SlideShare una empresa de Scribd logo
1 de 21
Descargar para leer sin conexión
WHAT IS CHAOS THEORY?
• Branch of mathematics that deals with systems that appear to be orderly
but, in fact, harbor chaotic behaviors. It also deals with systems that appear
to be chaotic, but, in fact, have underlying order.
• Chaos theory is the study of nonlinear, dynamic systems that are highly
sensitive to initial conditions, an effect which is popularly referred to as the
butterfly effect.
• The deterministic nature of these systems does not make them predictable.
This behavior is known as deterministic chaos, or simply chaos.
• Edward Lorenz. “Deterministic Nonperiodic Flow”, 1963.
• Lorenz was a meteorologist who developed a mathematical model used to
model the way the air moves in the atmosphere. He discovered the
principle of Sensitive Dependence on Initial Conditions . “Butterfly Effect”.
• The basic principle is that even in an entirely deterministic system the
slightest change in the initial data can cause abrupt and seemingly random
changes in the outcome.
CHAOS THEORY
Nonlinearity
Determinism
Sensitivity to initial
conditions
Order in disorder
Long-term prediction
is mostly impossible
CHAOTIC SYSTEMS
Dynamic systems Deterministic systems
Chaotic systems are unstable since they tend
not to resist any outside disturbances but
instead react in significant ways.
• Dynamic system: Simplified model
for the time-varying behavior of an
actual system. These systems are
described using differential
equations specifying the rates of
change for each variable.
• Deterministic system: System in
which no randomness is involved in
the development of future states of
the system. This property implies
that two trajectories emerging
from two different close-by initial
conditions separate exponentially
in the course of time.
Chaotic systems are unstable since they tend not to resist any outside
disturbances but instead react in significant ways.
• Chaotic systems are common in
nature. They can be found, for
example, in Chemistry, in
Nonlinear Optics (lasers), in
Electronics, in Fluid Dynamics,
etc.
• Many natural phenomena can
also be characterized as being
chaotic. They can be found in
meteorology, solar system,
heart and brain of living
organisms and so on.
ATTRACTORS
• In chaos theory, systems
evolve towards states called
attractors. The evolution
towards a specific state is
governed by a set of initial
conditions. An attractor is
generated within the system
itself.
• Attractor: Smallest unit which
cannot itself be decomposed
into two or more attractors
with distinct basins of
attraction.
TYPES OF ATTRACTORS
a) Point attractor: There is only one outcome for the system. Death is a point
attractor for living things.
b) Limit cycle or periodic attractor: Instead of moving to a single state as in a
point attractor, the system settles into a cycle.
c) Strange attractor or a chaotic
attractor: double spiral which never
repeats itself. Strange attractors are
shapes with fractional dimension;
they are fractals.
c)
b)
a)
FRACTALS
• Fractals are objects that have fractional
dimension. A fractal is a mathematical
object that is self-similar and chaotic.
• Fractals are pictures that result from
iterations of nonlinear equations. Using
the output value for the next input value,
a set of points is produced. Graphing
these points produces images.
• Benoit Mandelbrot
• Characteristics: Self-similarity and fractional dimensions.
• Self-similarity means that at every level, the fractal image repeats itself.
Fractals are shapes or behaviors that have similar properties at all levels of
magnification
• Clouds, arteries, veins, nerves, parotid gland ducts, the bronchial tree, etc
• Fractal geometry is the geometry that describes the chaotic systems we find
in nature. Fractals are a language, a way to describe this geometry.
THE BUTTERFLY EFFECT
"Sensitive dependence on initial conditions.“
• Butterfly effect is a way of describing
how, unless all factors can be accounted
for, large systems remain impossible to
predict with total accuracy because there
are too many unknown variables to track.
• Ex: an avalanche. It can be provoked with
a small input (a loud noise, some burst of
wind), it's mostly unpredictable, and the
resulting energy is huge.
ASPECTSOFCHAOS
PREDICTABILITY Computations and
mathematical
equations
CONTROL
Ott-Grebogi-Yorke
Method
Pyragas Method
WAYS TO CONTROL CHAOS
The applications of controlling chaos are enormous, ranging from the control
of turbulent flows, to the parallel signal transmission and computation to the
control of cardiac fibrillation, and so forth.
Alter organizational
parameters so that
the range of
fluctuations is limited
Apply small
perturbations to the
chaotic system to try
and cause it to
organize
Change the
relationship between
the organization and
the environment
APPLICATIONS OF CHAOS THEORY
Stock
market
Population
dynamics
Biology
Predicting
heart
attacks
Real time
applications
Music and
Arts
Climbing
Random
Number
Generation
CHAOS THEORY IN NEGOTIATIONS
Richard Halpern, 2008. Impact of Chaos Theory and Heisenberg Uncertainty
Principle on case negotiations in law
Never rely on someone else's measurement to formulate
a key component of strategy. A small mistake can cause
huge repercussions, better do it yourself.
Keep trying something new, unexpected; sweep the
defence of its feet. Make the system chaotic.
If the process is going the way you wanted, simplify it
as much as possible. Predictability would increase and
chance of blunders is minimized.
If the tide is running against you, add new elements:
complicate. Nothing to lose, and with a little help from
Chaos, everything to gain. You might turn a hopeless
case into a winner.
CONCLUSIONS
• Everything in the universe is under control of Chaos or product of Chaos.
• Irregularity leads to complex systems.
• Chaotic systems are very sensitive to the initial conditions, This makes the
system fairly unpredictable. They never repeat but they always have some
order. That is the reason why chaos theory has been seen as potentially
“one of the three greatest triumphs of the 21st century.” In 1991, James
Marti speculated that ‘Chaos might be the new world order.’
• It gives us a new concept of measurements and scales. It offers a fresh way
to proceed with observational data.

Más contenido relacionado

La actualidad más candente

Chaos theory the butterfly effect
Chaos theory the butterfly effectChaos theory the butterfly effect
Chaos theory the butterfly effectAssaad Moawad
 
Chaotic system and its Application in Cryptography
Chaotic system and its Application in  CryptographyChaotic system and its Application in  Cryptography
Chaotic system and its Application in CryptographyMuhammad Hamid
 
Chapter 5 - Fuzzy Logic
Chapter 5 - Fuzzy LogicChapter 5 - Fuzzy Logic
Chapter 5 - Fuzzy LogicAshique Rasool
 
Chaos Theory And Strategy: Theory Application And Managerial Implications
Chaos Theory And Strategy: Theory Application And Managerial ImplicationsChaos Theory And Strategy: Theory Application And Managerial Implications
Chaos Theory And Strategy: Theory Application And Managerial ImplicationsTaimur Khan
 
The Butterfly Effect
The Butterfly EffectThe Butterfly Effect
The Butterfly Effectjulieadamen
 
Mathematics For Artificial Intelligence
Mathematics For Artificial IntelligenceMathematics For Artificial Intelligence
Mathematics For Artificial IntelligenceSuraj Kumar Jana
 
Fractals And Chaos Theory
Fractals And Chaos TheoryFractals And Chaos Theory
Fractals And Chaos TheoryFNian
 
Efecto mariposa, teoria del caos
Efecto mariposa, teoria del caosEfecto mariposa, teoria del caos
Efecto mariposa, teoria del caosqOkii
 
Fuzzy Logic ppt
Fuzzy Logic pptFuzzy Logic ppt
Fuzzy Logic pptRitu Bafna
 
Fuzzy Logic Ppt
Fuzzy Logic PptFuzzy Logic Ppt
Fuzzy Logic Pptrafi
 
Thinking fast and slow. Decision making
Thinking fast and slow. Decision makingThinking fast and slow. Decision making
Thinking fast and slow. Decision makingLedarskapscentrum
 
Applications of mathematics in our daily life
Applications of mathematics in our daily lifeApplications of mathematics in our daily life
Applications of mathematics in our daily lifeAbhinav Somani
 
Fuzzy Logic in the Real World
Fuzzy Logic in the Real WorldFuzzy Logic in the Real World
Fuzzy Logic in the Real WorldBCSLeicester
 
What is mathematics?
What is mathematics? What is mathematics?
What is mathematics? SIRAJAHMAD36
 

La actualidad más candente (20)

Chaos theory the butterfly effect
Chaos theory the butterfly effectChaos theory the butterfly effect
Chaos theory the butterfly effect
 
Chaotic system and its Application in Cryptography
Chaotic system and its Application in  CryptographyChaotic system and its Application in  Cryptography
Chaotic system and its Application in Cryptography
 
Non linear dynamical systems
Non linear dynamical systemsNon linear dynamical systems
Non linear dynamical systems
 
Artificial Intelligence and Mathematics
Artificial Intelligence and MathematicsArtificial Intelligence and Mathematics
Artificial Intelligence and Mathematics
 
Chapter 5 - Fuzzy Logic
Chapter 5 - Fuzzy LogicChapter 5 - Fuzzy Logic
Chapter 5 - Fuzzy Logic
 
Fuzzy logic
Fuzzy logicFuzzy logic
Fuzzy logic
 
Chaos Theory And Strategy: Theory Application And Managerial Implications
Chaos Theory And Strategy: Theory Application And Managerial ImplicationsChaos Theory And Strategy: Theory Application And Managerial Implications
Chaos Theory And Strategy: Theory Application And Managerial Implications
 
Fuzzy logic
Fuzzy logicFuzzy logic
Fuzzy logic
 
The Butterfly Effect
The Butterfly EffectThe Butterfly Effect
The Butterfly Effect
 
Mathematics For Artificial Intelligence
Mathematics For Artificial IntelligenceMathematics For Artificial Intelligence
Mathematics For Artificial Intelligence
 
Fractals And Chaos Theory
Fractals And Chaos TheoryFractals And Chaos Theory
Fractals And Chaos Theory
 
Introduction to chaos
Introduction to chaosIntroduction to chaos
Introduction to chaos
 
Efecto mariposa, teoria del caos
Efecto mariposa, teoria del caosEfecto mariposa, teoria del caos
Efecto mariposa, teoria del caos
 
Fuzzy Logic ppt
Fuzzy Logic pptFuzzy Logic ppt
Fuzzy Logic ppt
 
Fuzzy logic
Fuzzy logicFuzzy logic
Fuzzy logic
 
Fuzzy Logic Ppt
Fuzzy Logic PptFuzzy Logic Ppt
Fuzzy Logic Ppt
 
Thinking fast and slow. Decision making
Thinking fast and slow. Decision makingThinking fast and slow. Decision making
Thinking fast and slow. Decision making
 
Applications of mathematics in our daily life
Applications of mathematics in our daily lifeApplications of mathematics in our daily life
Applications of mathematics in our daily life
 
Fuzzy Logic in the Real World
Fuzzy Logic in the Real WorldFuzzy Logic in the Real World
Fuzzy Logic in the Real World
 
What is mathematics?
What is mathematics? What is mathematics?
What is mathematics?
 

Similar a Chaos Theory

butterflyeffect-141115090247-conversion-gate02 (1).pptx
butterflyeffect-141115090247-conversion-gate02 (1).pptxbutterflyeffect-141115090247-conversion-gate02 (1).pptx
butterflyeffect-141115090247-conversion-gate02 (1).pptxPrabhakarNeupane3
 
Eliano Pessa
Eliano PessaEliano Pessa
Eliano Pessaagrilinea
 
Quantum models of brain
Quantum models of brainQuantum models of brain
Quantum models of brainHaskell Lambda
 
Utility of chaos theory in product development
Utility of chaos theory in product developmentUtility of chaos theory in product development
Utility of chaos theory in product developmentTapani Taskinen
 
Nonlinear methods of analysis of electrophysiological data and Machine learni...
Nonlinear methods of analysis of electrophysiological data and Machine learni...Nonlinear methods of analysis of electrophysiological data and Machine learni...
Nonlinear methods of analysis of electrophysiological data and Machine learni...Facultad de Informática UCM
 
What does it mean for something to be a dynamical system What is .pdf
What does it mean for something to be a dynamical system What is .pdfWhat does it mean for something to be a dynamical system What is .pdf
What does it mean for something to be a dynamical system What is .pdfvikasbajajhissar
 
Lorenz Model and chaos , butterfly effect
Lorenz Model and chaos , butterfly effect Lorenz Model and chaos , butterfly effect
Lorenz Model and chaos , butterfly effect Muhammad Zubair Janjua
 
Quantum Physics for Dogs: Many Worlds, Many Treats?
Quantum Physics for Dogs: Many Worlds, Many Treats?Quantum Physics for Dogs: Many Worlds, Many Treats?
Quantum Physics for Dogs: Many Worlds, Many Treats?Chad Orzel
 
BCS APSG Theory of Systems
BCS APSG Theory of SystemsBCS APSG Theory of Systems
BCS APSG Theory of SystemsGeoff Sharman
 
BCS APSG Theory of Systems
BCS APSG Theory of SystemsBCS APSG Theory of Systems
BCS APSG Theory of SystemsGeoff Sharman
 
Complex Adaptive Systems Theory
Complex Adaptive Systems TheoryComplex Adaptive Systems Theory
Complex Adaptive Systems Theoryjohncleveland
 
Toward a theory of chaos
Toward a theory of chaosToward a theory of chaos
Toward a theory of chaosSergio Zaina
 
Complexity Theory Basic Concepts
Complexity Theory    Basic ConceptsComplexity Theory    Basic Concepts
Complexity Theory Basic Conceptsjohncleveland
 
20080821 beauty paper-geneva-original-1
20080821 beauty paper-geneva-original-120080821 beauty paper-geneva-original-1
20080821 beauty paper-geneva-original-1Lichia Saner-Yiu
 
Many Worlds, the Born Rule, and Self-Locating Uncertainty
Many Worlds, the Born Rule, and Self-Locating UncertaintyMany Worlds, the Born Rule, and Self-Locating Uncertainty
Many Worlds, the Born Rule, and Self-Locating UncertaintySean Carroll
 
Using a theory of nematic liquid crystals to model swimming microorganisms
Using a theory of nematic liquid crystals to model swimming microorganismsUsing a theory of nematic liquid crystals to model swimming microorganisms
Using a theory of nematic liquid crystals to model swimming microorganismsNigel Mottram
 

Similar a Chaos Theory (20)

butterflyeffect-141115090247-conversion-gate02 (1).pptx
butterflyeffect-141115090247-conversion-gate02 (1).pptxbutterflyeffect-141115090247-conversion-gate02 (1).pptx
butterflyeffect-141115090247-conversion-gate02 (1).pptx
 
Kanon
KanonKanon
Kanon
 
Eliano Pessa
Eliano PessaEliano Pessa
Eliano Pessa
 
Quantum models of brain
Quantum models of brainQuantum models of brain
Quantum models of brain
 
Utility of chaos theory in product development
Utility of chaos theory in product developmentUtility of chaos theory in product development
Utility of chaos theory in product development
 
Nonlinear methods of analysis of electrophysiological data and Machine learni...
Nonlinear methods of analysis of electrophysiological data and Machine learni...Nonlinear methods of analysis of electrophysiological data and Machine learni...
Nonlinear methods of analysis of electrophysiological data and Machine learni...
 
What does it mean for something to be a dynamical system What is .pdf
What does it mean for something to be a dynamical system What is .pdfWhat does it mean for something to be a dynamical system What is .pdf
What does it mean for something to be a dynamical system What is .pdf
 
Chaos theory
Chaos theoryChaos theory
Chaos theory
 
Presentation
PresentationPresentation
Presentation
 
Lorenz Model and chaos , butterfly effect
Lorenz Model and chaos , butterfly effect Lorenz Model and chaos , butterfly effect
Lorenz Model and chaos , butterfly effect
 
Optimization
OptimizationOptimization
Optimization
 
Quantum Physics for Dogs: Many Worlds, Many Treats?
Quantum Physics for Dogs: Many Worlds, Many Treats?Quantum Physics for Dogs: Many Worlds, Many Treats?
Quantum Physics for Dogs: Many Worlds, Many Treats?
 
BCS APSG Theory of Systems
BCS APSG Theory of SystemsBCS APSG Theory of Systems
BCS APSG Theory of Systems
 
BCS APSG Theory of Systems
BCS APSG Theory of SystemsBCS APSG Theory of Systems
BCS APSG Theory of Systems
 
Complex Adaptive Systems Theory
Complex Adaptive Systems TheoryComplex Adaptive Systems Theory
Complex Adaptive Systems Theory
 
Toward a theory of chaos
Toward a theory of chaosToward a theory of chaos
Toward a theory of chaos
 
Complexity Theory Basic Concepts
Complexity Theory    Basic ConceptsComplexity Theory    Basic Concepts
Complexity Theory Basic Concepts
 
20080821 beauty paper-geneva-original-1
20080821 beauty paper-geneva-original-120080821 beauty paper-geneva-original-1
20080821 beauty paper-geneva-original-1
 
Many Worlds, the Born Rule, and Self-Locating Uncertainty
Many Worlds, the Born Rule, and Self-Locating UncertaintyMany Worlds, the Born Rule, and Self-Locating Uncertainty
Many Worlds, the Born Rule, and Self-Locating Uncertainty
 
Using a theory of nematic liquid crystals to model swimming microorganisms
Using a theory of nematic liquid crystals to model swimming microorganismsUsing a theory of nematic liquid crystals to model swimming microorganisms
Using a theory of nematic liquid crystals to model swimming microorganisms
 

Último

Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 bAsymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 bSérgio Sacani
 
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...Lokesh Kothari
 
Botany 4th semester file By Sumit Kumar yadav.pdf
Botany 4th semester file By Sumit Kumar yadav.pdfBotany 4th semester file By Sumit Kumar yadav.pdf
Botany 4th semester file By Sumit Kumar yadav.pdfSumit Kumar yadav
 
Hubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroidsHubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroidsSérgio Sacani
 
Isotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on IoIsotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on IoSérgio Sacani
 
GBSN - Biochemistry (Unit 1)
GBSN - Biochemistry (Unit 1)GBSN - Biochemistry (Unit 1)
GBSN - Biochemistry (Unit 1)Areesha Ahmad
 
Presentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptxPresentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptxgindu3009
 
Biological Classification BioHack (3).pdf
Biological Classification BioHack (3).pdfBiological Classification BioHack (3).pdf
Biological Classification BioHack (3).pdfmuntazimhurra
 
Pulmonary drug delivery system M.pharm -2nd sem P'ceutics
Pulmonary drug delivery system M.pharm -2nd sem P'ceuticsPulmonary drug delivery system M.pharm -2nd sem P'ceutics
Pulmonary drug delivery system M.pharm -2nd sem P'ceuticssakshisoni2385
 
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdfPests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdfPirithiRaju
 
Green chemistry and Sustainable development.pptx
Green chemistry  and Sustainable development.pptxGreen chemistry  and Sustainable development.pptx
Green chemistry and Sustainable development.pptxRajatChauhan518211
 
Spermiogenesis or Spermateleosis or metamorphosis of spermatid
Spermiogenesis or Spermateleosis or metamorphosis of spermatidSpermiogenesis or Spermateleosis or metamorphosis of spermatid
Spermiogenesis or Spermateleosis or metamorphosis of spermatidSarthak Sekhar Mondal
 
Botany krishna series 2nd semester Only Mcq type questions
Botany krishna series 2nd semester Only Mcq type questionsBotany krishna series 2nd semester Only Mcq type questions
Botany krishna series 2nd semester Only Mcq type questionsSumit Kumar yadav
 
Raman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral Analysis
Raman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral AnalysisRaman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral Analysis
Raman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral AnalysisDiwakar Mishra
 
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...Sérgio Sacani
 
fundamental of entomology all in one topics of entomology
fundamental of entomology all in one topics of entomologyfundamental of entomology all in one topics of entomology
fundamental of entomology all in one topics of entomologyDrAnita Sharma
 
Recombination DNA Technology (Nucleic Acid Hybridization )
Recombination DNA Technology (Nucleic Acid Hybridization )Recombination DNA Technology (Nucleic Acid Hybridization )
Recombination DNA Technology (Nucleic Acid Hybridization )aarthirajkumar25
 
Natural Polymer Based Nanomaterials
Natural Polymer Based NanomaterialsNatural Polymer Based Nanomaterials
Natural Polymer Based NanomaterialsAArockiyaNisha
 
Biopesticide (2).pptx .This slides helps to know the different types of biop...
Biopesticide (2).pptx  .This slides helps to know the different types of biop...Biopesticide (2).pptx  .This slides helps to know the different types of biop...
Biopesticide (2).pptx .This slides helps to know the different types of biop...RohitNehra6
 

Último (20)

Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 bAsymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
 
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
 
Botany 4th semester file By Sumit Kumar yadav.pdf
Botany 4th semester file By Sumit Kumar yadav.pdfBotany 4th semester file By Sumit Kumar yadav.pdf
Botany 4th semester file By Sumit Kumar yadav.pdf
 
Hubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroidsHubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroids
 
Isotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on IoIsotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on Io
 
GBSN - Biochemistry (Unit 1)
GBSN - Biochemistry (Unit 1)GBSN - Biochemistry (Unit 1)
GBSN - Biochemistry (Unit 1)
 
Presentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptxPresentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptx
 
Biological Classification BioHack (3).pdf
Biological Classification BioHack (3).pdfBiological Classification BioHack (3).pdf
Biological Classification BioHack (3).pdf
 
Pulmonary drug delivery system M.pharm -2nd sem P'ceutics
Pulmonary drug delivery system M.pharm -2nd sem P'ceuticsPulmonary drug delivery system M.pharm -2nd sem P'ceutics
Pulmonary drug delivery system M.pharm -2nd sem P'ceutics
 
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdfPests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
 
Green chemistry and Sustainable development.pptx
Green chemistry  and Sustainable development.pptxGreen chemistry  and Sustainable development.pptx
Green chemistry and Sustainable development.pptx
 
Spermiogenesis or Spermateleosis or metamorphosis of spermatid
Spermiogenesis or Spermateleosis or metamorphosis of spermatidSpermiogenesis or Spermateleosis or metamorphosis of spermatid
Spermiogenesis or Spermateleosis or metamorphosis of spermatid
 
Botany krishna series 2nd semester Only Mcq type questions
Botany krishna series 2nd semester Only Mcq type questionsBotany krishna series 2nd semester Only Mcq type questions
Botany krishna series 2nd semester Only Mcq type questions
 
The Philosophy of Science
The Philosophy of ScienceThe Philosophy of Science
The Philosophy of Science
 
Raman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral Analysis
Raman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral AnalysisRaman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral Analysis
Raman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral Analysis
 
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
 
fundamental of entomology all in one topics of entomology
fundamental of entomology all in one topics of entomologyfundamental of entomology all in one topics of entomology
fundamental of entomology all in one topics of entomology
 
Recombination DNA Technology (Nucleic Acid Hybridization )
Recombination DNA Technology (Nucleic Acid Hybridization )Recombination DNA Technology (Nucleic Acid Hybridization )
Recombination DNA Technology (Nucleic Acid Hybridization )
 
Natural Polymer Based Nanomaterials
Natural Polymer Based NanomaterialsNatural Polymer Based Nanomaterials
Natural Polymer Based Nanomaterials
 
Biopesticide (2).pptx .This slides helps to know the different types of biop...
Biopesticide (2).pptx  .This slides helps to know the different types of biop...Biopesticide (2).pptx  .This slides helps to know the different types of biop...
Biopesticide (2).pptx .This slides helps to know the different types of biop...
 

Chaos Theory

  • 1.
  • 2. WHAT IS CHAOS THEORY? • Branch of mathematics that deals with systems that appear to be orderly but, in fact, harbor chaotic behaviors. It also deals with systems that appear to be chaotic, but, in fact, have underlying order. • Chaos theory is the study of nonlinear, dynamic systems that are highly sensitive to initial conditions, an effect which is popularly referred to as the butterfly effect. • The deterministic nature of these systems does not make them predictable. This behavior is known as deterministic chaos, or simply chaos.
  • 3. • Edward Lorenz. “Deterministic Nonperiodic Flow”, 1963. • Lorenz was a meteorologist who developed a mathematical model used to model the way the air moves in the atmosphere. He discovered the principle of Sensitive Dependence on Initial Conditions . “Butterfly Effect”. • The basic principle is that even in an entirely deterministic system the slightest change in the initial data can cause abrupt and seemingly random changes in the outcome.
  • 4. CHAOS THEORY Nonlinearity Determinism Sensitivity to initial conditions Order in disorder Long-term prediction is mostly impossible
  • 5. CHAOTIC SYSTEMS Dynamic systems Deterministic systems Chaotic systems are unstable since they tend not to resist any outside disturbances but instead react in significant ways.
  • 6. • Dynamic system: Simplified model for the time-varying behavior of an actual system. These systems are described using differential equations specifying the rates of change for each variable. • Deterministic system: System in which no randomness is involved in the development of future states of the system. This property implies that two trajectories emerging from two different close-by initial conditions separate exponentially in the course of time. Chaotic systems are unstable since they tend not to resist any outside disturbances but instead react in significant ways.
  • 7. • Chaotic systems are common in nature. They can be found, for example, in Chemistry, in Nonlinear Optics (lasers), in Electronics, in Fluid Dynamics, etc. • Many natural phenomena can also be characterized as being chaotic. They can be found in meteorology, solar system, heart and brain of living organisms and so on.
  • 8.
  • 9. ATTRACTORS • In chaos theory, systems evolve towards states called attractors. The evolution towards a specific state is governed by a set of initial conditions. An attractor is generated within the system itself. • Attractor: Smallest unit which cannot itself be decomposed into two or more attractors with distinct basins of attraction.
  • 10. TYPES OF ATTRACTORS a) Point attractor: There is only one outcome for the system. Death is a point attractor for living things. b) Limit cycle or periodic attractor: Instead of moving to a single state as in a point attractor, the system settles into a cycle. c) Strange attractor or a chaotic attractor: double spiral which never repeats itself. Strange attractors are shapes with fractional dimension; they are fractals. c) b) a)
  • 11. FRACTALS • Fractals are objects that have fractional dimension. A fractal is a mathematical object that is self-similar and chaotic. • Fractals are pictures that result from iterations of nonlinear equations. Using the output value for the next input value, a set of points is produced. Graphing these points produces images.
  • 12. • Benoit Mandelbrot • Characteristics: Self-similarity and fractional dimensions. • Self-similarity means that at every level, the fractal image repeats itself. Fractals are shapes or behaviors that have similar properties at all levels of magnification • Clouds, arteries, veins, nerves, parotid gland ducts, the bronchial tree, etc • Fractal geometry is the geometry that describes the chaotic systems we find in nature. Fractals are a language, a way to describe this geometry.
  • 13.
  • 14. THE BUTTERFLY EFFECT "Sensitive dependence on initial conditions.“ • Butterfly effect is a way of describing how, unless all factors can be accounted for, large systems remain impossible to predict with total accuracy because there are too many unknown variables to track. • Ex: an avalanche. It can be provoked with a small input (a loud noise, some burst of wind), it's mostly unpredictable, and the resulting energy is huge.
  • 16. WAYS TO CONTROL CHAOS The applications of controlling chaos are enormous, ranging from the control of turbulent flows, to the parallel signal transmission and computation to the control of cardiac fibrillation, and so forth. Alter organizational parameters so that the range of fluctuations is limited Apply small perturbations to the chaotic system to try and cause it to organize Change the relationship between the organization and the environment
  • 17.
  • 18. APPLICATIONS OF CHAOS THEORY Stock market Population dynamics Biology Predicting heart attacks Real time applications Music and Arts Climbing Random Number Generation
  • 19.
  • 20. CHAOS THEORY IN NEGOTIATIONS Richard Halpern, 2008. Impact of Chaos Theory and Heisenberg Uncertainty Principle on case negotiations in law Never rely on someone else's measurement to formulate a key component of strategy. A small mistake can cause huge repercussions, better do it yourself. Keep trying something new, unexpected; sweep the defence of its feet. Make the system chaotic. If the process is going the way you wanted, simplify it as much as possible. Predictability would increase and chance of blunders is minimized. If the tide is running against you, add new elements: complicate. Nothing to lose, and with a little help from Chaos, everything to gain. You might turn a hopeless case into a winner.
  • 21. CONCLUSIONS • Everything in the universe is under control of Chaos or product of Chaos. • Irregularity leads to complex systems. • Chaotic systems are very sensitive to the initial conditions, This makes the system fairly unpredictable. They never repeat but they always have some order. That is the reason why chaos theory has been seen as potentially “one of the three greatest triumphs of the 21st century.” In 1991, James Marti speculated that ‘Chaos might be the new world order.’ • It gives us a new concept of measurements and scales. It offers a fresh way to proceed with observational data.