Kidney stone & Homoeop...Pancreatic calcification, Raised Serum Amylase, 6.8 mm Kidney stone & Homoeop...
Pancreatic calcification, Raised Serum Amylase, 6.8 mm Kidney stone & Homoeop...DrAnkit Srivastav
 
Brain Tumor, Left Cerebellar Tumor, SOL (Space occupying lesion) Treatment ( ...
Brain Tumor, Left Cerebellar Tumor, SOL (Space occupying lesion) Treatment ( ...Brain Tumor, Left Cerebellar Tumor, SOL (Space occupying lesion) Treatment ( ...
Brain Tumor, Left Cerebellar Tumor, SOL (Space occupying lesion) Treatment ( ...DrAnkit Srivastav
 
Ovary cyst & Homoeopathy (अंडाशय में गांठ, ओवेरियन सिस्ट का सफल होम्योपैथी उप...
Ovary cyst & Homoeopathy (अंडाशय में गांठ, ओवेरियन सिस्ट का सफल होम्योपैथी उप...Ovary cyst & Homoeopathy (अंडाशय में गांठ, ओवेरियन सिस्ट का सफल होम्योपैथी उप...
Ovary cyst & Homoeopathy (अंडाशय में गांठ, ओवेरियन सिस्ट का सफल होम्योपैथी उप...DrAnkit Srivastav
 
Gastric Cancer (Malignant) & Homoeopathy (कैंसर का सफल होम्योपैथी उपचार
Gastric Cancer (Malignant) & Homoeopathy (कैंसर का सफल होम्योपैथी उपचारGastric Cancer (Malignant) & Homoeopathy (कैंसर का सफल होम्योपैथी उपचार
Gastric Cancer (Malignant) & Homoeopathy (कैंसर का सफल होम्योपैथी उपचारDrAnkit Srivastav
 
KIDNEY STONE & HOMOEOPATHY (गुर्दे की पथरी का सफल होम्योपैथी उपचार)
KIDNEY STONE & HOMOEOPATHY (गुर्दे की पथरी का सफल होम्योपैथी उपचार)KIDNEY STONE & HOMOEOPATHY (गुर्दे की पथरी का सफल होम्योपैथी उपचार)
KIDNEY STONE & HOMOEOPATHY (गुर्दे की पथरी का सफल होम्योपैथी उपचार)DrAnkit Srivastav
 
KIDNEY STONE & HOMOEOPATHY (गुर्दे की पथरी का सफल होम्योपैथी उपचार)
KIDNEY STONE & HOMOEOPATHY (गुर्दे की पथरी का सफल होम्योपैथी उपचार)KIDNEY STONE & HOMOEOPATHY (गुर्दे की पथरी का सफल होम्योपैथी उपचार)
KIDNEY STONE & HOMOEOPATHY (गुर्दे की पथरी का सफल होम्योपैथी उपचार)DrAnkit Srivastav
 
KIDNEY STONE, HYDRONEPHROSIS & HOMOEOPATHY (गुर्दे की पथरी, किडनी में पानी का...
KIDNEY STONE, HYDRONEPHROSIS & HOMOEOPATHY (गुर्दे की पथरी, किडनी में पानी का...KIDNEY STONE, HYDRONEPHROSIS & HOMOEOPATHY (गुर्दे की पथरी, किडनी में पानी का...
KIDNEY STONE, HYDRONEPHROSIS & HOMOEOPATHY (गुर्दे की पथरी, किडनी में पानी का...DrAnkit Srivastav
 
Intra-spinal Tumor, Spondylosis, Slip Disc & Homoeopathy (स्पोंडिलोसिस, रीढ़ ...
Intra-spinal Tumor, Spondylosis, Slip Disc & Homoeopathy (स्पोंडिलोसिस, रीढ़ ...Intra-spinal Tumor, Spondylosis, Slip Disc & Homoeopathy (स्पोंडिलोसिस, रीढ़ ...
Intra-spinal Tumor, Spondylosis, Slip Disc & Homoeopathy (स्पोंडिलोसिस, रीढ़ ...DrAnkit Srivastav
 
Gall Bladder Tumor, Stone & Homoeopathy (पित्ताशय का कैंसर, पित्ताशय में पथरी...
Gall Bladder Tumor, Stone & Homoeopathy (पित्ताशय का कैंसर, पित्ताशय में पथरी...Gall Bladder Tumor, Stone & Homoeopathy (पित्ताशय का कैंसर, पित्ताशय में पथरी...
Gall Bladder Tumor, Stone & Homoeopathy (पित्ताशय का कैंसर, पित्ताशय में पथरी...DrAnkit Srivastav
 
Fistula in Ano & Homoeopathy (भगंदर, एनल फिस्टुला का सफल होमियोपैथी उपचार)
Fistula in Ano & Homoeopathy (भगंदर, एनल फिस्टुला का सफल होमियोपैथी उपचार)Fistula in Ano & Homoeopathy (भगंदर, एनल फिस्टुला का सफल होमियोपैथी उपचार)
Fistula in Ano & Homoeopathy (भगंदर, एनल फिस्टुला का सफल होमियोपैथी उपचार)DrAnkit Srivastav
 
AWARDED “BHAMASHAH AWARD” 32 ETERNAL MEWAR AWARD (MMFA), City Palace, Udaipur...
AWARDED “BHAMASHAH AWARD” 32 ETERNAL MEWAR AWARD (MMFA), City Palace, Udaipur...AWARDED “BHAMASHAH AWARD” 32 ETERNAL MEWAR AWARD (MMFA), City Palace, Udaipur...
AWARDED “BHAMASHAH AWARD” 32 ETERNAL MEWAR AWARD (MMFA), City Palace, Udaipur...DrAnkit Srivastav
 
AWARDED “DOCTOR OF MEDICINE” (M.D.) Chief Guest Vice President of India
AWARDED “DOCTOR OF MEDICINE” (M.D.) Chief Guest Vice President of IndiaAWARDED “DOCTOR OF MEDICINE” (M.D.) Chief Guest Vice President of India
AWARDED “DOCTOR OF MEDICINE” (M.D.) Chief Guest Vice President of IndiaDrAnkit Srivastav
 
CANCER (Malignant Stage) & HOMOEOPATHY (कैंसर की सफल होम्योपैथी चिकित्सा)
CANCER (Malignant Stage) & HOMOEOPATHY (कैंसर की सफल होम्योपैथी चिकित्सा)CANCER (Malignant Stage) & HOMOEOPATHY (कैंसर की सफल होम्योपैथी चिकित्सा)
CANCER (Malignant Stage) & HOMOEOPATHY (कैंसर की सफल होम्योपैथी चिकित्सा)DrAnkit Srivastav
 
Cerebral Atrophy & Homoeopathy
Cerebral Atrophy & HomoeopathyCerebral Atrophy & Homoeopathy
Cerebral Atrophy & HomoeopathyDrAnkit Srivastav
 
Cholelithiasis & Homoeopathy (पित्ताशय की पथरी का सफल होम्योपैथी उपचार)
Cholelithiasis & Homoeopathy  (पित्ताशय की पथरी का सफल होम्योपैथी उपचार)Cholelithiasis & Homoeopathy  (पित्ताशय की पथरी का सफल होम्योपैथी उपचार)
Cholelithiasis & Homoeopathy (पित्ताशय की पथरी का सफल होम्योपैथी उपचार)DrAnkit Srivastav
 

Más de DrAnkit Srivastav (20)

Bartholin's Cyst with Secondry Infection within 2 months Treatment
Bartholin's Cyst with Secondry Infection within 2 months TreatmentBartholin's Cyst with Secondry Infection within 2 months Treatment
Bartholin's Cyst with Secondry Infection within 2 months Treatment
 
Fatty Liver, Bowel Inflammation & Inflammatory Bowel Disease within 1 month t...
Fatty Liver, Bowel Inflammation & Inflammatory Bowel Disease within 1 month t...Fatty Liver, Bowel Inflammation & Inflammatory Bowel Disease within 1 month t...
Fatty Liver, Bowel Inflammation & Inflammatory Bowel Disease within 1 month t...
 
17mm Myoma (Tumor in Uterus) & 21 mm, 14mm Cysts in Left Ovary treatment
 17mm Myoma (Tumor in Uterus) & 21 mm, 14mm Cysts in Left Ovary treatment 17mm Myoma (Tumor in Uterus) & 21 mm, 14mm Cysts in Left Ovary treatment
17mm Myoma (Tumor in Uterus) & 21 mm, 14mm Cysts in Left Ovary treatment
 
Cervicitis, B/L Adnexa Swelling, Excessive Bowel Gas, Bulky Uterus, P.I.D. Tr...
Cervicitis, B/L Adnexa Swelling, Excessive Bowel Gas, Bulky Uterus, P.I.D. Tr...Cervicitis, B/L Adnexa Swelling, Excessive Bowel Gas, Bulky Uterus, P.I.D. Tr...
Cervicitis, B/L Adnexa Swelling, Excessive Bowel Gas, Bulky Uterus, P.I.D. Tr...
 
Kidney stone (Renal Calculi), Hydronephrosis (गुर्दे की पथरी, किडनी में पानी ...
Kidney stone (Renal Calculi), Hydronephrosis (गुर्दे की पथरी, किडनी में पानी ...Kidney stone (Renal Calculi), Hydronephrosis (गुर्दे की पथरी, किडनी में पानी ...
Kidney stone (Renal Calculi), Hydronephrosis (गुर्दे की पथरी, किडनी में पानी ...
 
Pancreatic calcification, Raised Serum Amylase, 6.8 mm Kidney stone & Homoeop...
Pancreatic calcification, Raised Serum Amylase, 6.8 mm Kidney stone & Homoeop...Pancreatic calcification, Raised Serum Amylase, 6.8 mm Kidney stone & Homoeop...
Pancreatic calcification, Raised Serum Amylase, 6.8 mm Kidney stone & Homoeop...
 
Brain Tumor, Left Cerebellar Tumor, SOL (Space occupying lesion) Treatment ( ...
Brain Tumor, Left Cerebellar Tumor, SOL (Space occupying lesion) Treatment ( ...Brain Tumor, Left Cerebellar Tumor, SOL (Space occupying lesion) Treatment ( ...
Brain Tumor, Left Cerebellar Tumor, SOL (Space occupying lesion) Treatment ( ...
 
Ovary cyst & Homoeopathy (अंडाशय में गांठ, ओवेरियन सिस्ट का सफल होम्योपैथी उप...
Ovary cyst & Homoeopathy (अंडाशय में गांठ, ओवेरियन सिस्ट का सफल होम्योपैथी उप...Ovary cyst & Homoeopathy (अंडाशय में गांठ, ओवेरियन सिस्ट का सफल होम्योपैथी उप...
Ovary cyst & Homoeopathy (अंडाशय में गांठ, ओवेरियन सिस्ट का सफल होम्योपैथी उप...
 
Gastric Cancer (Malignant) & Homoeopathy (कैंसर का सफल होम्योपैथी उपचार
Gastric Cancer (Malignant) & Homoeopathy (कैंसर का सफल होम्योपैथी उपचारGastric Cancer (Malignant) & Homoeopathy (कैंसर का सफल होम्योपैथी उपचार
Gastric Cancer (Malignant) & Homoeopathy (कैंसर का सफल होम्योपैथी उपचार
 
KIDNEY STONE & HOMOEOPATHY (गुर्दे की पथरी का सफल होम्योपैथी उपचार)
KIDNEY STONE & HOMOEOPATHY (गुर्दे की पथरी का सफल होम्योपैथी उपचार)KIDNEY STONE & HOMOEOPATHY (गुर्दे की पथरी का सफल होम्योपैथी उपचार)
KIDNEY STONE & HOMOEOPATHY (गुर्दे की पथरी का सफल होम्योपैथी उपचार)
 
KIDNEY STONE & HOMOEOPATHY (गुर्दे की पथरी का सफल होम्योपैथी उपचार)
KIDNEY STONE & HOMOEOPATHY (गुर्दे की पथरी का सफल होम्योपैथी उपचार)KIDNEY STONE & HOMOEOPATHY (गुर्दे की पथरी का सफल होम्योपैथी उपचार)
KIDNEY STONE & HOMOEOPATHY (गुर्दे की पथरी का सफल होम्योपैथी उपचार)
 
KIDNEY STONE, HYDRONEPHROSIS & HOMOEOPATHY (गुर्दे की पथरी, किडनी में पानी का...
KIDNEY STONE, HYDRONEPHROSIS & HOMOEOPATHY (गुर्दे की पथरी, किडनी में पानी का...KIDNEY STONE, HYDRONEPHROSIS & HOMOEOPATHY (गुर्दे की पथरी, किडनी में पानी का...
KIDNEY STONE, HYDRONEPHROSIS & HOMOEOPATHY (गुर्दे की पथरी, किडनी में पानी का...
 
Intra-spinal Tumor, Spondylosis, Slip Disc & Homoeopathy (स्पोंडिलोसिस, रीढ़ ...
Intra-spinal Tumor, Spondylosis, Slip Disc & Homoeopathy (स्पोंडिलोसिस, रीढ़ ...Intra-spinal Tumor, Spondylosis, Slip Disc & Homoeopathy (स्पोंडिलोसिस, रीढ़ ...
Intra-spinal Tumor, Spondylosis, Slip Disc & Homoeopathy (स्पोंडिलोसिस, रीढ़ ...
 
Gall Bladder Tumor, Stone & Homoeopathy (पित्ताशय का कैंसर, पित्ताशय में पथरी...
Gall Bladder Tumor, Stone & Homoeopathy (पित्ताशय का कैंसर, पित्ताशय में पथरी...Gall Bladder Tumor, Stone & Homoeopathy (पित्ताशय का कैंसर, पित्ताशय में पथरी...
Gall Bladder Tumor, Stone & Homoeopathy (पित्ताशय का कैंसर, पित्ताशय में पथरी...
 
Fistula in Ano & Homoeopathy (भगंदर, एनल फिस्टुला का सफल होमियोपैथी उपचार)
Fistula in Ano & Homoeopathy (भगंदर, एनल फिस्टुला का सफल होमियोपैथी उपचार)Fistula in Ano & Homoeopathy (भगंदर, एनल फिस्टुला का सफल होमियोपैथी उपचार)
Fistula in Ano & Homoeopathy (भगंदर, एनल फिस्टुला का सफल होमियोपैथी उपचार)
 
AWARDED “BHAMASHAH AWARD” 32 ETERNAL MEWAR AWARD (MMFA), City Palace, Udaipur...
AWARDED “BHAMASHAH AWARD” 32 ETERNAL MEWAR AWARD (MMFA), City Palace, Udaipur...AWARDED “BHAMASHAH AWARD” 32 ETERNAL MEWAR AWARD (MMFA), City Palace, Udaipur...
AWARDED “BHAMASHAH AWARD” 32 ETERNAL MEWAR AWARD (MMFA), City Palace, Udaipur...
 
AWARDED “DOCTOR OF MEDICINE” (M.D.) Chief Guest Vice President of India
AWARDED “DOCTOR OF MEDICINE” (M.D.) Chief Guest Vice President of IndiaAWARDED “DOCTOR OF MEDICINE” (M.D.) Chief Guest Vice President of India
AWARDED “DOCTOR OF MEDICINE” (M.D.) Chief Guest Vice President of India
 
CANCER (Malignant Stage) & HOMOEOPATHY (कैंसर की सफल होम्योपैथी चिकित्सा)
CANCER (Malignant Stage) & HOMOEOPATHY (कैंसर की सफल होम्योपैथी चिकित्सा)CANCER (Malignant Stage) & HOMOEOPATHY (कैंसर की सफल होम्योपैथी चिकित्सा)
CANCER (Malignant Stage) & HOMOEOPATHY (कैंसर की सफल होम्योपैथी चिकित्सा)
 
Cerebral Atrophy & Homoeopathy
Cerebral Atrophy & HomoeopathyCerebral Atrophy & Homoeopathy
Cerebral Atrophy & Homoeopathy
 
Cholelithiasis & Homoeopathy (पित्ताशय की पथरी का सफल होम्योपैथी उपचार)
Cholelithiasis & Homoeopathy  (पित्ताशय की पथरी का सफल होम्योपैथी उपचार)Cholelithiasis & Homoeopathy  (पित्ताशय की पथरी का सफल होम्योपैथी उपचार)
Cholelithiasis & Homoeopathy (पित्ताशय की पथरी का सफल होम्योपैथी उपचार)
 

Último

(Rocky) Jaipur Call Girl - 09521753030 Escorts Service 50% Off with Cash ON D...
(Rocky) Jaipur Call Girl - 09521753030 Escorts Service 50% Off with Cash ON D...(Rocky) Jaipur Call Girl - 09521753030 Escorts Service 50% Off with Cash ON D...
(Rocky) Jaipur Call Girl - 09521753030 Escorts Service 50% Off with Cash ON D...indiancallgirl4rent
 
Call Girls Haridwar Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Haridwar Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Haridwar Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Haridwar Just Call 9907093804 Top Class Call Girl Service AvailableDipal Arora
 
VIP Hyderabad Call Girls Bahadurpally 7877925207 ₹5000 To 25K With AC Room 💚😋
VIP Hyderabad Call Girls Bahadurpally 7877925207 ₹5000 To 25K With AC Room 💚😋VIP Hyderabad Call Girls Bahadurpally 7877925207 ₹5000 To 25K With AC Room 💚😋
VIP Hyderabad Call Girls Bahadurpally 7877925207 ₹5000 To 25K With AC Room 💚😋TANUJA PANDEY
 
Night 7k to 12k Navi Mumbai Call Girl Photo 👉 BOOK NOW 9833363713 👈 ♀️ night ...
Night 7k to 12k Navi Mumbai Call Girl Photo 👉 BOOK NOW 9833363713 👈 ♀️ night ...Night 7k to 12k Navi Mumbai Call Girl Photo 👉 BOOK NOW 9833363713 👈 ♀️ night ...
Night 7k to 12k Navi Mumbai Call Girl Photo 👉 BOOK NOW 9833363713 👈 ♀️ night ...aartirawatdelhi
 
VIP Service Call Girls Sindhi Colony 📳 7877925207 For 18+ VIP Call Girl At Th...
VIP Service Call Girls Sindhi Colony 📳 7877925207 For 18+ VIP Call Girl At Th...VIP Service Call Girls Sindhi Colony 📳 7877925207 For 18+ VIP Call Girl At Th...
VIP Service Call Girls Sindhi Colony 📳 7877925207 For 18+ VIP Call Girl At Th...jageshsingh5554
 
Manyata Tech Park ( Call Girls ) Bangalore ✔ 6297143586 ✔ Hot Model With Sexy...
Manyata Tech Park ( Call Girls ) Bangalore ✔ 6297143586 ✔ Hot Model With Sexy...Manyata Tech Park ( Call Girls ) Bangalore ✔ 6297143586 ✔ Hot Model With Sexy...
Manyata Tech Park ( Call Girls ) Bangalore ✔ 6297143586 ✔ Hot Model With Sexy...vidya singh
 
College Call Girls in Haridwar 9667172968 Short 4000 Night 10000 Best call gi...
College Call Girls in Haridwar 9667172968 Short 4000 Night 10000 Best call gi...College Call Girls in Haridwar 9667172968 Short 4000 Night 10000 Best call gi...
College Call Girls in Haridwar 9667172968 Short 4000 Night 10000 Best call gi...perfect solution
 
Call Girls Cuttack Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Cuttack Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Cuttack Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Cuttack Just Call 9907093804 Top Class Call Girl Service AvailableDipal Arora
 
Call Girls Coimbatore Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Coimbatore Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Coimbatore Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Coimbatore Just Call 9907093804 Top Class Call Girl Service AvailableDipal Arora
 
VIP Call Girls Indore Kirti 💚😋 9256729539 🚀 Indore Escorts
VIP Call Girls Indore Kirti 💚😋  9256729539 🚀 Indore EscortsVIP Call Girls Indore Kirti 💚😋  9256729539 🚀 Indore Escorts
VIP Call Girls Indore Kirti 💚😋 9256729539 🚀 Indore Escortsaditipandeya
 
Pondicherry Call Girls Book Now 9630942363 Top Class Pondicherry Escort Servi...
Pondicherry Call Girls Book Now 9630942363 Top Class Pondicherry Escort Servi...Pondicherry Call Girls Book Now 9630942363 Top Class Pondicherry Escort Servi...
Pondicherry Call Girls Book Now 9630942363 Top Class Pondicherry Escort Servi...Genuine Call Girls
 
Top Rated Bangalore Call Girls Richmond Circle ⟟ 9332606886 ⟟ Call Me For Ge...
Top Rated Bangalore Call Girls Richmond Circle ⟟  9332606886 ⟟ Call Me For Ge...Top Rated Bangalore Call Girls Richmond Circle ⟟  9332606886 ⟟ Call Me For Ge...
Top Rated Bangalore Call Girls Richmond Circle ⟟ 9332606886 ⟟ Call Me For Ge...narwatsonia7
 
Book Paid Powai Call Girls Mumbai 𖠋 9930245274 𖠋Low Budget Full Independent H...
Book Paid Powai Call Girls Mumbai 𖠋 9930245274 𖠋Low Budget Full Independent H...Book Paid Powai Call Girls Mumbai 𖠋 9930245274 𖠋Low Budget Full Independent H...
Book Paid Powai Call Girls Mumbai 𖠋 9930245274 𖠋Low Budget Full Independent H...Call Girls in Nagpur High Profile
 
Call Girls Dehradun Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Dehradun Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Dehradun Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Dehradun Just Call 9907093804 Top Class Call Girl Service AvailableDipal Arora
 
Russian Escorts Girls Nehru Place ZINATHI 🔝9711199012 ☪ 24/7 Call Girls Delhi
Russian Escorts Girls  Nehru Place ZINATHI 🔝9711199012 ☪ 24/7 Call Girls DelhiRussian Escorts Girls  Nehru Place ZINATHI 🔝9711199012 ☪ 24/7 Call Girls Delhi
Russian Escorts Girls Nehru Place ZINATHI 🔝9711199012 ☪ 24/7 Call Girls DelhiAlinaDevecerski
 
(👑VVIP ISHAAN ) Russian Call Girls Service Navi Mumbai🖕9920874524🖕Independent...
(👑VVIP ISHAAN ) Russian Call Girls Service Navi Mumbai🖕9920874524🖕Independent...(👑VVIP ISHAAN ) Russian Call Girls Service Navi Mumbai🖕9920874524🖕Independent...
(👑VVIP ISHAAN ) Russian Call Girls Service Navi Mumbai🖕9920874524🖕Independent...Taniya Sharma
 
Night 7k to 12k Chennai City Center Call Girls 👉👉 7427069034⭐⭐ 100% Genuine E...
Night 7k to 12k Chennai City Center Call Girls 👉👉 7427069034⭐⭐ 100% Genuine E...Night 7k to 12k Chennai City Center Call Girls 👉👉 7427069034⭐⭐ 100% Genuine E...
Night 7k to 12k Chennai City Center Call Girls 👉👉 7427069034⭐⭐ 100% Genuine E...hotbabesbook
 
Call Girls Tirupati Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Tirupati Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Tirupati Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Tirupati Just Call 9907093804 Top Class Call Girl Service AvailableDipal Arora
 
Lucknow Call girls - 8800925952 - 24x7 service with hotel room
Lucknow Call girls - 8800925952 - 24x7 service with hotel roomLucknow Call girls - 8800925952 - 24x7 service with hotel room
Lucknow Call girls - 8800925952 - 24x7 service with hotel roomdiscovermytutordmt
 
Premium Call Girls Cottonpet Whatsapp 7001035870 Independent Escort Service
Premium Call Girls Cottonpet Whatsapp 7001035870 Independent Escort ServicePremium Call Girls Cottonpet Whatsapp 7001035870 Independent Escort Service
Premium Call Girls Cottonpet Whatsapp 7001035870 Independent Escort Servicevidya singh
 

Último (20)

(Rocky) Jaipur Call Girl - 09521753030 Escorts Service 50% Off with Cash ON D...
(Rocky) Jaipur Call Girl - 09521753030 Escorts Service 50% Off with Cash ON D...(Rocky) Jaipur Call Girl - 09521753030 Escorts Service 50% Off with Cash ON D...
(Rocky) Jaipur Call Girl - 09521753030 Escorts Service 50% Off with Cash ON D...
 
Call Girls Haridwar Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Haridwar Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Haridwar Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Haridwar Just Call 9907093804 Top Class Call Girl Service Available
 
VIP Hyderabad Call Girls Bahadurpally 7877925207 ₹5000 To 25K With AC Room 💚😋
VIP Hyderabad Call Girls Bahadurpally 7877925207 ₹5000 To 25K With AC Room 💚😋VIP Hyderabad Call Girls Bahadurpally 7877925207 ₹5000 To 25K With AC Room 💚😋
VIP Hyderabad Call Girls Bahadurpally 7877925207 ₹5000 To 25K With AC Room 💚😋
 
Night 7k to 12k Navi Mumbai Call Girl Photo 👉 BOOK NOW 9833363713 👈 ♀️ night ...
Night 7k to 12k Navi Mumbai Call Girl Photo 👉 BOOK NOW 9833363713 👈 ♀️ night ...Night 7k to 12k Navi Mumbai Call Girl Photo 👉 BOOK NOW 9833363713 👈 ♀️ night ...
Night 7k to 12k Navi Mumbai Call Girl Photo 👉 BOOK NOW 9833363713 👈 ♀️ night ...
 
VIP Service Call Girls Sindhi Colony 📳 7877925207 For 18+ VIP Call Girl At Th...
VIP Service Call Girls Sindhi Colony 📳 7877925207 For 18+ VIP Call Girl At Th...VIP Service Call Girls Sindhi Colony 📳 7877925207 For 18+ VIP Call Girl At Th...
VIP Service Call Girls Sindhi Colony 📳 7877925207 For 18+ VIP Call Girl At Th...
 
Manyata Tech Park ( Call Girls ) Bangalore ✔ 6297143586 ✔ Hot Model With Sexy...
Manyata Tech Park ( Call Girls ) Bangalore ✔ 6297143586 ✔ Hot Model With Sexy...Manyata Tech Park ( Call Girls ) Bangalore ✔ 6297143586 ✔ Hot Model With Sexy...
Manyata Tech Park ( Call Girls ) Bangalore ✔ 6297143586 ✔ Hot Model With Sexy...
 
College Call Girls in Haridwar 9667172968 Short 4000 Night 10000 Best call gi...
College Call Girls in Haridwar 9667172968 Short 4000 Night 10000 Best call gi...College Call Girls in Haridwar 9667172968 Short 4000 Night 10000 Best call gi...
College Call Girls in Haridwar 9667172968 Short 4000 Night 10000 Best call gi...
 
Call Girls Cuttack Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Cuttack Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Cuttack Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Cuttack Just Call 9907093804 Top Class Call Girl Service Available
 
Call Girls Coimbatore Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Coimbatore Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Coimbatore Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Coimbatore Just Call 9907093804 Top Class Call Girl Service Available
 
VIP Call Girls Indore Kirti 💚😋 9256729539 🚀 Indore Escorts
VIP Call Girls Indore Kirti 💚😋  9256729539 🚀 Indore EscortsVIP Call Girls Indore Kirti 💚😋  9256729539 🚀 Indore Escorts
VIP Call Girls Indore Kirti 💚😋 9256729539 🚀 Indore Escorts
 
Pondicherry Call Girls Book Now 9630942363 Top Class Pondicherry Escort Servi...
Pondicherry Call Girls Book Now 9630942363 Top Class Pondicherry Escort Servi...Pondicherry Call Girls Book Now 9630942363 Top Class Pondicherry Escort Servi...
Pondicherry Call Girls Book Now 9630942363 Top Class Pondicherry Escort Servi...
 
Top Rated Bangalore Call Girls Richmond Circle ⟟ 9332606886 ⟟ Call Me For Ge...
Top Rated Bangalore Call Girls Richmond Circle ⟟  9332606886 ⟟ Call Me For Ge...Top Rated Bangalore Call Girls Richmond Circle ⟟  9332606886 ⟟ Call Me For Ge...
Top Rated Bangalore Call Girls Richmond Circle ⟟ 9332606886 ⟟ Call Me For Ge...
 
Book Paid Powai Call Girls Mumbai 𖠋 9930245274 𖠋Low Budget Full Independent H...
Book Paid Powai Call Girls Mumbai 𖠋 9930245274 𖠋Low Budget Full Independent H...Book Paid Powai Call Girls Mumbai 𖠋 9930245274 𖠋Low Budget Full Independent H...
Book Paid Powai Call Girls Mumbai 𖠋 9930245274 𖠋Low Budget Full Independent H...
 
Call Girls Dehradun Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Dehradun Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Dehradun Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Dehradun Just Call 9907093804 Top Class Call Girl Service Available
 
Russian Escorts Girls Nehru Place ZINATHI 🔝9711199012 ☪ 24/7 Call Girls Delhi
Russian Escorts Girls  Nehru Place ZINATHI 🔝9711199012 ☪ 24/7 Call Girls DelhiRussian Escorts Girls  Nehru Place ZINATHI 🔝9711199012 ☪ 24/7 Call Girls Delhi
Russian Escorts Girls Nehru Place ZINATHI 🔝9711199012 ☪ 24/7 Call Girls Delhi
 
(👑VVIP ISHAAN ) Russian Call Girls Service Navi Mumbai🖕9920874524🖕Independent...
(👑VVIP ISHAAN ) Russian Call Girls Service Navi Mumbai🖕9920874524🖕Independent...(👑VVIP ISHAAN ) Russian Call Girls Service Navi Mumbai🖕9920874524🖕Independent...
(👑VVIP ISHAAN ) Russian Call Girls Service Navi Mumbai🖕9920874524🖕Independent...
 
Night 7k to 12k Chennai City Center Call Girls 👉👉 7427069034⭐⭐ 100% Genuine E...
Night 7k to 12k Chennai City Center Call Girls 👉👉 7427069034⭐⭐ 100% Genuine E...Night 7k to 12k Chennai City Center Call Girls 👉👉 7427069034⭐⭐ 100% Genuine E...
Night 7k to 12k Chennai City Center Call Girls 👉👉 7427069034⭐⭐ 100% Genuine E...
 
Call Girls Tirupati Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Tirupati Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Tirupati Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Tirupati Just Call 9907093804 Top Class Call Girl Service Available
 
Lucknow Call girls - 8800925952 - 24x7 service with hotel room
Lucknow Call girls - 8800925952 - 24x7 service with hotel roomLucknow Call girls - 8800925952 - 24x7 service with hotel room
Lucknow Call girls - 8800925952 - 24x7 service with hotel room
 
Premium Call Girls Cottonpet Whatsapp 7001035870 Independent Escort Service
Premium Call Girls Cottonpet Whatsapp 7001035870 Independent Escort ServicePremium Call Girls Cottonpet Whatsapp 7001035870 Independent Escort Service
Premium Call Girls Cottonpet Whatsapp 7001035870 Independent Escort Service
 

Research paper of Noble prize winner Luc montagnier work on electromagnetic signals: Explaining the Homoeopathy medical science

  • 1. Interdiscip Sci Comput Life Sci (2009) 1: 81–90 DOI: 10.1007/s12539-009-0036-7 Electromagnetic Signals Are Produced by Aqueous Nanostructures Derived from Bacterial DNA Sequences Luc MONTAGNIER1,2∗ , Jamal A¨ISSA1 , St´ephane FERRIS1 , Jean-Luc MONTAGNIER1 , Claude LAVALL´EE1 1 (Nanectis Biotechnologies, S.A. 98 rue Albert Calmette, F78350 Jouy en Josas, France) 2 (Vironix LLC, L. Montagnier 40 Central Park South, New York, NY 10019, USA) Recevied 3 January 2009 / Revised 5 January 2009 / Accepted 6 January 2009 Abstract: A novel property of DNA is described: the capacity of some bacterial DNA sequences to induce electromagnetic waves at high aqueous dilutions. It appears to be a resonance phenomenon triggered by the ambient electromagnetic background of very low frequency waves. The genomic DNA of most pathogenic bacteria contains sequences which are able to generate such signals. This opens the way to the development of highly sensitive detection system for chronic bacterial infections in human and animal diseases. Key words: DNA, electromagnetic signals, bacteria. Pathogenic microorganisms in this day of age are not only submitted to high selective pressure by the im- mune defenses of their hosts but also have to survive un- der highly active antiviral or antibiotic treatments. Not surprisingly, they have evolved in finding many ways to escape these hostile conditions, such as mutations of re- sistance, hypervariability of surface antigens, protective biofilms, latency inside cells and tissues. We initially observed (Montagnier and Lavallee, per- sonal communication) that some filtration procedures aimed at sterilizing biological fluids can yield under some defined conditions the infectious microorganism which was present before the filtration step. Thus, fil- tration of a culture supernatant of human lymphocytes infected with Mycoplasma pirum, a microorganism of about 300 nM in size, through filters of 100 nM or 20 nM porosities, yielded apparently sterile fluid. The latter however was able to regenerate the original my- coplasma when incubated with a mycoplasma negative culture of human lymphocytes within 2 to 3 weeks. Similarly, a 20 nM filtration did not retain a minor in- fective fraction of HIV, the causal agent of AIDS, whose viral particles have a diameter averaging 100-120 nM. In the course of investigating the nature of such filter- ing infectious forms, we found another property of the filtrates, which may or may not be related to the former: their capacity to produce some electromagnetic waves of low frequency in a reproducible manner after appro- *Corresponding author. E-mail: nadiacpt@yahoo.fr priate dilutions in water. The emission of such waves is likely to represent a resonance phenomenon depending on excitation by the ambient electromagnetic noise. It is associated with the presence in the aqueous dilutions of polymeric nanostructures of defined size. The super- natant of uninfected eukaryotic cells used as controls did not exhibit this property. In this paper we provide a first characterization of the electromagnetic signals (EMS) and of their underlying nanostructures produced by some purified bacteria. In addition to M. pirum, a more classical bacterium, E. Coli, was utilized for the purpose of the analysis. The nanostructures produced by HIV will be the sub- ject of another paper. M. pirum is a peer-shaped small bacterial cell, ressembling M. pneumoniae, which can be grown in syn- thetic enriched medium (SP4) (Tully et al., 1977) but also mutiplies at the surface of human T lymphocytes. The strain (Ber) used in our experiments was isolated from a T lymphocyte culture derived from the blood of an apparently healthy subject (Grau et al., 1993). The strong mycoplasma adherence to lymphocytes is mediated by a specific adhesin, whose gene had been previously cloned and sequenced by the authors (Tham et al., 1994). We used as primary source of the mycoplasma, super- natants of infected human T lymphocyte cultures or of cultures of the CEM tumor T cell line. All cell cultures were first tested for the lack of M. pirum contamination by polymerase chain reaction (PCR) and nested PCR, before starting the experiments. Titers of 106 -107 infec- Escuela Nacional de Medicina y Homeopatía IPN México Rafael Avila
  • 2. 82 Interdiscip Sci Comput Life Sci (2009) 1: 81–90 tious Units/ml of M. pirum were readily achieved after 5-6 days of incubation following deliberate infection of both types of cultures. Filtration of the clarified supernatant was first per- formed on 0.45 µM (450 nM) Millipore filters to remove debris, and subsequently on 0.1 µM (100 nM) Milli- pore filters or on 0.02 µM (20 nM) Whatman filters, to remove mycoplasma cells. Indeed, the two 100 nM and 20 nM filtrates were confirmed sterile when aliquots were incubated for several weeks in SP4 medium. Re- peated search for traces of mycoplasma DNA by PCR and nested PCR using specific primers for the adhesin gene or for the 16S ribosomal gene was consistently neg- ative. However when the filtrates were incubated for two weeks (100 nM filtrate) or three weeks (20 nM filtrate) with a culture of human activated T lymphocytes, the mycoplasma was recovered in the medium with all its original characteristics as previously observed. The same filtrates were analyzed just after filtra- tion for production of electromagnetic waves of low fre- quency. For this purpose we used a device previously designed by Benveniste and Coll (1996; 2003) for the detection of signals produced by isolated molecules en- dowed with biological activity. The principle of this technology is shown in Fig. 1. Fig. 1 Device for the capture and analysis of electromag- netic signals (EMS): (1) Coil: a bobbin of copper wire, impedance 300 Ohms; (2) Plastic stoppered tube containing 1 mL of the solution to be analyzed; (3) Amplifier; (4) Computer with softwares. Briefly, the 100 nM or 20 nM filtrates are serially di- luted 1 in 10 (0,1 +0,9 in sterile water (medical grade). The first 2 dilutions (1/10 and 1/100) are done in serum-free RPMI medium, in order to avoid eventual protein precipitation in deionized water. Each dilution is done in 1.5 mL Eppendorf plastic tubes, which are then tightly stoppered and strongly agitated on a Vortex apparatus for 15 seconds . This step has been found critical for the generation of signals. After all dilutions have been made (generally 15-20 decimal dilutions), the stoppered tubes are read one by one on an electromagnetic coil, connected to a Sound Blaster Card itself connected to a laptop computer, preferentially powered by its 12 volt battery. Each emission is recorded twice for 6 seconds, amplified 500 times and processed with different softwares for vizual- ization of the signals on the computer’s screen (Fig. 1). The main harmonics of the complex signals were an- alyzed by utilizing several softwares of Fourier transfor- mation. In each experiment, the internal noise generated by the different pieces of the reading system was first recorded (coil alone, coil with a tube filled with water). Fourier analysis shows (Fig. 2(c, d)) that the noise was predominantly composed of very low frequencies, prob- ably generated at least in part by the 50/60 Hz ambi- ent electric current. The use of the 12 V battery for the computer power supply did reduce, but not abolish this noise, which was found to be necessary for the induc- tion of the resonance signals from the specific nanos- tructures. When dilutions of the M. pirum filtrate were recorded for wave emission, the first obvious phenomenon ob- served was an increase of the overall amplitude of the signals at certain dilutions over the background noise (Fig. 2(a)) and also an increase in frequencies (Fig. 2(b)). This change was abolished if the tube to be analyzed was placed inside a box sheltered with sheets of copper and mumetal (David, 1998). Fourier analysis of the M. pirum signals showed a shift towards higher frequencies close to 1000 Hz and multiples of it. Profiles were identical for all the dilu- tions showing an increase in amplitude (Fig. 2(c) and 2(d)). The first low dilutions were usually negative, showing the background noise only. Positive signals were usu- ally obtained at dilutions ranging from 10−5 to 10−8 or 10−12 . Higher dilutions were again negative (Fig. 3). The positive dilutions varied according to the type of filtration, the 20 nM filtrate being generally positive at dilutions higher than those of the 100 nM filtrate. The original unfiltered suspension was negative at all dilutions, a phenomenon observed for all the microor- ganisms studied. Size and density of the structures producing the signals in the aqueous dilutions: An aliquot of the 20 nM filtrate was layered on the top of a 5-20% (w/v) sucrose gradient in water and centrifuged for 2 hours at 35,000 rpm in a swinging bucket rotor. These conditions had previously been used to obtain the density equilibrium of the intact my- coplasma cells wich formed a sharp bound at 1,21 den- sity. Fractions were collected from the bottom of the tubes, pooled 2 by 2 and assayed for signal emission. Fig. 4 shows that the signal emitting structures were distributed in a large range of densities from 1.15 to 1.25 and also had a high sedimentation coefficient.
  • 3. Interdiscip Sci Comput Life Sci (2009) 1: 81–90 83 Fig. 2 Detection of EMS from a suspension of Mycoplasma pirum: Left: background noise (from an unfiltered suspension or a negative low dilution). Right: positive signal (from a high dilution D-7 (10-7)). (a) actual recording (2 seconds from a 6 second recording) after WaveLab (Steinberg) treatment; (b) detailed analysis of the signal (scale in millisecondes); (c) Matlab 3D Fourier transform analyzis (abcissa: 0-20 kHz, ordinate: relative intensity, 3D dimension: recording at different times); Frequencies are visualized in different colors; (d) Sigview Fourier transform: note the new harmonics in the range of 1 000-3 000 Hz. Fig. 3 A typical recording of signals from aqueous dilutions of M. Pirum (Matlab software): note the positive signals from D-7 to D-12 dilutions.
  • 4. 84 Interdiscip Sci Comput Life Sci (2009) 1: 81–90 107 106 105 104 1.20 1.30 1.10 1.25 1.20 1.15 Density 1 2 3 4 5 6 7 8 9 10 11 12 13 SN CEM/M.pirum Filtered 0.02μ E.M.S.naneons Fig. 4 Sucrose density centrifugation (35 000 rpm, 2 Hr) of a 0.02µ filtrate of Mycoplasma pirum suspension. The collected fractions were pooled 2 by 2 and di- luted up to D-15 and tested for EMS. The bars in- dicate the fractions positive for EMS. We then turned to a more classical bacterium, E. Coli, using the laboratory strain K1. A culture of E. Coli in agitated (oxygenated) con- ditions, yielded 109 bacterial units/mL, measured by spectrometry. The suspension was then centrifuged at 10,000 rpm for 15 minutes, the supernatant was fil- tered on 450 nM filter and the resulting filtrate was filtered again on a 100 nM filter. The final filtrate was found sterile, when plated on nutrient agar medium and was analyzed for electromagnetic wave emission, as de- scribed above for M. pirum. Signal producing dilutions usually range from 10−8 to 10−12 , with profiles upon Fourier transformation, similar to those of M. Pirum (Fig. 5). In one experiment, some very high dilutions were found positive, ranging from 10−9 to 10−18 . An aliquot of the unfiltered supernatant did not show any signals above background up to the 10−38 dilution, in- dicating again the critical importance of the filtration step for the generation of specific signals. The only difference with M. pirum was that no sig- nal appeared after filtration on 20 nM filters, suggesting that the structures associated with the signals were re- tained by these filters and, therefore, had a size greater than 20 nM and lower than 100 nM. We then asked why the lower dilutions, which logically should contain a larger number of signal- producing structures, were “silent”. When we added 0.1 mL of a negative low dilution (e.g. 10−3 ) to 0.4 mL or 0.9 mL of a positive dilution (10−8 ), the latter became negative. This indicate that the ”silent” low dilutions are self-inhibitory, probably by interference of the multiple sources emitting in the same wave length or slightly out of phase, like a radio jamming. Alterna- tively, the abundance of nanostructures can form a gel in water and therefore are prevented to vibrate. -Evidence for homologous “cross talk” between dilutions We then wonder whether or not it was possible to generate new signal-emitting structures from tube to tube by using wave transfer. The following experiment
  • 5. Interdiscip Sci Comput Life Sci (2009) 1: 81–90 85 Fig. 5 EMS from E. Coli 0.1 µ filtrate. EMS positive from dilution D-8 to D-11: (a) Actual recording; (b) millisecond analysis; (c) Fourier transform analysis Matlab; (d) Fourier transform analysis SigView. NF: not filtered.
  • 6. 86 Interdiscip Sci Comput Life Sci (2009) 1: 81–90 which was repeated several times showed that indeed this was the case. A donor tube of a low “silent” dilution of E. Coli (10−3 ) was placed side by side close to a receiver tube of the positive “loud” highest dilution of the same prepa- ration (10−9 ). Both tubes were placed in a mumetal box for 24 hours at room temperature, so that the tubes were not exposed to external electromagnetic noise, and only exposed to the signals generated by the structures present in the tubes themselves. The tubes were then read again by the signal detect- ing device: the donor tube was still silent, however the receiver tube became also silent. Moreover, when further dilutions were made from the receiver tube (10−10 , 10−11 , 10−12 ), these dilutions had became positive (Fig. 6). These results suggest that the receiver tube was made silent by formation of an excess of new nanostructures, which could emit signals upon further dilution. Fig. 6 Cross-talk between dilutions (from an E. Coli 0.1 µ filtrate), see explanation in the text. This effect was suppressed by interposing a sheat of mumetal between the two tubes during the 24 hours contact period, pointing to a role of low frequency waves in the phenomenon. Emission of similar electromagnetic signals was also observed with some other bacterial species such as: Streptococcus B, Staphylococcus aureus, Pseu- domonas aeroginosa, Proteus mirabilis, Bacillus sub- tilis, Salmonella, Clostridium perfringens, all in the same range of dilutions observed for E. Coli, and only after filtration at 100 nM (and not at 20 nM). Importantly, the transfer effect between two tubes, one silent, one loud, was only observed if both contained dilutions of the same bacterial species. In other words, a Staphylococcus donor tube could only “talk” with a receiver tube containing a Staphylococcus dilution, and not with a tube of Streptococcus or E. Coli, and reciprocally. These results indicate that the transfer effect is medi- ated by species-specific signals, the frequencies of which remain to be analyzed. Finally, two others problems were investigated in the E. Coli system: the first was the role of the initial number of bacterial cells in the induction of the fil- terable signal-producing structures. For this a station- ary culture of E. Coli was counted and adjusted to 109 cells/mL and serial dilutions from 100 to 100 were done down to 1 cell/mL. Each dilution was filtered at 100 nM and then analyzed for signal emission. Surprisingly, the range of positive dilutions were not strictly depen- dent on the initial concentration of E. Coli cells, being roughly the same from 109 cells down to 10 cells, sug- gesting that the same final number of nanostructures was reached at all concentrations. Thus, paradoxically, 10 cells are giving the same signals than 109 cells. We were also concerned by the possible personal in- fluence of the operator in the reading. To address this point, two healthy operators were asked to measure independantly the same dilutions of E. Coli, each one unknowing the results of the other. The results of their readings were identical. In addition, the results were independant of the order in which the samples were read, whether in descending dilutions from to the lowest to the highest or in ascend- ing the dilutions from the highest to the lowest. Finally an other laboratory worker placed the diluted samples in a random order, the labels being unknown from the person reading the samples. The same range of positive dilutions was detected again provided each tube was well separated from the other, to avoid their “cross talk”. We also found that the results were also indepen- dant of the location of the reading site: starting from the same unfiltered preparation of E. Coli, positive di- lutions of the filtrates were found to be the same in two different locations in France (Paris center and sub- urb), one in Canada (Montreal), and one in Cameroun (Yaound´e). As shown in the figures, the background noise was variable, according to the location and time of record- ing. It was generally higher in large cities than in iso- lated aeras. However, positive signals always clearly differenciate over the background by higher frequency peaks. Nature of the aqueous nanostructures: Treatments by RNAseA (Promega, 1 µg/ml, 37 ℃ 1 h), Dnase I (Invitrogen, 10 U/µg DNA, 37 ℃, 18 h), Lysozyme (Fisher, 1 mg/mL, 37℃ 10 min), Proteinase K (Promega, 0.12 mg/mL, in 1% sodium dodecyl sul- phate, 56 ℃ 1 h) did not suppress the EMS produc- ing activity of the “loud” dilutions nor did activate the “silent” dilutions. However, heating at 70 ℃ for 30 min suppressed irre- versiblly the activity, as well as did freezing for 1 hour at −20 ℃ or −60 ℃. DMSO (10%), and formamide (10%) had no effect. Treatment with lithium cations, known to affect the
  • 7. Interdiscip Sci Comput Life Sci (2009) 1: 81–90 87 hydrogen bonding of water molecules, was able to re- duce the intensity of the signals, while the range of the positive dilutions remained unchanged. Nature of the bacterial molecules at the origin of the nanostructures: In preliminary experiments, we had observed that a pretreatment of a suspension of E. Coli by 1% formaldehyde did not alter its capacity to induce the electromagnetic signals, while killing the bacteria. This treatment alters the surface proteins of the bacte- rial cells without attacking their genetic material, i.e. double- helical DNA. This suggested that the source of the signals may be the DNA itself. Indeed, DNA extracted from the bacterial suspension by the classical phenol: chloroform technique was able upon filtration and appropriate dilutions in water to emit EMS similar to those produced by intact bacteria under the same conditions. DNAse treatment of the extracted DNA solution abolishes its capacity to emit signals, at the condition that the nanostructures pre- viously induced by the DNA are destroyed. A typical experiment is described as follows: E. Coli DNA was treated by Proteinase K in the presence of SDS (sodium dodecyl sulfate) and further deproteinized by phenol-chloroform mixture. The pel- let obtained by ethanol precipitation was resuspended in Tris 10-2 M, pH 7,6 and an aliquot was diluted 1/100 in water. The dilution (10−2 ) was filtered first through a 450 nM filter and the resulting filtrate was then fil- tered again on a 100 nM filter. The filtrate was further diluted in serial decimal dilutions in water as previously described. As for the intact microorganisms, the filtration step was found to be essential for detection of the EMS in the DNA dilutions. In its absence, no signals could be detected at any dilutions. In contrast to the microorganism suspension, where the filtration was supposed to retain the intact cells, the filtration at 100 nM did not retain the DNA, which was still present in the filtrate, as measured by optical density. However, filtration with a 20 nM Whatman filter retained the nanostructures emitting the EMS, suggesting that they have the same range of sizes than those originating from intact bacteria. In the case of DNA, the role of the 100 nM filtration is probably to dissociate the network of nanostructures organized in a gel-like liquid crystal at high concen- trations in water, allowing their dispersion in further dilutions. As shown in Fig. 7, the dilutions positive for EMS were in the same range that those observed for the intact bacteria, generally between 10−7 to 10−13 . Fig. 7 DNAse effect on EMS production. The DNAse treated E. Coli DNA solution and the untreated DNA are diluted from D-2 to D-15. Analyzis of the EMS as described in Fig. 5. D-2 dilution (negative for EMS) is shown as control. D-9 is positive for EMS (from a range of positive dilutions D-8 to D-11). Note the signal disappearance in the DNAse treated DNA.
  • 8. 88 Interdiscip Sci Comput Life Sci (2009) 1: 81–90 At the high dilution of 10−13 , calculations indicate that there is no DNA molecule of MW larger than 105 in the solution, making it unlikely that the EMS are pro- duced directely by the DNA itself, but rather by the self-sustained nanostructures induced by the DNA. Generally, all the bacterial species shown to be posi- tive for EMS yielded also DNA preparations positive for EMS. Further demonstration that the EMS produced by bacteria come from their DNA was shown by their disappearance after DNAse treatement. This inactivation was however only complete when the nanostructures induced in the DNA solution which are themselves resistant to DNAse were previously fully destroyed. This destruction was obtained either by freezing the DNA solution at −20 ℃ for 1 hour or heating it at 90 ℃ for 30 minutes. After slow cooling to allow the heated DNA to re- anneal, DNAse 1 at a final concentration of 10 U/µg of DNA was added and the mixture was incubated at 37 ℃ for 18 hours in the presence of 5 mM of MgCl2. An aliquot of the untreated DNA solution was kept as a positive control. The DNAse-treated preparation was found com- pletely devoid of EMS emission at any dilution (Fig. 7). Treatment of the DNA solution by a restriction en- zyme acting at many sites of E. Coli DNA (EcoRV) did not suppress the production of EMS, suggesting that this emission is linked to rather short sequences or is associated with rare sequences. Nature of the DNA sequences at the origin of the EMS: A non exhaustive survey of the bacterial species and of their DNA able to display EMS suggests that most of bacteria pathogenic for humans are in this category. By contrast, probiotic “good” bacteria as Lactobacil- lus and their DNA are negative for EMS emission. In the case of E. Coli, we found that some strains used to carry plasmids for gene cloning were also nega- tive (Fig. 8). This suggested that only some sequences of DNA are at the origin of the EMS. As pathogenicity is often associated with the capac- ity of the microorganism to bind eukaryotic cells, par- ticulary mucosal cells, we focussed our analysis again to M. pirum DNA, where a single gene (adhesin: 126- kDa protein) is responsible for the adhesion of the my- coplasma to human cells. Fig. 8 EMS produced by the 1.5 kb fragment of the adhesin DNA of M. Pirum. The plasmid DNA containing the 1.5 Kb fragment was used to transform an E. Coli vector, XL1blue. The whole DNA was extracted and diluted for EMS analysis. Left: control background noise of a negative dilution (D-2). Right: positive signal at D-10 (range from D-9 to D-12). Bottom: Note the lack of EMS produced by the DNA extracted from the strain transformed by the plasmid alone.
  • 9. Interdiscip Sci Comput Life Sci (2009) 1: 81–90 89 This gene had previously been cloned and sequenced in our laboratory (Tham et al., 1994). The cloned DNA existed as two fragments in two plasmids, corresponding respectively to the N terminal (1.5 Kbp) and the C terminal (5 Kbp) of the protein. The two plasmids (pBluescript SK, Stratagene) con- taining the DNA fragments were amplified in a E. Coli strain, XL1blue. The DNA of the E. Coli strain (with or without the plasmid) alone did not yield EMS at any dilutions. By contrast when the strain was transformed with ei- ther plasmids carrying an adhesin gene fragment, EMS were produced (Fig. 8). The two adhesin DNA fragments were then cut by specific restriction enzymes (N Terminal: 1.5 kbp/SpeI- EcoRI) (C Terminal: 5 kbp/HindIII-XbaI) and isolated by electrophoresis in 0.8% agarose gel. Each DNA frag- ment was able to induce EMS (not shown). We also purified a large fraction of the adhesin DNA from the whole mycoplasma genomic DNA using spe- cific primers and amplification by PCR. Again this fragment induced EMS, thus indicating that no contaminant DNA coming from the plasmid carried by E. Coli was involved (not shown). Discussion We have discovered a novel property of DNA, that is the capacity of some sequences to emit electromag- netic waves in resonance after excitation by the ambient electromagnetic background. Owing to the low sensitivity and specificity of our signal capture and analysis, the frequencies emitted are all alike, regardless of the bacterial species involved. However, the experiments of transfer of information through plastic tubes suggest that, by refining the analysis and eliminating the variability of the excit- ing signals, we might detect specific differences between species, and even between sequences. Indeed, this prop- erty may be a general one shared by all double-helical DNAs, including human DNA. But in our conditions of detection, it seems to be associated with only certain bacterial sequences. It remains to be seen whether they are restricted to some genes involved in diseases. Experiments to be reported elsewhere indeed indi- cate that this detection applies also at the scale of the human body: we have detected the same EMS in the plasma and in the DNA extracted from the plasma of patients suffering of Alzheimer, Parkinson disease, mul- tiple Sclerosis and Rheumatoid Arthritis. This would suggest that bacterial infections are present in these diseases. Morever, EMS can be detected also from RNA viruses, such as HIV, influenza virus A, Hepatitis C Virus. In these cases, optimal filtration for detection of EMS requires prior 20 nM filtration suggesting that the nanostructures produced are smaller that those pro- duced by bacterial DNA. In patients infected with HIV, EMS can be detected mostly in patients treated by antiretroviral therapy and having a very low viral load in their plasma. Such nanostructures persisting in the plasma may contribute to the viral reservoir which escapes the antiviral treat- ment, assuming that they carry genetic information of the virus. The physical nature of the nanostructures which sup- port the EMS resonance remains to be determined. It is known from the very early X-ray diffraction stud- ies of DNA, that water molecules are tightly associated with the double helix, and any beginner in molecular biology knows that DNA in water solution forms gels associating a larger number of water molecules. Moreover, a number of physical studies have reported that water molecules can form long polymers of dipoles associated by hydrogen bonds (Ruan et al., 2004; Wer- net et al., 2004). However these associations appear to be very short- lived (Cowan et al., 2005). Could they live longer, being self-maintained by the electromagnetic radiations they are emitting as previously postulated by Del Guidice, Preparata and Vitielo (1988)? We have studied the decay with time of the capac- ity of dilutions for emitting EMS, after they have been removed (in mumetal boxes) from exposure to the exci- tation by the background. This capacity lasts at least several hours, some time up to 48 hours, indicating the relative stability of the nanostructures. Are the latter sufficiently specific of DNA sequences to be able to carry some genetic information? If so, what could be their role in pathogenicity, par- ticularly in the genesis of chronic diseases? Further studies involving close collaboration between physicists and biologists are obviously needed to resolve these problems. Acknowledgments We thank Dr A. Blanchard for gift of Mycoplasma pirum DNA and Drs D. Guillonnet, R. Olivier, L. Thibodeau and J. Varon for helpful dis- cussion. References [1] Benveniste, J., Jurgens, P., A¨ıssa, J. 1996. Digital recording/ transmission of the cholinergic signal. Faseb Journal 10, A1479. [2] Benveniste, J., Guillonnet, D. 2003. Method, system and device for producing signals from a substance bi- ological and/or chemical activity. US Patent N◦ 6 541, 978 B1.
  • 10. 90 Interdiscip Sci Comput Life Sci (2009) 1: 81–90 [3] Cowan, M.L., Bruner, B.D., Huse, N., Dwyer, J.R., Chugh, B., Nibbering, E.T., Elsaesser, T., Miller, R.J. 2005. Ultrafast memory loss and energy redistribution in the hydrogen bond network of liquid H2O. Nature 434, 199–202. [4] David, J. 1998. Introduction to Magnetism and Mag- netic Materials. CRC Press. 354. [5] Del Guidice, E., Preparata, G., Vitielo, G. 1988. Water as a free electric dipole laser. Physical Review Letters 61, 1085–1088. [6] Grau, O., Kovacic, R., Griffais, R., Montagnier, L. 1993. Development of a selective and sensitive poly- merase chain reaction assay for the detection of My- coplasma pirum. FEMS Microbiology Letters 106, 327–334. [7] Ruan, C.Y., Lobastov, V.A., Vigliotti, F., Chen, S., Zewall, A.H. 2004. Ultrafast electron crystallography of interfacial water. Science 304, 80–84. [8] Tham, T.N., Ferris, S., Bahraoui, E., Canarelli, S., Montagnier, L., Blanchard, A. 1994. Molecular char- acterization of the P1-like adhesin gene from My- coplasma pirum. Journal of Bacteriology, 781–788. [9] Tully, J.G., Whitcomb, R.G., Clark, H.F., Williamson, D.L. 1977. Pathogenic mycoplasmas: cultivation and vertebrate pathogenicity of a new spiroplasma. Science 195, 892–894. [10] Wernet, P., Nordlund, D., Bergmann, U., Caval- leri, M., Odelius, M., Ogasawara, H., N¨aslund, L.A., Hirsch, T.K., Ojam¨ae, L., Glatzel, P., Pettersson, L.G., Nilsson, A. 2004. The structure of the first coordina- tion shell in liquid water. Science 304, 995–999.