SlideShare una empresa de Scribd logo
1 de 76
Descargar para leer sin conexión
UV-Vis spectroscopy 
Spectroscopyis the study of the interaction betweenmatterandradiated energy. 
By: Bijaya Kumar Uprety
Introduction 
•Lightissupposedtohavedualcharacteristics,wavesandparticlenature. 
•Thus,abeamoflightmaybeunderstoodas“anelectromagneticwave-formdisturbanceorphotonofenergypropagatedat3x108m/sec,i.e.atthespeedoflight. 
•Awaveofenergyconsistingofelectricandmagneticfields, oscillatingatrightanglestoeachotheriscalledelectromagneticwave(radiation). 
•Infigure1,themagnitudeofelectricalvectorisdenotedbythesymbolEandthatofmagneticvectorisdenotedbythesymbolB. 
Note:Allelectromagnetic(EM)wavesareradiation,butnotallradiationisanEMwave.Theradioactivedecayprocessesknownasalphadecayandbetadecay,inwhichaheliumnucleusandanelectronareemittedfromanatomicnucleus,respectively,aretwoadditionalformsofradiation,andtheyarenotEMradiation.Moregenerally,radiationreferstoanythingthathasbeen,orisbeing,emittedoutwardfromsomething.
Electromagnetic Energy-Wave theory 
•Energytransferredbetweenthingsaslightenergyarecarriedthroughthespaceormatterbymeansofwavelikeoscillationsconsistingofbothelectricandmagneticfieldswhichoscillatesatrightanglestoeachother. 
•Aseriesoftheseoscillationsthattravelthroughthespaceiscalledelectromagneticradiation. 
•Thisisthewavetheoryoflight. 
•Similartoallwavephenomena,electromagneticradiationischaracterizedbyitswavelength(λ)anditsfrequency(c)andpropagatesatthevelocityoflight.
•Frequency: The number of complete cycles of a periodic process occurring per unit time. Its unit is Hertz (Hz). 
•Wavelength: Distance between two consecutive crest or trough is called wavelength. It can be measured in cm, μm, nm or angstrom (Å). 
Where, 1 nm= 10-3μm =10-6=10-7cm =10-9m and 1 Å = 10-8cm. 
•Amplitude: The maximum extent of a vibration or oscillation, measured from the position of equilibrium. It is the intensity of wave. Its unit is meter.
•Frequency shares an inverse relationship with the wavelength so that; 
v = c/λ 
Where; v= frequency 
c= speed of light (3 x 108m/s) 
λ= wavelength 
•Sometimes radiation, mostly in the infrared region is characterized by another term known as the wave number and is given as; 
•Wave number means the number of complete cycles occurring per centimeter.
Energy of Electromagnetic radiation- Particle theory 
•Electromagnetic energy/radiation is emitted only in tiny packets or quanta of energy that were later known as photons. 
•Each photon pulses with a frequency and travels with the speed of light. 
•The energy of the photon of electromagnetic radiation is proportional to its frequency. 
•Energy of photon= E = hv 
Where, h= proportionality constant=planck’sconstant= 6.63 x 10-34J.s 
& v= frequency
•Energy = Planck’s constant x frequency 
or, E = h x v 
or, J = Js x s-1 
•Most chemical energies are quoted in Jmol-1or KJmol-1rather than in Joules for an individual atom. 
•We therefore need to multiply our value of h x v by the Avogadro constant to obtain Jmol-1 
•Avogadro constant = NA= 6.02 x 1023mol-1 
•Energy = Avogadro constant x Planck’s constant x frequency 
E = NAx h x v 
Jmol-1= mol-1x J s x s-1
Electromagnetic spectrum 
•Theelectromagnetic spectrumis therangeof all possible frequencies ofelectromagnetic radiation. 
•Theelectromagneticspectrumextendsfrombelowthelowfrequenciesusedformodernradiocommunicationtogammaradiationattheshort-wavelength(high- frequency)end,therebycoveringwavelengthsfromthousandsofkilometersdowntoafractionofthesizeofanatom.
Light comparison 
Name 
Wavelength 
Frequency (Hz) 
PhotonEnergy(eV) 
Gamma ray 
less than 0.01nm 
more than 15EHz 
more than 62.1keVX-Ray 
0.01nm –10nm 
30 EHz –30PHz 
124 keV–124 eV 
Ultraviolet 
10nm –400nm 
30 PHz –750 THz 
124 eV–3 eV 
Visible 
390nm –750nm 
770 THz –400 THz 
3.2 eV–1.7 eV 
Infrared 
750nm –1mm 
400 THz –300GHz 
1.7 eV–1.24meV 
Microwave 
1mm –1 meter 
300GHz –300MHz 
1.24 meV–1.24μeV 
Radio 
1mm –1,000km 
300 GHz–3 Hz 
1.24 meV–12.4feV
Numerical
Laws of Absorption 
•Theabsorptionoflightbyanyabsorbingmaterialisgovernedbytwolaws 
•ThefirstoftheselawsisknownastheBouger-Lambertlaw. 
•Bouger-lambertlaw:Itstatesthattheamountoflightabsorbedisproportionaltothethicknessoftheabsorbingmaterialandisindependentoftheintensityoftheincidentlight. 
•Tounderstandtheabovestatementletusassumethatathicknessbhastheabilitytoabsorb50%oftheincidentintensityofthelightpassingthroughit.Iftheintensityoftheradiationincidentuponsuchathicknessisassignedavalueof1.0, theoutcomingi.e.thetransmittedbeamwillhaveavalueof0.5.Ifwenowplaceasecondequalthicknessb,itwillabsorb50%ofthetransmittedbeam,i.e.50%of0.5.Thesecondtransmitttedbeamwillthenhaveavalueof0.25. 
i.e100%50%25%12.5%6.25%3.125%
•Thesuccessivelightintensitiesarethesequence(0.5)1,(0.5)2, (0.5)3etc.Thisisclearlyanexponentialfunctionandmaybeexpressedas; 
I/I0=e–kb-----(1) 
Where, I = the intensity of the transmitted light, 
I0= the intensity of the incident light. 
b= the absorbing thickness, better known by the term path-length. 
k= the linear absorption coefficient of the absorbing material. The power term in the above relationship can be removed by converting to the logarithmic form. Thus, 
ln I/I0 = -kb, 
or, ln I0/ I =kb------------(2) 
Changing to common logarithms we get, 
2.303 log10( I0/I) = kb ---------------(3)
•ThesecondlawofabsorptionisknownastheBeer’slaw.Thisstatesthattheamountoflightabsorbedbyamaterialisproportionaltothenumberofabsorbingmoleculesi.e.theconcentrationofabsorbingsolution. 
•Thiscanbemathematicallyexpressedintheformoftheequationsimilartotheoneabove. 
2.303log10(I0/I)=k’C-----------(4) 
Where,k’=absorptivityconstantand 
C=theconcentrationoftheabsorbingmaterial 
•WecannowcombinethetwoequationsfortheBouger- lambertlawandtheBeer’slaw.Here,kandk’mergetobecomeasingleconstant‘a‘.Thecombineequationiswrittenas,
log10(I0/I)=abC-------(5) 
OrA=abc-------(6) 
where,A=absorbanceisadimensionless 
b=pathlength(cm) 
c=concentration(M) 
a=Molarabsorptivityconstant(M-1cm-1)ormolarextinctioncoefficientorspecificabsorptioncoefficient(gL-1cm-1) 
Foramixture,Atotal=A1+A2+A3….+An 
•Molarabsorptivityisthecharacteristicofasubstancethattellshowmuchoflightisabsorbedataparticularwavelength. 
•ThisequationhasbeenalternatelyreferedtoastheBeer-Lambertlaw,theBouger-Beerlaw,ormoresimply,Beer’slaw.Thiscombinedlawstatesthattheamountoflightabsorbed(absorbanceorextinction)isproportionaltotheconcentrationoftheabsorbingsubstanceandtothethicknessoftheabsorbingmaterial(path– length).
•Absorbancesharesalinearrelationshipwithsampleconcentration.Ontheotherhand,therelationshipbetweentransmittanceandsampleconcentrationisanon-linearone.Itisthereforeeasiertouseabsorbanceasanindexofsampleconcentration. 
•ThequantityI/I0isknownastransmittanceandisdenotedbyT(amountoflightwhichescapesabsorptionandistransmitted). 
•Thus,therelationshipbetweenAbsorbanceandtransmittanceisgivenby; 
A=-log(I/I0)=-logT 
Standardcurve: 
Forquantitativeanalysis,astandardcurveorcalibrationcurveispreparedinwhichabsorbance(A)ataspecificwavelength(λ)isplottedagainsttheconcentrationinaseriesofstandards[sameanalyte,knownconcentration(c)]. 
As‘A’isproportionaltotheC,itshouldbeastraightlinepassingthroughtheorigin.
A = abc + 0 Beer lambert law 
Y = mx + c Equation of straight line 
It allows us to calculate the concentration of unknown analyte.
Analysis of Mixtures of Absorbing Substances 
•When the sample solution contains more than one absorbing species, the absorbance of the solution will be the sum of allabsorbances: 
•At= A1+ A2+ A3+ …. 
•The different constituents can be determined if we build equations equal to the number of unknowns. However, this procedure, if manually performed, is impractical due to lengthy and difficult math involved. When only two absorbing species are present, the solution is formidable and is executed by finding the absorbance of the solution at twowavelength(wavelength maximum for eachanalyte): 
•Al’=ex’bcx+ey’bcy(1) 
•Al”=ex”bcx+ey”bcy(2) 
•ex’,ex”,ey’,ey” can be determined from standards ofanalytesx and y atl’,l” and values obtained are inserted in equations 1 and 2 where two equations in two unknowns can be easily solved.
Limitations of the Beer-Lambert law 
ThelinearityoftheBeer-Lambertlawislimitedbychemicalandinstrumentalfactors.Causesofnonlinearityinclude: 
•DeviationsfromBeer-lambertslawusuallyoccurathighsampleconcentrationduetochangeinabsorptivitycoefficientsathighconcentrations(>0.01M)becauseoftheelectrostaticinteractionsbetweenmoleculesincloseproximity.(i.e.athighconcentrationdimersofamoleculesmightformwhichcangiverisetospectradifferentfromthatofamonomers.Duetothistheabsorptioncoefficientwillalsoundergoachangeleadingtopositiveornegativedeviation.) 
Highconcentrationscanalsoleadtochemicalreactionswhichwillleadtoachangeinthechemicalcompositionofthesolution.Naturally,adeviationfromlinearitywillresult.
•Deviationmayalsooccuratlowconcentrations.E.gproteinsareknowntodenatureatlowconcentrationsandthedenaturedproteinhasanabsorptionspectrumthatisdifferentfromthenativeprotein. 
•InstrumentationlimitationsmayalsoresultindeviationsfromBeer’slaw. Theseincludestrayradiationreachingthedetector,sensitivitychangesinthedetector,andpowerfluctuationsoftheradiationsourceandamplificationsystem. 
•Temperature:Changeintemperatureresultsinchangeinthedegreeofsolubility,dissociation/associationpropertiesofthesolute,hydration,andseveralotherfactors.Thischangeisalsoreflectedintheabsorbance.Thusabsorbancemeasurementsmustalwaysbedoneataconstanttemperature. 
•Sampleinstability:Absorbancemeasurementofsomesubstanceswhichinvolvescolordevelopmentisinsistedtobedoneatveryshorttime.Thereasonforthisthatsomecoloredcompoundsareunstableandundergochangeswithinquiteshorttimes.Insuchcasescolorcouldincreaseordecreaseandhavedifferentλmax.
•Fluorescence:Somesolutefluoresce.Forsuchsubstances, deviationoccurbecauseapartfromthetransmittedintensity, fluorescentintensityalsoreachesthedetector. 
•Turbidity:Turbidsolutionalwaysendupgivinghigherabsorbancethanwhatisdeterminedbycolor.
Q.1 
Q.2
Q.2 (a) and 2 (b) 
2 (a) 
2 (b)
Q. 2 continued…..
Q. 2 (c) and (d) solution
Q.3
Solution of Q.3
Electronic transition 
•Therearegenerallythreetypesoforbitalsfoundinthegroundstateoforganicmolecules. 
1.Bondingσ–orbitals:Theseareextremelystrongandconstitutesinglebondsbetweenatoms.Theelectronsarenotatalldelocalizedandthedistributionofelectronsiscylindricallysymmetricalabouttheaxis. 
2.Bondingπ–orbitals:Theseconstitutemultiplebondsbetweenatomsandarebasedonacombinationofatomicp-orbitals.Theelectronsarestronglydelocalizedandinteractwiththesurroundingenvironmentwithrelativeease. 
3.n–orbitals:Certainmoleculescontainsheteroatoms(i.e.heteroatomisanyatomthatisnotcarbonorhydrogene.g.oxygen,nitrogen,sulfur,etc). Theoccupiedorbitalswithhighestenergyinsuchmoleculesarethoseoflonepairs.Theselonepairsarenotinvolvedinbondsandthusretaintheiratomiccharacters.
•Whenanincidentbeamofradiationhavingasuitablewavelengthhitsamolecule,absorptionofaphotonsbytheelectronspresentinthegroundstatetakeplaceandthemoleculebecomesexcited.Excitedmoleculeswillloseexcitationenergyasheatorphotons(luminescence).Theamountofenergyabsorbedinthistransitionisexactlyequaltotheenergydifferencebetweenthestates.Thisenergydifferencebetweenthestatesisalsorelatedtothefrequencyorwavelengthoftheadsorbedenergy. 
•AbsorptionofUV-Visradiationiscapableofaffectingtheexcitationofbondingelectronsandothervalenceelectrons.Therefore,excitationofelectronsinchemicalbonds(πandσ)ornonbondingelectrons(n)istheresultofabsorptionofUV-Visradiationofasuitablewavelength. Absorptionwillthusbedependentontheavailabilityofpiandsigmabondsornelectronsthatcanabsorbincidentradiation. 
•Singleatomshaveonlyafewpossibleenergystatesandthereforeabsorbonlyafewdiscretewavelengthsofradiation. 
•Morecomplexmoleculescanhavemanypossiblestatesandcanadsorbmanydifferentwavelengths.Thewavelengthsadsorbedbyamoleculeisthereforeacharacteristicofthatmoleculeandisthebasisofspectroscopy.
1.TherearefourdifferenttypesofelectronictransitionswhichcantakeplaceinmoleculeswhentheyabsorbUV-Visradiation.ThemajorelectronictransitionswithintheUV-visregionsalongwiththeenergiesassociatedwiththetransitionaregivenbelow: 
σσ*>nσ*>ππ*>nπ* 
•Aσσ*arenotusefulforfollowingreasons: 
Theσσ*transitionrequiresveryhighenergywhichoccursinvacuumUV.AndItisnotwisetothinkofdoingUVmeasurementsonmolecularspeciesinthevacuumUVregion(125-185nm)forfiveimportantreasons: 
•Thehighenergyrequiredcancauseruptureoftheσbondsandbreakdownofthemolecule. 
•AircomponentssuchasoxygenabsorbstronglyinvacuumUVwhichlimitstheapplicationofthemethod. 
•WorkinginvacuumUVrequiresspecialtrainingandprecautionswhichlimitwideapplicationofthemethod. 
•Specialsourcesanddetectorsmustbeused. 
•Allsolventscontainσbonds.
Thenσ*transitionrequireslowerenergythanthatrequiredforσσ*transition.Thistypeoftransitionusuallytakesplaceinsaturatedcompoundscontainingoneheteroatomwithunsharedpairofelectrons.Moleculessuchaswater,ether,andaminesshowabsorptionattributedtothistypeoftransitions. 
•Theabsorptionwavelengthforanσ*transitionoccursatabout185nmwhere,unfortunately,mostsolventsabsorb.Forexample, themostimportantsolventis,undoubtedly,waterwhichhastwopairsofnonbondingelectronsthatwillstronglyabsorbasaresultofthenσ*transitions;whichprecludestheuseofthistransitionforstudiesinaqueousandothersolventswithnonbondingelectrons.Insummary,itisalsoimpracticaltothinkofusingUV- Visabsorptionspectroscopytodetermineanalytesbasedonan σ*transition.
Absorptionofradiationbyanalkene,alkyne,carbonylcomounds,cyanidesandazocompoundscontainingadoublebond,canresultinσσ*orπ π*transitions.Wehaveseenthataσσ*transitionisnotusefulbutontheotherhand,theππ*turnedouttobeveryusefulsinceitrequiresreasonableenergyandhasgoodabsorptivity.Amoleculehavingσ,π,andnelectronscanshowalltypesoftransitionspossibleinUV- Visspectroscopy. 
Themostfrequentlyusedtransitionistheππ*transitionforthefollowingreasons: 
a.Themolarabsorptivityfortheππ*transitionishighallowingsensitivedeterminations. 
b.Theenergyrequiredismoderate,farlessthandissociationenergy. 
c.Inpresenceofthemostconvenientsolvent(water),theenergyrequiredforaππ*transitionisusuallysmaller. 
•ItisthereforeprimitivethatananalytetobedeterminedbyUV- Visabsorptionspectroscopybeofunsaturatednature.
•Thenπ*transitionrequiresverylittleenergyandseemtobepotentiallyuseful. 
•BywayofgeneralizingitmaybesaidthattheabsorptionbandsofalmostallorganicmoleculesnormallyfoundinthenearUVandvisibleregionsareduetoeitherππ*orn π*.Onecandistinguishbetweenππ*ornπ*transitionbylookingattheextinctionco-efficientsofthepeaksatλmax. 
•Thenπ*transitionhaveextinctioncoefficientoftheorderofmagnitudeofjust10whereasforππ*transitionisoftheorderofmagnitude103-104. 
•Compoundssuchasacetaldehydeandnitrosobutanegiveabsorbanceandundergoesthistypeoftransition. 
•However,unfortunately,theabsorptivityofthistransitionisverysmallwhichprecludesitsuseforsensitivequantitativeanalysis.
•Therearemanycompoundsthatabsorbvisible(380-780nm)orultraviolet(UV) light(10–380nm).ThemostcommonlyusedpartoftheUVspectrumisfrom200–380nmbecausebelowabout200nm,airabsorbstheUVlightandinstrumentsmustbeoperatedunderavacuum.ManysolventsalsoabsorbradiationattheshorterwavelengthsofUVlight.Absorptionofultravioletandvisiblelightonlytakesplaceinmoleculeswithvalenceelectronsoflowexcitationenergy.Theelectronictransitionsassociatedwiththeseenergystatesisdepictedinfigurebelow.Thehighestenergytransition(σ-σ*generallyrequireswavelengthsbelow200nmandthereforearenotseenintypicalUVspectra.Then–π*transitions,andπ-π*transitionscommonlytakeplaceintheuseful200– 700nmrange.
Instrumentation 
•InstrumentsformeasuringtheabsorptionofU.V.orvisibleradiationaremadeupofthefollowingcomponents; 
1.RadiationSources(UVandvisible) 
2.Wavelengthselector(monochromator) 
3.Samplecontainers 
4.Detector 
5.Signalprocessorandreadout 
1.Radiationsources: 
Sourcesofultravioletradiation:MostcommonlyusedsourcesofUVradiationarehydrogenlampanddeuteriumlamp.Boththesystemsconsistofapairofelectrodeenclosedinaglasstubeprovidedwithaquartzwindow.Theglasstubeisfilledwithhydrogenordeuteriumgasatlowpressure.Whenastabilizedhighvoltageisappliedtheyemitradiationwhichiscontinuousintheregionroughlybetween180and350nanometer.
SourcesofVisibleradiation:Tungstenfilamentlampismostcommonlyusedsourceforvisibleradiation.Itisinexpensiveandemitscontinuousradiationintheregionbetween350and2500nm.Carbonarc,whichprovidesmoreintenseradiationisusedinsmallnumberofcommerciallyavailableinstrument.Nowadayssomeinstrumentsusetungsten- halogenlampsthatcontainasmallamountofiodineinthequartzbulbhousingthetungstenfilament.Thepresenceofiodineextendstheoutputwavelengthrangeofthelampfrom240-2500nm. 
2.WavelengthSelectors: 
•Inspectrophotometricmeasurementsweneedtouseanarrowbandofwavelengthsoflight.Thisenhancestheselectivityandsensitivityoftheinstrument.Lessexpensiveinstrumentsuseafiltertoisolatetheradiantenergyandprovideabroadbandofthewavelengths.Inmanyapplicationsweneedtocontinuouslyvarythewavelengthoveradefinedrange.Thiscanbeachievedbyusingmonochromators.Mostmoderninstrumentsusemonochromatorsthatemployaprismordiffractiongratingasthedispersingmedium.
•Twotypesofwavelengthselectorsaregenerallyused:filtersandmonochromators. 
Filters: 
•Filtersoperatebyabsorbinglightinallotherregionsexceptforone, whichtheyreflect. 
•Gelatinfiltersaremadeofalayerofgelatin,coloredwithorganicdyesandsealedbetweenglassplates. 
•Mostmodernfiltersinstruments,however,usetinted-glassfilters. 
•Filtersresolvepolychromaticlightintoarelativelywidebandwidthofabout40nmandareusedonlyincolorimeters.Onedisadvantageofglassfiltersistheirlowtransmittance(5-20%). 
Monochromators: 
•Monochromatorsresolvespolychromaticradiationintoitsindividualwavelengthsandisolatesthesewavelengthsintoaverynarrowbands.
•Theessentialcomponentsofmonochromatorsare(i)andentranceslitwhichadmitspolychromaticlightfromthesource.(ii)acollimatingdevicesuchaslensormirrorwhichcollimatesthepolychromaticlightontothedispersiondevice.(iii)awavelengthresolvingdevicelikeaprismoragratingwhichbreakstheradiationintocomponentwavelengths(iv)afocussinglensoramirrorand(v)anexitslitwhichallowsthemonochromaticbeamtoescape.Theentireassemblyismountedinalight-tightbox. 
•Twotypesofmonochromatorsaregenerallyused. 
Prismmonochromators:Aprismdispersespolychromaticlightfromthesourceintoitsconstituentwavelengthsbyvirtueofitsabilitytorefractdifferentwavelengthstoadifferentextent;theshorterwavelengthsarediffractedthemost.Sinceitdispersestheshortwavelengthsmoreandlongwavelengthsless,thewavelengthsattheredendofthespectrumarenotfullyresolved.600Cornuquarttzprismand300Littrowprismareusuallyemployedincommercialinstruments.DifferenttypesofprismareusedindifferentregionofUV-visspectrum.
•Simpleglassprismareusedforvisiblerange. 
•Foruvregionsilica,fusedsilicaorquartzareused.FlouriteisusedinvacuumUltravioletrange. 
Gratings:Gratingsareoftenusedinthemonochromatorsofspectrophotometersoperatinginultraviolet,VisandIRregions.Thegratingpossessesahighlyaluminizedsurfaceetchedwithlargenumberofparallelgrooveswhichareequallyspaced.Thesegroovesarealsoknownaslines.Agratingmayhaveanywerebetween600to2000linespermmonthesurfacedependingontheregaionofthespectruminwhichitisintendedtooperateit. 
Inrealpractice,themonochromatorconsistofboth,prismandagrating. Theprismplacedbeforethegratingisknownastheforeprism.Itpreselectsaportionofthespectrumwhichisthenallowedtobediffractedbythegrating.
Sample container: 
•Samples to be studied in the UV-Vis region are usually gas or solution and are put in cells known as cuvette. 
•Spectra of gases are taken using enclosed cells, with an evacuated cell as a reference. Standard path-length of gas cells is usually 1 mm but cells with path length of 0.1 to 100 mm are available for special cases. 
•Most of the spectrophotometric studies are made in solution. The solutions are dispensed in cells known as cuvettes. 
•Cuvette meant for ultraviolet region are made up of either ordinary glass or sometimes quartz. Since glass absorbs in the UV region, quartz or fused silica cells are used in this region. Standard path length of these cuvettes is usually 1 cm. However, cuvettes of path-length of 1 mm to 10 cm are available for special purposes. 
•The surface of the cuvette must be kept very clean, free from fingerprints smudge, and traces of previous samples which might otherwise cause interference in the optical path.
Detectiondevices: 
•Thedetectorsareusedtoconvertalightsignaltoanelectricalsignalwhichcanbesuitablymeasuredandtransformedintoanoutput. 
•Thedetectorsusedinmostoftheinstrumentsgenerateasignal,whichislinearintransmittancei.e.theyrespondlinearlytoradiantpowerfallingonthem.Thetransmittancevaluescanbechangedlogarithmicallyintoabsorbanceunitsbyanelectricalormechanicalarrangementinthesignalreadoutdevice.Therearethreetypesofdetectorswhichareusedinmodernspectrophotometers.Thesearedescribedinthefollowingparagraphs. 
1.Phototube 
•Aphototubeconsistsofaphotoemissivecathodeandananodeinanevacuatedtubewithaquartzwindow. 
•Thesetwoelectrodesaresubjectedtohighvoltage(about100V)difference. Whenaphotonentersthetubeandstrikesthecathode,anelectronisejectedandisattractedtotheanoderesultinginaflowofcurrentwhichcanbeamplifiedandmeasured. 
•Theresponseofthephotoemissivematerialiswavelengthdependentanddifferentphototubesareavailablefordifferentregionsofthespectrum.
2.Photomultiplier(PM)Tube 
•Thesedetectorsaredesignedtoamplifytheinitialphotoelectriceffectandaresuitableforuseatverylowlightintensities. 
•Aphotomultiplierconsitssof(a)anevacuatedglasstubeintowhicharesealedthecathodeandtheanode,and(b)additionalinterveningseriesofelectrodesknownasdynodes.Thevoltageofsuccessiveelectrodesismaintained50to100voltmorepositivethanthepreviousone. 
•Whenaradiationfallsonthecathodeanelectronisemittedfromit.Thisisacceleratedtowardsthenextphotoemissiveelectrodebythepotentialdifferencebetweenthetwo. 
•Here,itreleasesmanymoresecondaryelectrons.These,inturnareacceleratedtothenextelectrodewhereeachsecondaryelectronreleasesmoreelectrons.Theprocesscontinuousuptoabout10stagesofamplification. 
•Thefinaloutputofthephotomultipliertubegivesamuchlargersignalthanthephotocell.
3.DiodeArrayDetector 
•Thesedetectorsemployalargenumberofsilicondiodesarrangedsidebysideonasinglechip.WhenaUV-VISradiationfallsonthediode,itsconductivityincreasessignificantly. 
•Thisincreaseinconductivityisproportionaltotheintensityoftheradiationandcanbereadilymeasured. 
•Sincealargenumberofdiodescanbearrangedtogether,theintensityatanumberofwavelengthscanbemeasuredsimultaneously. 
•Thoughthephotodiodearrayisnotassensitiveasthephotomultipliertube,thepossibilityofbeingabletomeasurealargenumberofwavelengthsmakesitadetectorofchoiceinthemodernfastinstruments. 
SignalProcessingandOutputDevices 
•Theelectricalsignalfromthetransducerissuitablyamplifiedorprocessedbeforeitissenttotherecordertogiveanoutput. 
•Thesubtractionofthesolventspectrumfromthatofthesolutionisdoneelectronically.Theoutputplotbetweenthewavelengthandtheintensityofabsorptionistheresultantofthesubtractionprocessandischaracteristicoftheabsorbingspecies. 
•HavinglearntaboutdifferentcomponentsofUV-VISinstrumentsandtheirimportance;youarenowequippedtolearnaboutthetypesofinstrumentsused.
TYPES OF UV-VISIBLE SPECTROMETERS 
Therearegenerallythreetypesofspectrometersinuse. 
1SingleBeamSpectrometers 
•Asthenamesuggests,theseinstrumentscontainasinglebeamoflight.Thesamebeamisusedforreadingtheabsorptionofthesampleaswellasthereference.TheschematicdiagramofatypicalsinglebeamUV-Visiblespectrometer. 
•Theradiationfromthesourceispassedthroughafilterorasuitablemonochromatortogetabandoramonochromaticradiation.Itisthenpassedthroughthesample(orthereference)andthetransmittedradiationisdetectedbythephotodetector.Thesignalsoobtainedissentasareadoutorisrecorded. 
•Typically,twooperationshavetobeperformed–first,thecuvetteisfilledwiththereferencesolutionandtheabsorbancereadingatagivenwavelengthorthespectrumoverthedesiredrangeisrecorded.Second,thecuvetteistakenoutandrinsedandfilledwithsamplesolutionandtheprocessisrepeated. Thespectrumofthesampleisobtainedbysubtractingthespectrumofthereferencefromthatofthesamplesolution.
2.DoubleBeamSpectrometers 
•Inadoublebeamspectrometer,theradiationcomingfromthemonochromatorissplitintotwobeamswiththehelpofabeamsplitter.Thesearepassedsimultaneouslythroughthereferenceandthesamplecell.Thetransmittedradiationsaredetectedbythedetectorsandthedifferenceinthesignalatallthewavelengthsissuitablyamplifiedandsentfortheoutput.ThegeneralarrangementofadoublebeamspectrometerisshowninFig.2.20. Therecouldbevariationsdependingonthemanufacturer,thewavelengthregionsforwhichtheinstrumentisdesigned,theresolutionsrequiredetc.
3.PhotodiodeArraySpectrometer 
•Inaphotodiodearrayinstrument,alsocalledamulti-channelinstrument,theradiationoutputfromthesourceisfocuseddirectlyonthesample.Thisallowstheradiationsofallthewavelengthstosimultaneouslyfallonthesample.Theradiationcomingoutofthesampleafterabsorption(ifany)isthenmadetofallonareflectiongrating.TheschematicarrangementofadiodearrayspectrometerisgiveninFig.2.21.Thegratingdispersesallthewavelengthssimultaneously.Thesethenfallonthearrayofthephotodiodesarrangedsidebyside.Inthiswaytheintensitiesofalltheradiationsintherangeofthespectrumaremeasuredinonego.Theadvantageofsuchinstrumentsisthatascanofthewholerangecanbeaccomplishedinashorttime.
Chromophore 
•AlthoughtheabsorptionofUVradiationresultsfromtheexcitationofelectronsfromgroundstatetoexcitedstates,thenucleithattheelectronsholdtogetherinbondsplayanimportantroleindeterminingwhichwavelengthsofradiationareabsorbed. 
•Nucleideterminethestrengthwithwhichtheelectronsareboundandthusinfluencetheenergyspacingbetweenthegroundandexcitedstates. Hencethecharacteristicenergyofatransitionandthewavelengthofradiationabsorbedarepropertiesofagroupofatomsratherthantheelectronsthemselves. 
•Theolddefinitionofchromophoreregardsitasasystemwhichisresponsibleforimpartingcolortothecompound. 
•Mostofthenitrocompoundsareyellowincolor.Clearly,nitrogroupisachromophorewhichimpartsyellowcolor. 
•Definition:Thefunctionalmoleculargroupsthatcausecompoundstobecoloredthatistoabsorbradiationatparticularwavelengtharechromophores.
•Someoftheimportantchromophoresarecarbonyls(C=O),acids,esters(RCO2R’)andnitrile(R-C≡N)groupofethylenicoracetylenicgroup. 
•Chromophoreareknowntobeoftwotypes. 
(1)Chromophorescontainingπelectronsandinvolvedinππ*. transitions.Fore.g.Acetylenes(C2H2)andethylenes(C2H4). 
(2)Chromophorescontainingbothπandnelectronsandinvolvedinπ π*andnπ*transitions.Fore.g.Carbonyls,nitrilesandazocompounds(R-N=N-R‘).
Auxochrome 
•TheattachmentofsubstituentgroupsinplaceofHonabasicchromophorestructurechangesthepositionandintensityofanabsorptionbandofthechromophore.Substituentsthatincreasetheintensityofabsorption,andpossiblythewavelength,arecalledauxochromes. 
•‘Auxochromesaregroupswhichbythemselvesdonotactaschromophoresbutwhosepresencebringsaboutashiftoftheabsorptionbandtowardstheredendofthespectrum(longerwavelength).’ 
•Auxochromeisthusalsoknownascolorenhancer.Importantexamplesaremethyl,hydroxyl,alkoxy(R—O),halogenandaminogroup. 
•Auxochromeexertsitseffectsbyvirtueofitabilitytoextendtheconjugationofachromophorebysharingofthenon-bondingelectrons. 
•Thisresultsinanewchromophorewhichhasadifferentabsorptionmaximumandprobablyanenhancedextinctioncoefficient.
•Inmanyinstancestheabsorptionandabsorbancechangeeitherduetointeractionwithanauxochromeorduetochangeofthesolvent.Foursuchabsorptionandintensityshiftsareknownandaredetailedbelow. 
1.Bathochromicshift:Theshiftisduetothepresenceofanauxochromebyvirtueofwhichtheabsorptionmaximumshiftstowardshigherwavelengths.Suchanabsorptionshiftisknownastheredshift,orthebathochromicshift.Sometimedecreasingpolarityofthesolventmayalsocausebathochromicshift 
2.Hypsochromicshift:Thisisoppositeofthebathochromicshift.Theshiftisduetoremovalofconjugationandachangeinthepolarityofthesolventduetowhichtheabsorptionmaximumisshiftedtowardsshorterwavelengths(blueshift). 
e
3.Hyperchromiceffect:Thiseffectsignifiesanincreaseintheintensityoftheabsorptionmaximum,orachangeintheextinctioncoefficienttoahighervalueatthesameabsorptionmaximum.Thiseffectismostlyduetothepresenceofauxochrome. 
4.Hypochromiceffect:Thisisoppositeofhyperchromiceffectandiscausedduetotheintroductionofgroupwhichcausedistortioninthegeometryofabsorbingmolecules.Thiseffectsignifiesthattheintensityoftheabsorptionmaximumislowered. 
Exampletounderstandchromophoreandauxochrome: 
•Benzenedoesnotdisplaycolorasitdoesnothaveachromophore; butnitrobenzeneispaleyellowcolorbecauseofthepresenceofanitrogroup(-NO2)whichactsasachromophore.ButPara-hydroxynitrobenzeneexhibitsadeepyellowcolor,inwhich-OHgroupactsasanauxochrome.
Choice of solvent 
•TheUV-Visspectraareusuallymeasuredinverydilutesolutionsandthemostimportantcriterioninthechoiceofsolventisthatthesolventmustbetransparentwithinthewavelengthrangebeingexamined.Table2listssomecommonsolventswiththeirlowerwavelengthcutofflimits.Belowtheselimits,thesolventsshowexcessiveabsorbanceandshouldnotbeusedtodetermineUVspectrumofasample. 
•Agoodsolventshouldnotabsorbultravioletradiationinthesameregionasthesubstancewhosespectrumisbeingdetermined. 
•Usuallysolventswhichdonotcontainconjugatedsystemsaremostsuitableforthispurpose,althoughtheyvaryastotheshortestwavelengthatwhichtheyremaintransparenttoultravioletradiation. 
•Thesolventsmostcommonlyusedarewater,95%ethanol,andn-hexane.
Solvent effect 
•OneoftheimportantcriterionforagoodsolventisitsabilitytoinfluencethewavelengthofUVlightthatwillbeabsorbedviathestabilizationofeithergroundortheexcitedstate. 
•Highlypure,non-polarsolventssuchassaturatedhydrocarbonsdonotinteractwithsolutemoleculeseitherinthegroundorexcitedstateandtheabsorptionspectrumofacompoundinthesesolventsissimilartotheoneinapuregaseousstate. 
•However,polarsolventssuchaswater,alcoholsetc.maystabilizeordestabilizethemolecularorbitalsofamoleculeeitherinthegroundstateorinexcitedstateandthespectrumofacompoundinthesesolventsmaysignificantlyvaryfromtheonerecordedinahydrocarbonsolvent. 
•Solventeffectistheabilityofasolventtoinfluencethewavelengthofultravioletlightwhichwillbeabsorbed.
•Polarsolventsdonotformhydrogenbondsasreadilywithexcitedstatesofpolarmoleculesaswiththeirgroundstates,andthesepolarsolventsincreasetheenergiesofelectronictransitionsinthemolecules.Polarsolventsshiftstransitionsofthen→π*typetoshorterwavelengths. 
•Ontheotherhand,insomecasestheexcitedstatesmayformstrongerhydrogenbondsthanthecorrespondinggroundstate.Insuchcases,apolarsolventwouldshiftanabsorptiontolongerwavelength,sincetheenergyoftheelectronictransitionwouldbedecreased.Polarsolventshifttransitionsofthetypeππ*tolongerwavelengths.
Application 
•Absorptionspectroscopybasedonultravioletandvisibleradiationisoneofthemostusefultoolsavailabletothechemistforquantitativeanalysis.Theimportantcharacteristicsofspectrophotometricandphotometricmethodsare: 
1.Wideapplicability:Enormousnumbersofinorganic.organic,andbiochemicalspeciesabsorbultravioletorvisibleradiationandarethusamenabletodirectquantitativedetermination. Manynonabsorbingspeciescanalsobedeterminedafterchemicalconversiontoabsorbingderivatives.Ithasbeenestimatedthatmorethan90%oftheanalysesperformedinclinicallaboratoriesarebasedonultravioletandvisibleabsorptionspectroscopy. 
2.Highsensitivity:Typicaldetectionlimitsforabsorptionspectroscopyrangefrom1O-4to10-5M.Withcertainproceduralmodifications,thisrangecanoftenheextendedto10-6oreven10-7M. 
3.Moderatetohighse!ectivity:Oftenawavelengthcanbefoundatwhichtheanalytealoneabsorbs,thusmakingpreliminaryseparationsunnecessary.Fur-thermore,whereoverlappingabsorptionbandsdooccur,correctionsbasedonaadditionalmeasurementsatotherwavelengthssometimeeliminatetheneedforaseparationstep. 
4.Goodaccuracy:Therelativeerrorsinconcentrationencounteredwithatypicalspectrophotometricorphotometricprocedureusingultravioletandvisibleradiationlieintherangefrom1%to5%.Withspecialprecautions,sucherrorscanoftenbedecreasedtoafewtenthsofapercent. 
5.EaseandConvenience:Spectrophotometricandphotometricmeasurementsareeasilyandrapidlyperformedwithmoderninstruments.Inaddition,themethodsreadilylendthemselvestoautomation.
Woodward-Feiser Rule 
•Structuralanalysisfromelectronicspectrayieldslittleinformationbecauseoftheirrelativesimplicity. 
•In1940’s,UV-Visspectroscopywasusedforstructuralidentification. 
•Thestudyofspectraofvariousmoleculeshasrevealedcorrelationsbetweenstructuresandthepositionsofabsorptionmaxima. 
•Woodward'srules,namedafterRobertBurnsWoodwardandalsoknownasWoodward–Fieserrules(forLouisFieser)areseveralsetsofempiricallyderivedruleswhichattempttopredictthewavelengthoftheabsorptionmaximum(λmax)inanultraviolet–visiblespectrumofagivencompound.Inputsusedinthecalculationarethetypeofchromophorespresent,thesubstituentsonthechromophores,andshiftsduetothesolvent. 
•Itisthemostwidelyknownempiricalruleswhichinvolveunsaturatedcarbonyls,dienesandsteroids. 
•Usingtheincrementaltablesbasedonvariousfactorsandstructuralfeatures,itispossibletopredictthepositionoftheππ*absorptionbandsintheseconjugatedsystems.
Woodward-Fieser Rules for Calculating the λmax of Conjugated Dienes and Polyenes 
•Conjugateddienesandpolyenesarefoundinmostorganiccompounds.Forexample,evenabenzeneringisaconjugatedpolyene. ThereforeitisusefultoknowhowtoutilizetheWoodward-Fieserrulestocalculatethewavelengthofmaximumabsorptionofconjugateddienesandpolyenes. 
•AccordingtoWoodward’srulestheλmaxofthemoleculecanbecalculatedusingaformula: λmax=Basevalue+ΣSubstituentContributions+ΣOtherContributions 
•Herethebasevaluedependsuponwhetherthedieneisalinearorheteroannularortransoiddiene,orwhetheritisacyclicorhomoannulardiene(eachofthesewillbeexplainedingreaterdetailbelow).Thesumofallsubstituentcontributionsareaddedtothebasevaluetoobtainthewavelengthofmaximumabsorptionofthemolecule.
Referthefollowingwebsiteformore: 
•http://pharmaxchange.info/press/2012/08/ultraviolet-visible-uv-vis-spectroscopy- %E2%80%93-woodward-fieser-rules-to-calculate-wavelength-of-maximum- absorption-lambda-max-of-conjugated-carbonyl-compounds/ 
•http://pharmaxchange.info/press/2012/08/ultraviolet-visible-uv-vis-spectroscopy- %E2%80%93-woodward-fieser-rules-to-calculate-wavelength-of-maximum- absorption-lambda-max-of-conjugated-dienes-and-polyenes/
Uv vis spectroscopy
Uv vis spectroscopy

Más contenido relacionado

La actualidad más candente

Thermal detectors of ir
Thermal detectors of irThermal detectors of ir
Thermal detectors of ir
Sampath Kumar
 
Interpretation of IR
Interpretation of IRInterpretation of IR
Interpretation of IR
Lokesh Patil
 

La actualidad más candente (20)

Uv visible spectroscopy
Uv visible spectroscopyUv visible spectroscopy
Uv visible spectroscopy
 
Application of ir
Application of irApplication of ir
Application of ir
 
UV spectroscopy, Electronic transitions, law of UV, Deviations of UV, chromop...
UV spectroscopy, Electronic transitions, law of UV, Deviations of UV, chromop...UV spectroscopy, Electronic transitions, law of UV, Deviations of UV, chromop...
UV spectroscopy, Electronic transitions, law of UV, Deviations of UV, chromop...
 
Detectors
DetectorsDetectors
Detectors
 
Infrared instrumentation
Infrared instrumentationInfrared instrumentation
Infrared instrumentation
 
Ir spectra
Ir spectraIr spectra
Ir spectra
 
interpretation of NMR spectroscopy
interpretation of  NMR spectroscopyinterpretation of  NMR spectroscopy
interpretation of NMR spectroscopy
 
Thermal detectors of ir
Thermal detectors of irThermal detectors of ir
Thermal detectors of ir
 
Infrared spectroscopy
Infrared spectroscopyInfrared spectroscopy
Infrared spectroscopy
 
Interpretation of IR
Interpretation of IRInterpretation of IR
Interpretation of IR
 
UV-Ultraviolet Visible Spectroscopy MANIK
UV-Ultraviolet Visible Spectroscopy MANIKUV-Ultraviolet Visible Spectroscopy MANIK
UV-Ultraviolet Visible Spectroscopy MANIK
 
Jablonski diagram physical chemistry
Jablonski diagram  physical chemistry Jablonski diagram  physical chemistry
Jablonski diagram physical chemistry
 
ATR NIR
ATR NIRATR NIR
ATR NIR
 
NMR SPECTROSCOPY
NMR SPECTROSCOPYNMR SPECTROSCOPY
NMR SPECTROSCOPY
 
Diffrential Thermal Analysis (DTA)
Diffrential Thermal Analysis (DTA)Diffrential Thermal Analysis (DTA)
Diffrential Thermal Analysis (DTA)
 
Ir detectors
Ir detectorsIr detectors
Ir detectors
 
Nmr instrumentation
Nmr  instrumentationNmr  instrumentation
Nmr instrumentation
 
PHOTOMULTIPLIER Dolly rajput ppt(1)
PHOTOMULTIPLIER Dolly rajput  ppt(1)PHOTOMULTIPLIER Dolly rajput  ppt(1)
PHOTOMULTIPLIER Dolly rajput ppt(1)
 
Ftir
FtirFtir
Ftir
 
Theory of IR spectroscopy
Theory of IR spectroscopyTheory of IR spectroscopy
Theory of IR spectroscopy
 

Destacado

Uv vis spectroscopy practical.
Uv vis spectroscopy practical.Uv vis spectroscopy practical.
Uv vis spectroscopy practical.
Salum Mkata
 
spectroscpy slides sidra
spectroscpy slides sidraspectroscpy slides sidra
spectroscpy slides sidra
Dr Sidra Khalid
 

Destacado (20)

UV-VIS Spectroscopy
UV-VIS SpectroscopyUV-VIS Spectroscopy
UV-VIS Spectroscopy
 
Spectroscopy uv vis
Spectroscopy uv visSpectroscopy uv vis
Spectroscopy uv vis
 
Visible and ultraviolet spectroscopy
Visible and ultraviolet spectroscopyVisible and ultraviolet spectroscopy
Visible and ultraviolet spectroscopy
 
UV Visible Spectroscopy
 UV Visible Spectroscopy UV Visible Spectroscopy
UV Visible Spectroscopy
 
UV visible spectroscopy
UV visible spectroscopyUV visible spectroscopy
UV visible spectroscopy
 
Uv vis spectroscopy practical.
Uv vis spectroscopy practical.Uv vis spectroscopy practical.
Uv vis spectroscopy practical.
 
Electromagnetic spectrum e learning
Electromagnetic spectrum e learningElectromagnetic spectrum e learning
Electromagnetic spectrum e learning
 
Applicationofu v-spectroscopy-120416145659-phpapp02
Applicationofu v-spectroscopy-120416145659-phpapp02Applicationofu v-spectroscopy-120416145659-phpapp02
Applicationofu v-spectroscopy-120416145659-phpapp02
 
Uv slideshare :)
Uv slideshare :)Uv slideshare :)
Uv slideshare :)
 
05 uv visible spectroscopy-uv-vis-292557
05 uv visible spectroscopy-uv-vis-29255705 uv visible spectroscopy-uv-vis-292557
05 uv visible spectroscopy-uv-vis-292557
 
New ppt of uv visible
New ppt of uv visibleNew ppt of uv visible
New ppt of uv visible
 
ABSORPTION SPECTROPHOTOMETRY
ABSORPTION SPECTROPHOTOMETRYABSORPTION SPECTROPHOTOMETRY
ABSORPTION SPECTROPHOTOMETRY
 
Ultravoilet spectroscopy
Ultravoilet spectroscopyUltravoilet spectroscopy
Ultravoilet spectroscopy
 
spectroscpy slides sidra
spectroscpy slides sidraspectroscpy slides sidra
spectroscpy slides sidra
 
U V Visible Spectroscopy
U V Visible SpectroscopyU V Visible Spectroscopy
U V Visible Spectroscopy
 
Uv visible-spectroscopy
Uv visible-spectroscopy Uv visible-spectroscopy
Uv visible-spectroscopy
 
U.V Spectroscopy.
U.V Spectroscopy.U.V Spectroscopy.
U.V Spectroscopy.
 
UV visible Spectroscoy - How to used UV Spectrophotometer
UV visible Spectroscoy - How to used UV SpectrophotometerUV visible Spectroscoy - How to used UV Spectrophotometer
UV visible Spectroscoy - How to used UV Spectrophotometer
 
NMR Spectroscopy
NMR SpectroscopyNMR Spectroscopy
NMR Spectroscopy
 
UV- VISIBLE SPECTROSCOPY BY Ann
UV- VISIBLE SPECTROSCOPY BY AnnUV- VISIBLE SPECTROSCOPY BY Ann
UV- VISIBLE SPECTROSCOPY BY Ann
 

Similar a Uv vis spectroscopy

CHM260 - Spectroscopy Method
CHM260 - Spectroscopy MethodCHM260 - Spectroscopy Method
CHM260 - Spectroscopy Method
Alia Najiha
 
Uv visible Spectroscopy
Uv visible SpectroscopyUv visible Spectroscopy
Uv visible Spectroscopy
knowledge1995
 

Similar a Uv vis spectroscopy (20)

Uv seminar ppt
Uv seminar pptUv seminar ppt
Uv seminar ppt
 
Ch7z5eatstructure 110115225106-phpapp02
Ch7z5eatstructure 110115225106-phpapp02Ch7z5eatstructure 110115225106-phpapp02
Ch7z5eatstructure 110115225106-phpapp02
 
Uv vis spectroscopy for ktu students
Uv vis spectroscopy for ktu studentsUv vis spectroscopy for ktu students
Uv vis spectroscopy for ktu students
 
CHM260 - Spectroscopy Method
CHM260 - Spectroscopy MethodCHM260 - Spectroscopy Method
CHM260 - Spectroscopy Method
 
Spectroscopy all
Spectroscopy allSpectroscopy all
Spectroscopy all
 
PHARMACEUTICAL ANALYSIS-II.ppt
PHARMACEUTICAL ANALYSIS-II.pptPHARMACEUTICAL ANALYSIS-II.ppt
PHARMACEUTICAL ANALYSIS-II.ppt
 
Mass spectrometry
Mass spectrometryMass spectrometry
Mass spectrometry
 
Basic uv,visible
Basic uv,visibleBasic uv,visible
Basic uv,visible
 
Ultraviolet spetroscopy by Dr. Monika Singh part-1 as per PCI syllabus
Ultraviolet spetroscopy by Dr. Monika Singh part-1 as per PCI syllabusUltraviolet spetroscopy by Dr. Monika Singh part-1 as per PCI syllabus
Ultraviolet spetroscopy by Dr. Monika Singh part-1 as per PCI syllabus
 
Uv visible Spectroscopy
Uv visible SpectroscopyUv visible Spectroscopy
Uv visible Spectroscopy
 
Mossbauer spectroscopy
Mossbauer spectroscopyMossbauer spectroscopy
Mossbauer spectroscopy
 
X-ray spectroscopy
X-ray spectroscopyX-ray spectroscopy
X-ray spectroscopy
 
Week1_Notes.pdf
Week1_Notes.pdfWeek1_Notes.pdf
Week1_Notes.pdf
 
Uv vis and raman spectroscopy
Uv vis and raman spectroscopyUv vis and raman spectroscopy
Uv vis and raman spectroscopy
 
uv spectroscopy by HARVINDAR SINGH .M.PHARM PHARMACEUTICS
 uv spectroscopy by HARVINDAR SINGH .M.PHARM PHARMACEUTICS uv spectroscopy by HARVINDAR SINGH .M.PHARM PHARMACEUTICS
uv spectroscopy by HARVINDAR SINGH .M.PHARM PHARMACEUTICS
 
Uv visible spectroscopy
Uv visible spectroscopyUv visible spectroscopy
Uv visible spectroscopy
 
Lec (1 2-3) ch one- optical analytical instrumentation
Lec (1 2-3)  ch one- optical analytical instrumentationLec (1 2-3)  ch one- optical analytical instrumentation
Lec (1 2-3) ch one- optical analytical instrumentation
 
CY1001D full ppt.pdf
CY1001D full ppt.pdfCY1001D full ppt.pdf
CY1001D full ppt.pdf
 
Uv visible spectroscopy- madan
Uv visible spectroscopy- madanUv visible spectroscopy- madan
Uv visible spectroscopy- madan
 
Basic concepts of organic spectroscopy
Basic concepts of organic spectroscopyBasic concepts of organic spectroscopy
Basic concepts of organic spectroscopy
 

Más de Bijaya Kumar Uprety (16)

Progress, prospect and challenges in glycerol purification process
Progress, prospect and challenges in glycerol purification processProgress, prospect and challenges in glycerol purification process
Progress, prospect and challenges in glycerol purification process
 
Biodiesel production from oleaginous microorganisms
Biodiesel production from oleaginous microorganismsBiodiesel production from oleaginous microorganisms
Biodiesel production from oleaginous microorganisms
 
Value added products from glycerol
Value added products from glycerol Value added products from glycerol
Value added products from glycerol
 
Biodiesel production process
Biodiesel production processBiodiesel production process
Biodiesel production process
 
Antibiotics
AntibioticsAntibiotics
Antibiotics
 
Enzyme immobilization
Enzyme immobilizationEnzyme immobilization
Enzyme immobilization
 
Microbial transformation
Microbial transformationMicrobial transformation
Microbial transformation
 
Immunology & immunological preparation
Immunology & immunological preparationImmunology & immunological preparation
Immunology & immunological preparation
 
Genetic recombination
Genetic recombinationGenetic recombination
Genetic recombination
 
NMR
NMRNMR
NMR
 
IR spectroscopy
IR spectroscopyIR spectroscopy
IR spectroscopy
 
Fluorimetry
FluorimetryFluorimetry
Fluorimetry
 
Flame emission spectroscopy
Flame emission spectroscopyFlame emission spectroscopy
Flame emission spectroscopy
 
Emission spectroscopy
Emission spectroscopyEmission spectroscopy
Emission spectroscopy
 
Atomic absorption spectroscopy
Atomic absorption spectroscopyAtomic absorption spectroscopy
Atomic absorption spectroscopy
 
Biopesticide
Biopesticide Biopesticide
Biopesticide
 

Último

Seismic Method Estimate velocity from seismic data.pptx
Seismic Method Estimate velocity from seismic  data.pptxSeismic Method Estimate velocity from seismic  data.pptx
Seismic Method Estimate velocity from seismic data.pptx
AlMamun560346
 
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune WaterworldsBiogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Sérgio Sacani
 
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdfPests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
PirithiRaju
 
SCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptx
SCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptxSCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptx
SCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptx
RizalinePalanog2
 
Pests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdfPests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdf
PirithiRaju
 
dkNET Webinar "Texera: A Scalable Cloud Computing Platform for Sharing Data a...
dkNET Webinar "Texera: A Scalable Cloud Computing Platform for Sharing Data a...dkNET Webinar "Texera: A Scalable Cloud Computing Platform for Sharing Data a...
dkNET Webinar "Texera: A Scalable Cloud Computing Platform for Sharing Data a...
dkNET
 
Pests of mustard_Identification_Management_Dr.UPR.pdf
Pests of mustard_Identification_Management_Dr.UPR.pdfPests of mustard_Identification_Management_Dr.UPR.pdf
Pests of mustard_Identification_Management_Dr.UPR.pdf
PirithiRaju
 
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 bAsymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Sérgio Sacani
 
Introduction,importance and scope of horticulture.pptx
Introduction,importance and scope of horticulture.pptxIntroduction,importance and scope of horticulture.pptx
Introduction,importance and scope of horticulture.pptx
Bhagirath Gogikar
 

Último (20)

Call Girls Alandi Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Alandi Call Me 7737669865 Budget Friendly No Advance BookingCall Girls Alandi Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Alandi Call Me 7737669865 Budget Friendly No Advance Booking
 
Pulmonary drug delivery system M.pharm -2nd sem P'ceutics
Pulmonary drug delivery system M.pharm -2nd sem P'ceuticsPulmonary drug delivery system M.pharm -2nd sem P'ceutics
Pulmonary drug delivery system M.pharm -2nd sem P'ceutics
 
Seismic Method Estimate velocity from seismic data.pptx
Seismic Method Estimate velocity from seismic  data.pptxSeismic Method Estimate velocity from seismic  data.pptx
Seismic Method Estimate velocity from seismic data.pptx
 
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune WaterworldsBiogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
 
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdfPests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
 
9999266834 Call Girls In Noida Sector 22 (Delhi) Call Girl Service
9999266834 Call Girls In Noida Sector 22 (Delhi) Call Girl Service9999266834 Call Girls In Noida Sector 22 (Delhi) Call Girl Service
9999266834 Call Girls In Noida Sector 22 (Delhi) Call Girl Service
 
9654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 6000
9654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 60009654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 6000
9654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 6000
 
SCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptx
SCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptxSCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptx
SCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptx
 
High Profile 🔝 8250077686 📞 Call Girls Service in GTB Nagar🍑
High Profile 🔝 8250077686 📞 Call Girls Service in GTB Nagar🍑High Profile 🔝 8250077686 📞 Call Girls Service in GTB Nagar🍑
High Profile 🔝 8250077686 📞 Call Girls Service in GTB Nagar🍑
 
SAMASTIPUR CALL GIRL 7857803690 LOW PRICE ESCORT SERVICE
SAMASTIPUR CALL GIRL 7857803690  LOW PRICE  ESCORT SERVICESAMASTIPUR CALL GIRL 7857803690  LOW PRICE  ESCORT SERVICE
SAMASTIPUR CALL GIRL 7857803690 LOW PRICE ESCORT SERVICE
 
Pests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdfPests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdf
 
COMPUTING ANTI-DERIVATIVES (Integration by SUBSTITUTION)
COMPUTING ANTI-DERIVATIVES(Integration by SUBSTITUTION)COMPUTING ANTI-DERIVATIVES(Integration by SUBSTITUTION)
COMPUTING ANTI-DERIVATIVES (Integration by SUBSTITUTION)
 
High Class Escorts in Hyderabad ₹7.5k Pick Up & Drop With Cash Payment 969456...
High Class Escorts in Hyderabad ₹7.5k Pick Up & Drop With Cash Payment 969456...High Class Escorts in Hyderabad ₹7.5k Pick Up & Drop With Cash Payment 969456...
High Class Escorts in Hyderabad ₹7.5k Pick Up & Drop With Cash Payment 969456...
 
Factory Acceptance Test( FAT).pptx .
Factory Acceptance Test( FAT).pptx       .Factory Acceptance Test( FAT).pptx       .
Factory Acceptance Test( FAT).pptx .
 
Zoology 5th semester notes( Sumit_yadav).pdf
Zoology 5th semester notes( Sumit_yadav).pdfZoology 5th semester notes( Sumit_yadav).pdf
Zoology 5th semester notes( Sumit_yadav).pdf
 
Unit5-Cloud.pptx for lpu course cse121 o
Unit5-Cloud.pptx for lpu course cse121 oUnit5-Cloud.pptx for lpu course cse121 o
Unit5-Cloud.pptx for lpu course cse121 o
 
dkNET Webinar "Texera: A Scalable Cloud Computing Platform for Sharing Data a...
dkNET Webinar "Texera: A Scalable Cloud Computing Platform for Sharing Data a...dkNET Webinar "Texera: A Scalable Cloud Computing Platform for Sharing Data a...
dkNET Webinar "Texera: A Scalable Cloud Computing Platform for Sharing Data a...
 
Pests of mustard_Identification_Management_Dr.UPR.pdf
Pests of mustard_Identification_Management_Dr.UPR.pdfPests of mustard_Identification_Management_Dr.UPR.pdf
Pests of mustard_Identification_Management_Dr.UPR.pdf
 
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 bAsymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
 
Introduction,importance and scope of horticulture.pptx
Introduction,importance and scope of horticulture.pptxIntroduction,importance and scope of horticulture.pptx
Introduction,importance and scope of horticulture.pptx
 

Uv vis spectroscopy