SlideShare una empresa de Scribd logo
1 de 52
Classical Relations And Fuzzy Relations Baran Kaynak 1
Relations This chapter introduce the notion of relation. The notion of relation is the basic idea behind numerous operations on sets suchas Cartesian products, composition of relations , difference of relations and intersections of relations and equivalence properties  In all engineering , science and mathematically based fields, relations is very important 2
Relations Similarities can be described with relations. In this sense, relations is a very important notion to many different technologies like graph theory, data manipulation. Graphtheory 3
Data manipulations 4
Inclassicalrelations (crisprelations), Relationshipsbetweenelements of thesetsare only in twodegrees; “completelyrelated” and “not related”. Fuzzyrelationstake on an infinitivenumber of degrees of relationshipsbetweentheextremes of “ completelyrelated” and “ not related” 5
Crisp system ,[object Object],- Based on models (i.e.differential equations) - Requires complete  set of data - Typically linear  Fuzzy system - Fuzzy, qualitative, vague - Uses knowledge (i.e. rules) - Requires fuzzy data - Nonlinear method 6
Crisp system -Complex systems hardto model -incomplete information leads to inaccuracy -numerical Fuzzy logic system -No traditional  modeling,inferences based on knowledge - can handle incomplete information to some degree -linguistic 7
CartesianProduct Example 3.1. The elements in two sets A and B are given as A ={0, 1} and B ={a,b, c}. Various Cartesian products of these two sets can bewritten as shown: A × B ={(0,a),(0,b),(0,c),(1,a),(1,b),(1,c)} B × A ={(a, 0), (a, 1), (b, 0), (b, 1), (c, 0), (c, 1)} A × A = A2={(0, 0), (0, 1), (1, 0), (1, 1)} B × B = B2={(a, a), (a, b), (a, c), (b, a), (b, b), (b, c), (c, a), (c, b), (c, c)} 8
CrispRelations Cartesianproduct is denoted in form A1 x A2 x…..x Ar Themostcommoncase is for r=2 andrepresentwith A1 x A2 The Cartesian product of two universes X and Y is determined as X × Y = {(x, y) | x ∈ X,y ∈ Y} This form showsthatthere is a matchingbetween X and Y , this is a unconstrainedmatching.  9
CrispRelations Every element in universe X is related completely toevery element in universe Y Thisrelationship’sstrenght  is measuredbythecharacteristicsfunctionχ χX×Y(x, y) = 1, (x,y) ∈ X × Y 0, (x,y) ∉ X × Y Completerelationship  is showedwith 1 and no relationship is showedwith 0  10
When the universes, or sets, are finite the relation can be conveniently represented by a matrix, called a relation matrix. X ={1, 2, 3} and Y ={a, b, c} Sagittal diagram of an unconstrained relation 11
Specialcases of theconstrainedCartesianproductforsetswhere r=2 arecalledidentityrelationdenoted IA IA ={(0, 0), (1, 1), (2, 2)} Specialcases of theunconstrainedCartesianproductforsetswhere r=2 arecalleduniversalrelationdenoted UA UA ={(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (2, 2)} 12
Cardinality Of CripsRelations TheCardinality of therelation r between X and Y  is n X x Y    = nx * ny Power  set (P(X x Y)), nP(X×Y) = 2(nXnY) 13
Operations On CripsRelations Define R and S as two separate relations on the Cartesian universe X × Y Union: R ∪ S -> χR∪S(x, y) : χR∪S(x, y) = max[χR(x, y), χS(x, y)] Intersection: R ∩ S -> χR∩S(x, y) : χR∩S(x, y) = min[χR(x, y), χS(x, y)] Complement:R ->χR(x, y) : χR(x, y) = 1 − χR(x, y)  Containment: R ⊂ S ->χR(x, y) : χR(x, y) ≤ χS(x, y)  14
Properties Of CripsRelations Commutativity Associativity Distributivity Involution Idempotency 15 2 × (1 + 3) = (2 × 1) + (2 × 3).
Composition 16
CrispBinaryRelation 17
Composition Forthesetworelationsletsmake a compositionnamed T  R = {(x1, y1), (x1, y3), (x2, y4)} S = {(y1, z2), (y3, z2)} 18
19
A chain is only as strong as itsweakestlink 20
Example Using themax–min composition operation,relationmatrices for Rand S would be expressed as µT(x1, z1) = max[min(1, 0), min(0, 0), min(1, 0), min(0, 0)] = 0 21
Example Using themax–min composition operation,relationmatrices for Rand S would be expressed as µT(x1, z1) = max[min(1, 0), min(0, 0), min(1, 0), min(0, 0)] = 0 µT(x1, z2) = max[min(1, 1), min(0, 0), min(1, 1), min(0, 0)] = 1 22
FuzzyRelations A fuzzy relation R is a mapping from the Cartesianspace X x Y to the interval [0,1], where thestrength of the mapping is expressed by themembership function of the relation μR(x,y) μR : A × B -> [0, 1] R = {((x, y), μR(x, y))| μR(x, y) ≥ 0 , x ∈ A, y ∈ B} 23
24
Crisp relation vs. Fuzzyrelation 25 Crisprelation Fuzzyrelation
Cardinality of FuzzyRelations Since the cardinality of fuzzy sets on any universe is infinity, the cardinality of a fuzzyrelation between two or more universes is also infinity. 26
Operations on FuzzyRelations Let R and S be fuzzy relations on the Cartesian space X × Y. Then the following operationsapply for the membership values for various set operations: 27 Union:	µR∪S(x, y) = max(µR (x, y),µS(x, y))  Intersection:	µR∩S (x, y) = min(µR (x, y),µS (x, y))  Complement:µR(x, y) = 1 − µR(x, y)  Containment:R⊂ S  ⇒ µR (x, y) ≤ µS (x, y)
Fuzzy Cartesian Product and Composition A fuzzy relation R is a mapping from the Cartesianspace X x Y to the interval [0,1], where thestrength of the mapping is expressed by themembership function of the relation μR(x,y) μR: A × B -> [0, 1] R = {((x, y), μR(x, y))| μR(x, y) ≥ 0 , x ∈ A, y ∈ B} 28
Max-minComposition Two fuzzy relations R and S are defined on sets A,B and C. That is, R ⊆ A × B, S ⊆ B × C. Thecomposition S•R = SR of two relations R and S isexpressed by the relation from A to C: For(x, y) ∈ A × B, (y, z) ∈ B × C, µS•R(x, z) = max [min(µR(x, y), µS(y, z))]= ∨ [μR(x, y) ∧ μS(y, z)] MS•R= MR•MS(matrixnotation) 29
Max-minComposition 30
Max-productComposition Two fuzzy relations R and S are defined on sets A,B and C. That is, R ⊆ A × B, S ⊆ B × C. Thecomposition S•R = SR of two relations R and S isexpressed by the relation from A to C: For(x, y) ∈ A × B, (y, z) ∈ B × C, μS•R(x, z) = maxy[μR(x, y) • μS(y, z)] = ∨y[μR(x, y) • μS(y, z) 	MS•R= MR• MS(matrixnotation) 31
32
Example Suppose we have two fuzzy sets, Adefined on a universe of three discretetemperatures, X = {x1, x2, x3}, and Bdefined on a universe of two discrete pressures, Y ={y1, y2}, and we want to find the fuzzy Cartesian product between them. Fuzzy set Acouldrepresent the ‘‘ambient’’ temperature and fuzzy setBthe ‘‘near optimum’’ pressure for a certainheat exchanger, and the Cartesian productmight represent the conditions (temperature–pressurepairs) of the exchanger that are associated with ‘‘efficient’’ operations. 33
FuzzyCartesianproduct, usingµS•R(x, z) = max [min (µR (x, y), µS (y, z))]results in a fuzzyrelation R (of size 3 × 2) representing ‘‘efficient’’ conditions, 34
Example X = {x1, x2}, Y = {y1, y2}, and Z = {z1, z2, z3} Consider the following fuzzy relations: 35 Thentheresultingrelation, T, which relates elements of universe X to elements of universe Z, μT(x1, z1) = max[min(0.7, 0.9), min(0.5, 0.1)] = 0.7
andbymax–productcomposition, 36 μT(x2, z2) = max[(0.8 . 0.6), (0.4 .0.7)] = 0.48
Example  A simple fuzzy system is given, which models the brake behaviour of a car driver depending on the car speed. The inference machine should determine the brake force for a given car speed. The speed is specified by the two linguistic terms"low"and "medium", and the brake force by "moderate"and "strong". The rule base includes the two rules (1) IF the car speed is low THEN the brake force is moderate (2) IF the car speed is medium THEN the brake force is strong 37
http://virtual.cvut.cz/dynlabmodules/ihtml/dynlabmodules/syscontrol/node123.html Short Url: http://goo.gl/T2z5u 38
CrispEquivalenceRelation Arelation R on a universeXcan also be thought of as a relation fromXtoX. The relation R is an equivalence relation and it has the following three properties: Reflexivity Symmetry Transitivity 39
Reflexivity (xi ,xi ) ∈ R or χR(xi ,xi ) = 1 When a relation is reflexiveevery vertex in the graph originates a single loop, as shown in  40
Symmetry (xi, xj ) ∈ R -> (xj, xi) ∈ R 41
Transitivity (xi ,xj ) ∈ R and (xj ,xk) ∈ R -> (xi ,xk) ∈ R 42
CrispToleranceRelation A tolerance relation R (also called a proximity relation) on a universe X is a relation that exhibits only the properties of reflexivity and symmetry.  A tolerance relation, R, can be reformed into an equivalence relation by at most (n − 1) compositions with itself, where n is the cardinal number of the set defining R, in this case X 43
Example Suppose in an airline transportation system we have a universe composed offive elements: the cities Omaha, Chicago, Rome, London, and Detroit. The airline is studyinglocations of potential hubs in various countries and must consider air mileage between citiesand takeoff and landing policies in the various countries.  44
Example These cities can be enumerated as the elements of a set, i.e., X ={x1,x2,x3,x4,x5}={Omaha, Chicago, Rome, London, Detroit} Suppose we have a tolerance relation, R1, that expresses relationships among these cities: This relation is reflexive and symmetric. 45
Example The graph for this tolerance relation If(x1,x5) ∈ R1can become an equivalence relation  46
Example: Thismatrix is equivalence relation because it has (x1,x5) 47 Five-vertex graph of equivalence relation    (reflexive, symmetric, transitive)
FUZZY TOLERANCE AND EQUIVALENCE RELATIONS Reflexivity μR(xi, xi) = 1 Symmetry μR(xi, xj ) = μR(xj, xi) Transitivity μR(xi, xj ) =λ1 and μR(xj, xk) = λ2 	μR(xi, xk) =λwhereλ ≥ min[λ1, λ2]. 48
Example Suppose, in a biotechnology experiment, five potentially new strains of bacteriahave been detected in the area around an anaerobic corrosion pit on a new aluminum-lithiumalloy used in the fuel tanks of a new experimental aircraft. In order to propose methods toeliminate the biocorrosion caused by these bacteria, the five strains must first be categorized.One way to categorize them is to compare them to one another. In a pairwise comparison, thefollowing " similarity" relation,R1, is developed. For example, the first strain (column 1) hasa strength of similarity to the second strain of 0.8, to the third strain a strength of 0 (i.e., norelation), to the fourth strain a strength of 0.1, and so on. Because the relation is for pairwisesimilarity it will be reflexive and symmetric. Hence, 49
50 is reflexive and symmetric. However, it is not transitive μR(x1, x2) = 0.8, μR(x2, x5) = 0.9 ≥ 0.8 but μR(x1, x5) = 0.2  ≤ min(0.8, 0.9)
51 One composition results in the following relation: where transitivity still does not result; for example, μR2(x1, x2) = 0.8 ≥ 0.5 and μR2(x2, x4) = 0.5 but μR2(x1, x4) = 0.2 ≤ min(0.8, 0.5)
52 Finally, after one or two more compositions, transitivity results:

Más contenido relacionado

La actualidad más candente

Knowledge Representation & Reasoning
Knowledge Representation & ReasoningKnowledge Representation & Reasoning
Knowledge Representation & Reasoning
Sajid Marwat
 
Fuzzy Logic Ppt
Fuzzy Logic PptFuzzy Logic Ppt
Fuzzy Logic Ppt
rafi
 

La actualidad más candente (20)

Fuzzy logic and application in AI
Fuzzy logic and application in AIFuzzy logic and application in AI
Fuzzy logic and application in AI
 
Defuzzification
DefuzzificationDefuzzification
Defuzzification
 
fuzzy fuzzification and defuzzification
fuzzy fuzzification and defuzzificationfuzzy fuzzification and defuzzification
fuzzy fuzzification and defuzzification
 
Fuzzy relations
Fuzzy relationsFuzzy relations
Fuzzy relations
 
Fuzzy logic
Fuzzy logicFuzzy logic
Fuzzy logic
 
Fuzzy rules and fuzzy reasoning
Fuzzy rules and fuzzy reasoningFuzzy rules and fuzzy reasoning
Fuzzy rules and fuzzy reasoning
 
Learning Methods in a Neural Network
Learning Methods in a Neural NetworkLearning Methods in a Neural Network
Learning Methods in a Neural Network
 
Uncertainty in AI
Uncertainty in AIUncertainty in AI
Uncertainty in AI
 
State Space Representation and Search
State Space Representation and SearchState Space Representation and Search
State Space Representation and Search
 
search strategies in artificial intelligence
search strategies in artificial intelligencesearch strategies in artificial intelligence
search strategies in artificial intelligence
 
Fuzzy+logic
Fuzzy+logicFuzzy+logic
Fuzzy+logic
 
L9 fuzzy implications
L9 fuzzy implicationsL9 fuzzy implications
L9 fuzzy implications
 
Application of fuzzy logic
Application of fuzzy logicApplication of fuzzy logic
Application of fuzzy logic
 
Fuzzy Logic
Fuzzy LogicFuzzy Logic
Fuzzy Logic
 
Knowledge Representation & Reasoning
Knowledge Representation & ReasoningKnowledge Representation & Reasoning
Knowledge Representation & Reasoning
 
L8 fuzzy relations contd.
L8 fuzzy relations contd.L8 fuzzy relations contd.
L8 fuzzy relations contd.
 
Dijkstra's Algorithm
Dijkstra's Algorithm Dijkstra's Algorithm
Dijkstra's Algorithm
 
Fuzzy expert system
Fuzzy expert systemFuzzy expert system
Fuzzy expert system
 
Predicate logic
 Predicate logic Predicate logic
Predicate logic
 
Fuzzy Logic Ppt
Fuzzy Logic PptFuzzy Logic Ppt
Fuzzy Logic Ppt
 

Similar a Classical relations and fuzzy relations

Machine learning (10)
Machine learning (10)Machine learning (10)
Machine learning (10)
NYversity
 

Similar a Classical relations and fuzzy relations (20)

fuzzy set
fuzzy setfuzzy set
fuzzy set
 
Machine learning (10)
Machine learning (10)Machine learning (10)
Machine learning (10)
 
Cs229 notes9
Cs229 notes9Cs229 notes9
Cs229 notes9
 
Comparison Results of Trapezoidal, Simpson’s 13 rule, Simpson’s 38 rule, and ...
Comparison Results of Trapezoidal, Simpson’s 13 rule, Simpson’s 38 rule, and ...Comparison Results of Trapezoidal, Simpson’s 13 rule, Simpson’s 38 rule, and ...
Comparison Results of Trapezoidal, Simpson’s 13 rule, Simpson’s 38 rule, and ...
 
05_AJMS_16_18_RA.pdf
05_AJMS_16_18_RA.pdf05_AJMS_16_18_RA.pdf
05_AJMS_16_18_RA.pdf
 
05_AJMS_16_18_RA.pdf
05_AJMS_16_18_RA.pdf05_AJMS_16_18_RA.pdf
05_AJMS_16_18_RA.pdf
 
Per6 basis2_NUMBER SYSTEMS
Per6 basis2_NUMBER SYSTEMSPer6 basis2_NUMBER SYSTEMS
Per6 basis2_NUMBER SYSTEMS
 
Section3 stochastic
Section3 stochasticSection3 stochastic
Section3 stochastic
 
On the Family of Concept Forming Operators in Polyadic FCA
On the Family of Concept Forming Operators in Polyadic FCAOn the Family of Concept Forming Operators in Polyadic FCA
On the Family of Concept Forming Operators in Polyadic FCA
 
Principal Component Analysis
Principal Component AnalysisPrincipal Component Analysis
Principal Component Analysis
 
Ch02 fuzzyrelation
Ch02 fuzzyrelationCh02 fuzzyrelation
Ch02 fuzzyrelation
 
Series_Solution_Methods_and_Special_Func.pdf
Series_Solution_Methods_and_Special_Func.pdfSeries_Solution_Methods_and_Special_Func.pdf
Series_Solution_Methods_and_Special_Func.pdf
 
Lecture 3 - Linear Regression
Lecture 3 - Linear RegressionLecture 3 - Linear Regression
Lecture 3 - Linear Regression
 
Corr-and-Regress (1).ppt
Corr-and-Regress (1).pptCorr-and-Regress (1).ppt
Corr-and-Regress (1).ppt
 
Corr-and-Regress.ppt
Corr-and-Regress.pptCorr-and-Regress.ppt
Corr-and-Regress.ppt
 
Cr-and-Regress.ppt
Cr-and-Regress.pptCr-and-Regress.ppt
Cr-and-Regress.ppt
 
Corr-and-Regress.ppt
Corr-and-Regress.pptCorr-and-Regress.ppt
Corr-and-Regress.ppt
 
Corr-and-Regress.ppt
Corr-and-Regress.pptCorr-and-Regress.ppt
Corr-and-Regress.ppt
 
Corr-and-Regress.ppt
Corr-and-Regress.pptCorr-and-Regress.ppt
Corr-and-Regress.ppt
 
Correlation & Regression for Statistics Social Science
Correlation & Regression for Statistics Social ScienceCorrelation & Regression for Statistics Social Science
Correlation & Regression for Statistics Social Science
 

Último

1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
QucHHunhnh
 
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
ZurliaSoop
 
Seal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptxSeal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptx
negromaestrong
 

Último (20)

Sociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning ExhibitSociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning Exhibit
 
Asian American Pacific Islander Month DDSD 2024.pptx
Asian American Pacific Islander Month DDSD 2024.pptxAsian American Pacific Islander Month DDSD 2024.pptx
Asian American Pacific Islander Month DDSD 2024.pptx
 
Unit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptxUnit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptx
 
Application orientated numerical on hev.ppt
Application orientated numerical on hev.pptApplication orientated numerical on hev.ppt
Application orientated numerical on hev.ppt
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdf
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy Consulting
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
 
Unit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxUnit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptx
 
Food safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdfFood safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdf
 
Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)
 
Making communications land - Are they received and understood as intended? we...
Making communications land - Are they received and understood as intended? we...Making communications land - Are they received and understood as intended? we...
Making communications land - Are they received and understood as intended? we...
 
Micro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdfMicro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdf
 
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
 
ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.
 
Python Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxPython Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docx
 
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
 
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
 
Magic bus Group work1and 2 (Team 3).pptx
Magic bus Group work1and 2 (Team 3).pptxMagic bus Group work1and 2 (Team 3).pptx
Magic bus Group work1and 2 (Team 3).pptx
 
ComPTIA Overview | Comptia Security+ Book SY0-701
ComPTIA Overview | Comptia Security+ Book SY0-701ComPTIA Overview | Comptia Security+ Book SY0-701
ComPTIA Overview | Comptia Security+ Book SY0-701
 
Seal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptxSeal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptx
 

Classical relations and fuzzy relations

  • 1. Classical Relations And Fuzzy Relations Baran Kaynak 1
  • 2. Relations This chapter introduce the notion of relation. The notion of relation is the basic idea behind numerous operations on sets suchas Cartesian products, composition of relations , difference of relations and intersections of relations and equivalence properties In all engineering , science and mathematically based fields, relations is very important 2
  • 3. Relations Similarities can be described with relations. In this sense, relations is a very important notion to many different technologies like graph theory, data manipulation. Graphtheory 3
  • 5. Inclassicalrelations (crisprelations), Relationshipsbetweenelements of thesetsare only in twodegrees; “completelyrelated” and “not related”. Fuzzyrelationstake on an infinitivenumber of degrees of relationshipsbetweentheextremes of “ completelyrelated” and “ not related” 5
  • 6.
  • 7. Crisp system -Complex systems hardto model -incomplete information leads to inaccuracy -numerical Fuzzy logic system -No traditional modeling,inferences based on knowledge - can handle incomplete information to some degree -linguistic 7
  • 8. CartesianProduct Example 3.1. The elements in two sets A and B are given as A ={0, 1} and B ={a,b, c}. Various Cartesian products of these two sets can bewritten as shown: A × B ={(0,a),(0,b),(0,c),(1,a),(1,b),(1,c)} B × A ={(a, 0), (a, 1), (b, 0), (b, 1), (c, 0), (c, 1)} A × A = A2={(0, 0), (0, 1), (1, 0), (1, 1)} B × B = B2={(a, a), (a, b), (a, c), (b, a), (b, b), (b, c), (c, a), (c, b), (c, c)} 8
  • 9. CrispRelations Cartesianproduct is denoted in form A1 x A2 x…..x Ar Themostcommoncase is for r=2 andrepresentwith A1 x A2 The Cartesian product of two universes X and Y is determined as X × Y = {(x, y) | x ∈ X,y ∈ Y} This form showsthatthere is a matchingbetween X and Y , this is a unconstrainedmatching. 9
  • 10. CrispRelations Every element in universe X is related completely toevery element in universe Y Thisrelationship’sstrenght is measuredbythecharacteristicsfunctionχ χX×Y(x, y) = 1, (x,y) ∈ X × Y 0, (x,y) ∉ X × Y Completerelationship is showedwith 1 and no relationship is showedwith 0 10
  • 11. When the universes, or sets, are finite the relation can be conveniently represented by a matrix, called a relation matrix. X ={1, 2, 3} and Y ={a, b, c} Sagittal diagram of an unconstrained relation 11
  • 12. Specialcases of theconstrainedCartesianproductforsetswhere r=2 arecalledidentityrelationdenoted IA IA ={(0, 0), (1, 1), (2, 2)} Specialcases of theunconstrainedCartesianproductforsetswhere r=2 arecalleduniversalrelationdenoted UA UA ={(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (2, 2)} 12
  • 13. Cardinality Of CripsRelations TheCardinality of therelation r between X and Y is n X x Y = nx * ny Power set (P(X x Y)), nP(X×Y) = 2(nXnY) 13
  • 14. Operations On CripsRelations Define R and S as two separate relations on the Cartesian universe X × Y Union: R ∪ S -> χR∪S(x, y) : χR∪S(x, y) = max[χR(x, y), χS(x, y)] Intersection: R ∩ S -> χR∩S(x, y) : χR∩S(x, y) = min[χR(x, y), χS(x, y)] Complement:R ->χR(x, y) : χR(x, y) = 1 − χR(x, y) Containment: R ⊂ S ->χR(x, y) : χR(x, y) ≤ χS(x, y) 14
  • 15. Properties Of CripsRelations Commutativity Associativity Distributivity Involution Idempotency 15 2 × (1 + 3) = (2 × 1) + (2 × 3).
  • 18. Composition Forthesetworelationsletsmake a compositionnamed T R = {(x1, y1), (x1, y3), (x2, y4)} S = {(y1, z2), (y3, z2)} 18
  • 19. 19
  • 20. A chain is only as strong as itsweakestlink 20
  • 21. Example Using themax–min composition operation,relationmatrices for Rand S would be expressed as µT(x1, z1) = max[min(1, 0), min(0, 0), min(1, 0), min(0, 0)] = 0 21
  • 22. Example Using themax–min composition operation,relationmatrices for Rand S would be expressed as µT(x1, z1) = max[min(1, 0), min(0, 0), min(1, 0), min(0, 0)] = 0 µT(x1, z2) = max[min(1, 1), min(0, 0), min(1, 1), min(0, 0)] = 1 22
  • 23. FuzzyRelations A fuzzy relation R is a mapping from the Cartesianspace X x Y to the interval [0,1], where thestrength of the mapping is expressed by themembership function of the relation μR(x,y) μR : A × B -> [0, 1] R = {((x, y), μR(x, y))| μR(x, y) ≥ 0 , x ∈ A, y ∈ B} 23
  • 24. 24
  • 25. Crisp relation vs. Fuzzyrelation 25 Crisprelation Fuzzyrelation
  • 26. Cardinality of FuzzyRelations Since the cardinality of fuzzy sets on any universe is infinity, the cardinality of a fuzzyrelation between two or more universes is also infinity. 26
  • 27. Operations on FuzzyRelations Let R and S be fuzzy relations on the Cartesian space X × Y. Then the following operationsapply for the membership values for various set operations: 27 Union: µR∪S(x, y) = max(µR (x, y),µS(x, y)) Intersection: µR∩S (x, y) = min(µR (x, y),µS (x, y)) Complement:µR(x, y) = 1 − µR(x, y) Containment:R⊂ S ⇒ µR (x, y) ≤ µS (x, y)
  • 28. Fuzzy Cartesian Product and Composition A fuzzy relation R is a mapping from the Cartesianspace X x Y to the interval [0,1], where thestrength of the mapping is expressed by themembership function of the relation μR(x,y) μR: A × B -> [0, 1] R = {((x, y), μR(x, y))| μR(x, y) ≥ 0 , x ∈ A, y ∈ B} 28
  • 29. Max-minComposition Two fuzzy relations R and S are defined on sets A,B and C. That is, R ⊆ A × B, S ⊆ B × C. Thecomposition S•R = SR of two relations R and S isexpressed by the relation from A to C: For(x, y) ∈ A × B, (y, z) ∈ B × C, µS•R(x, z) = max [min(µR(x, y), µS(y, z))]= ∨ [μR(x, y) ∧ μS(y, z)] MS•R= MR•MS(matrixnotation) 29
  • 31. Max-productComposition Two fuzzy relations R and S are defined on sets A,B and C. That is, R ⊆ A × B, S ⊆ B × C. Thecomposition S•R = SR of two relations R and S isexpressed by the relation from A to C: For(x, y) ∈ A × B, (y, z) ∈ B × C, μS•R(x, z) = maxy[μR(x, y) • μS(y, z)] = ∨y[μR(x, y) • μS(y, z) MS•R= MR• MS(matrixnotation) 31
  • 32. 32
  • 33. Example Suppose we have two fuzzy sets, Adefined on a universe of three discretetemperatures, X = {x1, x2, x3}, and Bdefined on a universe of two discrete pressures, Y ={y1, y2}, and we want to find the fuzzy Cartesian product between them. Fuzzy set Acouldrepresent the ‘‘ambient’’ temperature and fuzzy setBthe ‘‘near optimum’’ pressure for a certainheat exchanger, and the Cartesian productmight represent the conditions (temperature–pressurepairs) of the exchanger that are associated with ‘‘efficient’’ operations. 33
  • 34. FuzzyCartesianproduct, usingµS•R(x, z) = max [min (µR (x, y), µS (y, z))]results in a fuzzyrelation R (of size 3 × 2) representing ‘‘efficient’’ conditions, 34
  • 35. Example X = {x1, x2}, Y = {y1, y2}, and Z = {z1, z2, z3} Consider the following fuzzy relations: 35 Thentheresultingrelation, T, which relates elements of universe X to elements of universe Z, μT(x1, z1) = max[min(0.7, 0.9), min(0.5, 0.1)] = 0.7
  • 36. andbymax–productcomposition, 36 μT(x2, z2) = max[(0.8 . 0.6), (0.4 .0.7)] = 0.48
  • 37. Example A simple fuzzy system is given, which models the brake behaviour of a car driver depending on the car speed. The inference machine should determine the brake force for a given car speed. The speed is specified by the two linguistic terms"low"and "medium", and the brake force by "moderate"and "strong". The rule base includes the two rules (1) IF the car speed is low THEN the brake force is moderate (2) IF the car speed is medium THEN the brake force is strong 37
  • 39. CrispEquivalenceRelation Arelation R on a universeXcan also be thought of as a relation fromXtoX. The relation R is an equivalence relation and it has the following three properties: Reflexivity Symmetry Transitivity 39
  • 40. Reflexivity (xi ,xi ) ∈ R or χR(xi ,xi ) = 1 When a relation is reflexiveevery vertex in the graph originates a single loop, as shown in 40
  • 41. Symmetry (xi, xj ) ∈ R -> (xj, xi) ∈ R 41
  • 42. Transitivity (xi ,xj ) ∈ R and (xj ,xk) ∈ R -> (xi ,xk) ∈ R 42
  • 43. CrispToleranceRelation A tolerance relation R (also called a proximity relation) on a universe X is a relation that exhibits only the properties of reflexivity and symmetry. A tolerance relation, R, can be reformed into an equivalence relation by at most (n − 1) compositions with itself, where n is the cardinal number of the set defining R, in this case X 43
  • 44. Example Suppose in an airline transportation system we have a universe composed offive elements: the cities Omaha, Chicago, Rome, London, and Detroit. The airline is studyinglocations of potential hubs in various countries and must consider air mileage between citiesand takeoff and landing policies in the various countries. 44
  • 45. Example These cities can be enumerated as the elements of a set, i.e., X ={x1,x2,x3,x4,x5}={Omaha, Chicago, Rome, London, Detroit} Suppose we have a tolerance relation, R1, that expresses relationships among these cities: This relation is reflexive and symmetric. 45
  • 46. Example The graph for this tolerance relation If(x1,x5) ∈ R1can become an equivalence relation 46
  • 47. Example: Thismatrix is equivalence relation because it has (x1,x5) 47 Five-vertex graph of equivalence relation (reflexive, symmetric, transitive)
  • 48. FUZZY TOLERANCE AND EQUIVALENCE RELATIONS Reflexivity μR(xi, xi) = 1 Symmetry μR(xi, xj ) = μR(xj, xi) Transitivity μR(xi, xj ) =λ1 and μR(xj, xk) = λ2 μR(xi, xk) =λwhereλ ≥ min[λ1, λ2]. 48
  • 49. Example Suppose, in a biotechnology experiment, five potentially new strains of bacteriahave been detected in the area around an anaerobic corrosion pit on a new aluminum-lithiumalloy used in the fuel tanks of a new experimental aircraft. In order to propose methods toeliminate the biocorrosion caused by these bacteria, the five strains must first be categorized.One way to categorize them is to compare them to one another. In a pairwise comparison, thefollowing " similarity" relation,R1, is developed. For example, the first strain (column 1) hasa strength of similarity to the second strain of 0.8, to the third strain a strength of 0 (i.e., norelation), to the fourth strain a strength of 0.1, and so on. Because the relation is for pairwisesimilarity it will be reflexive and symmetric. Hence, 49
  • 50. 50 is reflexive and symmetric. However, it is not transitive μR(x1, x2) = 0.8, μR(x2, x5) = 0.9 ≥ 0.8 but μR(x1, x5) = 0.2 ≤ min(0.8, 0.9)
  • 51. 51 One composition results in the following relation: where transitivity still does not result; for example, μR2(x1, x2) = 0.8 ≥ 0.5 and μR2(x2, x4) = 0.5 but μR2(x1, x4) = 0.2 ≤ min(0.8, 0.5)
  • 52. 52 Finally, after one or two more compositions, transitivity results: