SlideShare una empresa de Scribd logo
1 de 14
High-Performance In0.75Ga0.25As
Implant-Free n-type MOSFETs
 for Low Power Applications
    J. S. Ayubi-Moak, K. Kalna and A. Asenov




       CDE-2009 Santiago de Compostela, Spain
Outline:


 • Motivation
 • Implant-Free (IF) MOSFET
 • Device Simulator & Results
 • Conclusions

 CDE-2009 Santiago de Compostela, Spain   2
Motivation
                     Transistor scaling and future options!
                           (High Performance Logic)!                              III-V device
90nm Node 65nm Node
                    45nm Node                                                     prototype
  P1262     P1264                        vision!                                  (Research)
   2003               P1266
             2005      2007 32nm Generation
                               P1268  22nm Generation
                               2009?   P1270
                                       2012?
 50nm Length
 (Production)
                 40nm Length
                (Production)
                                35nm Length
                               (Production)
                                              27nm Length
                                               (Research)   22nm Length
      Uniaxial                                               (Research)
                                                                          C-nanotube    Nanowire
      Strain
                           High-! /!                                       Prototype    Prototype
                                                                          (Research)    (Research)
SiGe S/D                  Metal Gate!                                     Unrealistic
                            2008!


                       Non-planar TriGate                                     2013-2022
                       FinFET (Research)




CDE-2009 Santiago de Compostela, Spain                                                               3
Motivation

                        The performance is influenced by mobility and saturation velocity!
                                       (Low field current=charge*density*mobility*field)!
                                             Mobility is ~50 % down due to very short channels !
                                            Higher mobility => Higher drive current!
                                          (Saturation current=charge*density*saturation velocity)
                                         Saturation velocity will differ in very short channels
                                          Higher saturation velocity => Higher drive current!
                                        Higher drive current enables lower operating voltages!


                           Material           Si  Ge        GaAs In0.53Ga0.47As InAs      InSb
                           Mobility [cm2/Vs] 1500 3900      8500 14000          25000     78000
                           vS [cm/s]           1!107 6 106 2 107 2.5 107       3.5 107 5 107



                                            Manufacturability         Co-Integration
III-V MOSFETs ?                             Low DOS                   Gate Dielectric
                                            The p-channel             Doping activation

   CDE-2009 Santiago de Compostela, Spain                                                         4
Motivation




                                GGO is a good
                               dielectric for III-Vs




                                                 M. Passlack et al., IEEE EDL 23(9), 2002.
CDE-2009 Santiago de Compostela, Spain           Z. Yu et al., APL 82(18), 2003.             5
Implant-Free (IF) MOSFET


                                                         VT controlled by workfunction
                                                         Carriers confined in the channel
                                                         Volume inversion
                                                         UTB-like electrostatic integrity
                                                         Low resistance access regions
                                                         High injection velocity
                                                         High ballisticity
                                                         No thermal budget constraints

M. Passlack, Hartin, Ray, Medendorp, U.S. Patent 6 963 090, Nov. 8, 2005.
M. Passlack et al., IEEE TED 53(10), 2006.

        CDE-2009 Santiago de Compostela, Spain                                               6
(Real) 1µm gate IF MOSFET




CDE-2009 Santiago de Compostela, Spain                                             7
                                         R. Hill et al., IEEE EDL 28 1080 (2007)
Monte Carlo Device Simulator


                              Quantum confinement effects:
                              • Effective quantum potential
                               D. K. Ferry, Superlatt. Microstruct. 28(5-6) (2000).


                              Included scattering mechanisms:
                                • polar optical phonons
                                • inter/intra-valley optical phonons
                                • acoustic phonons
                                • ionized impurities
                                • alloy scattering



CDE-2009 Santiago de Compostela, Spain                                                8
Simulated IF III-V MOSFET


                  Gate
Source                                Drain
                                                   Thickness of [nm]            Gate Length [nm]
                                                                              30       20          15
                                                      High-κ dielectric         3       2      1.5
                                                    In0.52Al0.48As spacer       2       1        1
                                                    In0.53Ga0.47As spacer       1     0.5      0.5
                                                   In0.75Ga0.25As channel       5       5        5
                                                    In0.53Ga0.47As spacer       1       1        1
                                                    In0.52Al0.48As spacer       2       2        2
                                                          δ-doping            0.5     0.5      0.5
                                                    In0.52Al0.48As buffer      10      10       10
                                                  Semi-insulating substrate   500     500      500




         CDE-2009 Santiago de Compostela, Spain                                                         9
Simulation Results Id-Vg




                                           1760 μA/μm
                                           1600 μA/μm
                                           1360 μA/μm




CDE-2009 Santiago de Compostela, Spain              10
Simulation Results Id-Vg
                                            5690 µS/µm
                                           5100 µS/µm


                                         3840 µS/µm




CDE-2009 Santiago de Compostela, Spain                   11
Simulation Results
                                         5.1×107 cm/s
                                         4.9×107 cm/s
                                         3.9×107 cm/s




CDE-2009 Santiago de Compostela, Spain                  12
Simulation Results

                            2000
                                               Lg = 15 nm
                            1800                                                                                  y2
                                                                                                                  y1
Cutoff Frequency fT (GHz)




                            1600                                             0.25

                                      Lg = 20 nm
                                                        Delay Time !T (ps)



                                                                              0.2
                            1400
                                                                             0.15

                            1200                                              0.1

                                                                                                                           avg
                                                                                                                                   ! y2       $       ! y2     $
                                    Lg = 30 nm                               0.05 1
                                                                                10
                                                                                                             2
                                                                                                            10
                                                                                                                       v   x     = # ( nvx dy &       # ( n dy &
                            1000
                                                                                      Gate Length Lg (nm)                          #y         &       #y       &
                                                                                                                                   " 1        %       " 1      %
                            800                                                                                                           Leff
                                                                                                                                           gate
                              100      150      200     250        300       350                            400               1                      dx'
                                               DC Power Dissipation ( !W/!m)                                           tT =       =        (
                                                                                                                            2p fT
                                                                                                                             π              0
                                                                                                                                                  v x ( x' )

                                     CDE-2009 Santiago de Compostela, Spain                                                                                    13
Conclusions

 A fair comparison of different channel materials
   requires careful consideration of all relevant effects.


 IF InGaAs channel MOSFETs with high-Indium
   content offers ~2x performance improvement down
   to 15 nm channel length.


 The IF MOSFET attractive for low-power, high-
   performance CMOS circuits and applications.




CDE-2009 Santiago de Compostela, Spain   14

Más contenido relacionado

La actualidad más candente

Sciences engineering portfolio (2010 08 05)
Sciences  engineering portfolio (2010 08 05)Sciences  engineering portfolio (2010 08 05)
Sciences engineering portfolio (2010 08 05)
ThomasUnivalor
 
Track e the road from 2 d to 3d integration -synopsys
Track e   the road from 2 d to 3d integration -synopsysTrack e   the road from 2 d to 3d integration -synopsys
Track e the road from 2 d to 3d integration -synopsys
chiportal
 
Pcb carolina scg_2010
Pcb carolina scg_2010Pcb carolina scg_2010
Pcb carolina scg_2010
tcoyle72
 
00 control panel xt specification sheet
00 control panel xt specification sheet00 control panel xt specification sheet
00 control panel xt specification sheet
Ilias Varsamis
 

La actualidad más candente (20)

Design of 3D Specific Systems: Prospective and Interface Requirements
Design of 3D Specific Systems: Prospective and Interface RequirementsDesign of 3D Specific Systems: Prospective and Interface Requirements
Design of 3D Specific Systems: Prospective and Interface Requirements
 
Sciences engineering portfolio (2010 08 05)
Sciences  engineering portfolio (2010 08 05)Sciences  engineering portfolio (2010 08 05)
Sciences engineering portfolio (2010 08 05)
 
Murata RFID PCB Tag (UHF) With Magicstrap (Incl. Schneider Usecase)
Murata RFID PCB Tag (UHF) With Magicstrap (Incl. Schneider Usecase)Murata RFID PCB Tag (UHF) With Magicstrap (Incl. Schneider Usecase)
Murata RFID PCB Tag (UHF) With Magicstrap (Incl. Schneider Usecase)
 
Potential of an ALD compatible ferroelectric
Potential of an ALD compatible ferroelectricPotential of an ALD compatible ferroelectric
Potential of an ALD compatible ferroelectric
 
Restructuring Campus CI -- UCSD-A LambdaCampus Research CI and the Quest for ...
Restructuring Campus CI -- UCSD-A LambdaCampus Research CI and the Quest for ...Restructuring Campus CI -- UCSD-A LambdaCampus Research CI and the Quest for ...
Restructuring Campus CI -- UCSD-A LambdaCampus Research CI and the Quest for ...
 
Track e the road from 2 d to 3d integration -synopsys
Track e   the road from 2 d to 3d integration -synopsysTrack e   the road from 2 d to 3d integration -synopsys
Track e the road from 2 d to 3d integration -synopsys
 
Cim 20071101 nov_2007
Cim 20071101 nov_2007Cim 20071101 nov_2007
Cim 20071101 nov_2007
 
A High-Performance Campus-Scale Cyberinfrastructure for Effectively Bridging ...
A High-Performance Campus-Scale Cyberinfrastructure for Effectively Bridging ...A High-Performance Campus-Scale Cyberinfrastructure for Effectively Bridging ...
A High-Performance Campus-Scale Cyberinfrastructure for Effectively Bridging ...
 
Rfid pcb tag (uhf) with magicstrap - all (3.3. - 2013)
Rfid pcb tag (uhf) with magicstrap - all (3.3. - 2013)Rfid pcb tag (uhf) with magicstrap - all (3.3. - 2013)
Rfid pcb tag (uhf) with magicstrap - all (3.3. - 2013)
 
Bl32401409
Bl32401409Bl32401409
Bl32401409
 
Cim 20070701 jul_2007
Cim 20070701 jul_2007Cim 20070701 jul_2007
Cim 20070701 jul_2007
 
IEEE ECE main projects list 2012 13
IEEE ECE main projects list 2012 13IEEE ECE main projects list 2012 13
IEEE ECE main projects list 2012 13
 
Cim 20070801 aug_2007
Cim 20070801 aug_2007Cim 20070801 aug_2007
Cim 20070801 aug_2007
 
Pcb carolina scg_2010
Pcb carolina scg_2010Pcb carolina scg_2010
Pcb carolina scg_2010
 
Software Defined Data Centers - June 2012
Software Defined Data Centers - June 2012Software Defined Data Centers - June 2012
Software Defined Data Centers - June 2012
 
Projects 2009 ver3
Projects 2009 ver3Projects 2009 ver3
Projects 2009 ver3
 
Analyzing Chips in a System Context
Analyzing Chips in a System ContextAnalyzing Chips in a System Context
Analyzing Chips in a System Context
 
An02 dws
An02 dwsAn02 dws
An02 dws
 
Performance Analysis of Junctionless Sonos Memory
Performance Analysis of Junctionless Sonos MemoryPerformance Analysis of Junctionless Sonos Memory
Performance Analysis of Junctionless Sonos Memory
 
00 control panel xt specification sheet
00 control panel xt specification sheet00 control panel xt specification sheet
00 control panel xt specification sheet
 

Destacado

Terahertz trigate transistor
Terahertz trigate transistorTerahertz trigate transistor
Terahertz trigate transistor
Mrinal Pal
 
Trigate transistors and future processors
Trigate transistors and future processors Trigate transistors and future processors
Trigate transistors and future processors
Chinmay Chepurwar
 
Analog Mixed-Signal Design in FinFET Processes
Analog Mixed-Signal Design in FinFET Processes Analog Mixed-Signal Design in FinFET Processes
Analog Mixed-Signal Design in FinFET Processes
Design World
 

Destacado (19)

22nm tri-gate technology
22nm tri-gate technology22nm tri-gate technology
22nm tri-gate technology
 
The Shift to 3D-IC Structures - Manufacturing and Process Control Challenges
The Shift to 3D-IC Structures - Manufacturing and Process Control ChallengesThe Shift to 3D-IC Structures - Manufacturing and Process Control Challenges
The Shift to 3D-IC Structures - Manufacturing and Process Control Challenges
 
Terahertz trigate transistor
Terahertz trigate transistorTerahertz trigate transistor
Terahertz trigate transistor
 
3d transistor
3d transistor3d transistor
3d transistor
 
Minibug slidedeck
Minibug slidedeckMinibug slidedeck
Minibug slidedeck
 
Terahertz_Applications
Terahertz_ApplicationsTerahertz_Applications
Terahertz_Applications
 
Achieving Power Noise Reliability Sign-off for FinFET based Designs
Achieving Power Noise Reliability Sign-off for FinFET based DesignsAchieving Power Noise Reliability Sign-off for FinFET based Designs
Achieving Power Noise Reliability Sign-off for FinFET based Designs
 
Trigate transistors and future processors
Trigate transistors and future processors Trigate transistors and future processors
Trigate transistors and future processors
 
Analog Mixed-Signal Design in FinFET Processes
Analog Mixed-Signal Design in FinFET Processes Analog Mixed-Signal Design in FinFET Processes
Analog Mixed-Signal Design in FinFET Processes
 
Sushant
SushantSushant
Sushant
 
Lecture14
Lecture14Lecture14
Lecture14
 
tri gate transistors
tri gate transistorstri gate transistors
tri gate transistors
 
Terahertz_An introduction
Terahertz_An introductionTerahertz_An introduction
Terahertz_An introduction
 
Thermal Reliability for FinFET based Designs
Thermal Reliability for FinFET based DesignsThermal Reliability for FinFET based Designs
Thermal Reliability for FinFET based Designs
 
3D or Tri-gate transistors
3D or Tri-gate transistors3D or Tri-gate transistors
3D or Tri-gate transistors
 
finfet & dg-fet technology
finfet & dg-fet technologyfinfet & dg-fet technology
finfet & dg-fet technology
 
Finfet
FinfetFinfet
Finfet
 
Fin Fet Technology by SAMRA
Fin Fet  Technology by SAMRAFin Fet  Technology by SAMRA
Fin Fet Technology by SAMRA
 
State of the Word 2011
State of the Word 2011State of the Word 2011
State of the Word 2011
 

Similar a High-Performance In0.75Ga0.25As Implant-Free n-Type MOSFETs for Low Power Applications

Candidate experience overview (2013)
Candidate experience overview (2013)Candidate experience overview (2013)
Candidate experience overview (2013)
Roman Malendevich
 
High Performance Printed Circuit Boards - Lecture #2
High Performance Printed Circuit Boards - Lecture #2High Performance Printed Circuit Boards - Lecture #2
High Performance Printed Circuit Boards - Lecture #2
Samsung Electro-Mechanics
 
Resume analog
Resume analogResume analog
Resume analog
tarora1
 
Resume analog
Resume analogResume analog
Resume analog
tarora1
 

Similar a High-Performance In0.75Ga0.25As Implant-Free n-Type MOSFETs for Low Power Applications (20)

CMOS SOI Technology
CMOS SOI TechnologyCMOS SOI Technology
CMOS SOI Technology
 
Candidate experience overview (2013)
Candidate experience overview (2013)Candidate experience overview (2013)
Candidate experience overview (2013)
 
Photonics @ IITM
Photonics @ IITMPhotonics @ IITM
Photonics @ IITM
 
Doering
DoeringDoering
Doering
 
Kg3418451855
Kg3418451855Kg3418451855
Kg3418451855
 
Performance Comparison of CMOS and Finfet Based Circuits At 45nm Technology U...
Performance Comparison of CMOS and Finfet Based Circuits At 45nm Technology U...Performance Comparison of CMOS and Finfet Based Circuits At 45nm Technology U...
Performance Comparison of CMOS and Finfet Based Circuits At 45nm Technology U...
 
DC performance analysis of a 20nm gate length n-type Silicon GAA junctionless...
DC performance analysis of a 20nm gate length n-type Silicon GAA junctionless...DC performance analysis of a 20nm gate length n-type Silicon GAA junctionless...
DC performance analysis of a 20nm gate length n-type Silicon GAA junctionless...
 
Design & Performance Analysis of DG-MOSFET for Reduction of Short Channel Eff...
Design & Performance Analysis of DG-MOSFET for Reduction of Short Channel Eff...Design & Performance Analysis of DG-MOSFET for Reduction of Short Channel Eff...
Design & Performance Analysis of DG-MOSFET for Reduction of Short Channel Eff...
 
Mosfet ppt by dhwani sametriya
Mosfet ppt by dhwani sametriyaMosfet ppt by dhwani sametriya
Mosfet ppt by dhwani sametriya
 
Final tssa design and realization of passive phase shifters
Final tssa design and realization of passive phase shiftersFinal tssa design and realization of passive phase shifters
Final tssa design and realization of passive phase shifters
 
TCAD Based Analysis of Gate Leakage Current for High-k Gate Stack MOSFET
TCAD Based Analysis of Gate Leakage Current for High-k Gate Stack MOSFETTCAD Based Analysis of Gate Leakage Current for High-k Gate Stack MOSFET
TCAD Based Analysis of Gate Leakage Current for High-k Gate Stack MOSFET
 
PON testing.pdf
PON testing.pdfPON testing.pdf
PON testing.pdf
 
Cnt vacuum electronics 9 may 09
Cnt vacuum electronics  9 may 09Cnt vacuum electronics  9 may 09
Cnt vacuum electronics 9 may 09
 
Puurunen invited lecture AVS-ALD 2009 090719
Puurunen invited lecture AVS-ALD 2009 090719Puurunen invited lecture AVS-ALD 2009 090719
Puurunen invited lecture AVS-ALD 2009 090719
 
Junctionless Transistor
Junctionless Transistor Junctionless Transistor
Junctionless Transistor
 
High Performance Printed Circuit Boards - Lecture #2
High Performance Printed Circuit Boards - Lecture #2High Performance Printed Circuit Boards - Lecture #2
High Performance Printed Circuit Boards - Lecture #2
 
P1121110526
P1121110526P1121110526
P1121110526
 
SOTA.pptx
SOTA.pptxSOTA.pptx
SOTA.pptx
 
Resume analog
Resume analogResume analog
Resume analog
 
Resume analog
Resume analogResume analog
Resume analog
 

High-Performance In0.75Ga0.25As Implant-Free n-Type MOSFETs for Low Power Applications

  • 1. High-Performance In0.75Ga0.25As Implant-Free n-type MOSFETs for Low Power Applications J. S. Ayubi-Moak, K. Kalna and A. Asenov CDE-2009 Santiago de Compostela, Spain
  • 2. Outline: • Motivation • Implant-Free (IF) MOSFET • Device Simulator & Results • Conclusions CDE-2009 Santiago de Compostela, Spain 2
  • 3. Motivation Transistor scaling and future options! (High Performance Logic)! III-V device 90nm Node 65nm Node 45nm Node prototype P1262 P1264 vision! (Research) 2003 P1266 2005 2007 32nm Generation P1268 22nm Generation 2009? P1270 2012? 50nm Length (Production) 40nm Length (Production) 35nm Length (Production) 27nm Length (Research) 22nm Length Uniaxial (Research) C-nanotube Nanowire Strain High-! /! Prototype Prototype (Research) (Research) SiGe S/D Metal Gate! Unrealistic 2008! Non-planar TriGate 2013-2022 FinFET (Research) CDE-2009 Santiago de Compostela, Spain 3
  • 4. Motivation The performance is influenced by mobility and saturation velocity! (Low field current=charge*density*mobility*field)! Mobility is ~50 % down due to very short channels ! Higher mobility => Higher drive current! (Saturation current=charge*density*saturation velocity) Saturation velocity will differ in very short channels Higher saturation velocity => Higher drive current! Higher drive current enables lower operating voltages! Material Si Ge GaAs In0.53Ga0.47As InAs InSb Mobility [cm2/Vs] 1500 3900 8500 14000 25000 78000 vS [cm/s] 1!107 6 106 2 107 2.5 107 3.5 107 5 107 Manufacturability Co-Integration III-V MOSFETs ? Low DOS Gate Dielectric The p-channel Doping activation CDE-2009 Santiago de Compostela, Spain 4
  • 5. Motivation GGO is a good dielectric for III-Vs M. Passlack et al., IEEE EDL 23(9), 2002. CDE-2009 Santiago de Compostela, Spain Z. Yu et al., APL 82(18), 2003. 5
  • 6. Implant-Free (IF) MOSFET  VT controlled by workfunction  Carriers confined in the channel  Volume inversion  UTB-like electrostatic integrity  Low resistance access regions  High injection velocity  High ballisticity  No thermal budget constraints M. Passlack, Hartin, Ray, Medendorp, U.S. Patent 6 963 090, Nov. 8, 2005. M. Passlack et al., IEEE TED 53(10), 2006. CDE-2009 Santiago de Compostela, Spain 6
  • 7. (Real) 1µm gate IF MOSFET CDE-2009 Santiago de Compostela, Spain 7 R. Hill et al., IEEE EDL 28 1080 (2007)
  • 8. Monte Carlo Device Simulator Quantum confinement effects: • Effective quantum potential D. K. Ferry, Superlatt. Microstruct. 28(5-6) (2000). Included scattering mechanisms: • polar optical phonons • inter/intra-valley optical phonons • acoustic phonons • ionized impurities • alloy scattering CDE-2009 Santiago de Compostela, Spain 8
  • 9. Simulated IF III-V MOSFET Gate Source Drain Thickness of [nm] Gate Length [nm] 30 20 15 High-κ dielectric 3 2 1.5 In0.52Al0.48As spacer 2 1 1 In0.53Ga0.47As spacer 1 0.5 0.5 In0.75Ga0.25As channel 5 5 5 In0.53Ga0.47As spacer 1 1 1 In0.52Al0.48As spacer 2 2 2 δ-doping 0.5 0.5 0.5 In0.52Al0.48As buffer 10 10 10 Semi-insulating substrate 500 500 500 CDE-2009 Santiago de Compostela, Spain 9
  • 10. Simulation Results Id-Vg 1760 μA/μm 1600 μA/μm 1360 μA/μm CDE-2009 Santiago de Compostela, Spain 10
  • 11. Simulation Results Id-Vg 5690 µS/µm 5100 µS/µm 3840 µS/µm CDE-2009 Santiago de Compostela, Spain 11
  • 12. Simulation Results 5.1×107 cm/s 4.9×107 cm/s 3.9×107 cm/s CDE-2009 Santiago de Compostela, Spain 12
  • 13. Simulation Results 2000 Lg = 15 nm 1800 y2 y1 Cutoff Frequency fT (GHz) 1600 0.25 Lg = 20 nm Delay Time !T (ps) 0.2 1400 0.15 1200 0.1 avg ! y2 $ ! y2 $ Lg = 30 nm 0.05 1 10 2 10 v x = # ( nvx dy & # ( n dy & 1000 Gate Length Lg (nm) #y & #y & " 1 % " 1 % 800 Leff gate 100 150 200 250 300 350 400 1 dx' DC Power Dissipation ( !W/!m) tT = = ( 2p fT π 0 v x ( x' ) CDE-2009 Santiago de Compostela, Spain 13
  • 14. Conclusions  A fair comparison of different channel materials requires careful consideration of all relevant effects.  IF InGaAs channel MOSFETs with high-Indium content offers ~2x performance improvement down to 15 nm channel length.  The IF MOSFET attractive for low-power, high- performance CMOS circuits and applications. CDE-2009 Santiago de Compostela, Spain 14