Improvement of Spatial Data Quality Using the Data Conflation

Beniamino Murgante
Beniamino Murgantelecturer en Beniamino Murgante
[object Object],[object Object],[object Object],[object Object],[object Object],ICCSA 2011 | GEOG-AN-MOD 2011 | University of Santander | 20-23/06/2011
Summary ,[object Object],[object Object],[object Object],[object Object],[object Object]
[object Object],[object Object],[object Object],[object Object],1  Motivation  Spatial data quality matters
OpenStreetMap   Analog topo map 1:10K  Brandenburg Viewer 1  Motivation  Spatial data quality matters  Potsdam in different spatial datasets
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],2  Spatial data quality  Definition, indicators
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],2  Spatial data quality  Data acquisiton
[object Object],[object Object],source dataset SDS target dataset TDS output dataset 3  Data conflation  Optimising spatial data quality  missing data inserted data
[object Object],[object Object],[object Object],3  Data conflation  Optimising spatial data quality
One spatial object, multiple geometry OpenStreet Map TeleAtlas ATKIS 3  Data conflation  Optimising spatial data quality
4  Data conflation at work  Conceputal framework ,[object Object],[object Object],[object Object],[object Object]
4  Data conflation at work  Automated workflow Producing best-fit dataset dataset 1 dataset 2 pre-processing pre-processing object assignment new dataset data sources
[object Object],[object Object],4  Data conflation at work  Semantic accuracy ,[object Object],[object Object]
[object Object],[object Object],[object Object],4  Data conflation at work  Geometric completeness ,[object Object],[object Object]
[object Object],[object Object],[object Object],[object Object],4  Data conflation at work  Data quality optimised
4  Data conflation at work  Data quality optimised  ,[object Object],[object Object],[object Object],[object Object],[object Object]
[object Object],[object Object],[object Object],[object Object],[object Object],5  Conclusion  What‘s the merit of data conflation?
Thank you  for your attention Questions?  Comments?  Feedback?  Contact Hartmut Asche | gislab@uni-potsdam.de Dept of Geography | University of Potsdam | GER Web   www.geographie.uni-potsdam.de/geoinformatik ICCSA 2011 | GEOG-AN-MOD 2011 | University of Santander | 20-23/06/2011
1 de 17

Recomendados

Spatial Data Model 2 por
Spatial Data Model 2Spatial Data Model 2
Spatial Data Model 2Kaium Chowdhury
1.8K vistas32 diapositivas
QUERY AND NETWORK ANALYSIS IN GIS por
QUERY AND NETWORK ANALYSIS IN GISQUERY AND NETWORK ANALYSIS IN GIS
QUERY AND NETWORK ANALYSIS IN GISDEVANG KAPADIA
5.7K vistas23 diapositivas
Remote Sensing: Overlay Analysis por
Remote Sensing: Overlay AnalysisRemote Sensing: Overlay Analysis
Remote Sensing: Overlay AnalysisKamlesh Kumar
605 vistas39 diapositivas
Mujungi Davis por
Mujungi DavisMujungi Davis
Mujungi DavisSaid Mujungi
158 vistas25 diapositivas
GIS in land suitability mapping por
GIS in land suitability mappingGIS in land suitability mapping
GIS in land suitability mappingGlory Enaruvbe
5.4K vistas50 diapositivas
Geographical information system unit 5 por
Geographical information  system unit 5Geographical information  system unit 5
Geographical information system unit 5WE-IT TUTORIALS
682 vistas23 diapositivas

Más contenido relacionado

La actualidad más candente

Spatial data analysis por
Spatial data analysisSpatial data analysis
Spatial data analysisJohan Blomme
1.2K vistas121 diapositivas
Raster data analysis por
Raster data analysisRaster data analysis
Raster data analysisAbdul Raziq
2.6K vistas19 diapositivas
Understanding Map Integration Using GIS Software Poster_ff por
Understanding Map Integration Using GIS Software Poster_ffUnderstanding Map Integration Using GIS Software Poster_ff
Understanding Map Integration Using GIS Software Poster_ffMichelle Pasco
66 vistas1 diapositiva
Spatial data mining por
Spatial data miningSpatial data mining
Spatial data miningMITS Gwalior
27.4K vistas27 diapositivas
Design Process Using Hierarchical Spatial Reasoning Theory And Gis por
Design Process Using Hierarchical Spatial Reasoning Theory And GisDesign Process Using Hierarchical Spatial Reasoning Theory And Gis
Design Process Using Hierarchical Spatial Reasoning Theory And Gisahmad bassiouny
452 vistas25 diapositivas
Lecture+12+topology+2013 (3) por
Lecture+12+topology+2013 (3)Lecture+12+topology+2013 (3)
Lecture+12+topology+2013 (3)Mei Chi Lo
3K vistas44 diapositivas

La actualidad más candente(20)

Spatial data analysis por Johan Blomme
Spatial data analysisSpatial data analysis
Spatial data analysis
Johan Blomme1.2K vistas
Raster data analysis por Abdul Raziq
Raster data analysisRaster data analysis
Raster data analysis
Abdul Raziq2.6K vistas
Understanding Map Integration Using GIS Software Poster_ff por Michelle Pasco
Understanding Map Integration Using GIS Software Poster_ffUnderstanding Map Integration Using GIS Software Poster_ff
Understanding Map Integration Using GIS Software Poster_ff
Michelle Pasco66 vistas
Spatial data mining por MITS Gwalior
Spatial data miningSpatial data mining
Spatial data mining
MITS Gwalior27.4K vistas
Design Process Using Hierarchical Spatial Reasoning Theory And Gis por ahmad bassiouny
Design Process Using Hierarchical Spatial Reasoning Theory And GisDesign Process Using Hierarchical Spatial Reasoning Theory And Gis
Design Process Using Hierarchical Spatial Reasoning Theory And Gis
ahmad bassiouny452 vistas
Lecture+12+topology+2013 (3) por Mei Chi Lo
Lecture+12+topology+2013 (3)Lecture+12+topology+2013 (3)
Lecture+12+topology+2013 (3)
Mei Chi Lo3K vistas
Models of spatial process by sushant por sushantsawant13
Models of spatial process by sushantModels of spatial process by sushant
Models of spatial process by sushant
sushantsawant131.1K vistas
Datech2014-Session1-Document Representation Refinement for Precise Region Des... por IMPACT Centre of Competence
Datech2014-Session1-Document Representation Refinement for Precise Region Des...Datech2014-Session1-Document Representation Refinement for Precise Region Des...
Datech2014-Session1-Document Representation Refinement for Precise Region Des...
How to digitize penstocks leading to powerhouse of a hydropower plant from th... por Mrinmoy Majumder
How to digitize penstocks leading to powerhouse of a hydropower plant from th...How to digitize penstocks leading to powerhouse of a hydropower plant from th...
How to digitize penstocks leading to powerhouse of a hydropower plant from th...
Mrinmoy Majumder176 vistas
Geographical information system unit 4 por WE-IT TUTORIALS
Geographical information  system unit 4Geographical information  system unit 4
Geographical information system unit 4
WE-IT TUTORIALS453 vistas
Spatial analysis & interpolation in ARC GIS por KU Leuven
Spatial analysis & interpolation in ARC GISSpatial analysis & interpolation in ARC GIS
Spatial analysis & interpolation in ARC GIS
KU Leuven445 vistas

Similar a Improvement of Spatial Data Quality Using the Data Conflation

TYBSC IT PGIS Unit III Chapter II Data Entry and Preparation por
TYBSC IT PGIS Unit III Chapter II Data Entry and PreparationTYBSC IT PGIS Unit III Chapter II Data Entry and Preparation
TYBSC IT PGIS Unit III Chapter II Data Entry and PreparationArti Parab Academics
743 vistas41 diapositivas
AGILE_FinalDay_RobinFrew por
AGILE_FinalDay_RobinFrewAGILE_FinalDay_RobinFrew
AGILE_FinalDay_RobinFrewRobin Frew
180 vistas11 diapositivas
Google Earth Web Service as a Support for GIS Mapping in Geospatial Research ... por
Google Earth Web Service as a Support for GIS Mapping in Geospatial Research ...Google Earth Web Service as a Support for GIS Mapping in Geospatial Research ...
Google Earth Web Service as a Support for GIS Mapping in Geospatial Research ...Université Libre de Bruxelles
37 vistas24 diapositivas
C documents and settings_administrator_local settings_application data_mozil... por
C  documents and settings_administrator_local settings_application data_mozil...C  documents and settings_administrator_local settings_application data_mozil...
C documents and settings_administrator_local settings_application data_mozil...Anuar Ahmad
973 vistas8 diapositivas
Dtm Quality Assesment por
Dtm Quality AssesmentDtm Quality Assesment
Dtm Quality AssesmentUniversity of Oradea
1.1K vistas8 diapositivas
ADAPTER por
ADAPTERADAPTER
ADAPTERDjamel Hassaine
90 vistas15 diapositivas

Similar a Improvement of Spatial Data Quality Using the Data Conflation(20)

TYBSC IT PGIS Unit III Chapter II Data Entry and Preparation por Arti Parab Academics
TYBSC IT PGIS Unit III Chapter II Data Entry and PreparationTYBSC IT PGIS Unit III Chapter II Data Entry and Preparation
TYBSC IT PGIS Unit III Chapter II Data Entry and Preparation
AGILE_FinalDay_RobinFrew por Robin Frew
AGILE_FinalDay_RobinFrewAGILE_FinalDay_RobinFrew
AGILE_FinalDay_RobinFrew
Robin Frew180 vistas
C documents and settings_administrator_local settings_application data_mozil... por Anuar Ahmad
C  documents and settings_administrator_local settings_application data_mozil...C  documents and settings_administrator_local settings_application data_mozil...
C documents and settings_administrator_local settings_application data_mozil...
Anuar Ahmad973 vistas
GIS Analysis For Site Remediation por Joseph Luchette
GIS Analysis For Site RemediationGIS Analysis For Site Remediation
GIS Analysis For Site Remediation
Joseph Luchette631 vistas
Big data fusion and parametrization for strategic transport models por Luuk Brederode
Big data fusion and parametrization for strategic transport modelsBig data fusion and parametrization for strategic transport models
Big data fusion and parametrization for strategic transport models
Luuk Brederode31 vistas
Spectral Clustering and Vantage Point Indexing for Efficient Data Retrieval por IJECEIAES
Spectral Clustering and Vantage Point Indexing for Efficient Data Retrieval Spectral Clustering and Vantage Point Indexing for Efficient Data Retrieval
Spectral Clustering and Vantage Point Indexing for Efficient Data Retrieval
IJECEIAES8 vistas
Term Paper Presentation por Shubham Singh
Term Paper PresentationTerm Paper Presentation
Term Paper Presentation
Shubham Singh381 vistas
Integrating GIS utility data in the UK por AntArch
Integrating GIS utility data in the UKIntegrating GIS utility data in the UK
Integrating GIS utility data in the UK
AntArch612 vistas
Data input and transformation por Mohsin Siddique
Data input and transformationData input and transformation
Data input and transformation
Mohsin Siddique3.2K vistas

Más de Beniamino Murgante

Analyzing and assessing ecological transition in building sustainable cities por
Analyzing and assessing ecological transition in building sustainable citiesAnalyzing and assessing ecological transition in building sustainable cities
Analyzing and assessing ecological transition in building sustainable citiesBeniamino Murgante
75 vistas79 diapositivas
Smart Cities: New Science for the Cities por
Smart Cities: New Science for the CitiesSmart Cities: New Science for the Cities
Smart Cities: New Science for the CitiesBeniamino Murgante
95 vistas103 diapositivas
The evolution of spatial analysis and modeling in decision processes por
The evolution of spatial analysis and modeling in decision processesThe evolution of spatial analysis and modeling in decision processes
The evolution of spatial analysis and modeling in decision processesBeniamino Murgante
644 vistas132 diapositivas
Smart City or Urban Science? por
Smart City or Urban Science?Smart City or Urban Science?
Smart City or Urban Science?Beniamino Murgante
436 vistas64 diapositivas
Involving citizens in smart energy approaches: the experience of an energy pa... por
Involving citizens in smart energy approaches: the experience of an energy pa...Involving citizens in smart energy approaches: the experience of an energy pa...
Involving citizens in smart energy approaches: the experience of an energy pa...Beniamino Murgante
340 vistas45 diapositivas
Programmazione per la governance territoriale in tema di tutela della biodive... por
Programmazione per la governance territoriale in tema di tutela della biodive...Programmazione per la governance territoriale in tema di tutela della biodive...
Programmazione per la governance territoriale in tema di tutela della biodive...Beniamino Murgante
738 vistas101 diapositivas

Más de Beniamino Murgante(20)

Analyzing and assessing ecological transition in building sustainable cities por Beniamino Murgante
Analyzing and assessing ecological transition in building sustainable citiesAnalyzing and assessing ecological transition in building sustainable cities
Analyzing and assessing ecological transition in building sustainable cities
Beniamino Murgante75 vistas
The evolution of spatial analysis and modeling in decision processes por Beniamino Murgante
The evolution of spatial analysis and modeling in decision processesThe evolution of spatial analysis and modeling in decision processes
The evolution of spatial analysis and modeling in decision processes
Beniamino Murgante644 vistas
Involving citizens in smart energy approaches: the experience of an energy pa... por Beniamino Murgante
Involving citizens in smart energy approaches: the experience of an energy pa...Involving citizens in smart energy approaches: the experience of an energy pa...
Involving citizens in smart energy approaches: the experience of an energy pa...
Beniamino Murgante340 vistas
Programmazione per la governance territoriale in tema di tutela della biodive... por Beniamino Murgante
Programmazione per la governance territoriale in tema di tutela della biodive...Programmazione per la governance territoriale in tema di tutela della biodive...
Programmazione per la governance territoriale in tema di tutela della biodive...
Beniamino Murgante738 vistas
Involving Citizens in a Participation Process for Increasing Walkability por Beniamino Murgante
Involving Citizens in a Participation Process for Increasing WalkabilityInvolving Citizens in a Participation Process for Increasing Walkability
Involving Citizens in a Participation Process for Increasing Walkability
Beniamino Murgante123 vistas
Presentation of ICCSA 2019 at the University of Saint petersburg por Beniamino Murgante
Presentation of ICCSA 2019 at the University of Saint petersburg Presentation of ICCSA 2019 at the University of Saint petersburg
Presentation of ICCSA 2019 at the University of Saint petersburg
Beniamino Murgante338 vistas
RISCHIO TERRITORIALE NEL GOVERNO DEL TERRITORIO: Ricerca e formazione nelle s... por Beniamino Murgante
RISCHIO TERRITORIALE NEL GOVERNO DEL TERRITORIO: Ricerca e formazione nelle s...RISCHIO TERRITORIALE NEL GOVERNO DEL TERRITORIO: Ricerca e formazione nelle s...
RISCHIO TERRITORIALE NEL GOVERNO DEL TERRITORIO: Ricerca e formazione nelle s...
Beniamino Murgante444 vistas
Presentation of ICCSA 2017 at the University of trieste por Beniamino Murgante
Presentation of ICCSA 2017 at the University of triestePresentation of ICCSA 2017 at the University of trieste
Presentation of ICCSA 2017 at the University of trieste
Beniamino Murgante828 vistas
GEOGRAPHIC INFORMATION – NEED TO KNOW (GI-N2K) Towards a more demand-driven g... por Beniamino Murgante
GEOGRAPHIC INFORMATION – NEED TO KNOW (GI-N2K) Towards a more demand-driven g...GEOGRAPHIC INFORMATION – NEED TO KNOW (GI-N2K) Towards a more demand-driven g...
GEOGRAPHIC INFORMATION – NEED TO KNOW (GI-N2K) Towards a more demand-driven g...
Beniamino Murgante558 vistas
Focussing Energy Consumers’ Behaviour Change towards Energy Efficiency and Lo... por Beniamino Murgante
Focussing Energy Consumers’ Behaviour Change towards Energy Efficiency and Lo...Focussing Energy Consumers’ Behaviour Change towards Energy Efficiency and Lo...
Focussing Energy Consumers’ Behaviour Change towards Energy Efficiency and Lo...
Beniamino Murgante443 vistas
Socio-Economic Planning profiles: Sciences VS Daily activities in public sector  por Beniamino Murgante
Socio-Economic Planning profiles: Sciences VS Daily activities in public sector Socio-Economic Planning profiles: Sciences VS Daily activities in public sector 
Socio-Economic Planning profiles: Sciences VS Daily activities in public sector 
Beniamino Murgante377 vistas
GEOGRAPHIC INFORMATION – NEED TO KNOW (GI-N2K) Towards a more demand-driven g... por Beniamino Murgante
GEOGRAPHIC INFORMATION – NEED TO KNOW (GI-N2K) Towards a more demand-driven g...GEOGRAPHIC INFORMATION – NEED TO KNOW (GI-N2K) Towards a more demand-driven g...
GEOGRAPHIC INFORMATION – NEED TO KNOW (GI-N2K) Towards a more demand-driven g...
Beniamino Murgante2.1K vistas
Garden in motion. An experience of citizens involvement in public space regen... por Beniamino Murgante
Garden in motion. An experience of citizens involvement in public space regen...Garden in motion. An experience of citizens involvement in public space regen...
Garden in motion. An experience of citizens involvement in public space regen...
Beniamino Murgante3.5M vistas
Planning and Smartness: the true challenge por Beniamino Murgante
Planning and Smartness: the true challengePlanning and Smartness: the true challenge
Planning and Smartness: the true challenge
Beniamino Murgante1.1K vistas
GeoSDI: una piattaforma social di dati geografici basata sui principi di INSP... por Beniamino Murgante
GeoSDI: una piattaforma social di dati geografici basata sui principi di INSP...GeoSDI: una piattaforma social di dati geografici basata sui principi di INSP...
GeoSDI: una piattaforma social di dati geografici basata sui principi di INSP...
Beniamino Murgante1.7K vistas
Informazione Geografica, Città, Smartness por Beniamino Murgante
Informazione Geografica, Città, Smartness Informazione Geografica, Città, Smartness
Informazione Geografica, Città, Smartness
Beniamino Murgante1.2K vistas

Último

Ransomware is Knocking your Door_Final.pdf por
Ransomware is Knocking your Door_Final.pdfRansomware is Knocking your Door_Final.pdf
Ransomware is Knocking your Door_Final.pdfSecurity Bootcamp
76 vistas46 diapositivas
Zero to Cloud Hero: Crafting a Private Cloud from Scratch with XCP-ng, Xen Or... por
Zero to Cloud Hero: Crafting a Private Cloud from Scratch with XCP-ng, Xen Or...Zero to Cloud Hero: Crafting a Private Cloud from Scratch with XCP-ng, Xen Or...
Zero to Cloud Hero: Crafting a Private Cloud from Scratch with XCP-ng, Xen Or...ShapeBlue
88 vistas20 diapositivas
KVM Security Groups Under the Hood - Wido den Hollander - Your.Online por
KVM Security Groups Under the Hood - Wido den Hollander - Your.OnlineKVM Security Groups Under the Hood - Wido den Hollander - Your.Online
KVM Security Groups Under the Hood - Wido den Hollander - Your.OnlineShapeBlue
102 vistas19 diapositivas
CloudStack Object Storage - An Introduction - Vladimir Petrov - ShapeBlue por
CloudStack Object Storage - An Introduction - Vladimir Petrov - ShapeBlueCloudStack Object Storage - An Introduction - Vladimir Petrov - ShapeBlue
CloudStack Object Storage - An Introduction - Vladimir Petrov - ShapeBlueShapeBlue
46 vistas15 diapositivas
"Surviving highload with Node.js", Andrii Shumada por
"Surviving highload with Node.js", Andrii Shumada "Surviving highload with Node.js", Andrii Shumada
"Surviving highload with Node.js", Andrii Shumada Fwdays
40 vistas29 diapositivas
What’s New in CloudStack 4.19 - Abhishek Kumar - ShapeBlue por
What’s New in CloudStack 4.19 - Abhishek Kumar - ShapeBlueWhat’s New in CloudStack 4.19 - Abhishek Kumar - ShapeBlue
What’s New in CloudStack 4.19 - Abhishek Kumar - ShapeBlueShapeBlue
131 vistas23 diapositivas

Último(20)

Ransomware is Knocking your Door_Final.pdf por Security Bootcamp
Ransomware is Knocking your Door_Final.pdfRansomware is Knocking your Door_Final.pdf
Ransomware is Knocking your Door_Final.pdf
Security Bootcamp76 vistas
Zero to Cloud Hero: Crafting a Private Cloud from Scratch with XCP-ng, Xen Or... por ShapeBlue
Zero to Cloud Hero: Crafting a Private Cloud from Scratch with XCP-ng, Xen Or...Zero to Cloud Hero: Crafting a Private Cloud from Scratch with XCP-ng, Xen Or...
Zero to Cloud Hero: Crafting a Private Cloud from Scratch with XCP-ng, Xen Or...
ShapeBlue88 vistas
KVM Security Groups Under the Hood - Wido den Hollander - Your.Online por ShapeBlue
KVM Security Groups Under the Hood - Wido den Hollander - Your.OnlineKVM Security Groups Under the Hood - Wido den Hollander - Your.Online
KVM Security Groups Under the Hood - Wido den Hollander - Your.Online
ShapeBlue102 vistas
CloudStack Object Storage - An Introduction - Vladimir Petrov - ShapeBlue por ShapeBlue
CloudStack Object Storage - An Introduction - Vladimir Petrov - ShapeBlueCloudStack Object Storage - An Introduction - Vladimir Petrov - ShapeBlue
CloudStack Object Storage - An Introduction - Vladimir Petrov - ShapeBlue
ShapeBlue46 vistas
"Surviving highload with Node.js", Andrii Shumada por Fwdays
"Surviving highload with Node.js", Andrii Shumada "Surviving highload with Node.js", Andrii Shumada
"Surviving highload with Node.js", Andrii Shumada
Fwdays40 vistas
What’s New in CloudStack 4.19 - Abhishek Kumar - ShapeBlue por ShapeBlue
What’s New in CloudStack 4.19 - Abhishek Kumar - ShapeBlueWhat’s New in CloudStack 4.19 - Abhishek Kumar - ShapeBlue
What’s New in CloudStack 4.19 - Abhishek Kumar - ShapeBlue
ShapeBlue131 vistas
DRaaS using Snapshot copy and destination selection (DRaaS) - Alexandre Matti... por ShapeBlue
DRaaS using Snapshot copy and destination selection (DRaaS) - Alexandre Matti...DRaaS using Snapshot copy and destination selection (DRaaS) - Alexandre Matti...
DRaaS using Snapshot copy and destination selection (DRaaS) - Alexandre Matti...
ShapeBlue46 vistas
PharoJS - Zürich Smalltalk Group Meetup November 2023 por Noury Bouraqadi
PharoJS - Zürich Smalltalk Group Meetup November 2023PharoJS - Zürich Smalltalk Group Meetup November 2023
PharoJS - Zürich Smalltalk Group Meetup November 2023
Noury Bouraqadi141 vistas
【USB韌體設計課程】精選講義節錄-USB的列舉過程_艾鍗學院 por IttrainingIttraining
【USB韌體設計課程】精選講義節錄-USB的列舉過程_艾鍗學院【USB韌體設計課程】精選講義節錄-USB的列舉過程_艾鍗學院
【USB韌體設計課程】精選講義節錄-USB的列舉過程_艾鍗學院
Igniting Next Level Productivity with AI-Infused Data Integration Workflows por Safe Software
Igniting Next Level Productivity with AI-Infused Data Integration Workflows Igniting Next Level Productivity with AI-Infused Data Integration Workflows
Igniting Next Level Productivity with AI-Infused Data Integration Workflows
Safe Software344 vistas
Mitigating Common CloudStack Instance Deployment Failures - Jithin Raju - Sha... por ShapeBlue
Mitigating Common CloudStack Instance Deployment Failures - Jithin Raju - Sha...Mitigating Common CloudStack Instance Deployment Failures - Jithin Raju - Sha...
Mitigating Common CloudStack Instance Deployment Failures - Jithin Raju - Sha...
ShapeBlue74 vistas
2FA and OAuth2 in CloudStack - Andrija Panić - ShapeBlue por ShapeBlue
2FA and OAuth2 in CloudStack - Andrija Panić - ShapeBlue2FA and OAuth2 in CloudStack - Andrija Panić - ShapeBlue
2FA and OAuth2 in CloudStack - Andrija Panić - ShapeBlue
ShapeBlue50 vistas
Keynote Talk: Open Source is Not Dead - Charles Schulz - Vates por ShapeBlue
Keynote Talk: Open Source is Not Dead - Charles Schulz - VatesKeynote Talk: Open Source is Not Dead - Charles Schulz - Vates
Keynote Talk: Open Source is Not Dead - Charles Schulz - Vates
ShapeBlue119 vistas
Why and How CloudStack at weSystems - Stephan Bienek - weSystems por ShapeBlue
Why and How CloudStack at weSystems - Stephan Bienek - weSystemsWhy and How CloudStack at weSystems - Stephan Bienek - weSystems
Why and How CloudStack at weSystems - Stephan Bienek - weSystems
ShapeBlue111 vistas
HTTP headers that make your website go faster - devs.gent November 2023 por Thijs Feryn
HTTP headers that make your website go faster - devs.gent November 2023HTTP headers that make your website go faster - devs.gent November 2023
HTTP headers that make your website go faster - devs.gent November 2023
Thijs Feryn28 vistas
How to Re-use Old Hardware with CloudStack. Saving Money and the Environment ... por ShapeBlue
How to Re-use Old Hardware with CloudStack. Saving Money and the Environment ...How to Re-use Old Hardware with CloudStack. Saving Money and the Environment ...
How to Re-use Old Hardware with CloudStack. Saving Money and the Environment ...
ShapeBlue65 vistas

Improvement of Spatial Data Quality Using the Data Conflation

  • 1.
  • 2.
  • 3.
  • 4. OpenStreetMap Analog topo map 1:10K Brandenburg Viewer 1 Motivation Spatial data quality matters Potsdam in different spatial datasets
  • 5.
  • 6.
  • 7.
  • 8.
  • 9. One spatial object, multiple geometry OpenStreet Map TeleAtlas ATKIS 3 Data conflation Optimising spatial data quality
  • 10.
  • 11. 4 Data conflation at work Automated workflow Producing best-fit dataset dataset 1 dataset 2 pre-processing pre-processing object assignment new dataset data sources
  • 12.
  • 13.
  • 14.
  • 15.
  • 16.
  • 17. Thank you for your attention Questions? Comments? Feedback? Contact Hartmut Asche | gislab@uni-potsdam.de Dept of Geography | University of Potsdam | GER Web www.geographie.uni-potsdam.de/geoinformatik ICCSA 2011 | GEOG-AN-MOD 2011 | University of Santander | 20-23/06/2011

Notas del editor

  1. With the introduction of digital mapping techniques in the 1960s and then GIS shortly afterwards, researchers realized that error and uncertainty in digital spatial data had the potential to cause problems that had not been experienced with paper maps. An international trend started in the early-1980s to design and implement data transfer standards which would include data quality information that had disappeared from the margins of paper maps with the transformation to digital data products. The main intention of this work is to present the data conflation as one of the options for improvement of spatial data quality.
  2. In a number of fields, the approach to quality evolved into a definition based on fitness-for-use. ISO 8402 defines the quality as the ‘totality of characteristics of a product that bear on its ability to satisfy stated or implied needs’. This means that to define the quality two information are needed: the information on the data being used and on the users needs. Spatial data is defined to be fitness-for-use if it meets requirements of the target application.   Data quality is defined by one or more quality dimensions. Quality dimensions for geographic data are called spatial data quality elements. They include completeness, logical consistency, positional accuracy, temporal accuracy (the accuracy of reporting time associated with the data) and thematical/semantical or attribute accuracy. Typically, metadata for spatial data include descriptions of data quality and include information about these elements.
  3. During the conflation process information from the source input dataset (SDS) and the target input dataset (TDS) have to be assigned to each other. The SDS is defined as the dataset from where the geospatial information is taken (e.g. thematic information) and the TDS is defined as the dataset to which the geospatial information taken from the SDS is being transferred, i.e. the expanded dataset.
  4. In order to transmit the real world into the language understandable for the computer, it should be modeled according to specific rules in a simplified form. Such data models represent the objects of reality as points, lines or areas (polygons). Each of these objects is provided with the x -and y-coordinates and contains information on the spatial reference. This example shows the differences of data formats of the same object.
  5. The different producers of spatial data detected the same object of the real world differently. There are no uniform rules for acquisition of spatial data. According to this the different abstract representations of one and the same object of the real world may arise. This Figure shows an example of alternative geometric representations of the same real world object. Each representation was generated by different spatial data providers.
  6. The approach presented here improves the quality of spatial data. This method illustrates how to increase the geometrical completeness of the road networks data. In the source dataset available objects such roundabouts must be found in the target dataset and assigned to the new amended dataset.   The problem is that crossroads, which are roundabouts, in the dataset are saved as simple crossroad. At first a position of all available crossroads in the both datasets has to be found. A roundabout is finding if minimum three edges of the road network have the same start- and endpoint. If there are three edges, which have the same node, regardless of that is start or end point of each edge, then this intersection is a part of the roundabout.
  7. In this way every crossroad of the dataset is verified. If a roundabout is defined, than at the second step the adequate crossroad is searched in the second dataset. Therefore the points are used, which are valid as traffic access or exits
  8. All access or exits of roundabout are found in the first input dataset. The corresponding edges in the second input dataset are also found. Now the geometrical information about new objects can be assigned
  9. After merge process of two or more datasets, the completeness of input data is always increased. This applies to all data types: polygons, lines, points. One condition must be fulfilled - one of the input datasets must have more information than the other. Not all new geometrical object of the end dataset include information about attributes. The completeness of the end dataset can never be complete in terms of thematic information. Datasets generated by conflation can be complete only in terms of geometrical information. The figure illustrates this problem.   The figure 3 shows an example of two datasets. The first dataset (source dataset) includes the information about 6 buildings. However in the real world total number of buildings is 8, so two objects in this dataset are not provided. The source dataset includes thematic information about type of use of these buildings. The second dataset (target dataset) includes geometrical information about 5 objects. The information about existence of the buildings number 6, 7 and 8 is not available. Unlike source dataset, target data have information about quantity of floors. This information in the first dataset is missing. The end dataset in the figure 3 shows the complete dataset in terms of geometric information. The table under it shows increment of attributes. Geometrical objects, which are available in both input datasets, have 100% thematically completeness. The missing objects have thematic information of only one input dataset.
  10. Conflation approaches allow the improvement of positional and temporal accuracy as well. Positional accuracy of a dataset can be increased with the information given by another input dataset. If both datasets have the major variance from real world, the arithmetic average of all input datasets can increase this quality element. The temporal accuracy will be improved if metadata provide information about actuality of spatial data.