SlideShare una empresa de Scribd logo
1 de 11
NÚMEROS COMPLEXOS
Quantas vezes, ao calcularmos o valor de Delta( b² - 4ac) na resolução de equação de 2º grau, nos deparamos com um valor negativo (Delta <0). Neste caso, sempre dizemos que não existe solução no campo dos números reais. Uma equação que tirou o sono de muitos matemáticos do século XV, foi a equação x² +1 = 0, uma vez que não existe no campo dos reais raiz quadrada de número negativo (x = √-1). Para que as equações sempre fosse possíveis, houve a necessidade de ampliar o universo dos números. Criou-se, então, um número cujo quadrado é -1.
Esse número, representado pela letra i, denominado  unidade imaginária , é definido por:  i² = -1 A partir dessa definição, surge um novo conjunto de números, denominado  conjunto dos números complexos , que indicamos por C. Mas não se assustem o complexo só está no nome. Vocês verão que esse conjunto é muito fácil de aprender.
Definição de números complexos Dados dois números reais  a  e  b  , define-se o número complexo z como sendo:  z =  a  +  b i , onde i = √-1 é a unidade imaginária .  Ex: z =  2  +  3 i ( a = 2 e b = 3) w =  -3   -5 i (a = -3 e b = -5) u =  100 i ( a = 0 e b = 100)
NOTAS: a)  diz-se que z =  a  +  b i é a forma binômia ou algébrica do complexo z . b)  dado o número complexo z =  a  +  b i ,  a  é denominada parte real e  b  parte imaginária.  Escreve-se :  a  = Re(z) ;  b  = Im(z) . c)  se em z =  a  +  b i tivermos  a  = 0 e  b  diferente de zero, dizemos que z é um imaginário puro . Ex: z =  3 i . d) se em z =  a  +  b i tivermos  b  = 0 , dizemos que z é um número real .  Ex: z =  5  =  5  +  0 i .  e) Seja z =  a  +  b i , chama-se conjugado de z e representa-se por  , a um outro número complexo que possui a mesma parte real de z e a parte imaginária o simétrico aditivo da parte imaginária de z.   Ex: z= 4 + 5 i  ->  = 4  –  5 i
f) do item (c) acima concluímos que todo número real é complexo, ou seja,  o conjunto dos números reais é um subconjunto do conjunto dos números complexos . g)  um número complexo z =  a  +  b i pode também ser representado como um par ordenado z = ( a , b ) .
Forma Algébrica Os números complexos são formados por um par ordenado ( a ,  b ) onde os valores de  a  estão situados no eixo x (abscissa) e os valores de  b  no eixo y (ordenadas). Sobre o eixo x marcamos os pontos relacionados à parte real do número complexo e sobre o eixo y os pontos relacionados à parte imaginária.   Sendo P o ponto de coordenadas ( a ,  b ), a forma algébrica pela qual representaremos um número complexo será  a  +  b i, como  a  e b Є R.  A forma algébrica de representar um número complexo é mais prática e mais utilizada nos cálculos.
Operações com números complexos ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
 Multiplicação: A multiplicação de dois números complexos se dá de acordo com a regra de multiplicação de binômios e lembrando que i²=1,temos: ( a + b i)( c + d i)= ac + a d i+ b c i+ bd i² ( a + b i)( c + d i)= ac + a d i+ b c i –  bd ( a + b i)( c + d i)=( ac  –  bd )+( a d + b c )i Ex: ( 2 + 4 i)( 1 + 3 i)=2+6i+4i+12i² ( 2 + 4 i)( 1 + 3 i)=2+6i+4i - 12 ( 2 + 4 i)( 1 + 3 i)=(2-12)+(6+4)i ( 2 + 4 i)( 1 + 3 i)= - 10 + 10 i
 Divisão: A divisão   de dois números complexos pode ser obtida escrevendo-se o quociente sob a forma de fração; a seguir, procedendo-se de modo análogo ao utilizado na racionalização do denominador de uma fração, multiplicam-se ambos os termos da fração pelo número complexo conjugado do denominador. Ex:   =  =
  Por: Andréia Caetano da Silva   Bibliografia: Matemática Fundamental, 2ºgrau: volume único/José Ruy Giovanni, José Roberto Bonjorno, José Ruy Giovanni Jr. – São Paulo:FTD,1994

Más contenido relacionado

La actualidad más candente (11)

Números complexos 2008
Números complexos 2008Números complexos 2008
Números complexos 2008
 
Números Complexos
Números ComplexosNúmeros Complexos
Números Complexos
 
Numeros complexos
Numeros complexosNumeros complexos
Numeros complexos
 
Nmeros Complexos Daniel Mascarenhas 1234123084972510 1
Nmeros Complexos Daniel Mascarenhas 1234123084972510 1Nmeros Complexos Daniel Mascarenhas 1234123084972510 1
Nmeros Complexos Daniel Mascarenhas 1234123084972510 1
 
NUMEROS COMPLEXOS
NUMEROS COMPLEXOSNUMEROS COMPLEXOS
NUMEROS COMPLEXOS
 
Conjunto dos números complexos
Conjunto dos números complexosConjunto dos números complexos
Conjunto dos números complexos
 
www.AulasDeMatematicaApoio.com - Matemática - Números Complexos
www.AulasDeMatematicaApoio.com  - Matemática - Números Complexoswww.AulasDeMatematicaApoio.com  - Matemática - Números Complexos
www.AulasDeMatematicaApoio.com - Matemática - Números Complexos
 
Números complexos
Números complexosNúmeros complexos
Números complexos
 
Números complexos
Números complexosNúmeros complexos
Números complexos
 
Números complexos
Números complexos Números complexos
Números complexos
 
Números complexos
Números complexosNúmeros complexos
Números complexos
 

Similar a Números Complexos

Definição do corpo dos números complexos - Copy.pptx
Definição do corpo dos números complexos - Copy.pptxDefinição do corpo dos números complexos - Copy.pptx
Definição do corpo dos números complexos - Copy.pptx
brandy57279
 
(Curso extensivo) números complexos 01.08 e 02.08
(Curso extensivo) números complexos  01.08 e 02.08(Curso extensivo) números complexos  01.08 e 02.08
(Curso extensivo) números complexos 01.08 e 02.08
GuiVogt
 
Definição do corpo dos números complexos.pptx
Definição do corpo dos números complexos.pptxDefinição do corpo dos números complexos.pptx
Definição do corpo dos números complexos.pptx
brandy57279
 

Similar a Números Complexos (15)

Números complexos bom
Números complexos bomNúmeros complexos bom
Números complexos bom
 
Matemática apostila 1 suely
Matemática   apostila 1 suelyMatemática   apostila 1 suely
Matemática apostila 1 suely
 
NúMeros Complexos
NúMeros ComplexosNúMeros Complexos
NúMeros Complexos
 
Números Complexos
Números ComplexosNúmeros Complexos
Números Complexos
 
Numeros complexos
Numeros complexosNumeros complexos
Numeros complexos
 
Números Complexos_IME ITA
Números Complexos_IME ITANúmeros Complexos_IME ITA
Números Complexos_IME ITA
 
Complexos
ComplexosComplexos
Complexos
 
Complexos
ComplexosComplexos
Complexos
 
Complexos
ComplexosComplexos
Complexos
 
Definição do corpo dos números complexos - Copy.pptx
Definição do corpo dos números complexos - Copy.pptxDefinição do corpo dos números complexos - Copy.pptx
Definição do corpo dos números complexos - Copy.pptx
 
Apostila de matematica para concursos
Apostila de matematica para concursosApostila de matematica para concursos
Apostila de matematica para concursos
 
(Curso extensivo) números complexos 01.08 e 02.08
(Curso extensivo) números complexos  01.08 e 02.08(Curso extensivo) números complexos  01.08 e 02.08
(Curso extensivo) números complexos 01.08 e 02.08
 
Definição do corpo dos números complexos.pptx
Definição do corpo dos números complexos.pptxDefinição do corpo dos números complexos.pptx
Definição do corpo dos números complexos.pptx
 
www.AulasDeMatematicaApoio.com.br - Matemática - Números Complexos
 www.AulasDeMatematicaApoio.com.br  - Matemática - Números Complexos www.AulasDeMatematicaApoio.com.br  - Matemática - Números Complexos
www.AulasDeMatematicaApoio.com.br - Matemática - Números Complexos
 
www.videoaulagratisapoio.com.br - Matemática - Números Complexos
www.videoaulagratisapoio.com.br - Matemática -  Números Complexoswww.videoaulagratisapoio.com.br - Matemática -  Números Complexos
www.videoaulagratisapoio.com.br - Matemática - Números Complexos
 

Último

19- Pedagogia (60 mapas mentais) - Amostra.pdf
19- Pedagogia (60 mapas mentais) - Amostra.pdf19- Pedagogia (60 mapas mentais) - Amostra.pdf
19- Pedagogia (60 mapas mentais) - Amostra.pdf
marlene54545
 
matematica aula didatica prática e tecni
matematica aula didatica prática e tecnimatematica aula didatica prática e tecni
matematica aula didatica prática e tecni
CleidianeCarvalhoPer
 
Teoria heterotrófica e autotrófica dos primeiros seres vivos..pptx
Teoria heterotrófica e autotrófica dos primeiros seres vivos..pptxTeoria heterotrófica e autotrófica dos primeiros seres vivos..pptx
Teoria heterotrófica e autotrófica dos primeiros seres vivos..pptx
TailsonSantos1
 
Aula 03 - Filogenia14+4134684516498481.pptx
Aula 03 - Filogenia14+4134684516498481.pptxAula 03 - Filogenia14+4134684516498481.pptx
Aula 03 - Filogenia14+4134684516498481.pptx
andrenespoli3
 

Último (20)

Camadas da terra -Litosfera conteúdo 6º ano
Camadas da terra -Litosfera  conteúdo 6º anoCamadas da terra -Litosfera  conteúdo 6º ano
Camadas da terra -Litosfera conteúdo 6º ano
 
Jogo de Rimas - Para impressão em pdf a ser usado para crianças
Jogo de Rimas - Para impressão em pdf a ser usado para criançasJogo de Rimas - Para impressão em pdf a ser usado para crianças
Jogo de Rimas - Para impressão em pdf a ser usado para crianças
 
Monoteísmo, Politeísmo, Panteísmo 7 ANO2.pptx
Monoteísmo, Politeísmo, Panteísmo 7 ANO2.pptxMonoteísmo, Politeísmo, Panteísmo 7 ANO2.pptx
Monoteísmo, Politeísmo, Panteísmo 7 ANO2.pptx
 
Araribá slides 9ano.pdf para os alunos do medio
Araribá slides 9ano.pdf para os alunos do medioAraribá slides 9ano.pdf para os alunos do medio
Araribá slides 9ano.pdf para os alunos do medio
 
Aula de jornada de trabalho - reforma.ppt
Aula de jornada de trabalho - reforma.pptAula de jornada de trabalho - reforma.ppt
Aula de jornada de trabalho - reforma.ppt
 
19- Pedagogia (60 mapas mentais) - Amostra.pdf
19- Pedagogia (60 mapas mentais) - Amostra.pdf19- Pedagogia (60 mapas mentais) - Amostra.pdf
19- Pedagogia (60 mapas mentais) - Amostra.pdf
 
Slides Lição 05, Central Gospel, A Grande Tribulação, 1Tr24.pptx
Slides Lição 05, Central Gospel, A Grande Tribulação, 1Tr24.pptxSlides Lição 05, Central Gospel, A Grande Tribulação, 1Tr24.pptx
Slides Lição 05, Central Gospel, A Grande Tribulação, 1Tr24.pptx
 
Projeto_de_Extensão_Agronomia_adquira_ja_(91)_98764-0830.pdf
Projeto_de_Extensão_Agronomia_adquira_ja_(91)_98764-0830.pdfProjeto_de_Extensão_Agronomia_adquira_ja_(91)_98764-0830.pdf
Projeto_de_Extensão_Agronomia_adquira_ja_(91)_98764-0830.pdf
 
Plano de aula Nova Escola períodos simples e composto parte 1.pptx
Plano de aula Nova Escola períodos simples e composto parte 1.pptxPlano de aula Nova Escola períodos simples e composto parte 1.pptx
Plano de aula Nova Escola períodos simples e composto parte 1.pptx
 
TCC_MusicaComoLinguagemNaAlfabetização-ARAUJOfranklin-UFBA.pdf
TCC_MusicaComoLinguagemNaAlfabetização-ARAUJOfranklin-UFBA.pdfTCC_MusicaComoLinguagemNaAlfabetização-ARAUJOfranklin-UFBA.pdf
TCC_MusicaComoLinguagemNaAlfabetização-ARAUJOfranklin-UFBA.pdf
 
Cartão de crédito e fatura do cartão.pptx
Cartão de crédito e fatura do cartão.pptxCartão de crédito e fatura do cartão.pptx
Cartão de crédito e fatura do cartão.pptx
 
matematica aula didatica prática e tecni
matematica aula didatica prática e tecnimatematica aula didatica prática e tecni
matematica aula didatica prática e tecni
 
PRÁTICAS PEDAGÓGICAS GESTÃO DA APRENDIZAGEM
PRÁTICAS PEDAGÓGICAS GESTÃO DA APRENDIZAGEMPRÁTICAS PEDAGÓGICAS GESTÃO DA APRENDIZAGEM
PRÁTICAS PEDAGÓGICAS GESTÃO DA APRENDIZAGEM
 
Currículo - Ícaro Kleisson - Tutor acadêmico.pdf
Currículo - Ícaro Kleisson - Tutor acadêmico.pdfCurrículo - Ícaro Kleisson - Tutor acadêmico.pdf
Currículo - Ícaro Kleisson - Tutor acadêmico.pdf
 
EDUCAÇÃO ESPECIAL NA PERSPECTIVA INCLUSIVA
EDUCAÇÃO ESPECIAL NA PERSPECTIVA INCLUSIVAEDUCAÇÃO ESPECIAL NA PERSPECTIVA INCLUSIVA
EDUCAÇÃO ESPECIAL NA PERSPECTIVA INCLUSIVA
 
Teoria heterotrófica e autotrófica dos primeiros seres vivos..pptx
Teoria heterotrófica e autotrófica dos primeiros seres vivos..pptxTeoria heterotrófica e autotrófica dos primeiros seres vivos..pptx
Teoria heterotrófica e autotrófica dos primeiros seres vivos..pptx
 
Aula 03 - Filogenia14+4134684516498481.pptx
Aula 03 - Filogenia14+4134684516498481.pptxAula 03 - Filogenia14+4134684516498481.pptx
Aula 03 - Filogenia14+4134684516498481.pptx
 
Apresentação ISBET Jovem Aprendiz e Estágio 2023.pdf
Apresentação ISBET Jovem Aprendiz e Estágio 2023.pdfApresentação ISBET Jovem Aprendiz e Estágio 2023.pdf
Apresentação ISBET Jovem Aprendiz e Estágio 2023.pdf
 
Estudar, para quê? Ciência, para quê? Parte 1 e Parte 2
Estudar, para quê?  Ciência, para quê? Parte 1 e Parte 2Estudar, para quê?  Ciência, para quê? Parte 1 e Parte 2
Estudar, para quê? Ciência, para quê? Parte 1 e Parte 2
 
Texto dramático com Estrutura e exemplos.ppt
Texto dramático com Estrutura e exemplos.pptTexto dramático com Estrutura e exemplos.ppt
Texto dramático com Estrutura e exemplos.ppt
 

Números Complexos

  • 2. Quantas vezes, ao calcularmos o valor de Delta( b² - 4ac) na resolução de equação de 2º grau, nos deparamos com um valor negativo (Delta <0). Neste caso, sempre dizemos que não existe solução no campo dos números reais. Uma equação que tirou o sono de muitos matemáticos do século XV, foi a equação x² +1 = 0, uma vez que não existe no campo dos reais raiz quadrada de número negativo (x = √-1). Para que as equações sempre fosse possíveis, houve a necessidade de ampliar o universo dos números. Criou-se, então, um número cujo quadrado é -1.
  • 3. Esse número, representado pela letra i, denominado unidade imaginária , é definido por: i² = -1 A partir dessa definição, surge um novo conjunto de números, denominado conjunto dos números complexos , que indicamos por C. Mas não se assustem o complexo só está no nome. Vocês verão que esse conjunto é muito fácil de aprender.
  • 4. Definição de números complexos Dados dois números reais a e b , define-se o número complexo z como sendo: z = a + b i , onde i = √-1 é a unidade imaginária . Ex: z = 2 + 3 i ( a = 2 e b = 3) w = -3 -5 i (a = -3 e b = -5) u = 100 i ( a = 0 e b = 100)
  • 5. NOTAS: a) diz-se que z = a + b i é a forma binômia ou algébrica do complexo z . b) dado o número complexo z = a + b i , a é denominada parte real e b parte imaginária. Escreve-se : a = Re(z) ; b = Im(z) . c) se em z = a + b i tivermos a = 0 e b diferente de zero, dizemos que z é um imaginário puro . Ex: z = 3 i . d) se em z = a + b i tivermos b = 0 , dizemos que z é um número real . Ex: z = 5 = 5 + 0 i . e) Seja z = a + b i , chama-se conjugado de z e representa-se por , a um outro número complexo que possui a mesma parte real de z e a parte imaginária o simétrico aditivo da parte imaginária de z. Ex: z= 4 + 5 i -> = 4 – 5 i
  • 6. f) do item (c) acima concluímos que todo número real é complexo, ou seja, o conjunto dos números reais é um subconjunto do conjunto dos números complexos . g) um número complexo z = a + b i pode também ser representado como um par ordenado z = ( a , b ) .
  • 7. Forma Algébrica Os números complexos são formados por um par ordenado ( a , b ) onde os valores de a estão situados no eixo x (abscissa) e os valores de b no eixo y (ordenadas). Sobre o eixo x marcamos os pontos relacionados à parte real do número complexo e sobre o eixo y os pontos relacionados à parte imaginária. Sendo P o ponto de coordenadas ( a , b ), a forma algébrica pela qual representaremos um número complexo será a + b i, como a e b Є R. A forma algébrica de representar um número complexo é mais prática e mais utilizada nos cálculos.
  • 8.
  • 9.  Multiplicação: A multiplicação de dois números complexos se dá de acordo com a regra de multiplicação de binômios e lembrando que i²=1,temos: ( a + b i)( c + d i)= ac + a d i+ b c i+ bd i² ( a + b i)( c + d i)= ac + a d i+ b c i – bd ( a + b i)( c + d i)=( ac – bd )+( a d + b c )i Ex: ( 2 + 4 i)( 1 + 3 i)=2+6i+4i+12i² ( 2 + 4 i)( 1 + 3 i)=2+6i+4i - 12 ( 2 + 4 i)( 1 + 3 i)=(2-12)+(6+4)i ( 2 + 4 i)( 1 + 3 i)= - 10 + 10 i
  • 10.  Divisão: A divisão de dois números complexos pode ser obtida escrevendo-se o quociente sob a forma de fração; a seguir, procedendo-se de modo análogo ao utilizado na racionalização do denominador de uma fração, multiplicam-se ambos os termos da fração pelo número complexo conjugado do denominador. Ex: = =
  • 11. Por: Andréia Caetano da Silva Bibliografia: Matemática Fundamental, 2ºgrau: volume único/José Ruy Giovanni, José Roberto Bonjorno, José Ruy Giovanni Jr. – São Paulo:FTD,1994