Se ha denunciado esta presentación.
Se está descargando tu SlideShare. ×

CMV共同方法變異-三星統計張偉豪-20140822

Anuncio
Anuncio
Anuncio
Anuncio
Anuncio
Anuncio
Anuncio
Anuncio
Anuncio
Anuncio
Anuncio
Anuncio
Cargando en…3
×

Eche un vistazo a continuación

1 de 53 Anuncio

Más Contenido Relacionado

Presentaciones para usted (20)

Más de Beckett Hsieh (20)

Anuncio

Más reciente (20)

CMV共同方法變異-三星統計張偉豪-20140822

  1. 1. “共同方法變異”- 山野傳奇或是真實存在的幽靈 張偉豪 Amos亞洲一哥 三星統計服務有限公司執行長 版本:20140822 三星課程網 www.tutortristar.com
  2. 2. Best readings for SEM
  3. 3. Outline •What is CMV? •Is CMV really exist? •How to prevent CMV happen? •How to detect CMV? –Harman single-factor test –CFA Factor test –ULMC (Unmeasured Latent Method Construct) Technique •How to correct CMV? –ULMC –Correlational Marker Technique –CFA Marker Technique •Conclusion
  4. 4. What is CMV? •Common method variance, may cause systematic measurement error and further bias the estimates of the true relationship among theoretical constructs. •Method variance can either inflate or deflate observed relationships between constructs, thus leading to both Type I and Type II errors.
  5. 5. What is CMV? •The variance of every measured variable can be partitioned into three components –trait variance –method variance (one of systematic error), –error variance (random error of measurement, nonsystematic influences on measured variables)
  6. 6. What is CMV? •Total variance= true variance + systematic variance (common method variance)+ random variance (measurement error) •method variance is referred to as systematic bias
  7. 7. Is CMV really exist? •The NO CMV Perspective (Spector, 2006) •Noncongeneric Perspective (Lindell & Whitney, 2001) •Congeneric Perspective (Williams & Brown, 1994)
  8. 8. The NO CMV Perspective (Spector, 2006) •假設CMV不存在,因此不太可能影響到變 數之間的關係。 •Spector並不是說“方法”不會影響測量, 而是CMV的前提假設有問題: 1.單是測量方法可以產生足夠的偏誤 2.所有構面都會受到相同方法的影響
  9. 9. Noncongeneric PerspectiveLindell & Whitney, 2001 •CMV存在於共同的來源及共同方法的資料 •Noncongeneric Perspective假設 –資料中的CMV為單一測量方法的函數,而且 CMV對所有構面的影響幾乎相同。 1.CMV存在 2.具有相同的影響效果
  10. 10. Congeneric PerspectiveWilliams & Brown, 1994 •CMV存在,但即使採同一種測量方法其方 法效果的影響是不相同的。 •方法效果會受到受測者的特質、測量題目、 構面或整體模型的影響。
  11. 11. How to prevent CMV happen? •事前預防 •事後檢查與控制
  12. 12. 事前預防 •題項意義隱匿法 •題項隨機配置法 •反向題項設計法 –DeVellis ( 2003)認為問卷“不應該”設計 反向題 •題項文字組織法
  13. 13. CMV? INFLUENCE? CONTROL EXIST EXIST GAME OVER NOT EXIST NOT EXIST 1.Harman’s single factor 2.CFA計算CMV 3.CFA單因子及多因子比較 1.ULMC 2.CFA MarkerVariable 1.ULMC 2.CFA Marker as Control Variable CMV 檢測流程
  14. 14. How to detect CMV? •A priori 事前準備 –Marker variable •Post Hoc 事後檢查 –Harman’s one factor –CFA –Unmeasured Latent Method Construct ( ULMC ) –Correlational Marker Technique –CFA Marker Technique
  15. 15. Selection of Marker Variable •事前準備A prior –marker variable (Ideal marker)是一個在理 論上與潛在構面無關的變數,一般期望marker variable與模型其他的構面相關為0。 •事後偵側Post Hoc –選擇與所有構面相關“最低”的構面來當 marker variable (Nonideal marker)。
  16. 16. Harman’s one factor •將問卷所有題項放入SPSS因素分析中 •設定萃取因素為1個(未轉軸) (其實轉不轉軸對結果沒有影響) •檢查1個因素所造成解釋變異,如果過大 則有CMV的存在 •或以未轉軸所萃取的第一個因素的解釋變 異做為判定的標準 •一般以>50%為準(經驗法則,非絕對值)
  17. 17. Harman’s one factor (一)
  18. 18. Harman’s one factor (二)
  19. 19. CFA估計CMVLindell & Whitney (2001) 1.將所有構面架構成因素完全有相關結構 2.增加一CMV潛在構面(假設CMV存在) 3.設定CMV影響所有觀察變數(Manifest Variables, MVs) 4.設定CMV對所有觀察變數的影響是一致的 –在CMVMVs線上限制等同(例如所有線均設w) –記在要在CMV構面上設1 5.執行分析 6.標準化負荷量平方的平均即為CMV所造成的影 響
  20. 20. 計算CMV •標準化因素負 荷量平均負荷 量的平方即為 CMV的大小 •經加總平均計 算的結果, CMV為0.4, 與前估計差不 多
  21. 21. Construct Indicator Substantive Factor loadings (R1) R12 Method Factor loadings (R2) R22 滿意度 CS1 .565 .319 .205 .042 CS3 .653 .426 .364 .132 CS4 .712 .507 .103 .011 CS5 .672 .452 .178 .032 轉換成本 SC1 .840 .706 .285 .081 SC2 .817 .667 .318 .101 SC3 .684 .468 .072 .005 SC5 .571 .326 .173 .030 態度忠誠 AL1 .754 .569 .117 .014 AL2 .892 .796 .285 .081 AL3 .851 .724 .210 .044 企業形象 EI1 .866 .750 .114 .013 EI2 .933 .870 .175 .031 EI3 .737 .543 .247 .061 服務品質 tangible .912 .832 -.296 .088 reliable .749 .561 .352 .124 response .722 .521 .405 .164 assurence .699 .489 .414 .171 empathy .585 .342 .291 .085 Average .748 .572 .211 .069
  22. 22. CFA比較法 1.模型1:將所有構面架構成一因素結構 (亦即所有問卷僅與一個共同因素有關) 2.模型2:理論上的CFA完全有相關架構 3.比較模型一與模型二相差的自由度與卡方 值是否達到顯著? 4.顯著表示配適度模型一比模型二差很多, 表示一因子結構不存在,因此CMV不嚴重。 5.如果CMV存在,CMV是否會影響結果?
  23. 23. CFA比較法 Model 1 Model 2
  24. 24. CFA比較法 •兩個糢型卡方差異達顯著,表示沒有嚴重 的CMV存在。 MODEL χ2 DF Δχ2 ΔDF P SINGLE FACTOR 1477.7 152 1247.1 10 0.000 MULTI- FACTOR 230.6 142
  25. 25. CMV是否會影響結果? •應用Unmeasured Latent Method Construct ( ULMC )估計CMV是否會對模型造成影響 1.建立CFA因素模型Model 1 2.設定一潛在共同因素(CMV)影響所有的觀察變數 Model 2 3.CMV到觀察變數設為自由估計Model 3 4.CMV到觀察變數設為等同Model 4 5.將C1~C10的共變異數,設定為來自模型1的共 變異數(相關係數) 模型5 6.模型5 vs.模型3或4 (看誰的模型配適度好)。 如果有顯著差異,表示CMV會對模型結果造成 影響,需做CMV校正。
  26. 26. ULMC(William, Cote & Buckley, 1989) •Model 1 建立CFA模型
  27. 27. ULMC Model 2
  28. 28. ULMC •Model 3CMV觀察變數 自由估計
  29. 29. ULMC •Model 4 –設定所有因素 負荷量為等同, 以任何一個英 文字代表
  30. 30. ULMC •模型5C1~C10的共變異 數,設定為來自模 型1的共變異數 (相關係數)
  31. 31. ULMC
  32. 32. CFA Marker Technique ApproachWilliams, Hartman, & Cavazotte, (2010). •五大模型 1.Model 1:CFA Model 2.Model 2:Baseline Model 3.Model 3:Method C Model 4.Model 4:Method U Model 5.Model 5:Method R Model
  33. 33. Model 1 •CFA Model是將所有構 面含Marker Variable 設成完全有相關CFA
  34. 34. Constrain Model •設c1=c2=c3=c4=0, 假設Marker與模型構 面無相關 •求出W1,W2,W3V1,V2,V3等值
  35. 35. BASELINE MDOEL •CMV模型觀察 變數因果關係 •W17 = W18 = W19 = W20 = W21 = W22 = W23 = W24 = W25 = W26 = W27 = W28 = W29 = W30 = W31 = W32=0 設定值來自 constrain model
  36. 36. Method C Model •CMV模型 觀察變數因果 關係設為等同 •W17=W18= W19=W20= W21=W22= W23=W24= W25=W26= W27=W28= W29=W30= W31=W32
  37. 37. Method U Model •CMV模型 觀察變數因 果關係設為 自由估計
  38. 38. Method R Model •C1~C6的 值設定為 取自CFA 模型的值 •C1=.41 •C2=.57 •C3=.73 •C4=.41 •C5=.48 •C6=.53
  39. 39. Model Comparison Tests Model χ2 df CFI 1.CFA 209.06 142 0.976 2.Baseline 386.16 152 0.916 3.Method-C 230.42 151 0.972 4.Method-U 199.57 136 0.977 5.Method-R 240.43 142 0.965 Chi-Square Model Comparison Tests ΔModels Δχ2 Δdf p 1.Baseline vs. Method C 155.74 1 .000 2.Method-C vs. Method U 30.84 15 .005 3.Method-U vs. Method R 40.85 6 .000
  40. 40. 小結 Model 設定 目的 1.CFA 含Marker的CFA完全有相 關模型 Marker如果沒有CMV則相關 應該不會太大 1.1Constrain 設定Marker與模型變數相 關為0 估計出Marker在不受其他變 數影響下的因素負荷量及殘 差,並進一步設定到以下模型 2.Baseline 設定Marker與模型觀察變 數相關為0 估計CFA在不受Marker影響 下的估計值 3.Method-C 設定Marker與模型觀察變 數相關為定值 設定CMV對所有的觀察變數 影響一樣的 4.Method-U 設定Marker與模型觀察變 數相關為自由估計 設定CMV對所有的觀察變數 影響會因構面不同而有不同 5.Method-R 將CFA的相關設定到 Method-U/C看誰的配適 度較好 了解模型在加了Marker後是 否受到影響
  41. 41. 小結 模型比較 目的 1.Baseline vs. Method-C 檢定CMV是否存在? 檢定Noncongeneric的CMV效果是否存在,reject 表示有方法效應存在 2.Baseline vs. Method-U 檢定Congeneric的CMV效果是否存在,reject表示 有方法效應存在 3.Method-C vs. Method-U 檢定CMV的影響是屬於何種型態? Noncongeneric 與Congeneric方法效應的比較, reject表示卡方值小的模型優於大的模型 4.Method-U vs. Method-R 檢定CMV是否對模型估計造成影響? 1.因為Method-U配適度較好,因此選擇Method R與Method-U比較 2.Reject表示Marker 的確會造成偏誤,因此要 進行模型估計參數的修正
  42. 42. How to correct CMV?
  43. 43. How to correct CMV? •PARTIAL CORRECTION •CONTROL VARIABLE CORRECTION
  44. 44. PARTIAL CORRECTION
  45. 45. PARTIAL CORRECTION
  46. 46. 原來的SEM模型
  47. 47. 將Marker視為控制變數 Lindell & Whitney (2001)
  48. 48. 將Marker視為控制變數 Lindell & Whitney (2001)
  49. 49. No control vs. control
  50. 50. 迴歸估計值的比較 Estimate S.E. C.R. P SEM MODEL without CMV 滿意度 <--- 轉換成本 0.044 0.041 1.08 0.28 滿意度 <--- 服務品質 0.968 0.135 7.197 *** 態度忠誠 <--- 滿意度 0.442 0.123 3.594 *** 態度忠誠 <--- 轉換成本 0.125 0.047 2.685 0.007 態度忠誠 <--- 服務品質 0.295 0.164 1.797 0.072 PARTIALING CMV EFFECT 滿意度 <--- 轉換成本 0.03 0.04 0.768 0.443 滿意度 <--- 服務品質 0.738 0.178 4.142 *** 態度忠誠 <--- 滿意度 0.364 0.118 3.074 0.002 態度忠誠 <--- 轉換成本 0.072 0.042 1.71 0.087 態度忠誠 <--- 服務品質 -0.131 0.163 -0.803 0.422 CONTROL CMV EFFECT 滿意度 <--- 轉換成本 0.033 0.041 0.814 0.416 滿意度 <--- 服務品質 0.843 0.167 5.064 *** 態度忠誠 <--- 滿意度 0.376 0.119 3.149 0.002 態度忠誠 <--- 轉換成本 0.086 0.046 1.87 0.061 態度忠誠 <--- 服務品質 -0.146 0.198 -0.74 0.459
  51. 51. 51 三星統計服務有限公司 http://www.semsoeasy.com.tw/ E-mail:semsoeasy@gmail.com Fax: 07-3909741
  52. 52. 三星統計服務有限公司 •SEM教育訓練 –SPSS 統計訓練 –SEM 基礎訓練 –SEM 進階分析 –SEM 實務應用 –SEM 寫作不求人 –SEM 縱斷面分析 應用 –PLS 應用分析 •演講邀約 •論文分析統計諮詢 •資料分析 •統計小班教學 •IBM SPSS暨Amos 銷售
  53. 53. 三星統計服務有限公司 •全國最專業的SEM統計服務團隊 •快速並正確解決您統計上的問題 •教育訓練沒有煩人的數學推導、只有實例 的深入探討 •以生活上的例子解釋抽象的統計概念 •全亞洲唯一的白話文結構方程模型教學 •全台唯一充滿熱情、活力、幽默的統計學 講師

×