SlideShare una empresa de Scribd logo
1 de 31
Newton’s Laws of Motion I. Law of Inertia II. F=ma III. Action-Reaction
While most people know what Newton's laws say, many people do not know what they mean (or simply do not believe what they mean).
Newton’s Laws of Motion 1st Law– An object at rest will stay at rest, and an object in motion will stay in motion at constant velocity, unless acted upon by an unbalanced force. 2nd Law – Force equals mass times acceleration. 3rd Law – For every action there is an equal and opposite reaction.
1st Law of Motion (Law of Inertia) An object at rest will stay at rest, and an object in motion will stay in motion at constant velocity, unless acted upon by an unbalanced force.
1st Law Inertia is the  tendency of an object to resist changes in its velocity: whether in motion or motionless. These pumpkins will not move unless acted on by an unbalanced force.
1st Law  Once airborne, unless acted on by an unbalanced force (gravity and air – fluid friction), it would never stop!
1st Law  Unless acted upon by an unbalanced force, this golf ball would sit on the tee forever.
Why then, do we observe every day objects in motion slowing down and becoming motionless seemingly without an outside force? It’s a force we sometimes cannot see – friction.
Objects on earth, unlike the frictionless space the moon travels through, are under the influence of friction.
What is this unbalanced force that acts on an object in motion? Friction! There are four main types of friction: Sliding friction: ice skating Rolling friction: bowling Fluid friction (air or liquid): air or water resistance Static friction: initial friction when moving an object
		Slide a book across a table and watch it slide to a rest position. The book comes to a rest because of the presence of a force - that force being the force of friction - which brings the book to a rest position.
In the absence of a force of friction, the book would continue in motion with the same speed and direction - forever! (Or at least to the end of the table top.)
Newtons’s 1st Law and You Don’t let this be you. Wear seat belts. Because of inertia, objects (including you) resist changes in their motion. When the car going 80 km/hour is stopped by the brick wall, your body keeps moving at 80 m/hour.
2nd Law F = m x a
2nd Law 		The net force of an object is equal to the product of its mass and acceleration, or F=ma.
2nd Law When mass is in kilograms and acceleration is in m/s/s, the unit of force is in newtons (N). One newton is equal to the force required to accelerate one kilogram of mass at one meter/second/second.
2nd Law (F = m x a) How much force is needed to accelerate a 1400 kilogram car 2 meters per second/per second? Write the formula F = m x a Fill in given numbers and units F = 1400 kg x 2 meters per second/second Solve for the unknown 2800 kg-meters/second/second or2800 N
If mass remains constant, doubling the acceleration, doubles the force. If force remains constant, doubling the mass, halves the acceleration.
Newton’s 2nd Lawproves that different masses accelerate to the earth at the same rate, but with different forces. We know that objects with different masses accelerate to the ground at the same rate. However, because of the 2nd Law we know that they don’t hit the ground with the same force. F = ma 98 N = 10 kg x 9.8 m/s/s F = ma 9.8 N = 1 kg x 9.8 m/s/s
Check Your Understanding 1. What acceleration will result when a 12 N net force applied to a 3 kg object? A 6 kg object?   2. A net force of 16 N causes a mass to accelerate at a rate of 5 m/s2. Determine the mass. 3. How much force is needed to accelerate a 66 kg skier 1 m/sec/sec? 4. What is the force on a 1000 kg elevator that is falling freely at 9.8 m/sec/sec?
Check Your Understanding 1. What acceleration will result when a 12 N net force applied to a 3 kg object?  12 N = 3 kg x 4 m/s/s   2. A net force of 16 N causes a mass to accelerate at a rate of 5 m/s2. Determine the mass. 16 N = 3.2 kg x 5 m/s/s   3. How much force is needed to accelerate a 66 kg skier 1 m/sec/sec? 66 kg-m/sec/sec or 66 N 4. What is the force on a 1000 kg elevator that is falling freely at 9.8 m/sec/sec?  9800 kg-m/sec/sec or 9800 N
3rd Law For every action, there is an equal and opposite reaction.
3rd Law 	According to Newton, whenever objects A and B interact with each other, they exert forces upon each other. When you sit in your chair, your body exerts a downward force on the chair and the chair exerts an upward force on your body.
3rd Law 	There are two forces resulting from this interaction - a force on the chair and a force on your body. These two forces are called action and reaction forces.
Newton’s 3rd Law in Nature Consider the propulsion of a fish through the water. A fish uses its fins to push water backwards.  In turn, the water reacts by pushing the fish forwards, propelling the fish through the water.  The size of the force on the water equals the size of the force on the fish; the direction of the force on the water (backwards) is opposite the direction of the force on the fish (forwards).
3rd Law Flying gracefully through the air, birds depend on Newton’s third law of motion. As the birds push down on the air with their wings, the air pushes their wings up and gives them lift.
Consider the flying motion of birds. A bird flies by use of its wings. The wings of a bird push air downwards. In turn, the air reacts by pushing the bird upwards.  The size of the force on the air equals the size of the force on the bird; the direction of the force on the air (downwards) is opposite the direction of the force on the bird (upwards). Action-reaction force pairs make it possible for birds to fly.
Other examples of Newton’s Third Law The baseball forces the bat to the left (an action); the bat forces the ball to the right (the reaction).
3rd Law Consider the motion of a car on the way to school. A car is equipped with wheels which spin backwards. As the wheels spin backwards, they grip the road and push the road backwards.
3rd Law The reaction of a rocket is an application of the third law of motion. Various fuels are burned in the engine, producing hot gases.  The hot gases push against the inside tube of the rocket and escape out the bottom of the tube. As the gases move downward, the rocket moves in the opposite direction.

Más contenido relacionado

La actualidad más candente

Newton third law of motion ppt
Newton third law of motion pptNewton third law of motion ppt
Newton third law of motion ppt
kavithana
 
Static Electricity
Static ElectricityStatic Electricity
Static Electricity
OhMiss
 
C2.5 exothermic and endothermic reactions
C2.5 exothermic and endothermic reactionsC2.5 exothermic and endothermic reactions
C2.5 exothermic and endothermic reactions
Steve Bishop
 
Propertiesofmatter Ch. 6
Propertiesofmatter Ch. 6Propertiesofmatter Ch. 6
Propertiesofmatter Ch. 6
Mr.Jorgensen
 
Ppt Conservation Of Energy
Ppt Conservation Of EnergyPpt Conservation Of Energy
Ppt Conservation Of Energy
ffiala
 
Free Fall
Free FallFree Fall
Free Fall
hursmi
 
Force and Motion Review ppt
Force and Motion Review pptForce and Motion Review ppt
Force and Motion Review ppt
crautry
 

La actualidad más candente (20)

Newton third law of motion ppt
Newton third law of motion pptNewton third law of motion ppt
Newton third law of motion ppt
 
Mechanical energy
Mechanical energyMechanical energy
Mechanical energy
 
Static Electricity
Static ElectricityStatic Electricity
Static Electricity
 
Heat and temperature
Heat and temperatureHeat and temperature
Heat and temperature
 
C2.5 exothermic and endothermic reactions
C2.5 exothermic and endothermic reactionsC2.5 exothermic and endothermic reactions
C2.5 exothermic and endothermic reactions
 
Heat and temperature
Heat and temperatureHeat and temperature
Heat and temperature
 
Propertiesofmatter Ch. 6
Propertiesofmatter Ch. 6Propertiesofmatter Ch. 6
Propertiesofmatter Ch. 6
 
Kinetic energy
Kinetic energyKinetic energy
Kinetic energy
 
Physics: Potential and Kinetic Energy
Physics: Potential and Kinetic EnergyPhysics: Potential and Kinetic Energy
Physics: Potential and Kinetic Energy
 
Magnetism
MagnetismMagnetism
Magnetism
 
Ppt Conservation Of Energy
Ppt Conservation Of EnergyPpt Conservation Of Energy
Ppt Conservation Of Energy
 
Newton's laws of motion. final copy ppt.
Newton's laws of motion. final copy ppt.Newton's laws of motion. final copy ppt.
Newton's laws of motion. final copy ppt.
 
Unit 28 - Heat And Temperature
Unit 28 - Heat And TemperatureUnit 28 - Heat And Temperature
Unit 28 - Heat And Temperature
 
Free Fall
Free FallFree Fall
Free Fall
 
States of matter
States of matterStates of matter
States of matter
 
Unit 35 Magnetism And Magnetic Fields
Unit 35 Magnetism And Magnetic FieldsUnit 35 Magnetism And Magnetic Fields
Unit 35 Magnetism And Magnetic Fields
 
Q3 l11-charging process
Q3 l11-charging processQ3 l11-charging process
Q3 l11-charging process
 
Force and Motion Review ppt
Force and Motion Review pptForce and Motion Review ppt
Force and Motion Review ppt
 
Forces
ForcesForces
Forces
 
Forces
ForcesForces
Forces
 

Destacado (16)

Law of acceleration
Law of accelerationLaw of acceleration
Law of acceleration
 
Newtons laws of_motion - 2nd law
Newtons laws of_motion - 2nd lawNewtons laws of_motion - 2nd law
Newtons laws of_motion - 2nd law
 
Newton’s 2nd law of motion 2014
Newton’s 2nd law of motion 2014Newton’s 2nd law of motion 2014
Newton’s 2nd law of motion 2014
 
Operations on vectors
Operations on vectorsOperations on vectors
Operations on vectors
 
Newton’s 2nd law of motion!
Newton’s 2nd law of motion!Newton’s 2nd law of motion!
Newton’s 2nd law of motion!
 
Newton’s laws application
Newton’s laws applicationNewton’s laws application
Newton’s laws application
 
Vocabulary of science
Vocabulary of scienceVocabulary of science
Vocabulary of science
 
Law of acceleration
Law of accelerationLaw of acceleration
Law of acceleration
 
Ppt Newtons Second Law
Ppt Newtons Second LawPpt Newtons Second Law
Ppt Newtons Second Law
 
Law of acceleration
Law of accelerationLaw of acceleration
Law of acceleration
 
Scalar and vector quantities
Scalar and vector quantitiesScalar and vector quantities
Scalar and vector quantities
 
Physics 1.3 scalars and vectors
Physics 1.3 scalars and vectorsPhysics 1.3 scalars and vectors
Physics 1.3 scalars and vectors
 
Newton's second law of motion
Newton's second law of motionNewton's second law of motion
Newton's second law of motion
 
Kinetic and potential energy
Kinetic and potential energyKinetic and potential energy
Kinetic and potential energy
 
Chapter 1(4)SCALAR AND VECTOR
Chapter 1(4)SCALAR AND VECTORChapter 1(4)SCALAR AND VECTOR
Chapter 1(4)SCALAR AND VECTOR
 
Speed,velocity,acceleration
Speed,velocity,accelerationSpeed,velocity,acceleration
Speed,velocity,acceleration
 

Similar a Newtons laws of motion

Newtons Laws Of Motion 2
Newtons Laws Of Motion 2Newtons Laws Of Motion 2
Newtons Laws Of Motion 2
David Genis
 
Newtons laws of_motion
Newtons laws of_motionNewtons laws of_motion
Newtons laws of_motion
joverba
 

Similar a Newtons laws of motion (20)

Newton
NewtonNewton
Newton
 
Newtons Laws Of Motion 2
Newtons Laws Of Motion 2Newtons Laws Of Motion 2
Newtons Laws Of Motion 2
 
Newtons Laws Of Motion
Newtons Laws Of MotionNewtons Laws Of Motion
Newtons Laws Of Motion
 
Newtons laws of_motion
Newtons laws of_motionNewtons laws of_motion
Newtons laws of_motion
 
Lecture 3 newton_laws
Lecture 3 newton_lawsLecture 3 newton_laws
Lecture 3 newton_laws
 
Sec.3&4 newton's laws-of_motion[1]
Sec.3&4 newton's laws-of_motion[1]Sec.3&4 newton's laws-of_motion[1]
Sec.3&4 newton's laws-of_motion[1]
 
Newtons laws of_motion
Newtons laws of_motionNewtons laws of_motion
Newtons laws of_motion
 
Newtons laws of_motion
Newtons laws of_motionNewtons laws of_motion
Newtons laws of_motion
 
Newtons laws of_motion
Newtons laws of_motionNewtons laws of_motion
Newtons laws of_motion
 
newtons_laws_of_motion.ppt
newtons_laws_of_motion.pptnewtons_laws_of_motion.ppt
newtons_laws_of_motion.ppt
 
SCIENCE 8 PPT WEEK 1-2.ppt
SCIENCE 8 PPT WEEK 1-2.pptSCIENCE 8 PPT WEEK 1-2.ppt
SCIENCE 8 PPT WEEK 1-2.ppt
 
newtons_laws_of_motion.ppt
newtons_laws_of_motion.pptnewtons_laws_of_motion.ppt
newtons_laws_of_motion.ppt
 
newtons_laws_of_motion.ppt
newtons_laws_of_motion.pptnewtons_laws_of_motion.ppt
newtons_laws_of_motion.ppt
 
newtons_laws_of_motion.ppt
newtons_laws_of_motion.pptnewtons_laws_of_motion.ppt
newtons_laws_of_motion.ppt
 
Newtons laws of motion the laws of motion
Newtons laws of motion the laws of motionNewtons laws of motion the laws of motion
Newtons laws of motion the laws of motion
 
Newtons law of motion , three laws with example
Newtons law of motion , three laws with exampleNewtons law of motion , three laws with example
Newtons law of motion , three laws with example
 
newtons_laws_of_motion.ppt
newtons_laws_of_motion.pptnewtons_laws_of_motion.ppt
newtons_laws_of_motion.ppt
 
newtons_laws_of_motion.newtons_laws_of_motion
newtons_laws_of_motion.newtons_laws_of_motionnewtons_laws_of_motion.newtons_laws_of_motion
newtons_laws_of_motion.newtons_laws_of_motion
 
newtons_laws_of_motion.ppt
newtons_laws_of_motion.pptnewtons_laws_of_motion.ppt
newtons_laws_of_motion.ppt
 
newtons_laws_of_motion.ppt
newtons_laws_of_motion.pptnewtons_laws_of_motion.ppt
newtons_laws_of_motion.ppt
 

Último

The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
heathfieldcps1
 
Salient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functionsSalient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functions
KarakKing
 

Último (20)

The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
 
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxBasic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
 
Single or Multiple melodic lines structure
Single or Multiple melodic lines structureSingle or Multiple melodic lines structure
Single or Multiple melodic lines structure
 
General Principles of Intellectual Property: Concepts of Intellectual Proper...
General Principles of Intellectual Property: Concepts of Intellectual  Proper...General Principles of Intellectual Property: Concepts of Intellectual  Proper...
General Principles of Intellectual Property: Concepts of Intellectual Proper...
 
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdfUGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
 
Spatium Project Simulation student brief
Spatium Project Simulation student briefSpatium Project Simulation student brief
Spatium Project Simulation student brief
 
Python Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxPython Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docx
 
Micro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdfMicro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdf
 
Unit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptxUnit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptx
 
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptxSKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
 
How to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POSHow to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POS
 
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptxHMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
 
Fostering Friendships - Enhancing Social Bonds in the Classroom
Fostering Friendships - Enhancing Social Bonds  in the ClassroomFostering Friendships - Enhancing Social Bonds  in the Classroom
Fostering Friendships - Enhancing Social Bonds in the Classroom
 
ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.
 
Graduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - EnglishGraduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - English
 
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdf
 
Salient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functionsSalient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functions
 
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdf
 

Newtons laws of motion

  • 1. Newton’s Laws of Motion I. Law of Inertia II. F=ma III. Action-Reaction
  • 2. While most people know what Newton's laws say, many people do not know what they mean (or simply do not believe what they mean).
  • 3. Newton’s Laws of Motion 1st Law– An object at rest will stay at rest, and an object in motion will stay in motion at constant velocity, unless acted upon by an unbalanced force. 2nd Law – Force equals mass times acceleration. 3rd Law – For every action there is an equal and opposite reaction.
  • 4. 1st Law of Motion (Law of Inertia) An object at rest will stay at rest, and an object in motion will stay in motion at constant velocity, unless acted upon by an unbalanced force.
  • 5. 1st Law Inertia is the tendency of an object to resist changes in its velocity: whether in motion or motionless. These pumpkins will not move unless acted on by an unbalanced force.
  • 6. 1st Law Once airborne, unless acted on by an unbalanced force (gravity and air – fluid friction), it would never stop!
  • 7. 1st Law Unless acted upon by an unbalanced force, this golf ball would sit on the tee forever.
  • 8. Why then, do we observe every day objects in motion slowing down and becoming motionless seemingly without an outside force? It’s a force we sometimes cannot see – friction.
  • 9. Objects on earth, unlike the frictionless space the moon travels through, are under the influence of friction.
  • 10. What is this unbalanced force that acts on an object in motion? Friction! There are four main types of friction: Sliding friction: ice skating Rolling friction: bowling Fluid friction (air or liquid): air or water resistance Static friction: initial friction when moving an object
  • 11. Slide a book across a table and watch it slide to a rest position. The book comes to a rest because of the presence of a force - that force being the force of friction - which brings the book to a rest position.
  • 12. In the absence of a force of friction, the book would continue in motion with the same speed and direction - forever! (Or at least to the end of the table top.)
  • 13. Newtons’s 1st Law and You Don’t let this be you. Wear seat belts. Because of inertia, objects (including you) resist changes in their motion. When the car going 80 km/hour is stopped by the brick wall, your body keeps moving at 80 m/hour.
  • 14. 2nd Law F = m x a
  • 15. 2nd Law The net force of an object is equal to the product of its mass and acceleration, or F=ma.
  • 16. 2nd Law When mass is in kilograms and acceleration is in m/s/s, the unit of force is in newtons (N). One newton is equal to the force required to accelerate one kilogram of mass at one meter/second/second.
  • 17. 2nd Law (F = m x a) How much force is needed to accelerate a 1400 kilogram car 2 meters per second/per second? Write the formula F = m x a Fill in given numbers and units F = 1400 kg x 2 meters per second/second Solve for the unknown 2800 kg-meters/second/second or2800 N
  • 18. If mass remains constant, doubling the acceleration, doubles the force. If force remains constant, doubling the mass, halves the acceleration.
  • 19. Newton’s 2nd Lawproves that different masses accelerate to the earth at the same rate, but with different forces. We know that objects with different masses accelerate to the ground at the same rate. However, because of the 2nd Law we know that they don’t hit the ground with the same force. F = ma 98 N = 10 kg x 9.8 m/s/s F = ma 9.8 N = 1 kg x 9.8 m/s/s
  • 20. Check Your Understanding 1. What acceleration will result when a 12 N net force applied to a 3 kg object? A 6 kg object?   2. A net force of 16 N causes a mass to accelerate at a rate of 5 m/s2. Determine the mass. 3. How much force is needed to accelerate a 66 kg skier 1 m/sec/sec? 4. What is the force on a 1000 kg elevator that is falling freely at 9.8 m/sec/sec?
  • 21. Check Your Understanding 1. What acceleration will result when a 12 N net force applied to a 3 kg object? 12 N = 3 kg x 4 m/s/s   2. A net force of 16 N causes a mass to accelerate at a rate of 5 m/s2. Determine the mass. 16 N = 3.2 kg x 5 m/s/s   3. How much force is needed to accelerate a 66 kg skier 1 m/sec/sec? 66 kg-m/sec/sec or 66 N 4. What is the force on a 1000 kg elevator that is falling freely at 9.8 m/sec/sec?  9800 kg-m/sec/sec or 9800 N
  • 22. 3rd Law For every action, there is an equal and opposite reaction.
  • 23. 3rd Law According to Newton, whenever objects A and B interact with each other, they exert forces upon each other. When you sit in your chair, your body exerts a downward force on the chair and the chair exerts an upward force on your body.
  • 24. 3rd Law There are two forces resulting from this interaction - a force on the chair and a force on your body. These two forces are called action and reaction forces.
  • 25. Newton’s 3rd Law in Nature Consider the propulsion of a fish through the water. A fish uses its fins to push water backwards. In turn, the water reacts by pushing the fish forwards, propelling the fish through the water. The size of the force on the water equals the size of the force on the fish; the direction of the force on the water (backwards) is opposite the direction of the force on the fish (forwards).
  • 26. 3rd Law Flying gracefully through the air, birds depend on Newton’s third law of motion. As the birds push down on the air with their wings, the air pushes their wings up and gives them lift.
  • 27. Consider the flying motion of birds. A bird flies by use of its wings. The wings of a bird push air downwards. In turn, the air reacts by pushing the bird upwards. The size of the force on the air equals the size of the force on the bird; the direction of the force on the air (downwards) is opposite the direction of the force on the bird (upwards). Action-reaction force pairs make it possible for birds to fly.
  • 28.
  • 29. Other examples of Newton’s Third Law The baseball forces the bat to the left (an action); the bat forces the ball to the right (the reaction).
  • 30. 3rd Law Consider the motion of a car on the way to school. A car is equipped with wheels which spin backwards. As the wheels spin backwards, they grip the road and push the road backwards.
  • 31. 3rd Law The reaction of a rocket is an application of the third law of motion. Various fuels are burned in the engine, producing hot gases. The hot gases push against the inside tube of the rocket and escape out the bottom of the tube. As the gases move downward, the rocket moves in the opposite direction.