SlideShare una empresa de Scribd logo
1 de 55
Descargar para leer sin conexión
1   INTRODUCTION




            1
2                             INTELLIGENT AGENTS




function TABLE -D RIVEN -AGENT(                      ¨§¦¤¢ 
                                                    ©  ¡¥£¡
                                            ) returns an action
  static:   ¨§¦¤¢ 
            ©  ¡¥£¡
                  , a sequence, initially empty
                ¤¨©
                ¡  
             , a table of actions, indexed by percept sequences, initially fully specified

  append        §¦§¢ 
               ©  ¡¥£¡ to the end of¨§¦¤¢ 
                                    ©  ¡¥£¡
  % # quot; © ¥
   $!!        L OOKUP(           , ¡   ©  ¡ ¥ £ ¡
                                       (§'¨© ¨§¦¤¢    )
  return        $!¤
               # quot; ©¥


   Figure 2.8




function R EFLEX -VACUUM -AGENT( [                          4!$¨2 $!10)
                                                            3© © # quot; © ¥ quot;
                                                                     ,          ]) returns an action

  if 7© £
     !§6 5 4!$¨2=   3© ©       then return          9¥
                                                       ¤¢3 8
  else if  # quot; © ¥ quot;
           $!!$0)@       =   A     then return  © D C
                                                  '1@ B
          # quot; © ¥ quot;
    E $!!$0)@
  else if                 =         then return     ©G
                                                    0H¡ F


   Figure 2.10




function S IMPLE -R EFLEX -AGENT(                     §¦§¢ 
                                                     ©  ¡¥£¡
                                             ) returns an action
  static:    §(I§£
             ¡ 3
              , a set of condition–action rules
     P1¨0
    % ¡© ©     I NTERPRET-I NPUT(      02§¢ 
                                       ©  ¡¥£¡              )
      % ¡ 3
       P(I§£   RULE -M ATCH(      ,       ¡ 3 ¡ © ©
                                          ¤4§£ $Q0  )
  %$!!
     # quot; © ¥      RULE -ACTION[     ]          I§£
                                               ¡ 3
  return        $!¤
               # quot; ©¥


   Figure 2.13




                                                                           2
3




function R EFLEX -AGENT-W ITH -S TATE(       ¨§¦¤¢ 
                                            ©  ¡¥£¡  ) returns an action
  static:      $Q0
               ¡© ©
              , a description of the current world state
              §(I§£
              ¡ 3
              , a set of condition–action rules
           #$!¤
              quot; ©¥
                , the most recent action, initially none
    % ¡© ©
     P1¨0                  §¦§¢  $!¤ $Q0
                            ©  ¡¥£¡ # quot; ©¥ ¡© ©
                U PDATE -S TATE(   ,        ,           )
      % ¡ 3
       P(I§£   RULE -M ATCH(     ,       ¡ 3 ¡ © ©
                                         ¤4§£ $Q0
                                        )
  %$!!
     # quot; © ¥     RULE -ACTION[     ]          I§£
                                              ¡ 3
  return        $!¤
               # quot; ©¥


   Figure 2.16
3                             SOLVING PROBLEMS BY
                              SEARCHING



function S IMPLE -P ROBLEM -S OLVING -AGENT(                           R§¦¤¢ 
                                                                      ©  ¡¥£¡
                                                           ) returns an action
  inputs:    R§¦¤¢ 
             ©  ¡¥£¡, a percept
  static:               2
                        S¡
             , an action sequence, initially empty
                    $Q0
                    ¡© ©
                , some description of the current world state
                     1)'C
                       quot;
               , a goal, initially null
                §(§'¦ 
               T ¡  quot; £
                    , a problem formulation

           U PDATE -S TATE(    ,       )
                                       P1¨0
                                            ©  ¡¥£¡ ¡© ©
                                       % ¡© ©
                                             02§¢  $Q0
  if    is empty then do                 2¤
                                         S¡
              F ORMULATE -G OAL(   $)C
                                   % quot;
                                     )               1¨0
                                                     ¡© ©
                           %UT¤¤2R 
                                 ¡  quot;£
                  F ORMULATE -P ROBLEM(                            quot; ¡© ©
                                                                  $)'C $Q0
                                                                      ,         )
  T§(§'quot;¦£ 
    ¡        S EARCH(        )       V2¤
                                    % S¡
               S2¡
            F IRST( )                $!!
                                     % # quot; © ¥
         R EST( )    S¦¡                W2
                                          % S¡
  return                    $!¤
                            # quot; ©¥


   Figure 3.2




function T REE -S EARCH(             ,  T ¡  quot; £
                                         §(§'¦      7 C¡© £©
                                                      $Q12!0
                                                 ) returns a solution, or failure
  initialize the search tree using the initial state of                    §(§'¦ 
                                                                          T ¡  quot; £
  loop do
       if there are no candidates for expansion then return failure
       choose a leaf node for expansion according to                         $Q12!0
                                                                            7 C¡© £©
       if the node contains a goal state then return the corresponding solution
       else expand the node and add the resulting nodes to the search tree


   Figure 3.9




                                                                            4
Figure 3.17
        if                  then return       £  else return
                                           ¡0I3 6$¤G                      qquot; 3
                                                                            sQ©4¤¥                   r a¡££ 3 ¥¥ qquot;© 3
                                                                                                     ¢22§I0)quot; s¨I¤¥
            else if                 then return                © 42¤2£
                                                                   3¡                 0I3 6$¤G v© I0¤2£
                                                                                       ¡ £   uw  3  ¡
            if       =        then                       true Pr¢22§£I0)quot; qsquot;¨©I3¤¥
                                                              % a¡£ 3 ¥¥                           s¨I¤¥ © I0¤2£
                                                                                                   qquot;© 3         3¡
                      R ECURSIVE -DLS(      © T       ,       ,     )
                                             6p6  §¡(§'¦  $¤0§¡§0¢30
                                                       T  quot;£ £ quot; ¥¥                                          RtI0§2£
                                                                                                                 % © 3  ¡
        else for each            in E XPAND(        ,        ) do
                                                        T¡  quot;£
                                                        ¤¤'¦  ¡')#  a quot;                 £$¤2¤§0¢0
                                                                                               quot;¡¥¥ 3
        else if D EPTH[    ]=         then return             quot;© 3
                                                            qsQ4¤¥                 © 6pTH          ¡ a quot;
                                                                                                    ')b#
        if G OAL -T EST[ ¡ a quot;
                          ')#   ](S TATE[     ]) then return S OLUTION(         )
                                                                               ¡ a quot;
                                                                                ')b#         T ¡  quot; £
                                                                                             §(§'¦ 
                             false                                                                     P¢22§I0)quot; ¨I¥
                                                                                                      % r a¡££ 3 ¥¥ qquot;© 3
      function R ECURSIVE -DLS(         ,         ,     ) returns a solution, or failure/cutoff
                                                                © T
                                                                 6p6        T ¡  quot; £ ¡ a quot;
                                                                              §(§'¦  ')b#
      return R ECURSIVE -DLS(M AKE -N ODE(I NITIAL -S TATE[
       6p6 
      © T      T ¡  quot; £
                §(§'¦            T ¡  quot; £
                                   §(§'¦                             ]),         ,      )
    function D EPTH -L IMITED -S EARCH(      ,      ) returns a solution, or failure/cutoff
                                                            © T
                                                             6pH        T ¡  quot; £
                                                                          ¤¤2R 
                                                                                                                       Figure 3.12
                                     return                                                                     §$¤0§§0¢0
                                                                                                                £ quot;¡¥¥ 3
                                         add to                                                          £ quot;¡¥¥ 3
                                                                                                         §$¤0§§0¢0          
                                         D EPTH[ ] D EPTH[         ]+1                         ')#
                                                                                               ¡ a quot;                % 
                   , ) $!¤ ')b#
                        # quot; ©¥ ¡ a quot;     PATH -C OST[ ] PATH -C OST[       ] + S TEP -C OST(
                                                                            ¡ a quot;
                                                                             ')#                ,            % 
                                         ACTION[ ]                                                    # quot; ©¥ 
                                                                                                      $!¤i% 
                                         PARENT-N ODE[ ]                                      ¡'a)quot;b#h% 
                                         S TATE[ ]                                                        © I0¤2g% 
                                                                                                             3¡£
                                             a new N ODE                                                                       % f
                  ]) do       )b#
                             ¡ a quot;   for each        ,
                                                     ¤¤'¦ 
                                                    T ¡  quot; £in S UCCESSOR -F N[         ](S TATE[  e  3¡ # quot; ©¥
                                                                                                      ¦© I0¤2£ $!¤ d
                                                   the empty set                                                        % £ quot;¡¥¥ 3
                                                                                                                         c§$¤0§§0¢0
                                                 ) returns a set of nodes                     T ¡  quot; £  X ¡ a quot;
                                                                                               ¤¤'¦¨)b#         function E XPAND(
                                           'I6§0G
                                          ¡ C # £ I NSERT-A LL(E XPAND(
                                                             ¤¤'¦  ')#
                                                            T ¡  quot; £ ¡ a quot;    ,     ),       )                          `'I6§0G
                                                                                                                         % ¡ C # £
                                            then return S OLUTION(         )     ¡ a quot;
                                                                                  ')#
                                        if G OAL -T EST[
                                                       ')b#
                                                      ¡ a quot;      ] applied to S TATE[  ] succeeds   ¤¤'¦ 
                                                                                                   T ¡  quot; £
                                                 R EMOVE -F IRST(         )          I'H§0G
                                                                                    ¡ C # £                               % ¡ a quot;
                                                                                                                           P')#
                                        if E MPTY ?(       ) then return failure                          ¡ C # £
                                                                                                           I'6§§G
                                     loop do
                            )    'I6§0G
                                ¡ C # £       I NSERT(M AKE -N ODE(I NITIAL -S TATE[
                                               T ¡  quot; £
                                                §(§'¦                                       ]),                             % ¡ C # £
                                                                                                                              `I'H§0G
                            ) returns a solution, or failure                 ¡ C # £ GX T ¡  quot; £
                                                                              'I6§0HY§(§'¦            function T REE -S EARCH(
5
6                                                                                            Chapter           3.     Solving Problems by Searching




    function I TERATIVE -D EEPENING -S EARCH(                               ¤¤'¦ 
                                                                           T ¡  quot; £       ) returns a solution, or failure
       inputs:        §(§'¦ 
                     T ¡  quot; £
                       , a problem

       for     xHa
              % D©  ¡         0 to   y do
                 RtI0§2£
                % © 3  ¡   D EPTH -L IMITED -S EARCH(                    ¤¤'¦ 
                                                                          T ¡  quot; £    ,   !R'a
                                                                                            D©  ¡    )
           uv© I0¤2£
            w  3¡
           if                  cutoff then return             tI0§0£
                                                              © 3  ¡


      Figure 3.19




    function G RAPH -S EARCH(                 'I6§0H€¤¤'¦ 
                                             ¡ C # £ GX T ¡  quot; £        ) returns a solution, or failure
       2$@¥
      % a ¡  quot;      an empty set
       % ¡ C # £
        `I'H§0G       I NSERT(M AKE -N ODE(I NITIAL -S TATE[       ]),     )            T ¡  quot; £
                                                                                         §(§'¦          ¡ C # £
                                                                                                          'I6§0G
      loop do
         if E MPTY ?(           I'6§§G
                               ¡ C # £
                              ) then return failure
            P')#
           % ¡ a quot; R EMOVE -F IRST(          )       I'H§0G
                                                    ¡ C # £
         if G OAL -T EST[            T ¡  quot; £
                                      ¤¤'¦ 
                                     ](S TATE[                    ¡ a quot;
                                                                   ')#
                                                   ]) then return S OLUTION(                                        ¡ a quot;
                                                                                                                     ')b#   )
         if S TATE[          ¡ a quot;
                              ')#
                         ] is not in        then  a ¡  quot;
                                                   2$@¥
              add S TATE[       ] to  )b#
                                     ¡ a quot;          2$@¥
                                                   a ¡  quot;
                   % ¡ C # £
                    `'I6§0G
                       I NSERT-A LL(E XPAND(           ,        ),     ) T ¡  quot; £ ¡ a quot;
                                                                          ¤¤2R  ')#               ¡ C # £
                                                                                                      'I6§0G


      Figure 3.25
7
                                                                                                               Figure 4.13
                                                                                                  £ quot; D C ¡ # % © #¡££ 3
                                                                                                   $2¢1§‰hRR§0§I¤¥
                  ]   © #¡££ 3
                       R¤2§I¥   if VALUE[neighbor] VALUE[current] then return S TATE[        j
                                            a highest-valued successor of
                                              © #¡££ 3
                                               ¢¤2§I¥                                                       % £ quot; D C ¡
                                                                                                              V$24$@¤b#
                                                                                                                         loop do
                                              ])      T ¡  quot; £
                                                       ¤¤'¦      M AKE -N ODE(I NITIAL -S TATE[                       % © #¡££ 3
                                                                                                                         R¢¤2§I¥
                                              , a node                                       £$24$@¤b#
                                                                                                quot; D C ¡
                  local variables:          , a node                                            R§0§I¤¥
                                                                                               © #¡££ 3
                  inputs:          , a problem                                                               ¤¤'¦ 
                                                                                                            T ¡  quot; £
                function H ILL -C LIMBING(             ) returns a state that is a local maximum
                                                                                 ¤¤'¦ 
                                                                                T ¡  quot; £
                                                                                                                 Figure 4.6
       if                   then return                   © 42¤2£
                                                              3¡                               0I3 6$¤G v© I0¤2£
                                                                                                 ¡ £   uw  3  ¡
             , [      ] RBFS(                ,     ,
                       1$6$§¤© $i§6pH  ¤c@gƒ 0¤2 ¤¤2R 
                      ‘ ¡ d ©  # £ ¡   X © T G ˆ hf ©  ¡       T ¡  quot; £   )                    % 0§0 ‚ tI0§2£
                                                                                                       ©¡        © 3  ¡
                       the second-lowest -value among
                                 £ quot;¡¥¥ 3
                                 §$¤0§§0¢0                      ‚                                      Pe61b§¤¨t1
                                                                                                        % ¡ d ©  # £ ¡ ©
       if                      then return    ©¡    , [
                                              0§0 ‚ 2It6$¤G ]
                                                       ¡ £ 3                               6p6t g™0¤0 P‚
                                                                                             © T G ˜ —©¡ –
               the lowest -value node in          £ quot;¡¥¥ 3
                                                  §$¤0§§0¢0                                   ‚                   % ©¡
                                                                                                                    R0¤2
   repeat
         [s]                                                          ‘— ¡ a quot; – X ‘ ˆ ” ’ ‘ ˆ ˆ ‡ … ƒ
                                                                      H¤')# P‚ §)s“•“)sbH‰1†„%                           ‚
   for each in                 do                                                             £ quot;¡¥¥ 3
                                                                                              §1¤0¤00¢0            
   if             is empty then return            ,          y ¡2£43 6$¤G
                                                                                                              §$§0¤§2R2
                                                                                                                £ quot;¡¥¥ 3
                   E XPAND(         ,          )                        T¤¡¤'¦  ')#
                                                                              quot;£ ¡ a quot;                         c§$¤0§§0¢0
                                                                                                                 % £ quot;¡¥¥ 3
   if G OAL -T EST[           ](      ) then return¡ a quot;
                                                    ')b#                          ¡© ©
                                                                                  $Q0 ¤¤'¦  T ¡  quot; £
            ‚
function RBFS(            ,       ,        ) returns a solution, or failure and a new -cost limit
                                                                            © T
                                                                             Hp6  G ')b# ¤¤'¦ 
                                                                                        ¡ a quot;        T ¡  quot; £
           RBFS(                  y
                          , M AKE -N ODE(I NITIAL -S TATE[
                                         T ¡  quot; £
                                          §(§'¦                  ]), )                                     ¤¤'¦ 
                                                                                                           T ¡  quot; £
        function R ECURSIVE -B EST-F IRST-S EARCH(         ) returns a solution, or failure
                                                      T ¡  quot; £
                                                       §(§'¦ 
 EXPLORATION                                                                                                                   4
 INFORMED SEARCH AND
8                                                                                        Chapter     4.         Informed Search and Exploration




    function S IMULATED -A NNEALING(               ,          T ¡  quot; £
                                                               §(§'¦        ¡ 3 a ¡ D ¥
                                                                             I$2¢§¤
                                                              ) returns a solution state
      inputs:          ¤¤'¦ 
                      T ¡  quot; £
                       , a problem
                    (I$¦¢¤¤
                    ¡ 3 a ¡ D ¥
                        , a mapping from time to “temperature”
      local variables:              R§0§I¤¥
                                   © #¡££ 3
                                  , a node
                              , a node  10b#
                                       © k¡
                                            l
                          , a “temperature” controlling the probability of downward steps

                       M AKE -N ODE(I NITIAL -S TATE[                     R¢¤2§I¥
                                                                         % © #¡££ 3
                                                                             ¤¤'¦ 
                                                                            T ¡  quot; £    ])
      for           1 to    do                                  y                R©
                                                                                 %
                              [ ]                      © 431a2¢¤§g% l
                                                         ¡        ¡ D¥
                                     R§2£§43¤¥
                                     © #¡ £                                  l
               if = 0 then return
       R#§2§43¤¥
      © ¡££            a randomly selected successor of                  10b#
                                                                        % © k¡
                 ©R#§¡2£§£43¤¥
                       VALUE[      ] – VALUE[    10¡b#
                                                © k    ]                  % om n
               if        0 then©$k2¡‰#hR©R§¡0§£I¤¥
                                         % # £ 3                     ˜ gm  n
       tsfrPip
         s q   else                             $2‰#hRR§0§I¤¥
                                               © k¡
                                    only with probability  % © #¡££ 3


       Figure 4.17




    function G ENETIC -A LGORITHM(                          $!!$I04 
                                                           # quot; ©  3   quot;
                                                  , F ITNESS -F N) returns an individual
      inputs:        $!1I§4 
                    # quot; ©  3   quot;
                          , a set of individuals
              F ITNESS -F N, a function that measures the fitness of an individual

      repeat
                                  empty set             $!$@I§4  ¤b#
                                                       % # quot; ©  3   quot; u ¡
                             $!!$I04 
                            # quot; ©  3   quot;
               loop for from 1 to S IZE(             ) do
                   1quot;!©$@4R§4 
                  #  3  quot;
                        R ANDOM -S ELECTION(                           vk
                                                                       %
                                                          , F ITNESS -F N)
                 #$!$@I§4 
                     quot; ©  3   quot;
                        R ANDOM -S ELECTION(                             w7
                                                                         %
                                                          , F ITNESS -F N)
                                          7 k
                            R EPRODUCE( , )                       6'§¥
                                                                  % a D
                   a D
               %v@6'¤¥
                  if (small random probability) then           M UTATE(                             a D
                                                                                                    @H¤¥   )
                  add        to     $!$@I§4  ¤‰#
                                    # quot; ©  3   quot; u ¡         @6'¤¥
                                                               a D
                                        $!$@I§4  ¤bgx$!!$I04 
                                       # quot; ©  3   quot; u ¡ # % # quot; ©  3   quot;
      until some individual is fit enough, or enough time has elapsed
      return the best individual in               $!!$I04 
                                                 # quot; ©  3   quot;
                                               , according to F ITNESS -F N
                                        7 k
    function R EPRODUCE( , ) returns an individual
                     7 k
      inputs: , , parent individuals
      % # L ENGTH( )         k
        % `¥
          random number from 1 to                      #
                                                   k
      return A PPEND(S UBSTRING( , 1, ), S UBSTRING( ,         ¥                         # {y¥ 7
                                                                                           z ’     , ))


       Figure 4.21
9




function O NLINE -DFS-AGENT( ) returns an action         | 
                                      | 
  inputs: , a percept that identifies the current state
  static:                       © I0¤2£
                                   3¡
               , a table, indexed by action and state, initially empty
                        a22£$@§2‰I3
                          ¡ quot;  k¡ #
                      , a table that lists, for each visited state, the actions not yet tried
                 a2¡e9¤¦!1¤e2‰I3
                       ¥ £© 9 ¥  #
                           , a table that lists, for each visited state, the backtracks not yet tried
                                      
          , , the previous state and action, initially null
                               | 
  if G OAL -T EST( ) then return                  §¨0
                                                   quot;©
     | 
  if is a new state then                    % |  22$@00‰I3
                                                   a ¡ £ quot;   k ¡ #
                                       [ ] ACTIONS( )                                    | 
  if is not null then do                                                    
            [ , ]                           | h%   tI0§2£
                                                               © 3  ¡
              |  2¡e¤¦!©19¤¥e2‰I3
                   a 9¥ £
      add to the front of         #      [ ]                     
  if             [ ] is empty then                 |  22$R§0bI3
                                                        a ¡ £ quot;   k ¡ #
   §quot;¨©2
      if                               |  2e¤¦!1¤e2‰I3
                                             a¡ 9 ¥ £© 9 ¥  #
                         [ ] is empty then return
      else          3
          |   © I0¤¡2£
                an action such that       [ , ] = P OP(     % w                         |  2e¤¦!1¤e2‰I3
                                                                                              a¡ 9 ¥ £© 9 ¥  #
                                                                                                              [ ])
  else      P OP(             [ ])    ¡ quot;  k¡ #
                                |  a22£$@§2‰I3                     v
                                                                      %
                                                                        | h`
                                                                           %
  return                                                            


   Figure 4.25




function LRTA*-AGENT( ) returns an action   | 
                      | 
  inputs: , a percept that identifies the current state
  static:        © I0¤2£
                    3¡
                , a table, indexed by action and state, initially empty
             }
           , a table of cost estimates indexed by state, initially empty
                  
          , , the previous state and action, initially null
                               | 
  if G OAL -T EST( ) then return                                §¨0
                                                                 quot;©
                                |                }             }      |  ~% | 
                                                                           ”
  if is a new state (not in ) then [ ]                                        ( )
  unless is null           
       | h%   tI0§2£
            [ , ]      © 3¡
          h
        [ ] foƒ      %  }
                         LRTA*-C OST( , ,                                     3¡
                                                                         © 42¤2£  
                                                                                    [ , ],
                                                                                               }
                                                                                                   )
  ƒs
    ‚              ¦
                   €        ACTIONS
                                   v
                                    %                 |                                              }   © I0¤2£  
                                                                                                         |       3¡   |
           an action            in ACTIONS( ) that minimizes LRTA*-C OST( , ,                                        [ , ],   )
                             | h`
                                %
  return                 
                                } |   
function LRTA*-C OST( , , ,                                     ) returns a cost estimate
     |                   iQc”
                         ‘ „ˆ
  if is undefined then return
  else return                 — | „ – ˆg‘ | 02eQˆ …
                                      ‡ ’ „X †X „


   Figure 4.29
CONSTRAINT
5                          SATISFACTION
                           PROBLEMS



                                                     ¥
                                                      
function BACKTRACKING -S EARCH( ) returns a solution, or failure
  return R ECURSIVE -BACKTRACKING( ,    )                              ¥ W‰
                                                                         Š

function R ECURSIVE -BACKTRACKING(                 ,        Q¥ ©R§¡gTRe@02$
                                                                    #    # C 
                                                       ) returns a solution, or failure
  if              is complete then return                                  R¤g¢e@001
                                                                           © #¡ T # C 
                                                                ©R§¡gRe@02$
                                                                  # T # C 
         S ELECT-U NASSIGNED -VARIABLE(VARIABLES[ ],                    © #¡ T # C 
                                                                      ¥ R¤g¢e@001 Q¤¥
                                                                          ,     )         % £ 
                                                                                            V$$d
  for each         in O RDER -D OMAIN -VALUES(    ,            ,    ) do           © #¡ T # C  £ 
                                                                                 ¥ R§gR$20$ $1d
                                                                               3 
                                                                          ¡Rt1$d
      if      is consistent with    R#§gR$20$
                                    © ¡ T # C                           Q¥
                                                                          
                                           according to C ONSTRAINTS[ ] then        ¡ 3 
                                                                                     Rt1$d
         add         =        to       #¡ T C 
                                     ©¢¤g¢#e@00$        Š R3 $$d £$1d ‰
                                                             ¡ 
                  C 
   Q¤¥ ©¢#¤¡gT¢#e@00$
                     R ECURSIVE -BACKTRACKING(               ,   )       RtI0§2£
                                                                         % © 3  ¡
         if                   © I30¤2£
                                 ¡
                              then return                 2£It6$¤G uvtI0§0£
                                                          ¡ 3       w © 3  ¡
         remove          =       T # C 
                         ©¢#¤¡gR$@00$
                                  from                           £
                                                  Š ¡R3 $$d $$d ‰
  return                                                                     2It6$¤G
                                                                            ¡ £ 3 


   Figure 5.4




                                                                          10
11




function AC-3(          Q¥
                         
                    ) returns the CSP, possibly with reduced domains
  inputs:       
               Q¥
             , a binary CSP with variables                                 X    Ž
                                                                     Š‘o‹ X g‹ X i‰
                                                                                      Œ ‹
  local variables:             R¤R¤S
                              ¡ 3¡ 3
                          , a queue of arcs, initially all the arcs in                        Q¥
                                                                                               

  while  §RS
        ¡ 3¡ 3   is not empty do
      % “
       R‘ p‹ X o‹ ˆ
               ’    R EMOVE -F IRST(    )                  ¡ 3¡ 3
                                                            R¤RS
     if R EMOVE -I NCONSISTENT-VALUES(                              “ ‹ X’ ‹     ) then
        for each      in N EIGHBORS[ ] do
                          ” †‹                              ’ o‹
           add (      ’ ‹ X ™‹
                         ) to”             R¤RS
                                          ¡ 3¡ 3

function R EMOVE -I NCONSISTENT-VALUES(                                 “ ‹ X’ ‹   ) returns true iff we remove a value
    $¤•v2$$o¤2£
  ¡  G % a¡ d quot; T¡
          k
  for each in D OMAIN[ ] do              ’ ‹
    if no value in D OMAIN[ ] allows ( , ) to satisfy the constraint between
       –                                        “ ‹                                   7 k                          ’ ‹       and   “ ‹
                              k
       then delete from D OMAIN[ ];                         ’ ‹     ¡R3§£©h%va2¡$d$quot;o¤2£
                                                                                       T¡
  return      2$$o¤2£
              a¡ d quot; T¡


   Figure 5.9




function M IN -C ONFLICTS( ,                ¨0 ioT ¥
                                             ¡© k    
                                              ) returns a solution or failure
  inputs:                Q¥
                          
              , a constraint satisfaction problem
                ¨0 ioT
                 ¡© k 
                      , the number of steps allowed before giving up
                                               R¢¤2§I¥
                                              % © #¡££ 3
             an initial complete assignment for                            ¥
                                                                            
  for = 1 to             ¨0 ioT
                           ¡© k 
                          do
   ¥
      if        is a solution for     © #¡££ 3
                                       ¢¤2§I¥
                                      then return                              © #¡££ 3
                                                                                R§0§I¤¥
                                                V$1d
                                                % £ 
            a randomly chosen, conflicted variable from VARIABLES[                                         ]¥
                                                                                                            
        £ $1d         d
              the value for                 `3 $1d
                                           % ¡  
                                   that minimizes C ONFLICTS( , ,                                             3, £ 
                                                                                             Q¤¥ ©R#¤¡2£§£I¥ d 1$d     )
      set  R§¡2£§£43¤¥
           © #         in      Rt1$d w 1$d
                              ¡ 3         £ 
  return                              2It6$¤G
                                     ¡ £ 3 


   Figure 5.11
6                                ADVERSARIAL SEARCH




function M INIMAX -D ECISION(                 1¨0
                                              ¡© ©
                                      ) returns                   $!¤—$
                                                                 # quot; ©¥  #
  inputs:           ¨$¨0
                    ¡© ©
               , current state in game
  % wd M AX -VALUE(state)
  return the           # quot; ©¥
                        $!¤
                  in S UCCESSORS(                     $Q0
                                                      ¡© ©   ) with value    d

function M AX -VALUE(            1¨0
                                 ¡© ©     ) returns         Rt1$˜!6t6Ip
                                                            ¡ 3  d 7©  © 3
  if T ERMINAL -T EST(            1¨0
                                  ¡© ©               ¡© ©
                                                      ¨$¨2
                                          ) then return U TILITY(                 )
   y gwd
      ™ %
   X
   R
  for            in S UCCESSORS(      ) do¡© ©
                                          $Q0
       % wd     M AX(v, M IN -VALUE( ))    
  return        d

function M IN -VALUE(            $Q0
                                 ¡© ©    ) returns    Rt$1˜!H 6Ix
                                                      ¡ 3  d 7©  © 3
  if T ERMINAL -T EST(           ¡© ©
                                 1¨0    ) then return U TILITY(         ¡© ©
                                                                          ¨$¨2   )
      y wd  %
   X
   R
  for            in S UCCESSORS(      ) do¡© ©
                                          $Q0
       % wd     M IN(v, M AX -VALUE( ))    
  return        d


   Figure 6.4




                                                                      12
13




function A LPHA -B ETA -S EARCH(      ) returns an action ¨$¨2
                                                          ¡© ©
  inputs:             ¨$¨0
                      ¡© ©
              , current state in game
  % wd M AX -VALUE(     ,   ,    )     ¡© ©
                                   y ™ ¨$¨0             y ’
  return the             # quot; ©¥
                          $!¤
                  in S UCCESSORS(                                 $Q0
                                                                  ¡© ©   ) with value   d

function M AX -VALUE(                › š 1¨0
                                         ¡© ©
                               , , ) returns                               R3 $$p6t6!4x
                                                                          ¡   d 7©  © 3
  inputs:             ¨$¨0
                      ¡© ©
                , current state in game
           , the value of the best alternative for
                  š                                                            MAX
                                                                                                      1¨0
                                                                                                      ¡© ©
                                                                                      along the path to
           , the value of the best alternative for
              ›                                                                MIN   along the path to ¨$¨2
                                                                                                       ¡© ©

  if T ERMINAL -T EST(              ¡© ©
                                    1¨0           ) then return U TILITY(         ¡© ©
                                                                                    ¨$¨2    )
       y gwd
          ™ %
  for  X
       R     in S UCCESSORS(      ) do                ¡© ©
                                                        $Q0
            wd
            % M AX(v, M IN -VALUE( , , ))           › š 
  ›Ÿžœ  if        then return              d
           % šM AX( , v)      š
    d
  return

function M IN -VALUE(               › š $Q0
                                        ¡© ©
                              , , ) returns                                3 $1˜6 6Ip
                                                                          ¡   d 7©  © 3
  inputs:             ¨$¨0
                      ¡© ©
                , current state in game
           , the value of the best alternative for
                  š                                                            MAX
                                                                                                      1¨0
                                                                                                      ¡© ©
                                                                                      along the path to
           , the value of the best alternative for
              ›                                                                MIN   along the path to ¨$¨2
                                                                                                       ¡© ©

  if T ERMINAL -T EST(              ¡© ©
                                    1¨0           ) then return U TILITY(         ¡© ©
                                                                                    ¨$¨2    )
         y ~wd
            ’ %
  for    X
         R   in S UCCESSORS(      ) do                ¡© ©
                                                        $Q0
              wd
              %
              M IN(v, M AX -VALUE( , , ))           › š 
    š jžœif        then return                  d
  ›          % ›
              M IN( , v)
      d
  return


   Figure 6.9
7                              LOGICAL AGENTS




function KB-AGENT(                    §¦§¢ 
                                     ©  ¡¥£¡
                                 ) returns an                             $!!
                                                                         # quot; © ¥
  static:    E, a knowledge base
               ¢¡
                ©
          , a counter, initially 0, indicating time

  T ELL(  E ¢¡       , M AKE -P ERCEPT-S ENTENCE(         , ))           © ¨§¦¤¢ 
                                                                           ©  ¡¥£¡
             $!!
            % # quot; © ¥A SK(  E , M AKE -ACTION -Q UERY( ))
                              ¢¡                                              ©
  T ELL( E¢¡         , M AKE -ACTION -S ENTENCE(       , ))                 © 1!
                                                                                # quot; © ¥
        +1      h©
                © %
  #$!©¤¥
    quot;
  return


   Figure 7.2




function TT-E NTAILS ?(      , ) returns
                                       E ¢¡    or    š             ¡ 3£
                                                                    R§©        ¡  
                                                                                 t1G
  inputs:     , the knowledge base, a sentence in propositional logic
              E ¢¡
    š      , the query, a sentence in propositional logic
       quot; T 7
  %P $2g10a list of the proposition symbols in                                   E ¢¡    and   š
  return TT-C HECK -A LL(      , ,         , )E x¡              quot; T 7
                                                         — –  $2g10 š

function TT-C HECK -A LL(     , ,           , E ¢¡       ¤')oT  $2g10 š
                                                         ¡ a quot;   quot; T 7
                                                    ) returns                                        ¡ 3£
                                                                                                      R§©   or     $¤G
                                                                                                                  ¡  
  if E MPTY ?(           $2g10
                           quot; T 7
                      ) then
      if PL-T RUE ?(  E ,
                        x¡              ¡ a quot;
                                        ¤)oT
                               ) then return PL-T RUE ?( ,                                       ¡ a quot;
                                                                                                 §')oT š      )
      else return         R§©
                         ¡ 3£
  else do
       % £  F IRST(          $2g10
                           );  quot; T 7
                                     R EST(          )          % ©¡
                                                                 R0§2£      quot; T 7
                                                                          $2g10
      return TT-C HECK -A LL(      , ,     , E XTEND(  0¤2£ š ¢¡
                                                       ©¡       E                            ¤')o§eR§§X £
                                                                                              ¡ a quot; TX ¡ 3£©      ) and
               TT-C HECK -A LL(     , ,              ©0¤2£ š ¢¡
                                             , E XTEND(¡     E                            ¤¡')o§¤t$¤HX £
                                                                                                a quot; T X ¡   G    )


   Figure 7.12




                                                                                          14
15




function PL-R ESOLUTION(        , ) returns    E ¢¡or              š                      ¡ 3£
                                                                                           R§©         ¡  
                                                                                                          $¤G
  inputs:     , the knowledge base, a sentence in propositional logic
              E ¢¡
     š     , the query, a sentence in propositional logic
    %f¤I$@¥
        ¡  3     the set of clauses in the CNF representation of                                               W€•¢¡
                                                                                                                  š ¥ ¤ E
  ŠW‰ ¦§‰# % u¡
  loop do
     for each            ,        in   ¡  3 
                                       §I$@¥do
                                         “ § ’ §
                                         f!R¤$t1¤¤2£
                                        % © # ¡ d quot;  ¡
                                    PL-R ESOLVE( , )                            “ § ’ §
             if                       R§ed $¤§0£
                                          © #¡  quot;¡
                                   contains the empty clause then return                                            R§©
                                                                                                                   ¡ 3£
                 ©¢#¤¡ed $¤§¡2£©¨—§‰h¦§‰#
                             quot;            u¡ # % u¡
       ¡ $¤G
       if                           §I$@•«§‰#
                                    ¡  3  ¥ ª u ¡
                                     then return
                          §‰#™c§I$@¬`¤¤41¤¥
                          u ¡ ¨  ¡  3  ¥ %  ¡  3 


   Figure 7.15




function PL-FC-E NTAILS ?(          , ) returns E ¢¡   or              S                   R§!©
                                                                                          ¡ 3£            $¤G
                                                                                                        ¡  
  inputs:     E, the knowledge base, a set of propositional Horn clauses
                ¢¡
                 S
           , the query, a proposition symbol
  local variables:                RI$2¥
                                 © # 3 quot;
                          , a table, indexed by clause, initially the number of premises
                             22§§)6
                             a¡££¡ G #
                             , a table, indexed by symbol, each entry initially                                              t1G
                                                                                                                            ¡  
                               ¤I
                               a #¡ C
                            , a list of symbols, initially the symbols known to be true in                                           E ¢¡
  while                    eb¤')
                            a #¡ C
                    is not empty do
           P OP(b§I)
                 a #¡ C    )       % ­ 
       unless    22§¤H
                   a¡££¡ G #
                          [ ] do
       ¡R3§£©g%   22§¤)6
                      [ ]a¡££¡ G #
             for each Horn clause in whose premise             ¥                                         appears do
                 decrement           ¥ RI$0¥
                                   [ ] © # 3 quot;
                 if    ¥ ¢410¥
                         © # 3 quot;
                          [ ] = 0 then do
                                           ¥
                    if H EAD[ ] = then return              S                                 R§!©
                                                                                            ¡ 3£
                    P USH(H EAD[ ],       )            ¥                    b§I)
                                                                            a #¡ C
  return       $¤G
             ¡  


   Figure 7.18
16                                                                                                                                     Chapter       7.           Logical Agents




     function DPLL-S ATISFIABLE ?( ) returns                                        ¡ 3£
                                                                                      R§!©   or     $¤G
                                                                                                  ¡  
                            
       inputs: , a sentence in propositional logic
             f¤I$@¥
            %  ¡  3 
                the set of clauses in the CNF representation of                                                   
            P $2g10
           %  quot; T 7
                 a list of the proposition symbols in                                         
       return DPLL(           ,         , )  — – t12g$2 §I$¤¥
                                                  quot;  T 7  ¡  3 

     function DPLL(                      §')oT  $2g10 §I$@¥
                                         ¡ a quot;   quot;  T 7  ¡  3 
                                                       ,            ,              ) returns       ¡ 3£
                                                                                                    §!©    or   ¡  
                                                                                                                  ¤t$¤G

       if every clause in          is true in    ¡  3 
                                                 ¤I$@¥
                                                   then return             ¡ 3£
                                                                            R§©                            ¡ a quot;
                                                                                                            §')oT
       if some clause in           is false in    ¡  3 
                                                  §I$¤¥
                                                     then return         ¡  
                                                                         ¤t$¤G                            ¡ a quot;
                                                                                                          §')oT
       ®           PRt1$d
                  % ¡ 3                                                 ¤')oT ¤¤41¤¥ t$¦g$0
                                                                          ¡ a quot;        ¡  3   quot;  T 7
          ,         F IND -P URE -S YMBOL(            ,       ,       )
              ®                                                                  ® t12g$2 ¤I$@¥
                                                                                      quot;  T 7  ¡  3                          ¤)o§Rt$1§X £
                                                                                                                                   ¡ a quot; T X ¡ 3  d
       if is non-null then return DPLL(               ,         – , E XTEND(                                                                                 )
       ®           PRt1$d
                  % ¡ 3                                                                   §')oT §I$@¥
                                                                                            ¡ a quot;          ¡  3 
          ,         F IND -U NIT-C LAUSE(          ,        )
              ®                                                                 ® t12g$2 ¤I$@¥
                                                                                      quot;  T 7  ¡  3                         ¤¡a)quot;oT§X¡Rt$1d§X £
                                                                                                                                                3
       if is non-null then return DPLL(               ,         – , E XTEND(                                                                                 )
       % ®   F IRST(          );      % ©¡
                                       R0¤2£  $2g10
                                          R EST(     quot; T 7
                                                        )                                            quot;  T 7
                                                                                                    t$¦g$0
       return DPLL(              ,       0§2£ §I$¤¥
                                         ©  ¡  ¡  3 
                                      , E XTEND( ,       ,      )) or              §')oT R§© ®
                                                                                   ¡ a quot;          ¡ 3£
                DPLL(            ,      0§2£ §I$¤¥
                                        ©  ¡  ¡  3 
                                      , E XTEND( ,        ,      ))                ¤')oT  $¤G ®
                                                                                   ¡ a quot;        ¡  


           Figure 7.21




     function WALK SAT(            , ,                   k     ¡  3 
                                                      y¯ ioT   §I$@¥
                                                 ) returns a satisfying model or                                                        ¡ £ 3 
                                                                                                                                         2It6$¤G
       inputs:                   ¤I$@¥
                                 ¡  3 
                      , a set of clauses in propositional logic
                         
               , the probability of choosing to do a “random walk” move, typically around 0.5
                               y¯ ioT
                                    k 
                         , number of flips allowed before giving up

                  a random assignment of % ¡ a quot;
                                          e¤')oT
                                              /      to the symbols in   ¡   ¡ 3£
                                                                           $¤G R§!©                                      ¡  3 
                                                                                                                           ¤I$@¥
       for        to         k 
                        R  y¯ ioT
                               do      z w
           §¡I3$¤¥
           if       satisfies     ¡ a quot;
                                  §')oT
                                     then return                                           ¡ a quot;
                                                                                           ¤)oT
                                   % ¡  3 
                                   P¤41¤¥
                      a randomly selected clause from           that is false in    ¡  3 
                                                                                    ¤I$@¥                                        ¤')oT
                                                                                                                                   ¡ a quot;
                          
           with probability flip the value in           of a randomly selected symbol from       ¡ a quot;
                                                                                                §')oT                                                   I$@¥
                                                                                                                                                       ¡  3 
           else flip whichever symbol in                                  I$¤¥
                                                                        ¡  3 
                                                maximizes the number of satisfied clauses
       return           2It6$¤G
                       ¡ £ 3 


           Figure 7.23
17




function PL-W UMPUS -AGENT(                          02§¢ 
                                                    ©  ¡¥£¡
                                               ) returns an                        $!¤
                                                                                  # quot; ©¥
  inputs:                  ©  ¡¥£¡
                           R§¦¤¢ 
                    , a list, [        ,    £¡©©  ¡ °¡¡£ D¥ #¡©
                                            ¤¨6 eC i020§ ¤b§0
                                               ,       ]
  static:   , a knowledge base, initially containing the “physics” of the wumpus world
                                     E ¢¡
          , ,  quot;             £
             #$!©$Q©R#§¡Q§1quot; 7 k
                                , the agent’s position (initially 1,1) and orientation (initially                             © D C
                                                                                                                               $@§£   )
                               2¨606id
                               a¡© 
                 , an array indicating which squares have been visited, initially                                    $¤G
                                                                                                                   ¡  
                                $!¤
                               # quot; ©¥
                 , the agent’s most recent action, initially null
                                   $@ 
                                   # 
              , an action sequence, initially empty

  update , ,     a¡©              # quot; © © #¡ £
                 2¨606id $!1¨R§§$quot; 7 k
                           ,         based on                                  # quot; © ¥
                                                                                $!e
  if          then T ELL(
                  ´ $c± ¢¡
                     ³ ²      E,   ) else T ELL(    ,   )¤¤2
                                                         D¥ #¡©         ´ $²“—¥ ¢¡
                                                                          ³ ±      E
  if         then T ELL(
                   ´ $xµ ¢¡
                      ³ ²     , E  ) else T ELL(    ,   ) i002§
                                                          ¡ °¡¡£      ´ ³$¢µ—¥ ¢¡
                                                                           ²         E
  if         then      '¦$~­$!¤
                        £ C % # quot; ©¥                    ¤!6t$C
                                                         £ ¡©© 
     %#1quot;!©¥
  else if       is nonempty then             P OP(  # 
                                                    $R 
                                                      )                                               # 
                                                                                                       $@ 
  else if for some fringe square [ , ], A SK(
               ¶                                 ,             ) is      or      ‘ ³“ ’ —„¤ ³“ ’ £ ¥ ˆ ¢¡
                                                                                         · ¥               ¡ 3£
                                                                                                            R§!©
                                                                                                              E
          for some fringe square [ , ], A SK(
             ¶                                    ,       ) is           ¡t1G
                                                                    then do           ‘ ³“ ’ ·  ³“ ’ £ ˆ ¢¡
                                                                                                 ¸          E
                                                      % # 
                                                      $R 
                A*-G RAPH -S EARCH(ROUTE -P ROBLEM([ , ],           #$!$Q©R§Q§1quot; 7 k
                                                                      quot; ©  #¡ £
                                                                       , [ , ],                                    ¶    a¡© 
                                                                                                                        ¦606id   ))
                   P OP(    )     $@ 
                                  #             ­$!e
                                                  % # quot; © ¥
  else             a randomly chosen move        $!!
                                                 % # quot; © ¥
  return                                        $!¤
                                               # quot; ©¥


   Figure 7.26
8   FIRST-ORDER LOGIC




             18
9                                          INFERENCE IN
                                           FIRST-ORDER LOGIC



                                        ¹ 7 k
function U NIFY( , , ) returns a substitution to make and identical                                    k           7
                     k
  inputs: , a variable, constant, list, or compound
                         7
           , a variable, constant, list, or compound
           , the substitution built up so far (optional, defaults to empty)
                 ¹
  if = failure then return failure
    ¹
             k
  else if = then return         7                            ¹
                                                k
  else if VARIABLE ?( ) then return U NIFY-VAR( , , )                                         ¹ 7 k
                                                    7
  else if VARIABLE ?( ) then return U NIFY-VAR( , , )                                        ¹ k 7
  else if C OMPOUND ?( ) and C OMPOUND ?( ) then         k                            7
      return U NIFY(A RGS[ ], A RGS[ ], U NIFY(O P[ ], O P[ ], ))k           7                     k           7       ¹
                                    k
  else if L IST ?( ) and L IST ?( ) then                             7
                                                             k
      return U NIFY(R EST[ ], R EST[ ], U NIFY(F IRST[ ], F IRST[ ], ))  7                                 k               7   ¹
  else return failure

function U NIFY-VAR(       , , ) returns a substitution ¹ k $1d
                                                            £ 
  inputs:                 $$d
                         £ 
              , a variable
                     k
           , any expression
           , the substitution built up so far
                      ¹
  if      ¹ U»¦Š   d º £ 
                  $$I$$1d ‰
                     then return U NIFY( , , )                                         ¹ k $$d
                                                                                              
        ¹U»¦Š $14º )‰
  else if      d ¼    then return U NIFY(     ,    , )                          ¹       
                                                                                    $1d £$$d
  else if O CCUR -C HECK ?(              k $$d
                                             £ 
                               , ) then return failure
  else return add      / to                ¹     Š k $$d ‰
                                                     £ 


   Figure 9.2




                                                                                              19
20                                                                                                                                     Chapter 9.                         Inference in First-Order Logic



     function FOL-FC-A SK(          , ) returns a substitution or E x¡          š                                                       ¡  
                                                                                                                                         t1G
       inputs:      , the knowledge base, a set of first-order definite clauses
                           E ¢¡
                 , the query, an atomic sentence
                       š
       local variables:                               ¤b#
                                                      u¡
                              , the new sentences inferred on each iteration

       repeat until                      §‰#
                                         u¡            is empty
                                            Š W‰                                 —¤b#
                                                                                % u¡
              for each sentence               Ex¡      £            in                 do
                                      %R$S ‘         ½•‘   ¤  `Œ §ˆ
                                                                    ¤  
                                                              S TANDARDIZE -A PART( )                                                           £
              ¤  ¤ Œ   ¹
                       for each              such that S UBST( ,¹              ) = S UBST( ,                                     ‘                           ¤ |Œ   ¹               
                                                                                                                                                                           | ‘   ¤ )   )
                     Ex¡   | ‘ sXX |Œ  
                                            for some             in
                                                 S ¹
                                           S UBST( , )                 % | S
                                                                     | S
                                     if is not a renaming of some sentence already in      or                                                         E ¢¡          u¡
                                                                                                                                                                    ¤b#    then do
                                         add to  §‰# | S
                                                 u¡
                                         š   | S
                                              U NIFY( , )      % ¾
                       ¾                       6$¤G
                                                           ¾
                                         if is not       then return
           add                         to                  ¢¡
                                                           E                 ¤‰#
                                                                             u¡
       return                                                                $¤G
                                                                           ¡  


        Figure 9.5



     function FOL-BC-A SK(            ,      , ) returns a set of substitutions
                                                                  E ¢¡                  quot;
                                                                                    ¹ t$)C
       inputs:      , a knowledge base
                                E ¢¡
                            $)'C
                               quot;
                      , a list of conjuncts forming a query ( already applied)                                               ¹
                , the current substitution, initially the empty substitution
                       ¹                                                                                                                                     Š W‰
       local variables:                               §¤y0R1
                                                      £¡ u #
                                    , a set of substitutions, initially empty
        $)C
       if  quot;  is empty then return                                                   '1‰
                                                                                      Š ¹
               % | S
             S UBST( , F IRST(     ))       ¹                $)C
                                                                quot;
       for each sentence in        where S TANDARDIZE -A PART( ) =
                                                                 E
                                                                 ¢¡   £                                                                     £            €Œ §ˆ
                                                                                                                                                        ¤             ‘ Àž‘   ¤ )
                                                                                                                                                                        ¿ ½      
                 % | ¹
               and       U NIFY( , ) succeeds            | S S
               %   quot; u ¡
               ft1)'C ¤b#             R EST(    )       Á  X   
                                                        f‘ sX Œ   –                                       —  $)'C
                                                                                                                    quot;
                   % £¡ u #
                   f§¤y0R1
                       FOL-BC-A SK(        ,        , C OMPOSE( , ))                     E ¢¡           $)quot;C §‰#u¡                              ¹ | ¹      £¡ u # 
                                                                                                                                                               §§y0R$¨
       return §¤y0¢$
                 £¡ u #


        Figure 9.9



     procedure A PPEND(                                  # quot; ©  3 # © # quot; ° k
                                                          $!$¢R6!R$0¥ i 7 )
                                                                 , ,            ,                                 )
        6$¦©
       %  £   G LOBAL -T RAIL -P OINTER()
       if k )         —–
             = and U NIFY( , ) then C ALL(            )          ° i 7                                         # quot; ©  3 # © # quot;
                                                                                                                 $!1R¢6R10¥
       R ESET-T RAIL(      )                         6$¦©
                                                     £
       % v  N EW-VARIABLE();        N EW-VARIABLE(); N EW-VARIABLE()    % Ãk                                               % y°
                                  k i                      k
       if U NIFY( , [ — ]) and U NIFY( , [ — ]) then A PPEND( , , ,                             ° i                 °                                      $!!$¢R6¢$0¥ ° 7 k
                                                                                                                                                            # quot; ©  3 # © # quot;                )


        Figure 9.12
21




procedure OTTER( ,            )   ¤'§43 $¤
                                  ¡     quot;
  inputs:              $¤
                       quot;
            , a set of support—clauses defining the problem (a global variable)
                ¤'§43
                ¡   
                , background knowledge potentially relevant to the problem

  repeat
                   %
     clause the lightest member of                             $§
                                                               quot;
      move        from ¡  3 
                        I$@¥
                           to                ¡   
                                             ¤¤I3        quot;
                                                           $¤
     P ROCESS(I NFER(       ,       ), $quot;¤ ¤'§43 I$@¥
                                         )    ¡    ¡  3 
  until   $¤
          quot;             —–
           = or a refutation has been found

function I NFER(              (§'¤I3 I$@¥
                              ¡    ¡  3 
                                      ,              ) returns clauses

  resolve    I$@¥
            ¡  3 
                 with each member of                          ¤'§43
                                                              ¡   
  return the resulting clauses after applying F ILTER

procedure P ROCESS(                  $¤ ¤I$@¥
                                     quot;  ¡  3 
                                                 ,        )
      ¡  3 
       I$@¥
  for each          in            do          ¡  3 
                                              ¤I$@¥
             P¤41¤¥
            % ¡  3 
                 S IMPLIFY(          I$@¥
                                    ¡  3 
                                      )
      merge identical literals
      discard clause if it is a tautology
             [%  quot;
               `$§    — I$@¥
                        ¡  3 
                               ]           quot;
                                           $§
        I$@¥
       ¡  3 
      if        has no literals then a refutation has been found
      ¡I$@¥
      if   3 has one literal then look for unit refutation


  Figure 9.19
10   KNOWLEDGE
     REPRESENTATION




             22
23
                                                                                                      Figure 11.3
                                                           ‘ ‘ quot;© X ̈ A
                                                            ¦'Qy“@¤© ɤ †$¦0b“@¤© ¦¥                E FFECT:
                                                                                      ‘ T quot; £ G X ̈ A
     ‘ quot;©ˆ©£ quot;  £ A         ‘ T quot; £ Gˆ © £ quot;   £ A
      ¨s¤§$4¨6 Ǥ †$¦§@¤§$4¨6 Ǥ @'b$@ ® ¤ ™120c@¤© A     ‘ ̈ ¡ #              ‘ T quot; £ G X ̈ P RECOND :
                                                                                    §'Qy€$¦0b“@b7  Å P$!¤¥ A
                                                                                    X ‘ quot;© X T quot; £ G X ̈         ˆ # quot; ©
                                                                     ‘‘ Ì ˆ              ¥
                                                                     ¦X … P# Ä „¤ 4PX … ¤© A      E FFECT:
                                                                                                  ‘ † ˆ
 ‘ †ˆ©£ quot;  £ A         ‘ ̈ ¡ #                 ˆ quot; C£ Ê
  4¤§$4¨6 Ǥ b@‰$@ ® ¤ ‘ … ¢'$ ˆ¤ I`“@¤© Ǥ bX … P# Ä            ‘ † X ̈ A              ‘ Ì ˆP RECOND :
                                                                                        §4P“X … “)@Rf$P$!¤¥ A
                                                                                       X ‘ † X Ì ˆ a  quot; # Í ˆ # quot; ©
                                                                     ‘‘ Ì ˆ
                                                                     ¦X … P# Ä ¤ 4PX … ¤© ¦¥      E FFECT:
                                                                                              ‘ † ˆ A
        £ quot;  £ A      ‘ ̈ ¡ #                 ˆ quot; C£ Ê
‘4†ˆ¤©§$4¨6 Ǥ @'b$@ ® ¤ ‘ … ¢'$ ˆ¤ 4`“@¤© Ǥ IPX … ¤© A         ‘ † X ̈ A             ‘ † ˆ  P RECOND :
                                                                                            X‘ † X Ì ˆ a  ˆ # quot; ©
                                                                                            §4`“bX … “e)quot; F P$!¤¥ A
                                                               ‘ Æ Å          Ž ˆ A                  ¡ È Œ ˆ ˆ 
                                                                ¦‘ vI8 X v§ ¤© ɤ ‘ PÅ yX v§ ¤© A 1)quot; Ë
                                                          ‘ Æ Å ˆ ©£ quot;  £ A
                                                          ¦‘ w48 §14¨H ɤ ‘ PÅ ¦¤§$4¨6 ¦¤          ¡ Ȉ©£ quot;  £ A
                             ˆ ¡ #                  ˆ ¡ #                 Ž
                     ‘ Ž £ ‰$@ ® ¤ ‘ Œ £ ‰1 ® ¤ ‘ v§ ¢Q1 Ÿ¤ ‘ v§ R$ •¤ˆ quot; C£ Ê                Œ ˆ quot; C£ Ê
           ¡ È      ˆ A              Æ Å           ˆ A               ¡ È           ˆ A
       ‘ PÅ yX Ž £ ¤© ɤ ‘ w48 X Œ £ ¤© Ǥ ‘ PÅ yX Ž § ¤© Ǥ ‘ v48 X Œ § ¤© A 6¢# Ä                  Æ Å        ˆ ˆ ©
                                              PLANNING
                                                                                                        11
Figure 11.7
                                                   ‘               Æ            ˆ £ ¡ Ê
                                                     ¦‘ ¼ XiÑQˆ`# •¥„¤ ‘ ¼ I$2 Ÿ¤ 1¤ l iQ`# Æ        ‘ ¡  X ш      E FFECT:
                                      , ‘ ¼ u{Qˆ ¤ ¤Qˆb¤)@ Eɤ ¤ÑQI$2 Ÿ¤ ‘ ¼ iQP# Æ
                                               w Ñ             ‘Ñ 9¥ quot;           ‘ ˆ £ ¡ Ê                        X ш    P RECOND :
                                                                                          X X ш ¡ 
                                                                                          §‘ ¼ iQ(§' l quot; l e1ШP$!¤¥ A        ¡ d quot; ψ # quot; ©
                                                      ¥
                                   ‘ ˆ £ ¡
                                   ¦‘ – I$2 ʕɤ ‘ ¼ iÑQP# •¥„¤ ‘ ¼ ˆ412( ˆ¤ ‘ – iQ`# Æ
                                                                  X ˆ Æ                  £ ¡ Ê                           X ш  E FFECT:
                                                                    ,‘ – u w ¼ ˆ ¤ ‘ – Qˆ ¤ ‘ ¼ {Qˆ
                                                                                                   uw Ñ                        uw Ñ
                                     ¤ ‘¤Qb9§) Eɤ ‘ – 4$¦( ˆ¤ ‘¤QˆI$2¡ Ÿ¤ ‘ ¼ iQP# Æ
                                          ш ¥ quot;                 ˆ £ ¡ Ê           Ñ £  Ê                          X ш   P RECOND :
                                                                                                            X §‘ – X ¼ iQe1ШP$!¤¥ A
                                                                                                                           X ш ¡ d quot; ψ # quot; ©
                                                                               ‘
                                                                               ¦‘ §              X µ `# ˆ¤ ‘ µ P# Æ 1)quot;
                                                                                                           ˆ Æ                    X Έ     ˆ 
                                                              ‘ ˆ £ ¡ Ê
                                                              ¦‘ § 4$¦( ˆ¤ ‘                   µ I$2 Ÿ¤ x4$¦( ˆ¤ Ë
                                                                                                      ˆ £ ¡ Ê                ‘ Έ £ ¡ Ê
                                                               ‘ § b¤)@ ɤ ‘
                                                                   ˆ 9¥ quot; E                   µ      ˆ 9¥ quot; E
                                                                                                      b¤)@ ɤ xb¤)@ ɤ    ‘ Έ 9¥ quot; E
                                                 ‘ ¡       ˆ Æ        ‘ ¡ 
                                                 i(§' l X § P# ˆ¤ i¤' l X                      ˆ Æ
                                                                                            µ P# ˆ¤ 1¤ `# Æ 6¢# ‘ ¡  l X Έ          ˆ © Ä
                                                                                                                             Figure 11.5
                                           ‘ ‘ ¡ X © 
                                            ¦i(1k A §1                Å   ˆ A ¥
                                                                             ¤© ¦„¤ R412£ §$ Å ¤© ¦Y¤
                                                                                    ‘ a # 3 quot; X©  ˆ A ¥
                  ‘ 9 # 3 X ¡£  ˆ A ¥    ‘ ¡ X ¡ £ 
                   444§£ l 2$4  8 ¤© ¦„¤ i$k A 2$4                     8 ¤© ¦„¤ R412£ Ë 2$4  8 ¤© ¦¥
                                                                             ˆ A ¥   ‘ a # 3 quot; Ë X ¡£  ˆ A                E FFECT:
                                                                                                                           P RECOND :
                                                                                                        ,
                                                                                                    © D C #£¡
                                                                                                     '1@R§¤$d Æ $$2¡ F P$!¤¥ A
                                                                                                                  ¡ d  ˆ # quot; ©
                                                    ‘ ¡ X ¡ £  ˆ A              ‘ a # 3 quot; X ¡£  ˆ A
                                                     ¦‘)(1k A e2$4  8 ¤© ɤ R412£ Ë 2$4  8 ¤© ¦¥                         E FFECT:
                                                     ‘  X©  ˆ A ¥              ‘ a # 3 quot; X ¡£  ˆ
                                                      )¡(1k A §$@ Å ¤© ¦É¤ RbI$¦£ Ë 2$4  8 ¤© A                          P RECOND :
                                                                                           ‘ ¡,       X ¡£  ˆ       © ˆ # quot; ©
                                                                                           i$k A 2$4  8 P# Æ I3 ® P$!¤¥ A
                                                           ‘‘ # quot; X©  ˆ A                   ‘ ¡ X ©  ˆ A
                                                           ¦¢abI3$¦£ Ë §$@ Å ¤© Ǥ )(1k A §$@ Å ¤© ¦¥                     E FFECT:
                                                                                            ‘ ¡ X ©  ˆ
                                                                                             i$k A ¤1 Å ¤© A             P RECOND :
                                                                                                   ,
                                                                                              ‘ ¡ X ©  ˆ ¡ d quot; T ˆ # quot; ©
                                                                                               1$k A §$ Å ee$o§¡ B P$!¤¥ A
                                                       a quot;                  ˆ A       ‘ 9 # 3 X ¡£  ˆ A
                                                 ‘¦‘¢b#I3$¦£ Ë X¡2£$4  8 ¤© Ǥ ¢4I§£ l e2$4  8 ¤© ¦¥                      E FFECT:
                                                                                     ‘ 9 # 3 X ¡£  ˆ
                                                                                     4¢I§£ l 2$4  8 ¤© A                   P RECOND :
                                                                                          ,
                                                                                       ‘ 9 # 3 X ¡£  ˆ ¡ d quot; T ˆ # quot; ©
                                                                                        444§£ l 2$4  8 ee$o§¡ B P$!¤¥ A
                                                                                                      ‘ ‘ ¡ X ¡ £  ˆ ˆ 
                                                                                                       ¦)(1k A e014  8 ¤© A s1)quot; Ë
                                                                       ‘‘ 9 # 3 X ¡£  ˆ A                  ‘ ¡ X ©  ˆ ˆ ©
                                                                       ¦4¢I§£ l 2$4  8 ¤© ɤ i$k A §$@ Å ¤© A 6¢# Ä
Planning   11.   Chapter                                                                                                                             24
Pusdo Code Ai
Pusdo Code Ai
Pusdo Code Ai
Pusdo Code Ai
Pusdo Code Ai
Pusdo Code Ai
Pusdo Code Ai
Pusdo Code Ai
Pusdo Code Ai
Pusdo Code Ai
Pusdo Code Ai
Pusdo Code Ai
Pusdo Code Ai
Pusdo Code Ai
Pusdo Code Ai
Pusdo Code Ai
Pusdo Code Ai
Pusdo Code Ai
Pusdo Code Ai
Pusdo Code Ai
Pusdo Code Ai
Pusdo Code Ai
Pusdo Code Ai
Pusdo Code Ai
Pusdo Code Ai
Pusdo Code Ai
Pusdo Code Ai
Pusdo Code Ai
Pusdo Code Ai
Pusdo Code Ai
Pusdo Code Ai

Más contenido relacionado

Último

Rising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdf
Rising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdfRising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdf
Rising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdfOrbitshub
 
Apidays New York 2024 - Passkeys: Developing APIs to enable passwordless auth...
Apidays New York 2024 - Passkeys: Developing APIs to enable passwordless auth...Apidays New York 2024 - Passkeys: Developing APIs to enable passwordless auth...
Apidays New York 2024 - Passkeys: Developing APIs to enable passwordless auth...apidays
 
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...apidays
 
Corporate and higher education May webinar.pptx
Corporate and higher education May webinar.pptxCorporate and higher education May webinar.pptx
Corporate and higher education May webinar.pptxRustici Software
 
Exploring Multimodal Embeddings with Milvus
Exploring Multimodal Embeddings with MilvusExploring Multimodal Embeddings with Milvus
Exploring Multimodal Embeddings with MilvusZilliz
 
Platformless Horizons for Digital Adaptability
Platformless Horizons for Digital AdaptabilityPlatformless Horizons for Digital Adaptability
Platformless Horizons for Digital AdaptabilityWSO2
 
Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...apidays
 
Polkadot JAM Slides - Token2049 - By Dr. Gavin Wood
Polkadot JAM Slides - Token2049 - By Dr. Gavin WoodPolkadot JAM Slides - Token2049 - By Dr. Gavin Wood
Polkadot JAM Slides - Token2049 - By Dr. Gavin WoodJuan lago vázquez
 
EMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWER
EMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWEREMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWER
EMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWERMadyBayot
 
MINDCTI Revenue Release Quarter One 2024
MINDCTI Revenue Release Quarter One 2024MINDCTI Revenue Release Quarter One 2024
MINDCTI Revenue Release Quarter One 2024MIND CTI
 
Vector Search -An Introduction in Oracle Database 23ai.pptx
Vector Search -An Introduction in Oracle Database 23ai.pptxVector Search -An Introduction in Oracle Database 23ai.pptx
Vector Search -An Introduction in Oracle Database 23ai.pptxRemote DBA Services
 
"I see eyes in my soup": How Delivery Hero implemented the safety system for ...
"I see eyes in my soup": How Delivery Hero implemented the safety system for ..."I see eyes in my soup": How Delivery Hero implemented the safety system for ...
"I see eyes in my soup": How Delivery Hero implemented the safety system for ...Zilliz
 
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...DianaGray10
 
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, AdobeApidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobeapidays
 
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot TakeoffStrategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoffsammart93
 
Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...
Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...
Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...Angeliki Cooney
 
Strategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a FresherStrategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a FresherRemote DBA Services
 
presentation ICT roal in 21st century education
presentation ICT roal in 21st century educationpresentation ICT roal in 21st century education
presentation ICT roal in 21st century educationjfdjdjcjdnsjd
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerThousandEyes
 
MS Copilot expands with MS Graph connectors
MS Copilot expands with MS Graph connectorsMS Copilot expands with MS Graph connectors
MS Copilot expands with MS Graph connectorsNanddeep Nachan
 

Último (20)

Rising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdf
Rising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdfRising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdf
Rising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdf
 
Apidays New York 2024 - Passkeys: Developing APIs to enable passwordless auth...
Apidays New York 2024 - Passkeys: Developing APIs to enable passwordless auth...Apidays New York 2024 - Passkeys: Developing APIs to enable passwordless auth...
Apidays New York 2024 - Passkeys: Developing APIs to enable passwordless auth...
 
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
 
Corporate and higher education May webinar.pptx
Corporate and higher education May webinar.pptxCorporate and higher education May webinar.pptx
Corporate and higher education May webinar.pptx
 
Exploring Multimodal Embeddings with Milvus
Exploring Multimodal Embeddings with MilvusExploring Multimodal Embeddings with Milvus
Exploring Multimodal Embeddings with Milvus
 
Platformless Horizons for Digital Adaptability
Platformless Horizons for Digital AdaptabilityPlatformless Horizons for Digital Adaptability
Platformless Horizons for Digital Adaptability
 
Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...
 
Polkadot JAM Slides - Token2049 - By Dr. Gavin Wood
Polkadot JAM Slides - Token2049 - By Dr. Gavin WoodPolkadot JAM Slides - Token2049 - By Dr. Gavin Wood
Polkadot JAM Slides - Token2049 - By Dr. Gavin Wood
 
EMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWER
EMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWEREMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWER
EMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWER
 
MINDCTI Revenue Release Quarter One 2024
MINDCTI Revenue Release Quarter One 2024MINDCTI Revenue Release Quarter One 2024
MINDCTI Revenue Release Quarter One 2024
 
Vector Search -An Introduction in Oracle Database 23ai.pptx
Vector Search -An Introduction in Oracle Database 23ai.pptxVector Search -An Introduction in Oracle Database 23ai.pptx
Vector Search -An Introduction in Oracle Database 23ai.pptx
 
"I see eyes in my soup": How Delivery Hero implemented the safety system for ...
"I see eyes in my soup": How Delivery Hero implemented the safety system for ..."I see eyes in my soup": How Delivery Hero implemented the safety system for ...
"I see eyes in my soup": How Delivery Hero implemented the safety system for ...
 
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
 
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, AdobeApidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
 
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot TakeoffStrategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
 
Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...
Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...
Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...
 
Strategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a FresherStrategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a Fresher
 
presentation ICT roal in 21st century education
presentation ICT roal in 21st century educationpresentation ICT roal in 21st century education
presentation ICT roal in 21st century education
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected Worker
 
MS Copilot expands with MS Graph connectors
MS Copilot expands with MS Graph connectorsMS Copilot expands with MS Graph connectors
MS Copilot expands with MS Graph connectors
 

Destacado

2024 State of Marketing Report – by Hubspot
2024 State of Marketing Report – by Hubspot2024 State of Marketing Report – by Hubspot
2024 State of Marketing Report – by HubspotMarius Sescu
 
Everything You Need To Know About ChatGPT
Everything You Need To Know About ChatGPTEverything You Need To Know About ChatGPT
Everything You Need To Know About ChatGPTExpeed Software
 
Product Design Trends in 2024 | Teenage Engineerings
Product Design Trends in 2024 | Teenage EngineeringsProduct Design Trends in 2024 | Teenage Engineerings
Product Design Trends in 2024 | Teenage EngineeringsPixeldarts
 
How Race, Age and Gender Shape Attitudes Towards Mental Health
How Race, Age and Gender Shape Attitudes Towards Mental HealthHow Race, Age and Gender Shape Attitudes Towards Mental Health
How Race, Age and Gender Shape Attitudes Towards Mental HealthThinkNow
 
AI Trends in Creative Operations 2024 by Artwork Flow.pdf
AI Trends in Creative Operations 2024 by Artwork Flow.pdfAI Trends in Creative Operations 2024 by Artwork Flow.pdf
AI Trends in Creative Operations 2024 by Artwork Flow.pdfmarketingartwork
 
PEPSICO Presentation to CAGNY Conference Feb 2024
PEPSICO Presentation to CAGNY Conference Feb 2024PEPSICO Presentation to CAGNY Conference Feb 2024
PEPSICO Presentation to CAGNY Conference Feb 2024Neil Kimberley
 
Content Methodology: A Best Practices Report (Webinar)
Content Methodology: A Best Practices Report (Webinar)Content Methodology: A Best Practices Report (Webinar)
Content Methodology: A Best Practices Report (Webinar)contently
 
How to Prepare For a Successful Job Search for 2024
How to Prepare For a Successful Job Search for 2024How to Prepare For a Successful Job Search for 2024
How to Prepare For a Successful Job Search for 2024Albert Qian
 
Social Media Marketing Trends 2024 // The Global Indie Insights
Social Media Marketing Trends 2024 // The Global Indie InsightsSocial Media Marketing Trends 2024 // The Global Indie Insights
Social Media Marketing Trends 2024 // The Global Indie InsightsKurio // The Social Media Age(ncy)
 
Trends In Paid Search: Navigating The Digital Landscape In 2024
Trends In Paid Search: Navigating The Digital Landscape In 2024Trends In Paid Search: Navigating The Digital Landscape In 2024
Trends In Paid Search: Navigating The Digital Landscape In 2024Search Engine Journal
 
5 Public speaking tips from TED - Visualized summary
5 Public speaking tips from TED - Visualized summary5 Public speaking tips from TED - Visualized summary
5 Public speaking tips from TED - Visualized summarySpeakerHub
 
ChatGPT and the Future of Work - Clark Boyd
ChatGPT and the Future of Work - Clark Boyd ChatGPT and the Future of Work - Clark Boyd
ChatGPT and the Future of Work - Clark Boyd Clark Boyd
 
Getting into the tech field. what next
Getting into the tech field. what next Getting into the tech field. what next
Getting into the tech field. what next Tessa Mero
 
Google's Just Not That Into You: Understanding Core Updates & Search Intent
Google's Just Not That Into You: Understanding Core Updates & Search IntentGoogle's Just Not That Into You: Understanding Core Updates & Search Intent
Google's Just Not That Into You: Understanding Core Updates & Search IntentLily Ray
 
Time Management & Productivity - Best Practices
Time Management & Productivity -  Best PracticesTime Management & Productivity -  Best Practices
Time Management & Productivity - Best PracticesVit Horky
 
The six step guide to practical project management
The six step guide to practical project managementThe six step guide to practical project management
The six step guide to practical project managementMindGenius
 
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...RachelPearson36
 

Destacado (20)

2024 State of Marketing Report – by Hubspot
2024 State of Marketing Report – by Hubspot2024 State of Marketing Report – by Hubspot
2024 State of Marketing Report – by Hubspot
 
Everything You Need To Know About ChatGPT
Everything You Need To Know About ChatGPTEverything You Need To Know About ChatGPT
Everything You Need To Know About ChatGPT
 
Product Design Trends in 2024 | Teenage Engineerings
Product Design Trends in 2024 | Teenage EngineeringsProduct Design Trends in 2024 | Teenage Engineerings
Product Design Trends in 2024 | Teenage Engineerings
 
How Race, Age and Gender Shape Attitudes Towards Mental Health
How Race, Age and Gender Shape Attitudes Towards Mental HealthHow Race, Age and Gender Shape Attitudes Towards Mental Health
How Race, Age and Gender Shape Attitudes Towards Mental Health
 
AI Trends in Creative Operations 2024 by Artwork Flow.pdf
AI Trends in Creative Operations 2024 by Artwork Flow.pdfAI Trends in Creative Operations 2024 by Artwork Flow.pdf
AI Trends in Creative Operations 2024 by Artwork Flow.pdf
 
Skeleton Culture Code
Skeleton Culture CodeSkeleton Culture Code
Skeleton Culture Code
 
PEPSICO Presentation to CAGNY Conference Feb 2024
PEPSICO Presentation to CAGNY Conference Feb 2024PEPSICO Presentation to CAGNY Conference Feb 2024
PEPSICO Presentation to CAGNY Conference Feb 2024
 
Content Methodology: A Best Practices Report (Webinar)
Content Methodology: A Best Practices Report (Webinar)Content Methodology: A Best Practices Report (Webinar)
Content Methodology: A Best Practices Report (Webinar)
 
How to Prepare For a Successful Job Search for 2024
How to Prepare For a Successful Job Search for 2024How to Prepare For a Successful Job Search for 2024
How to Prepare For a Successful Job Search for 2024
 
Social Media Marketing Trends 2024 // The Global Indie Insights
Social Media Marketing Trends 2024 // The Global Indie InsightsSocial Media Marketing Trends 2024 // The Global Indie Insights
Social Media Marketing Trends 2024 // The Global Indie Insights
 
Trends In Paid Search: Navigating The Digital Landscape In 2024
Trends In Paid Search: Navigating The Digital Landscape In 2024Trends In Paid Search: Navigating The Digital Landscape In 2024
Trends In Paid Search: Navigating The Digital Landscape In 2024
 
5 Public speaking tips from TED - Visualized summary
5 Public speaking tips from TED - Visualized summary5 Public speaking tips from TED - Visualized summary
5 Public speaking tips from TED - Visualized summary
 
ChatGPT and the Future of Work - Clark Boyd
ChatGPT and the Future of Work - Clark Boyd ChatGPT and the Future of Work - Clark Boyd
ChatGPT and the Future of Work - Clark Boyd
 
Getting into the tech field. what next
Getting into the tech field. what next Getting into the tech field. what next
Getting into the tech field. what next
 
Google's Just Not That Into You: Understanding Core Updates & Search Intent
Google's Just Not That Into You: Understanding Core Updates & Search IntentGoogle's Just Not That Into You: Understanding Core Updates & Search Intent
Google's Just Not That Into You: Understanding Core Updates & Search Intent
 
How to have difficult conversations
How to have difficult conversations How to have difficult conversations
How to have difficult conversations
 
Introduction to Data Science
Introduction to Data ScienceIntroduction to Data Science
Introduction to Data Science
 
Time Management & Productivity - Best Practices
Time Management & Productivity -  Best PracticesTime Management & Productivity -  Best Practices
Time Management & Productivity - Best Practices
 
The six step guide to practical project management
The six step guide to practical project managementThe six step guide to practical project management
The six step guide to practical project management
 
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...
 

Pusdo Code Ai

  • 1. 1 INTRODUCTION 1
  • 2. 2 INTELLIGENT AGENTS function TABLE -D RIVEN -AGENT( ¨§¦¤¢  ©  ¡¥£¡ ) returns an action static: ¨§¦¤¢  ©  ¡¥£¡ , a sequence, initially empty ¤¨© ¡ , a table of actions, indexed by percept sequences, initially fully specified append §¦§¢  ©  ¡¥£¡ to the end of¨§¦¤¢  ©  ¡¥£¡ % # quot; © ¥ $!! L OOKUP( , ¡ ©  ¡ ¥ £ ¡ (§'¨© ¨§¦¤¢  ) return $!¤ # quot; ©¥ Figure 2.8 function R EFLEX -VACUUM -AGENT( [ 4!$¨2 $!10) 3© © # quot; © ¥ quot; , ]) returns an action if 7© £ !§6 5 4!$¨2= 3© © then return 9¥ ¤¢3 8 else if # quot; © ¥ quot; $!!$0)@ = A then return © D C '1@ B # quot; © ¥ quot; E $!!$0)@ else if = then return ©G 0H¡ F Figure 2.10 function S IMPLE -R EFLEX -AGENT( §¦§¢  ©  ¡¥£¡ ) returns an action static: §(I§£ ¡ 3 , a set of condition–action rules P1¨0 % ¡© © I NTERPRET-I NPUT( 02§¢  ©  ¡¥£¡ ) % ¡ 3 P(I§£ RULE -M ATCH( , ¡ 3 ¡ © © ¤4§£ $Q0 ) %$!! # quot; © ¥ RULE -ACTION[ ] I§£ ¡ 3 return $!¤ # quot; ©¥ Figure 2.13 2
  • 3. 3 function R EFLEX -AGENT-W ITH -S TATE( ¨§¦¤¢  ©  ¡¥£¡ ) returns an action static: $Q0 ¡© © , a description of the current world state §(I§£ ¡ 3 , a set of condition–action rules #$!¤ quot; ©¥ , the most recent action, initially none % ¡© © P1¨0 §¦§¢  $!¤ $Q0 ©  ¡¥£¡ # quot; ©¥ ¡© © U PDATE -S TATE( , , ) % ¡ 3 P(I§£ RULE -M ATCH( , ¡ 3 ¡ © © ¤4§£ $Q0 ) %$!! # quot; © ¥ RULE -ACTION[ ] I§£ ¡ 3 return $!¤ # quot; ©¥ Figure 2.16
  • 4. 3 SOLVING PROBLEMS BY SEARCHING function S IMPLE -P ROBLEM -S OLVING -AGENT( R§¦¤¢  ©  ¡¥£¡ ) returns an action inputs: R§¦¤¢  ©  ¡¥£¡, a percept static: 2 S¡ , an action sequence, initially empty $Q0 ¡© © , some description of the current world state 1)'C quot; , a goal, initially null §(§'¦  T ¡ quot; £ , a problem formulation U PDATE -S TATE( , ) P1¨0 ©  ¡¥£¡ ¡© © % ¡© © 02§¢  $Q0 if is empty then do 2¤ S¡ F ORMULATE -G OAL( $)C % quot; ) 1¨0 ¡© © %UT¤¤2R  ¡ quot;£ F ORMULATE -P ROBLEM( quot; ¡© © $)'C $Q0 , ) T§(§'quot;¦£  ¡ S EARCH( ) V2¤ % S¡ S2¡ F IRST( ) $!! % # quot; © ¥ R EST( ) S¦¡ W2 % S¡ return $!¤ # quot; ©¥ Figure 3.2 function T REE -S EARCH( , T ¡ quot; £ §(§'¦  7 C¡© £© $Q12!0 ) returns a solution, or failure initialize the search tree using the initial state of §(§'¦  T ¡ quot; £ loop do if there are no candidates for expansion then return failure choose a leaf node for expansion according to $Q12!0 7 C¡© £© if the node contains a goal state then return the corresponding solution else expand the node and add the resulting nodes to the search tree Figure 3.9 4
  • 5. Figure 3.17 if then return £ else return ¡0I3 6$¤G qquot; 3 sQ©4¤¥ r a¡££ 3 ¥¥ qquot;© 3 ¢22§I0)quot; s¨I¤¥ else if then return © 42¤2£ 3¡ 0I3 6$¤G v© I0¤2£ ¡ £ uw 3 ¡ if = then true Pr¢22§£I0)quot; qsquot;¨©I3¤¥ % a¡£ 3 ¥¥ s¨I¤¥ © I0¤2£ qquot;© 3 3¡ R ECURSIVE -DLS( © T , , ) 6p6 §¡(§'¦  $¤0§¡§0¢30 T quot;£ £ quot; ¥¥ RtI0§2£ % © 3 ¡ else for each in E XPAND( , ) do T¡ quot;£ ¤¤'¦  ¡')# a quot; £$¤2¤§0¢0 quot;¡¥¥ 3 else if D EPTH[ ]= then return quot;© 3 qsQ4¤¥ © 6pTH ¡ a quot; ')b# if G OAL -T EST[ ¡ a quot; ')# ](S TATE[ ]) then return S OLUTION( ) ¡ a quot; ')b# T ¡ quot; £ §(§'¦  false P¢22§I0)quot; ¨I¥ % r a¡££ 3 ¥¥ qquot;© 3 function R ECURSIVE -DLS( , , ) returns a solution, or failure/cutoff © T 6p6 T ¡ quot; £ ¡ a quot; §(§'¦  ')b# return R ECURSIVE -DLS(M AKE -N ODE(I NITIAL -S TATE[ 6p6 © T T ¡ quot; £ §(§'¦  T ¡ quot; £ §(§'¦  ]), , ) function D EPTH -L IMITED -S EARCH( , ) returns a solution, or failure/cutoff © T 6pH T ¡ quot; £ ¤¤2R  Figure 3.12 return §$¤0§§0¢0 £ quot;¡¥¥ 3 add to £ quot;¡¥¥ 3 §$¤0§§0¢0 D EPTH[ ] D EPTH[ ]+1 ')# ¡ a quot; % , ) $!¤ ')b# # quot; ©¥ ¡ a quot; PATH -C OST[ ] PATH -C OST[ ] + S TEP -C OST( ¡ a quot; ')# , % ACTION[ ] # quot; ©¥ $!¤i% PARENT-N ODE[ ] ¡'a)quot;b#h% S TATE[ ] © I0¤2g% 3¡£ a new N ODE % f ]) do )b# ¡ a quot; for each , ¤¤'¦  T ¡ quot; £in S UCCESSOR -F N[ ](S TATE[ e 3¡ # quot; ©¥ ¦© I0¤2£ $!¤ d the empty set % £ quot;¡¥¥ 3 c§$¤0§§0¢0 ) returns a set of nodes T ¡ quot; £  X ¡ a quot; ¤¤'¦¨)b# function E XPAND( 'I6§0G ¡ C # £ I NSERT-A LL(E XPAND( ¤¤'¦  ')# T ¡ quot; £ ¡ a quot; , ), ) `'I6§0G % ¡ C # £ then return S OLUTION( ) ¡ a quot; ')# if G OAL -T EST[ ')b# ¡ a quot; ] applied to S TATE[ ] succeeds ¤¤'¦  T ¡ quot; £ R EMOVE -F IRST( ) I'H§0G ¡ C # £ % ¡ a quot; P')# if E MPTY ?( ) then return failure ¡ C # £ I'6§§G loop do ) 'I6§0G ¡ C # £ I NSERT(M AKE -N ODE(I NITIAL -S TATE[ T ¡ quot; £ §(§'¦  ]), % ¡ C # £ `I'H§0G ) returns a solution, or failure ¡ C # £ GX T ¡ quot; £ 'I6§0HY§(§'¦  function T REE -S EARCH( 5
  • 6. 6 Chapter 3. Solving Problems by Searching function I TERATIVE -D EEPENING -S EARCH( ¤¤'¦  T ¡ quot; £ ) returns a solution, or failure inputs: §(§'¦  T ¡ quot; £ , a problem for xHa % D©  ¡ 0 to y do RtI0§2£ % © 3 ¡ D EPTH -L IMITED -S EARCH( ¤¤'¦  T ¡ quot; £ , !R'a D©  ¡ ) uv© I0¤2£ w 3¡ if cutoff then return tI0§0£ © 3 ¡ Figure 3.19 function G RAPH -S EARCH( 'I6§0H€¤¤'¦  ¡ C # £ GX T ¡ quot; £ ) returns a solution, or failure 2$@¥ % a ¡ quot; an empty set % ¡ C # £ `I'H§0G I NSERT(M AKE -N ODE(I NITIAL -S TATE[ ]), ) T ¡ quot; £ §(§'¦  ¡ C # £ 'I6§0G loop do if E MPTY ?( I'6§§G ¡ C # £ ) then return failure P')# % ¡ a quot; R EMOVE -F IRST( ) I'H§0G ¡ C # £ if G OAL -T EST[ T ¡ quot; £ ¤¤'¦  ](S TATE[ ¡ a quot; ')# ]) then return S OLUTION( ¡ a quot; ')b# ) if S TATE[ ¡ a quot; ')# ] is not in then a ¡ quot; 2$@¥ add S TATE[ ] to )b# ¡ a quot; 2$@¥ a ¡ quot; % ¡ C # £ `'I6§0G I NSERT-A LL(E XPAND( , ), ) T ¡ quot; £ ¡ a quot; ¤¤2R  ')# ¡ C # £ 'I6§0G Figure 3.25
  • 7. 7 Figure 4.13 £ quot; D C ¡ # % © #¡££ 3 $2¢1§‰hRR§0§I¤¥ ] © #¡££ 3 R¤2§I¥ if VALUE[neighbor] VALUE[current] then return S TATE[ j a highest-valued successor of © #¡££ 3 ¢¤2§I¥ % £ quot; D C ¡ V$24$@¤b# loop do ]) T ¡ quot; £ ¤¤'¦  M AKE -N ODE(I NITIAL -S TATE[ % © #¡££ 3 R¢¤2§I¥ , a node £$24$@¤b# quot; D C ¡ local variables: , a node R§0§I¤¥ © #¡££ 3 inputs: , a problem ¤¤'¦  T ¡ quot; £ function H ILL -C LIMBING( ) returns a state that is a local maximum ¤¤'¦  T ¡ quot; £ Figure 4.6 if then return © 42¤2£ 3¡ 0I3 6$¤G v© I0¤2£ ¡ £ uw 3 ¡ , [ ] RBFS( , , 1$6$§¤© $i§6pH ¤c@gƒ 0¤2 ¤¤2R  ‘ ¡ d © # £ ¡ X © T G ˆ hf © ¡ T ¡ quot; £ ) % 0§0 ‚ tI0§2£ ©¡ © 3 ¡ the second-lowest -value among £ quot;¡¥¥ 3 §$¤0§§0¢0 ‚ Pe61b§¤¨t1 % ¡ d © # £ ¡ © if then return ©¡ , [ 0§0 ‚ 2It6$¤G ] ¡ £ 3 6p6t g™0¤0 P‚ © T G ˜ —©¡ – the lowest -value node in £ quot;¡¥¥ 3 §$¤0§§0¢0 ‚ % ©¡ R0¤2 repeat [s] ‘— ¡ a quot; – X ‘ ˆ ” ’ ‘ ˆ ˆ ‡ … ƒ H¤')# P‚ §)s“•“)sbH‰1†„% ‚ for each in do £ quot;¡¥¥ 3 §1¤0¤00¢0 if is empty then return , y ¡2£43 6$¤G §$§0¤§2R2 £ quot;¡¥¥ 3 E XPAND( , ) T¤¡¤'¦  ')# quot;£ ¡ a quot; c§$¤0§§0¢0 % £ quot;¡¥¥ 3 if G OAL -T EST[ ]( ) then return¡ a quot; ')b# ¡© © $Q0 ¤¤'¦  T ¡ quot; £ ‚ function RBFS( , , ) returns a solution, or failure and a new -cost limit © T Hp6 G ')b# ¤¤'¦  ¡ a quot; T ¡ quot; £ RBFS( y , M AKE -N ODE(I NITIAL -S TATE[ T ¡ quot; £ §(§'¦  ]), ) ¤¤'¦  T ¡ quot; £ function R ECURSIVE -B EST-F IRST-S EARCH( ) returns a solution, or failure T ¡ quot; £ §(§'¦  EXPLORATION 4 INFORMED SEARCH AND
  • 8. 8 Chapter 4. Informed Search and Exploration function S IMULATED -A NNEALING( , T ¡ quot; £ §(§'¦  ¡ 3 a ¡ D ¥ I$2¢§¤ ) returns a solution state inputs: ¤¤'¦  T ¡ quot; £ , a problem (I$¦¢¤¤ ¡ 3 a ¡ D ¥ , a mapping from time to “temperature” local variables: R§0§I¤¥ © #¡££ 3 , a node , a node 10b# © k¡ l , a “temperature” controlling the probability of downward steps M AKE -N ODE(I NITIAL -S TATE[ R¢¤2§I¥ % © #¡££ 3 ¤¤'¦  T ¡ quot; £ ]) for 1 to do y R© % [ ] © 431a2¢¤§g% l ¡ ¡ D¥ R§2£§43¤¥ © #¡ £ l if = 0 then return R#§2§43¤¥ © ¡££ a randomly selected successor of 10b# % © k¡ ©R#§¡2£§£43¤¥ VALUE[ ] – VALUE[ 10¡b# © k ] % om n if 0 then©$k2¡‰#hR©R§¡0§£I¤¥ % # £ 3 ˜ gm n tsfrPip s q else $2‰#hRR§0§I¤¥ © k¡ only with probability % © #¡££ 3 Figure 4.17 function G ENETIC -A LGORITHM( $!!$I04  # quot; © 3   quot; , F ITNESS -F N) returns an individual inputs: $!1I§4  # quot; © 3   quot; , a set of individuals F ITNESS -F N, a function that measures the fitness of an individual repeat empty set $!$@I§4  ¤b# % # quot; © 3   quot; u ¡ $!!$I04  # quot; © 3   quot; loop for from 1 to S IZE( ) do 1quot;!©$@4R§4  # 3  quot; R ANDOM -S ELECTION( vk % , F ITNESS -F N) #$!$@I§4  quot; © 3   quot; R ANDOM -S ELECTION( w7 % , F ITNESS -F N) 7 k R EPRODUCE( , ) 6'§¥ % a D a D %v@6'¤¥ if (small random probability) then M UTATE( a D @H¤¥ ) add to $!$@I§4  ¤‰# # quot; © 3   quot; u ¡ @6'¤¥ a D $!$@I§4  ¤bgx$!!$I04  # quot; © 3   quot; u ¡ # % # quot; © 3   quot; until some individual is fit enough, or enough time has elapsed return the best individual in $!!$I04  # quot; © 3   quot; , according to F ITNESS -F N 7 k function R EPRODUCE( , ) returns an individual 7 k inputs: , , parent individuals % # L ENGTH( ) k % `¥ random number from 1 to # k return A PPEND(S UBSTRING( , 1, ), S UBSTRING( , ¥ # {y¥ 7 z ’ , )) Figure 4.21
  • 9. 9 function O NLINE -DFS-AGENT( ) returns an action | | inputs: , a percept that identifies the current state static: © I0¤2£ 3¡ , a table, indexed by action and state, initially empty a22£$@§2‰I3 ¡ quot;  k¡ # , a table that lists, for each visited state, the actions not yet tried a2¡e9¤¦!1¤e2‰I3 ¥ £© 9 ¥ # , a table that lists, for each visited state, the backtracks not yet tried , , the previous state and action, initially null | if G OAL -T EST( ) then return §¨0  quot;© | if is a new state then % | 22$@00‰I3 a ¡ £ quot;   k ¡ # [ ] ACTIONS( ) | if is not null then do [ , ] | h% tI0§2£ © 3 ¡ | 2¡e¤¦!©19¤¥e2‰I3 a 9¥ £ add to the front of # [ ] if [ ] is empty then | 22$R§0bI3 a ¡ £ quot;   k ¡ #  §quot;¨©2 if | 2e¤¦!1¤e2‰I3 a¡ 9 ¥ £© 9 ¥ # [ ] is empty then return else 3 | © I0¤¡2£ an action such that [ , ] = P OP( % w | 2e¤¦!1¤e2‰I3 a¡ 9 ¥ £© 9 ¥ # [ ]) else P OP( [ ]) ¡ quot;  k¡ # | a22£$@§2‰I3 v % | h` % return Figure 4.25 function LRTA*-AGENT( ) returns an action | | inputs: , a percept that identifies the current state static: © I0¤2£ 3¡ , a table, indexed by action and state, initially empty } , a table of cost estimates indexed by state, initially empty , , the previous state and action, initially null | if G OAL -T EST( ) then return §¨0  quot;© | } } | ~% | ” if is a new state (not in ) then [ ] ( ) unless is null | h% tI0§2£ [ , ] © 3¡ h [ ] foƒ % } LRTA*-C OST( , , 3¡ © 42¤2£ [ , ], } ) ƒs ‚ ¦ € ACTIONS v % | } © I0¤2£ | 3¡ | an action in ACTIONS( ) that minimizes LRTA*-C OST( , , [ , ], ) | h` % return } | function LRTA*-C OST( , , , ) returns a cost estimate | iQc” ‘ „ˆ if is undefined then return else return — | „ – ˆg‘ | 02eQˆ … ‡ ’ „X †X „ Figure 4.29
  • 10. CONSTRAINT 5 SATISFACTION PROBLEMS ¥   function BACKTRACKING -S EARCH( ) returns a solution, or failure return R ECURSIVE -BACKTRACKING( , ) ¥ W‰   Š function R ECURSIVE -BACKTRACKING( ,  Q¥ ©R§¡gTRe@02$ # # C ) returns a solution, or failure if is complete then return R¤g¢e@001 © #¡ T # C ©R§¡gRe@02$ # T # C S ELECT-U NASSIGNED -VARIABLE(VARIABLES[ ],   © #¡ T # C ¥ R¤g¢e@001 Q¤¥ , )  % £ V$$d for each in O RDER -D OMAIN -VALUES( , , ) do   © #¡ T # C £ ¥ R§gR$20$ $1d 3 ¡Rt1$d if is consistent with R#§gR$20$ © ¡ T # C Q¥   according to C ONSTRAINTS[ ] then ¡ 3 Rt1$d add = to #¡ T C ©¢¤g¢#e@00$ Š R3 $$d £$1d ‰ ¡ C  Q¤¥ ©¢#¤¡gT¢#e@00$ R ECURSIVE -BACKTRACKING( , ) RtI0§2£ % © 3 ¡ if © I30¤2£ ¡ then return 2£It6$¤G uvtI0§0£ ¡ 3 w © 3 ¡ remove = T # C ©¢#¤¡gR$@00$ from £ Š ¡R3 $$d $$d ‰ return 2It6$¤G ¡ £ 3 Figure 5.4 10
  • 11. 11 function AC-3( Q¥   ) returns the CSP, possibly with reduced domains inputs:   Q¥ , a binary CSP with variables X    Ž Š‘o‹ X g‹ X i‰ Œ ‹ local variables: R¤R¤S ¡ 3¡ 3 , a queue of arcs, initially all the arcs in Q¥   while §RS ¡ 3¡ 3 is not empty do % “ R‘ p‹ X o‹ ˆ ’ R EMOVE -F IRST( ) ¡ 3¡ 3 R¤RS if R EMOVE -I NCONSISTENT-VALUES( “ ‹ X’ ‹ ) then for each in N EIGHBORS[ ] do ” †‹ ’ o‹ add ( ’ ‹ X ™‹ ) to” R¤RS ¡ 3¡ 3 function R EMOVE -I NCONSISTENT-VALUES( “ ‹ X’ ‹ ) returns true iff we remove a value $¤•v2$$o¤2£ ¡ G % a¡ d quot; T¡ k for each in D OMAIN[ ] do ’ ‹ if no value in D OMAIN[ ] allows ( , ) to satisfy the constraint between – “ ‹ 7 k ’ ‹ and “ ‹ k then delete from D OMAIN[ ]; ’ ‹ ¡R3§£©h%va2¡$d$quot;o¤2£ T¡ return 2$$o¤2£ a¡ d quot; T¡ Figure 5.9 function M IN -C ONFLICTS( , ¨0 ioT ¥  ¡© k   ) returns a solution or failure inputs: Q¥   , a constraint satisfaction problem ¨0 ioT  ¡© k , the number of steps allowed before giving up R¢¤2§I¥ % © #¡££ 3 an initial complete assignment for ¥   for = 1 to ¨0 ioT  ¡© k do  ¥ if is a solution for © #¡££ 3 ¢¤2§I¥ then return © #¡££ 3 R§0§I¤¥ V$1d % £ a randomly chosen, conflicted variable from VARIABLES[ ]¥   £ $1d d the value for `3 $1d % ¡ that minimizes C ONFLICTS( , , 3, £  Q¤¥ ©R#¤¡2£§£I¥ d 1$d ) set R§¡2£§£43¤¥ © # in Rt1$d w 1$d ¡ 3 £ return 2It6$¤G ¡ £ 3 Figure 5.11
  • 12. 6 ADVERSARIAL SEARCH function M INIMAX -D ECISION( 1¨0 ¡© © ) returns $!¤—$ # quot; ©¥ # inputs: ¨$¨0 ¡© © , current state in game % wd M AX -VALUE(state) return the # quot; ©¥ $!¤ in S UCCESSORS( $Q0 ¡© © ) with value d function M AX -VALUE( 1¨0 ¡© © ) returns Rt1$˜!6t6Ip ¡ 3 d 7© © 3 if T ERMINAL -T EST( 1¨0 ¡© © ¡© © ¨$¨2 ) then return U TILITY( ) y gwd ™ % X R for in S UCCESSORS( ) do¡© © $Q0 % wd M AX(v, M IN -VALUE( )) return d function M IN -VALUE( $Q0 ¡© © ) returns Rt$1˜!H 6Ix ¡ 3 d 7© © 3 if T ERMINAL -T EST( ¡© © 1¨0 ) then return U TILITY( ¡© © ¨$¨2 ) y wd % X R for in S UCCESSORS( ) do¡© © $Q0 % wd M IN(v, M AX -VALUE( )) return d Figure 6.4 12
  • 13. 13 function A LPHA -B ETA -S EARCH( ) returns an action ¨$¨2 ¡© © inputs: ¨$¨0 ¡© © , current state in game % wd M AX -VALUE( , , ) ¡© © y ™ ¨$¨0 y ’ return the # quot; ©¥ $!¤ in S UCCESSORS( $Q0 ¡© © ) with value d function M AX -VALUE( › š 1¨0 ¡© © , , ) returns R3 $$p6t6!4x ¡ d 7© © 3 inputs: ¨$¨0 ¡© © , current state in game , the value of the best alternative for š MAX 1¨0 ¡© © along the path to , the value of the best alternative for › MIN along the path to ¨$¨2 ¡© © if T ERMINAL -T EST( ¡© © 1¨0 ) then return U TILITY( ¡© © ¨$¨2 ) y gwd ™ % for X R in S UCCESSORS( ) do ¡© © $Q0 wd % M AX(v, M IN -VALUE( , , )) › š ›Ÿžœ if then return d % šM AX( , v) š d return function M IN -VALUE( › š $Q0 ¡© © , , ) returns 3 $1˜6 6Ip ¡ d 7© © 3 inputs: ¨$¨0 ¡© © , current state in game , the value of the best alternative for š MAX 1¨0 ¡© © along the path to , the value of the best alternative for › MIN along the path to ¨$¨2 ¡© © if T ERMINAL -T EST( ¡© © 1¨0 ) then return U TILITY( ¡© © ¨$¨2 ) y ~wd ’ % for X R in S UCCESSORS( ) do ¡© © $Q0 wd % M IN(v, M AX -VALUE( , , )) › š š jžœif then return d › % › M IN( , v) d return Figure 6.9
  • 14. 7 LOGICAL AGENTS function KB-AGENT( §¦§¢  ©  ¡¥£¡ ) returns an $!! # quot; © ¥ static: E, a knowledge base ¢¡ © , a counter, initially 0, indicating time T ELL( E ¢¡ , M AKE -P ERCEPT-S ENTENCE( , )) © ¨§¦¤¢  ©  ¡¥£¡ $!! % # quot; © ¥A SK( E , M AKE -ACTION -Q UERY( )) ¢¡ © T ELL( E¢¡ , M AKE -ACTION -S ENTENCE( , )) © 1! # quot; © ¥ +1 h© © % #$!©¤¥ quot; return Figure 7.2 function TT-E NTAILS ?( , ) returns E ¢¡ or š ¡ 3£ R§© ¡ t1G inputs: , the knowledge base, a sentence in propositional logic E ¢¡ š , the query, a sentence in propositional logic quot; T 7 %P $2g10a list of the proposition symbols in E ¢¡ and š return TT-C HECK -A LL( , , , )E x¡ quot; T 7 — – $2g10 š function TT-C HECK -A LL( , , , E ¢¡ ¤')oT $2g10 š ¡ a quot; quot; T 7 ) returns ¡ 3£ R§© or $¤G ¡ if E MPTY ?( $2g10 quot; T 7 ) then if PL-T RUE ?( E , x¡ ¡ a quot; ¤)oT ) then return PL-T RUE ?( , ¡ a quot; §')oT š ) else return R§© ¡ 3£ else do % £ F IRST( $2g10 ); quot; T 7 R EST( ) % ©¡ R0§2£ quot; T 7 $2g10 return TT-C HECK -A LL( , , , E XTEND( 0¤2£ š ¢¡ ©¡ E ¤')o§eR§§X £ ¡ a quot; TX ¡ 3£© ) and TT-C HECK -A LL( , , ©0¤2£ š ¢¡ , E XTEND(¡ E ¤¡')o§¤t$¤HX £ a quot; T X ¡ G ) Figure 7.12 14
  • 15. 15 function PL-R ESOLUTION( , ) returns E ¢¡or š ¡ 3£ R§© ¡ $¤G inputs: , the knowledge base, a sentence in propositional logic E ¢¡ š , the query, a sentence in propositional logic %f¤I$@¥ ¡ 3 the set of clauses in the CNF representation of W€•¢¡ š ¥ ¤ E ŠW‰ ¦§‰# % u¡ loop do for each , in ¡ 3 §I$@¥do “ § ’ § f!R¤$t1¤¤2£ % © # ¡ d quot; ¡ PL-R ESOLVE( , ) “ § ’ § if R§ed $¤§0£ © #¡ quot;¡ contains the empty clause then return R§© ¡ 3£ ©¢#¤¡ed $¤§¡2£©¨—§‰h¦§‰# quot; u¡ # % u¡ ¡ $¤G if §I$@•«§‰# ¡ 3 ¥ ª u ¡ then return §‰#™c§I$@¬`¤¤41¤¥ u ¡ ¨ ¡ 3 ¥ % ¡ 3 Figure 7.15 function PL-FC-E NTAILS ?( , ) returns E ¢¡ or S R§!© ¡ 3£ $¤G ¡ inputs: E, the knowledge base, a set of propositional Horn clauses ¢¡ S , the query, a proposition symbol local variables: RI$2¥ © # 3 quot; , a table, indexed by clause, initially the number of premises 22§§)6 a¡££¡ G # , a table, indexed by symbol, each entry initially t1G ¡ ¤I a #¡ C , a list of symbols, initially the symbols known to be true in E ¢¡ while eb¤') a #¡ C is not empty do P OP(b§I) a #¡ C ) % ­  unless   22§¤H a¡££¡ G # [ ] do ¡R3§£©g%   22§¤)6 [ ]a¡££¡ G # for each Horn clause in whose premise ¥   appears do decrement ¥ RI$0¥ [ ] © # 3 quot; if ¥ ¢410¥ © # 3 quot; [ ] = 0 then do ¥ if H EAD[ ] = then return S R§!© ¡ 3£ P USH(H EAD[ ], ) ¥ b§I) a #¡ C return $¤G ¡ Figure 7.18
  • 16. 16 Chapter 7. Logical Agents function DPLL-S ATISFIABLE ?( ) returns ¡ 3£ R§!© or $¤G ¡ inputs: , a sentence in propositional logic f¤I$@¥ % ¡ 3 the set of clauses in the CNF representation of P $2g10 % quot; T 7 a list of the proposition symbols in return DPLL( , , ) — – t12g$2 §I$¤¥ quot; T 7 ¡ 3 function DPLL( §')oT $2g10 §I$@¥ ¡ a quot; quot; T 7 ¡ 3 , , ) returns ¡ 3£ §!© or ¡ ¤t$¤G if every clause in is true in ¡ 3 ¤I$@¥ then return ¡ 3£ R§© ¡ a quot; §')oT if some clause in is false in ¡ 3 §I$¤¥ then return ¡ ¤t$¤G ¡ a quot; §')oT ® PRt1$d % ¡ 3 ¤')oT ¤¤41¤¥ t$¦g$0 ¡ a quot; ¡ 3 quot; T 7 , F IND -P URE -S YMBOL( , , ) ® ® t12g$2 ¤I$@¥ quot; T 7 ¡ 3 ¤)o§Rt$1§X £ ¡ a quot; T X ¡ 3 d if is non-null then return DPLL( , – , E XTEND( ) ® PRt1$d % ¡ 3 §')oT §I$@¥ ¡ a quot; ¡ 3 , F IND -U NIT-C LAUSE( , ) ® ® t12g$2 ¤I$@¥ quot; T 7 ¡ 3 ¤¡a)quot;oT§X¡Rt$1d§X £ 3 if is non-null then return DPLL( , – , E XTEND( ) % ® F IRST( ); % ©¡ R0¤2£ $2g10 R EST( quot; T 7 ) quot; T 7 t$¦g$0 return DPLL( , 0§2£ §I$¤¥ © ¡ ¡ 3 , E XTEND( , , )) or §')oT R§© ® ¡ a quot; ¡ 3£ DPLL( , 0§2£ §I$¤¥ © ¡ ¡ 3 , E XTEND( , , )) ¤')oT $¤G ® ¡ a quot; ¡ Figure 7.21 function WALK SAT( , , k ¡ 3   y¯ ioT   §I$@¥ ) returns a satisfying model or ¡ £ 3 2It6$¤G inputs: ¤I$@¥ ¡ 3 , a set of clauses in propositional logic   , the probability of choosing to do a “random walk” move, typically around 0.5   y¯ ioT k , number of flips allowed before giving up a random assignment of % ¡ a quot; e¤')oT / to the symbols in ¡ ¡ 3£ $¤G R§!© ¡ 3 ¤I$@¥ for to k R  y¯ ioT do z w §¡I3$¤¥ if satisfies ¡ a quot; §')oT then return ¡ a quot; ¤)oT % ¡ 3 P¤41¤¥ a randomly selected clause from that is false in ¡ 3 ¤I$@¥ ¤')oT ¡ a quot;   with probability flip the value in of a randomly selected symbol from ¡ a quot; §')oT I$@¥ ¡ 3 else flip whichever symbol in I$¤¥ ¡ 3 maximizes the number of satisfied clauses return 2It6$¤G ¡ £ 3 Figure 7.23
  • 17. 17 function PL-W UMPUS -AGENT( 02§¢  ©  ¡¥£¡ ) returns an $!¤ # quot; ©¥ inputs: ©  ¡¥£¡ R§¦¤¢  , a list, [ , £¡©© ¡ °¡¡£ D¥ #¡© ¤¨6 eC i020§ ¤b§0 , ] static: , a knowledge base, initially containing the “physics” of the wumpus world E ¢¡ , , quot; £ #$!©$Q©R#§¡Q§1quot; 7 k , the agent’s position (initially 1,1) and orientation (initially © D C $@§£ ) 2¨606id a¡© , an array indicating which squares have been visited, initially $¤G ¡ $!¤ # quot; ©¥ , the agent’s most recent action, initially null $@  # , an action sequence, initially empty update , , a¡© # quot; © © #¡ £ 2¨606id $!1¨R§§$quot; 7 k , based on # quot; © ¥ $!e if then T ELL( ´ $c± ¢¡ ³ ² E, ) else T ELL( , )¤¤2 D¥ #¡© ´ $²“—¥ ¢¡ ³ ± E if then T ELL( ´ $xµ ¢¡ ³ ² , E ) else T ELL( , ) i002§ ¡ °¡¡£ ´ ³$¢µ—¥ ¢¡ ² E if then '¦$~­$!¤ £ C % # quot; ©¥ ¤!6t$C £ ¡©© %#1quot;!©¥ else if is nonempty then P OP( # $R  ) # $@  else if for some fringe square [ , ], A SK( ¶ , ) is or ‘ ³“ ’ —„¤ ³“ ’ £ ¥ ˆ ¢¡ · ¥ ¡ 3£ R§!© E for some fringe square [ , ], A SK( ¶ , ) is ¡t1G then do ‘ ³“ ’ ·  ³“ ’ £ ˆ ¢¡ ¸ E % # $R  A*-G RAPH -S EARCH(ROUTE -P ROBLEM([ , ], #$!$Q©R§Q§1quot; 7 k quot; © #¡ £ , [ , ], ¶ a¡© ¦606id )) P OP( ) $@  # ­$!e % # quot; © ¥ else a randomly chosen move $!! % # quot; © ¥ return $!¤ # quot; ©¥ Figure 7.26
  • 18. 8 FIRST-ORDER LOGIC 18
  • 19. 9 INFERENCE IN FIRST-ORDER LOGIC ¹ 7 k function U NIFY( , , ) returns a substitution to make and identical k 7 k inputs: , a variable, constant, list, or compound 7 , a variable, constant, list, or compound , the substitution built up so far (optional, defaults to empty) ¹ if = failure then return failure ¹ k else if = then return 7 ¹ k else if VARIABLE ?( ) then return U NIFY-VAR( , , ) ¹ 7 k 7 else if VARIABLE ?( ) then return U NIFY-VAR( , , ) ¹ k 7 else if C OMPOUND ?( ) and C OMPOUND ?( ) then k 7 return U NIFY(A RGS[ ], A RGS[ ], U NIFY(O P[ ], O P[ ], ))k 7 k 7 ¹ k else if L IST ?( ) and L IST ?( ) then 7 k return U NIFY(R EST[ ], R EST[ ], U NIFY(F IRST[ ], F IRST[ ], )) 7 k 7 ¹ else return failure function U NIFY-VAR( , , ) returns a substitution ¹ k $1d £ inputs: $$d £ , a variable k , any expression , the substitution built up so far ¹ if ¹ U»¦Š d º £ $$I$$1d ‰ then return U NIFY( , , ) ¹ k $$d ¹U»¦Š $14º )‰ else if d ¼ then return U NIFY( , , ) ¹ $1d £$$d else if O CCUR -C HECK ?( k $$d £ , ) then return failure else return add / to ¹ Š k $$d ‰ £ Figure 9.2 19
  • 20. 20 Chapter 9. Inference in First-Order Logic function FOL-FC-A SK( , ) returns a substitution or E x¡ š ¡ t1G inputs: , the knowledge base, a set of first-order definite clauses E ¢¡ , the query, an atomic sentence š local variables: ¤b# u¡ , the new sentences inferred on each iteration repeat until §‰# u¡ is empty Š W‰ —¤b# % u¡ for each sentence Ex¡ £ in do %R$S ‘ ½•‘   ¤  `Œ §ˆ   ¤   S TANDARDIZE -A PART( ) £ ¤  ¤ Œ   ¹ for each such that S UBST( ,¹ ) = S UBST( , ‘   ¤ |Œ   ¹   | ‘   ¤ ) ) Ex¡ | ‘ sXX |Œ      for some in S ¹ S UBST( , ) % | S | S if is not a renaming of some sentence already in or E ¢¡ u¡ ¤b# then do add to §‰# | S u¡ š | S U NIFY( , ) % ¾ ¾ 6$¤G ¾ if is not then return add to ¢¡ E ¤‰# u¡ return $¤G ¡ Figure 9.5 function FOL-BC-A SK( , , ) returns a set of substitutions E ¢¡ quot; ¹ t$)C inputs: , a knowledge base E ¢¡ $)'C quot; , a list of conjuncts forming a query ( already applied) ¹ , the current substitution, initially the empty substitution ¹ Š W‰ local variables: §¤y0R1 £¡ u # , a set of substitutions, initially empty $)C if quot; is empty then return '1‰ Š ¹ % | S S UBST( , F IRST( )) ¹ $)C quot; for each sentence in where S TANDARDIZE -A PART( ) = E ¢¡ £ £ €Œ §ˆ ¤   ‘ Àž‘   ¤ ) ¿ ½   % | ¹ and U NIFY( , ) succeeds | S S % quot; u ¡ ft1)'C ¤b# R EST( ) Á  X    f‘ sX Œ   – — $)'C quot; % £¡ u # f§¤y0R1 FOL-BC-A SK( , , C OMPOSE( , )) E ¢¡ $)quot;C §‰#u¡ ¹ | ¹ £¡ u # §§y0R$¨ return §¤y0¢$ £¡ u # Figure 9.9 procedure A PPEND( # quot; © 3 # © # quot; ° k $!$¢R6!R$0¥ i 7 ) , , , ) 6$¦© % £ G LOBAL -T RAIL -P OINTER() if k ) —– = and U NIFY( , ) then C ALL( ) ° i 7 # quot; © 3 # © # quot; $!1R¢6R10¥ R ESET-T RAIL( ) 6$¦© £ % v N EW-VARIABLE(); N EW-VARIABLE(); N EW-VARIABLE() % Ãk % y° k i k if U NIFY( , [ — ]) and U NIFY( , [ — ]) then A PPEND( , , , ° i ° $!!$¢R6¢$0¥ ° 7 k # quot; © 3 # © # quot; ) Figure 9.12
  • 21. 21 procedure OTTER( , ) ¤'§43 $¤ ¡ quot; inputs: $¤ quot; , a set of support—clauses defining the problem (a global variable) ¤'§43 ¡ , background knowledge potentially relevant to the problem repeat % clause the lightest member of $§ quot; move from ¡ 3 I$@¥ to ¡ ¤¤I3 quot; $¤ P ROCESS(I NFER( , ), $quot;¤ ¤'§43 I$@¥ ) ¡ ¡ 3 until $¤ quot; —– = or a refutation has been found function I NFER( (§'¤I3 I$@¥ ¡ ¡ 3 , ) returns clauses resolve I$@¥ ¡ 3 with each member of ¤'§43 ¡ return the resulting clauses after applying F ILTER procedure P ROCESS( $¤ ¤I$@¥ quot; ¡ 3 , ) ¡ 3 I$@¥ for each in do ¡ 3 ¤I$@¥ P¤41¤¥ % ¡ 3 S IMPLIFY( I$@¥ ¡ 3 ) merge identical literals discard clause if it is a tautology [% quot; `$§ — I$@¥ ¡ 3 ] quot; $§ I$@¥ ¡ 3 if has no literals then a refutation has been found ¡I$@¥ if 3 has one literal then look for unit refutation Figure 9.19
  • 22. 10 KNOWLEDGE REPRESENTATION 22
  • 23. 23 Figure 11.3 ‘ ‘ quot;© X ̈ A ¦'Qy“@¤© ɤ †$¦0b“@¤© ¦¥ E FFECT: ‘ T quot; £ G X ̈ A ‘ quot;©ˆ©£ quot;  £ A ‘ T quot; £ Gˆ © £ quot;   £ A ¨s¤§$4¨6 Ǥ †$¦§@¤§$4¨6 Ǥ @'b$@ ® ¤ ™120c@¤© A ‘ ̈ ¡ # ‘ T quot; £ G X ̈ P RECOND : §'Qy€$¦0b“@b7 Å P$!¤¥ A X ‘ quot;© X T quot; £ G X ̈ ˆ # quot; © ‘‘ Ì ˆ ¥ ¦X … P# Ä „¤ 4PX … ¤© A E FFECT: ‘ † ˆ ‘ †ˆ©£ quot;  £ A ‘ ̈ ¡ # ˆ quot; C£ Ê 4¤§$4¨6 Ǥ b@‰$@ ® ¤ ‘ … ¢'$ ˆ¤ I`“@¤© Ǥ bX … P# Ä ‘ † X ̈ A ‘ Ì ˆP RECOND : §4P“X … “)@Rf$P$!¤¥ A X ‘ † X Ì ˆ a quot; # Í ˆ # quot; © ‘‘ Ì ˆ ¦X … P# Ä ¤ 4PX … ¤© ¦¥ E FFECT: ‘ † ˆ A £ quot;  £ A ‘ ̈ ¡ # ˆ quot; C£ Ê ‘4†ˆ¤©§$4¨6 Ǥ @'b$@ ® ¤ ‘ … ¢'$ ˆ¤ 4`“@¤© Ǥ IPX … ¤© A ‘ † X ̈ A ‘ † ˆ P RECOND : X‘ † X Ì ˆ a ˆ # quot; © §4`“bX … “e)quot; F P$!¤¥ A ‘ Æ Å Ž ˆ A ¡ È Œ ˆ ˆ ¦‘ vI8 X v§ ¤© ɤ ‘ PÅ yX v§ ¤© A 1)quot; Ë ‘ Æ Å ˆ ©£ quot;  £ A ¦‘ w48 §14¨H ɤ ‘ PÅ ¦¤§$4¨6 ¦¤ ¡ Ȉ©£ quot;  £ A ˆ ¡ # ˆ ¡ # Ž ‘ Ž £ ‰$@ ® ¤ ‘ Œ £ ‰1 ® ¤ ‘ v§ ¢Q1 Ÿ¤ ‘ v§ R$ •¤ˆ quot; C£ Ê Œ ˆ quot; C£ Ê ¡ È ˆ A Æ Å ˆ A ¡ È ˆ A ‘ PÅ yX Ž £ ¤© ɤ ‘ w48 X Œ £ ¤© Ǥ ‘ PÅ yX Ž § ¤© Ǥ ‘ v48 X Œ § ¤© A 6¢# Ä Æ Å ˆ ˆ © PLANNING 11
  • 24. Figure 11.7 ‘ Æ ˆ £ ¡ Ê ¦‘ ¼ XiÑQˆ`# •¥„¤ ‘ ¼ I$2 Ÿ¤ 1¤ l iQ`# Æ ‘ ¡ X ш E FFECT: , ‘ ¼ u{Qˆ ¤ ¤Qˆb¤)@ Eɤ ¤ÑQI$2 Ÿ¤ ‘ ¼ iQP# Æ w Ñ ‘Ñ 9¥ quot; ‘ ˆ £ ¡ Ê X ш P RECOND : X X ш ¡ §‘ ¼ iQ(§' l quot; l e1ШP$!¤¥ A ¡ d quot; ψ # quot; © ¥ ‘ ˆ £ ¡ ¦‘ – I$2 ʕɤ ‘ ¼ iÑQP# •¥„¤ ‘ ¼ ˆ412( ˆ¤ ‘ – iQ`# Æ X ˆ Æ £ ¡ Ê X ш E FFECT: ,‘ – u w ¼ ˆ ¤ ‘ – Qˆ ¤ ‘ ¼ {Qˆ uw Ñ uw Ñ ¤ ‘¤Qb9§) Eɤ ‘ – 4$¦( ˆ¤ ‘¤QˆI$2¡ Ÿ¤ ‘ ¼ iQP# Æ Ñˆ ¥ quot; ˆ £ ¡ Ê Ñ £ Ê X ш P RECOND : X §‘ – X ¼ iQe1ШP$!¤¥ A X ш ¡ d quot; ψ # quot; © ‘ ¦‘ § X µ `# ˆ¤ ‘ µ P# Æ 1)quot; ˆ Æ X Έ ˆ ‘ ˆ £ ¡ Ê ¦‘ § 4$¦( ˆ¤ ‘ µ I$2 Ÿ¤ x4$¦( ˆ¤ Ë ˆ £ ¡ Ê ‘ Έ £ ¡ Ê ‘ § b¤)@ ɤ ‘ ˆ 9¥ quot; E µ ˆ 9¥ quot; E b¤)@ ɤ xb¤)@ ɤ ‘ Έ 9¥ quot; E ‘ ¡ ˆ Æ ‘ ¡ i(§' l X § P# ˆ¤ i¤' l X ˆ Æ µ P# ˆ¤ 1¤ `# Æ 6¢# ‘ ¡ l X Έ ˆ © Ä Figure 11.5 ‘ ‘ ¡ X © ¦i(1k A §1 Å ˆ A ¥ ¤© ¦„¤ R412£ §$ Å ¤© ¦Y¤ ‘ a # 3 quot; X© ˆ A ¥ ‘ 9 # 3 X ¡£ ˆ A ¥ ‘ ¡ X ¡ £ 444§£ l 2$4  8 ¤© ¦„¤ i$k A 2$4  8 ¤© ¦„¤ R412£ Ë 2$4  8 ¤© ¦¥ ˆ A ¥ ‘ a # 3 quot; Ë X ¡£ ˆ A E FFECT: P RECOND : , © D C #£¡ '1@R§¤$d Æ $$2¡ F P$!¤¥ A ¡ d ˆ # quot; © ‘ ¡ X ¡ £ ˆ A ‘ a # 3 quot; X ¡£ ˆ A ¦‘)(1k A e2$4  8 ¤© ɤ R412£ Ë 2$4  8 ¤© ¦¥ E FFECT: ‘ X© ˆ A ¥ ‘ a # 3 quot; X ¡£ ˆ )¡(1k A §$@ Å ¤© ¦É¤ RbI$¦£ Ë 2$4  8 ¤© A P RECOND : ‘ ¡, X ¡£ ˆ © ˆ # quot; © i$k A 2$4  8 P# Æ I3 ® P$!¤¥ A ‘‘ # quot; X© ˆ A ‘ ¡ X © ˆ A ¦¢abI3$¦£ Ë §$@ Å ¤© Ǥ )(1k A §$@ Å ¤© ¦¥ E FFECT: ‘ ¡ X © ˆ i$k A ¤1 Å ¤© A P RECOND : , ‘ ¡ X © ˆ ¡ d quot; T ˆ # quot; © 1$k A §$ Å ee$o§¡ B P$!¤¥ A a quot; ˆ A ‘ 9 # 3 X ¡£ ˆ A ‘¦‘¢b#I3$¦£ Ë X¡2£$4  8 ¤© Ǥ ¢4I§£ l e2$4  8 ¤© ¦¥ E FFECT: ‘ 9 # 3 X ¡£ ˆ 4¢I§£ l 2$4  8 ¤© A P RECOND : , ‘ 9 # 3 X ¡£ ˆ ¡ d quot; T ˆ # quot; © 444§£ l 2$4  8 ee$o§¡ B P$!¤¥ A ‘ ‘ ¡ X ¡ £ ˆ ˆ ¦)(1k A e014  8 ¤© A s1)quot; Ë ‘‘ 9 # 3 X ¡£ ˆ A ‘ ¡ X © ˆ ˆ © ¦4¢I§£ l 2$4  8 ¤© ɤ i$k A §$@ Å ¤© A 6¢# Ä Planning 11. Chapter 24