SlideShare una empresa de Scribd logo
1 de 12
Descargar para leer sin conexión
Materials discovery through theory,
computation, and machine learning
Anubhav Jain
Energy Technologies Area
Lawrence Berkeley National Laboratory
Berkeley, CA
Oct 10, 2018
Slides (already) posted to hackingmaterials.lbl.gov
2
Materials and their properties decide what is
technologically possible
Example: Electric vehicles and solar power are two
technologies that have been dreamed about for many
decades that are finally starting to see large-scale adoption.
Most of the “waiting” has been for materials improvements!
What constrains traditional approaches to materials design?
3
“[The Chevrel] discovery resulted from a lot of
unsuccessful experiments of Mg ions insertion
into well-known hosts for Li+ ions insertion, as
well as from the thorough literature analysis
concerning the possibility of divalent ions
intercalation into inorganic materials.”
-Aurbach group, on discovery of Chevrel cathode
for multivalent (e.g., Mg2+) batteries
Levi, Levi, Chasid, Aurbach
J. Electroceramics (2009)
Density functional theory (DFT) can model properties of
materials from first principles
4
•  1920s: The Schrödinger equation for quantum mechanics essentially contains
all of chemistry embedded within it
•  it is almost always too complicated to solve due to the numerous electron
interactions and complexity of the wave function entity
•  1960s: DFT is developed and reframes the problem for ground state
properties of the system to separate interactions and written in terms of the
charge density, not wavefunction
•  makes solutions tractable while in principle not sacrificing accuracy for
the ground state!
e–	
e–	 e–	
e–	 e–	
e–
How does one use DFT to design new materials?
5
A. Jain, Y. Shin, and K. A.
Persson, Nat. Rev. Mater.
1, 15004 (2016).
We developed a way to automate DFT on supercomputers
6
Automate the DFT
procedure
Supercomputing
Power
FireWorks
Software for programming
general computational
workflows that can be
scaled across large
supercomputers.
NERSC
Supercomputing center,
processor count is
~100,000 desktop
machines. Other centers
are also viable.
High-throughput
materials screening
G. Ceder & K.A.
Persson, Scientific
American (2015)
Computations predict, experiments confirm
7
Sidorenkite-based Li-ion battery
cathodes
YCuTe2 thermoelectrics
Chen, H.; Hao, Q.; Zivkovic, O.; Hautier, G.; Du, L.-S.; Tang,
Y.; Hu, Y.-Y.; Ma, X.; Grey, C. P.; Ceder, G. Sidorenkite
(Na3MnPO4CO3): A New Intercalation Cathode Material
for Na-Ion Batteries, Chem. Mater., 2013
Aydemir, U; Pohls, J-H; Zhu, H; Hautier, G; Bajaj, S; Gibbs,
ZM; Chen, W; Li, G; Broberg, D; White, MA; Asta, M;
Persson, K; Ceder, G; Jain, A; Snyder, GJ. Thermoelectric
Properties of Intrinsically Doped YCuTe2 with CuTe4-based
Layered Structure. J. Mat. Chem C, 2016
More examples here: A. Jain, Y. Shin, and K. A. Persson, Nat. Rev. Mater. 1, 15004 (2016).
Li-M-O CO2 capture compounds
Dunstan, M. T., Jain, A., Liu, W., Ong, S. P., Liu, T., Lee,
J., Persson, K. A., Scott, S. A., Dennis, J. S. & Grey, C. .
Energy and Environmental Science (2016)
Putting the data online - Materials Project database
•  Online resource of density
functional theory simulation data
for ~85,000 inorganic materials
•  Includes band structures, elastic
tensors, piezoelectric tensors,
battery properties and more
•  >60,000 registered users
•  Free
•  www.materialsproject.org
8
Jain et al. Commentary: The Materials Project: A
materials genome approach to accelerating
materials innovation. APL Mater. 1, 11002 (2013).!
9
We also release open-source software libraries for high-
throughput computation and materials science
Data generation Data analysis
run and manage millions of computational
tasks over large computing resources	
library of FireWorks-compatible workflows
for materials science applications	
materials data retrieval, featurization,
and visualization for machine learning	
tools for crystal manipulation, data
analysis, and simulation software I/O
*led by Ong group, UCSD	
tools for inverse optimation / adaptive design –
ML chooses what calculations to run
10
An engine to label the content of scientific abstracts
Collect, clean, and extract information from millions of
published materials science journal abstracts
11
Text mining to predict new materials in advance
Top predictions from machine learning, trained
on prior years, predict research in future years
Note: each year is trained only on abstracts published until that year
•  Materials Project
–  K. Persson (director)
•  Text mining
–  V. Tshitoyan, J. Dagdelen, L. Weston
•  Funding:
–  DOE-BES (MP)
–  DOE-BES (ECRP)
–  Toyota Research Institute
•  Computing: NERSC
12
Thank you!
Slides (already) posted to hackingmaterials.lbl.gov

Más contenido relacionado

La actualidad más candente

Software tools, crystal descriptors, and machine learning applied to material...
Software tools, crystal descriptors, and machine learning applied to material...Software tools, crystal descriptors, and machine learning applied to material...
Software tools, crystal descriptors, and machine learning applied to material...
Anubhav Jain
 

La actualidad más candente (20)

Density functional theory calculations and data mining for new thermoelectric...
Density functional theory calculations and data mining for new thermoelectric...Density functional theory calculations and data mining for new thermoelectric...
Density functional theory calculations and data mining for new thermoelectric...
 
High-throughput computation and machine learning methods applied to materials...
High-throughput computation and machine learning methods applied to materials...High-throughput computation and machine learning methods applied to materials...
High-throughput computation and machine learning methods applied to materials...
 
Machine learning for materials design: opportunities, challenges, and methods
Machine learning for materials design: opportunities, challenges, and methodsMachine learning for materials design: opportunities, challenges, and methods
Machine learning for materials design: opportunities, challenges, and methods
 
Overview of accelerated materials design efforts in the Hacking Materials res...
Overview of accelerated materials design efforts in the Hacking Materials res...Overview of accelerated materials design efforts in the Hacking Materials res...
Overview of accelerated materials design efforts in the Hacking Materials res...
 
Software tools, crystal descriptors, and machine learning applied to material...
Software tools, crystal descriptors, and machine learning applied to material...Software tools, crystal descriptors, and machine learning applied to material...
Software tools, crystal descriptors, and machine learning applied to material...
 
Data dissemination and materials informatics at LBNL
Data dissemination and materials informatics at LBNLData dissemination and materials informatics at LBNL
Data dissemination and materials informatics at LBNL
 
Combining density functional theory calculations, supercomputing, and data-dr...
Combining density functional theory calculations, supercomputing, and data-dr...Combining density functional theory calculations, supercomputing, and data-dr...
Combining density functional theory calculations, supercomputing, and data-dr...
 
Computational materials design with high-throughput and machine learning methods
Computational materials design with high-throughput and machine learning methodsComputational materials design with high-throughput and machine learning methods
Computational materials design with high-throughput and machine learning methods
 
Combining density functional theory calculations, supercomputing, and data-dr...
Combining density functional theory calculations, supercomputing, and data-dr...Combining density functional theory calculations, supercomputing, and data-dr...
Combining density functional theory calculations, supercomputing, and data-dr...
 
Computational Materials Design and Data Dissemination through the Materials P...
Computational Materials Design and Data Dissemination through the Materials P...Computational Materials Design and Data Dissemination through the Materials P...
Computational Materials Design and Data Dissemination through the Materials P...
 
Discovering advanced materials for energy applications by mining the scientif...
Discovering advanced materials for energy applications by mining the scientif...Discovering advanced materials for energy applications by mining the scientif...
Discovering advanced materials for energy applications by mining the scientif...
 
Software tools for high-throughput materials data generation and data mining
Software tools for high-throughput materials data generation and data miningSoftware tools for high-throughput materials data generation and data mining
Software tools for high-throughput materials data generation and data mining
 
Materials design using knowledge from millions of journal articles via natura...
Materials design using knowledge from millions of journal articles via natura...Materials design using knowledge from millions of journal articles via natura...
Materials design using knowledge from millions of journal articles via natura...
 
Software tools to facilitate materials science research
Software tools to facilitate materials science researchSoftware tools to facilitate materials science research
Software tools to facilitate materials science research
 
Software tools for data-driven research and their application to thermoelectr...
Software tools for data-driven research and their application to thermoelectr...Software tools for data-driven research and their application to thermoelectr...
Software tools for data-driven research and their application to thermoelectr...
 
Automated Machine Learning Applied to Diverse Materials Design Problems
Automated Machine Learning Applied to Diverse Materials Design ProblemsAutomated Machine Learning Applied to Diverse Materials Design Problems
Automated Machine Learning Applied to Diverse Materials Design Problems
 
The Materials Project: Experiences from running a million computational scien...
The Materials Project: Experiences from running a million computational scien...The Materials Project: Experiences from running a million computational scien...
The Materials Project: Experiences from running a million computational scien...
 
Combined Theory and Data-Driven Approaches to Thermoelectrics Materials Disco...
Combined Theory and Data-Driven Approaches to Thermoelectrics Materials Disco...Combined Theory and Data-Driven Approaches to Thermoelectrics Materials Disco...
Combined Theory and Data-Driven Approaches to Thermoelectrics Materials Disco...
 
Combining density functional theory calculations, supercomputing, and data-dr...
Combining density functional theory calculations, supercomputing, and data-dr...Combining density functional theory calculations, supercomputing, and data-dr...
Combining density functional theory calculations, supercomputing, and data-dr...
 
Software Tools, Methods and Applications of Machine Learning in Functional Ma...
Software Tools, Methods and Applications of Machine Learning in Functional Ma...Software Tools, Methods and Applications of Machine Learning in Functional Ma...
Software Tools, Methods and Applications of Machine Learning in Functional Ma...
 

Similar a Materials discovery through theory, computation, and machine learning

Data Mining to Discovery for Inorganic Solids: Software Tools and Applications
Data Mining to Discovery for Inorganic Solids: Software Tools and ApplicationsData Mining to Discovery for Inorganic Solids: Software Tools and Applications
Data Mining to Discovery for Inorganic Solids: Software Tools and Applications
aimsnist
 
Applications of Machine Learning for Materials Discovery at NREL
Applications of Machine Learning for Materials Discovery at NRELApplications of Machine Learning for Materials Discovery at NREL
Applications of Machine Learning for Materials Discovery at NREL
aimsnist
 

Similar a Materials discovery through theory, computation, and machine learning (20)

The Materials Project: Applications to energy storage and functional materia...
The Materials Project: Applications to energy storage and functional materia...The Materials Project: Applications to energy storage and functional materia...
The Materials Project: Applications to energy storage and functional materia...
 
ICME Workshop Jul 2014 - The Materials Project
ICME Workshop Jul 2014 - The Materials ProjectICME Workshop Jul 2014 - The Materials Project
ICME Workshop Jul 2014 - The Materials Project
 
The Materials Project: A Community Data Resource for Accelerating New Materia...
The Materials Project: A Community Data Resource for Accelerating New Materia...The Materials Project: A Community Data Resource for Accelerating New Materia...
The Materials Project: A Community Data Resource for Accelerating New Materia...
 
Discovering new functional materials for clean energy and beyond using high-t...
Discovering new functional materials for clean energy and beyond using high-t...Discovering new functional materials for clean energy and beyond using high-t...
Discovering new functional materials for clean energy and beyond using high-t...
 
Learning Systems for Science
Learning Systems for ScienceLearning Systems for Science
Learning Systems for Science
 
NANO266 - Lecture 12 - High-throughput computational materials design
NANO266 - Lecture 12 - High-throughput computational materials designNANO266 - Lecture 12 - High-throughput computational materials design
NANO266 - Lecture 12 - High-throughput computational materials design
 
Discovering and Exploring New Materials through the Materials Project
Discovering and Exploring New Materials through the Materials ProjectDiscovering and Exploring New Materials through the Materials Project
Discovering and Exploring New Materials through the Materials Project
 
Conducting and Enabling Data-Driven Research Through the Materials Project
Conducting and Enabling Data-Driven Research Through the Materials ProjectConducting and Enabling Data-Driven Research Through the Materials Project
Conducting and Enabling Data-Driven Research Through the Materials Project
 
Data Mining to Discovery for Inorganic Solids: Software Tools and Applications
Data Mining to Discovery for Inorganic Solids: Software Tools and ApplicationsData Mining to Discovery for Inorganic Solids: Software Tools and Applications
Data Mining to Discovery for Inorganic Solids: Software Tools and Applications
 
Going Smart and Deep on Materials at ALCF
Going Smart and Deep on Materials at ALCFGoing Smart and Deep on Materials at ALCF
Going Smart and Deep on Materials at ALCF
 
The Materials Project: An Electronic Structure Database for Community-Based M...
The Materials Project: An Electronic Structure Database for Community-Based M...The Materials Project: An Electronic Structure Database for Community-Based M...
The Materials Project: An Electronic Structure Database for Community-Based M...
 
When The New Science Is In The Outliers
When The New Science Is In The OutliersWhen The New Science Is In The Outliers
When The New Science Is In The Outliers
 
Applications of Machine Learning for Materials Discovery at NREL
Applications of Machine Learning for Materials Discovery at NRELApplications of Machine Learning for Materials Discovery at NREL
Applications of Machine Learning for Materials Discovery at NREL
 
2D/3D Materials screening and genetic algorithm with ML model
2D/3D Materials screening and genetic algorithm with ML model2D/3D Materials screening and genetic algorithm with ML model
2D/3D Materials screening and genetic algorithm with ML model
 
DeLong - Complex Materials and Devices - Spring Review 2013
DeLong - Complex Materials and Devices - Spring Review 2013DeLong - Complex Materials and Devices - Spring Review 2013
DeLong - Complex Materials and Devices - Spring Review 2013
 
Available methods for predicting materials synthesizability using computation...
Available methods for predicting materials synthesizability using computation...Available methods for predicting materials synthesizability using computation...
Available methods for predicting materials synthesizability using computation...
 
AI for Science
AI for ScienceAI for Science
AI for Science
 
An AI-driven closed-loop facility for materials synthesis
An AI-driven closed-loop facility for materials synthesisAn AI-driven closed-loop facility for materials synthesis
An AI-driven closed-loop facility for materials synthesis
 
AI at Scale for Materials and Chemistry
AI at Scale for Materials and ChemistryAI at Scale for Materials and Chemistry
AI at Scale for Materials and Chemistry
 
Materials Project computation and database infrastructure
Materials Project computation and database infrastructureMaterials Project computation and database infrastructure
Materials Project computation and database infrastructure
 

Más de Anubhav Jain

Más de Anubhav Jain (20)

Discovering advanced materials for energy applications: theory, high-throughp...
Discovering advanced materials for energy applications: theory, high-throughp...Discovering advanced materials for energy applications: theory, high-throughp...
Discovering advanced materials for energy applications: theory, high-throughp...
 
Applications of Large Language Models in Materials Discovery and Design
Applications of Large Language Models in Materials Discovery and DesignApplications of Large Language Models in Materials Discovery and Design
Applications of Large Language Models in Materials Discovery and Design
 
Best practices for DuraMat software dissemination
Best practices for DuraMat software disseminationBest practices for DuraMat software dissemination
Best practices for DuraMat software dissemination
 
Best practices for DuraMat software dissemination
Best practices for DuraMat software disseminationBest practices for DuraMat software dissemination
Best practices for DuraMat software dissemination
 
Efficient methods for accurately calculating thermoelectric properties – elec...
Efficient methods for accurately calculating thermoelectric properties – elec...Efficient methods for accurately calculating thermoelectric properties – elec...
Efficient methods for accurately calculating thermoelectric properties – elec...
 
Natural Language Processing for Data Extraction and Synthesizability Predicti...
Natural Language Processing for Data Extraction and Synthesizability Predicti...Natural Language Processing for Data Extraction and Synthesizability Predicti...
Natural Language Processing for Data Extraction and Synthesizability Predicti...
 
Machine Learning for Catalyst Design
Machine Learning for Catalyst DesignMachine Learning for Catalyst Design
Machine Learning for Catalyst Design
 
Natural language processing for extracting synthesis recipes and applications...
Natural language processing for extracting synthesis recipes and applications...Natural language processing for extracting synthesis recipes and applications...
Natural language processing for extracting synthesis recipes and applications...
 
Accelerating New Materials Design with Supercomputing and Machine Learning
Accelerating New Materials Design with Supercomputing and Machine LearningAccelerating New Materials Design with Supercomputing and Machine Learning
Accelerating New Materials Design with Supercomputing and Machine Learning
 
DuraMat CO1 Central Data Resource: How it started, how it’s going …
DuraMat CO1 Central Data Resource: How it started, how it’s going …DuraMat CO1 Central Data Resource: How it started, how it’s going …
DuraMat CO1 Central Data Resource: How it started, how it’s going …
 
The Materials Project
The Materials ProjectThe Materials Project
The Materials Project
 
Evaluating Chemical Composition and Crystal Structure Representations using t...
Evaluating Chemical Composition and Crystal Structure Representations using t...Evaluating Chemical Composition and Crystal Structure Representations using t...
Evaluating Chemical Composition and Crystal Structure Representations using t...
 
Perspectives on chemical composition and crystal structure representations fr...
Perspectives on chemical composition and crystal structure representations fr...Perspectives on chemical composition and crystal structure representations fr...
Perspectives on chemical composition and crystal structure representations fr...
 
Machine Learning Platform for Catalyst Design
Machine Learning Platform for Catalyst DesignMachine Learning Platform for Catalyst Design
Machine Learning Platform for Catalyst Design
 
Applications of Natural Language Processing to Materials Design
Applications of Natural Language Processing to Materials DesignApplications of Natural Language Processing to Materials Design
Applications of Natural Language Processing to Materials Design
 
Assessing Factors Underpinning PV Degradation through Data Analysis
Assessing Factors Underpinning PV Degradation through Data AnalysisAssessing Factors Underpinning PV Degradation through Data Analysis
Assessing Factors Underpinning PV Degradation through Data Analysis
 
Extracting and Making Use of Materials Data from Millions of Journal Articles...
Extracting and Making Use of Materials Data from Millions of Journal Articles...Extracting and Making Use of Materials Data from Millions of Journal Articles...
Extracting and Making Use of Materials Data from Millions of Journal Articles...
 
The Status of ML Algorithms for Structure-property Relationships Using Matb...
The Status of ML Algorithms for Structure-property Relationships Using Matb...The Status of ML Algorithms for Structure-property Relationships Using Matb...
The Status of ML Algorithms for Structure-property Relationships Using Matb...
 
Progress Towards Leveraging Natural Language Processing for Collecting Experi...
Progress Towards Leveraging Natural Language Processing for Collecting Experi...Progress Towards Leveraging Natural Language Processing for Collecting Experi...
Progress Towards Leveraging Natural Language Processing for Collecting Experi...
 
Automating materials science workflows with pymatgen, FireWorks, and atomate
Automating materials science workflows with pymatgen, FireWorks, and atomateAutomating materials science workflows with pymatgen, FireWorks, and atomate
Automating materials science workflows with pymatgen, FireWorks, and atomate
 

Último

Presentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptxPresentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptx
gindu3009
 
Biopesticide (2).pptx .This slides helps to know the different types of biop...
Biopesticide (2).pptx  .This slides helps to know the different types of biop...Biopesticide (2).pptx  .This slides helps to know the different types of biop...
Biopesticide (2).pptx .This slides helps to know the different types of biop...
RohitNehra6
 
Bacterial Identification and Classifications
Bacterial Identification and ClassificationsBacterial Identification and Classifications
Bacterial Identification and Classifications
Areesha Ahmad
 
Chemical Tests; flame test, positive and negative ions test Edexcel Internati...
Chemical Tests; flame test, positive and negative ions test Edexcel Internati...Chemical Tests; flame test, positive and negative ions test Edexcel Internati...
Chemical Tests; flame test, positive and negative ions test Edexcel Internati...
ssuser79fe74
 

Último (20)

Hire 💕 9907093804 Hooghly Call Girls Service Call Girls Agency
Hire 💕 9907093804 Hooghly Call Girls Service Call Girls AgencyHire 💕 9907093804 Hooghly Call Girls Service Call Girls Agency
Hire 💕 9907093804 Hooghly Call Girls Service Call Girls Agency
 
CELL -Structural and Functional unit of life.pdf
CELL -Structural and Functional unit of life.pdfCELL -Structural and Functional unit of life.pdf
CELL -Structural and Functional unit of life.pdf
 
Presentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptxPresentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptx
 
Kochi ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Kochi ESCORT SERVICE❤CALL GIRL
Kochi ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Kochi ESCORT SERVICE❤CALL GIRLKochi ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Kochi ESCORT SERVICE❤CALL GIRL
Kochi ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Kochi ESCORT SERVICE❤CALL GIRL
 
Animal Communication- Auditory and Visual.pptx
Animal Communication- Auditory and Visual.pptxAnimal Communication- Auditory and Visual.pptx
Animal Communication- Auditory and Visual.pptx
 
Biopesticide (2).pptx .This slides helps to know the different types of biop...
Biopesticide (2).pptx  .This slides helps to know the different types of biop...Biopesticide (2).pptx  .This slides helps to know the different types of biop...
Biopesticide (2).pptx .This slides helps to know the different types of biop...
 
Forensic Biology & Its biological significance.pdf
Forensic Biology & Its biological significance.pdfForensic Biology & Its biological significance.pdf
Forensic Biology & Its biological significance.pdf
 
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
 
Isotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on IoIsotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on Io
 
Nanoparticles synthesis and characterization​ ​
Nanoparticles synthesis and characterization​  ​Nanoparticles synthesis and characterization​  ​
Nanoparticles synthesis and characterization​ ​
 
VIRUSES structure and classification ppt by Dr.Prince C P
VIRUSES structure and classification ppt by Dr.Prince C PVIRUSES structure and classification ppt by Dr.Prince C P
VIRUSES structure and classification ppt by Dr.Prince C P
 
Bacterial Identification and Classifications
Bacterial Identification and ClassificationsBacterial Identification and Classifications
Bacterial Identification and Classifications
 
COST ESTIMATION FOR A RESEARCH PROJECT.pptx
COST ESTIMATION FOR A RESEARCH PROJECT.pptxCOST ESTIMATION FOR A RESEARCH PROJECT.pptx
COST ESTIMATION FOR A RESEARCH PROJECT.pptx
 
Chemical Tests; flame test, positive and negative ions test Edexcel Internati...
Chemical Tests; flame test, positive and negative ions test Edexcel Internati...Chemical Tests; flame test, positive and negative ions test Edexcel Internati...
Chemical Tests; flame test, positive and negative ions test Edexcel Internati...
 
Pulmonary drug delivery system M.pharm -2nd sem P'ceutics
Pulmonary drug delivery system M.pharm -2nd sem P'ceuticsPulmonary drug delivery system M.pharm -2nd sem P'ceutics
Pulmonary drug delivery system M.pharm -2nd sem P'ceutics
 
Green chemistry and Sustainable development.pptx
Green chemistry  and Sustainable development.pptxGreen chemistry  and Sustainable development.pptx
Green chemistry and Sustainable development.pptx
 
9654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 6000
9654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 60009654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 6000
9654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 6000
 
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
 
Botany 4th semester file By Sumit Kumar yadav.pdf
Botany 4th semester file By Sumit Kumar yadav.pdfBotany 4th semester file By Sumit Kumar yadav.pdf
Botany 4th semester file By Sumit Kumar yadav.pdf
 
SAMASTIPUR CALL GIRL 7857803690 LOW PRICE ESCORT SERVICE
SAMASTIPUR CALL GIRL 7857803690  LOW PRICE  ESCORT SERVICESAMASTIPUR CALL GIRL 7857803690  LOW PRICE  ESCORT SERVICE
SAMASTIPUR CALL GIRL 7857803690 LOW PRICE ESCORT SERVICE
 

Materials discovery through theory, computation, and machine learning

  • 1. Materials discovery through theory, computation, and machine learning Anubhav Jain Energy Technologies Area Lawrence Berkeley National Laboratory Berkeley, CA Oct 10, 2018 Slides (already) posted to hackingmaterials.lbl.gov
  • 2. 2 Materials and their properties decide what is technologically possible Example: Electric vehicles and solar power are two technologies that have been dreamed about for many decades that are finally starting to see large-scale adoption. Most of the “waiting” has been for materials improvements!
  • 3. What constrains traditional approaches to materials design? 3 “[The Chevrel] discovery resulted from a lot of unsuccessful experiments of Mg ions insertion into well-known hosts for Li+ ions insertion, as well as from the thorough literature analysis concerning the possibility of divalent ions intercalation into inorganic materials.” -Aurbach group, on discovery of Chevrel cathode for multivalent (e.g., Mg2+) batteries Levi, Levi, Chasid, Aurbach J. Electroceramics (2009)
  • 4. Density functional theory (DFT) can model properties of materials from first principles 4 •  1920s: The Schrödinger equation for quantum mechanics essentially contains all of chemistry embedded within it •  it is almost always too complicated to solve due to the numerous electron interactions and complexity of the wave function entity •  1960s: DFT is developed and reframes the problem for ground state properties of the system to separate interactions and written in terms of the charge density, not wavefunction •  makes solutions tractable while in principle not sacrificing accuracy for the ground state! e– e– e– e– e– e–
  • 5. How does one use DFT to design new materials? 5 A. Jain, Y. Shin, and K. A. Persson, Nat. Rev. Mater. 1, 15004 (2016).
  • 6. We developed a way to automate DFT on supercomputers 6 Automate the DFT procedure Supercomputing Power FireWorks Software for programming general computational workflows that can be scaled across large supercomputers. NERSC Supercomputing center, processor count is ~100,000 desktop machines. Other centers are also viable. High-throughput materials screening G. Ceder & K.A. Persson, Scientific American (2015)
  • 7. Computations predict, experiments confirm 7 Sidorenkite-based Li-ion battery cathodes YCuTe2 thermoelectrics Chen, H.; Hao, Q.; Zivkovic, O.; Hautier, G.; Du, L.-S.; Tang, Y.; Hu, Y.-Y.; Ma, X.; Grey, C. P.; Ceder, G. Sidorenkite (Na3MnPO4CO3): A New Intercalation Cathode Material for Na-Ion Batteries, Chem. Mater., 2013 Aydemir, U; Pohls, J-H; Zhu, H; Hautier, G; Bajaj, S; Gibbs, ZM; Chen, W; Li, G; Broberg, D; White, MA; Asta, M; Persson, K; Ceder, G; Jain, A; Snyder, GJ. Thermoelectric Properties of Intrinsically Doped YCuTe2 with CuTe4-based Layered Structure. J. Mat. Chem C, 2016 More examples here: A. Jain, Y. Shin, and K. A. Persson, Nat. Rev. Mater. 1, 15004 (2016). Li-M-O CO2 capture compounds Dunstan, M. T., Jain, A., Liu, W., Ong, S. P., Liu, T., Lee, J., Persson, K. A., Scott, S. A., Dennis, J. S. & Grey, C. . Energy and Environmental Science (2016)
  • 8. Putting the data online - Materials Project database •  Online resource of density functional theory simulation data for ~85,000 inorganic materials •  Includes band structures, elastic tensors, piezoelectric tensors, battery properties and more •  >60,000 registered users •  Free •  www.materialsproject.org 8 Jain et al. Commentary: The Materials Project: A materials genome approach to accelerating materials innovation. APL Mater. 1, 11002 (2013).!
  • 9. 9 We also release open-source software libraries for high- throughput computation and materials science Data generation Data analysis run and manage millions of computational tasks over large computing resources library of FireWorks-compatible workflows for materials science applications materials data retrieval, featurization, and visualization for machine learning tools for crystal manipulation, data analysis, and simulation software I/O *led by Ong group, UCSD tools for inverse optimation / adaptive design – ML chooses what calculations to run
  • 10. 10 An engine to label the content of scientific abstracts Collect, clean, and extract information from millions of published materials science journal abstracts
  • 11. 11 Text mining to predict new materials in advance Top predictions from machine learning, trained on prior years, predict research in future years Note: each year is trained only on abstracts published until that year
  • 12. •  Materials Project –  K. Persson (director) •  Text mining –  V. Tshitoyan, J. Dagdelen, L. Weston •  Funding: –  DOE-BES (MP) –  DOE-BES (ECRP) –  Toyota Research Institute •  Computing: NERSC 12 Thank you! Slides (already) posted to hackingmaterials.lbl.gov