AI and Machine Learning Demystified
Carol Smith @carologic
Midwest UX 2017, Cincinnati, Ohio
October 13, 2017
AI is when Machines
– Exhibit intelligence
– Perceive their environment
– Take actions/make decision to
maximize chance of...
AI and ML Demystified / @carologic / MWUX2017
In the extreme…
Google Search for “movies with AI” Copyrights as labeled.
“Most people working in AI have a healthy skepticism for the idea
of the singularity.
We know how hard it is to get even a...
Remember: “We can unplug the machines!”
Grady Booch, Scientist, philosopher, IBM’er https://www.ted.com/talks/grady_booch_...
AI and ML Demystified / @carologic / MWUX2017
Cognitive computers are
• Made with algorithms
• Knowledgeable ONLY about wh...
AI and ML Demystified / @carologic / MWUX2017
Cognitive computers (algorithms) can…
• Do very boring work for you
• Often ...
AI and ML Demystified / @carologic / MWUX2017
Exhibit intelligence
- transfer human concepts and relationships
Photo by su...
AI and ML Demystified / @carologic / MWUX2017
Dependent on Experts
• Subject Matter Experts (SME’s) Availability
– Lawyers...
AI and ML Demystified / @carologic / MWUX2017
Number Five “Needs Input”
Short Circuit (1986 film) - Ally Sheedy and Number...
AI and ML Demystified / @carologic / MWUX2017
Content is annotated by experts
Image created by Angela Swindell,
Visual Des...
AI and ML Demystified / @carologic / MWUX2017
AI is taxonomies and ontologies coming to life
(NOT like humans learn)
Photo...
Enormous
amount of
work.
Only as good as data
and time spent improving it
Biased based on what it taught
AI and ML Demystified / @carologic / MWUX2017
Creating an AI requires
• Algorithms
• Documents
• Ground truth (annotation)...
AI and ML Demystified / @carologic / MWUX2017
Supervised (by a human) Machine Learning
Watson Knowledge Studio
https://www...
AI and ML Demystified / @carologic / MWUX2017
Knowledge and Accuracy
• How important is
accuracy?
• Consider a reverse car...
AI and ML Demystified / @carologic / MWUX2017
Across industries – priority of accuracy varies
Higher Priority
90-99%+
Lowe...
AI and ML Demystified / @carologic / MWUX2017
Goal is saving time
Machine learning creates
more highly trained specialists...
AI and ML Demystified / @carologic / MWUX2017
Cancer Burden in Sub-Saharan Africa
Risk of getting cancer
and
Risk of Dying...
AI and ML Demystified / @carologic / MWUX2017
What if we could reduce the burden?
• Bring taxonomies and ontologies to lif...
AI and ML Demystified / @carologic / MWUX2017
AI actions for success
• Example: Healthcare
– AI analyzes data (treatment o...
AI and ML Demystified / @carologic / MWUX2017
Examples
of AI and Cognitive
Computing
AI and ML Demystified / @carologic / MWUX2017
Consider for each example
• What intelligence does the system need?
• What i...
AI and ML Demystified / @carologic / MWUX2017
Strategic Games
• 1997 Chess, IBM
• 2016 Go, Google
• Intelligence?
• Percep...
AI and ML Demystified / @carologic / MWUX2017
Understanding human speech
• Watson developed for quiz show Jeopardy!
• Won ...
AI and ML Demystified / @carologic / MWUX2017
Decision Making: Self Driving (autonomous) vehicles
Junior, a robotic Volksw...
AI and ML Demystified / @carologic / MWUX2017
Image Recognition – Google Photos
Carol’s search for “cats” on her Google Ph...
AI and ML Demystified / @carologic / MWUX2017
Sound recognition: Labeling of birdsongs
“Comparison of machine learning met...
AI and ML Demystified / @carologic / MWUX2017
Analyzing Text: Personality of @carologic (not quite)
Personality Insights a...
AI and ML Demystified / @carologic / MWUX2017
Automating Repetitive Work
• Automated
Radiologist
highlights
possible
issue...
AI and ML Demystified / @carologic / MWUX2017
88,000 retina images
• Watson knows what a
healthy eye looks like
• Glaucoma...
AI and ML Demystified / @carologic / MWUX2017
Chatbots for Easy ordering
• Order via text, email,
Facebook Messenger or
wi...
AI and ML Demystified / @carologic / MWUX2017
Chatbots – not really AI, yet
• Mapping Q & A
–Expected language
–Appropriat...
AI and ML Demystified / @carologic / MWUX2017
Optical character recognition (OCR)
• Used to be AI
• Now considered routine...
AI and ML Demystified / @carologic / MWUX2017
Ethics in Design for AI
Humans teach what we feel is important… teach them to share our values.
Super knowing - not super doing
Grady Booch, Scien...
AI and ML Demystified / @carologic / MWUX2017
How might we…
• build systems that have ethical and moral foundation?’
• tha...
Trust machines
just as much
as a well-trained human?
AI and ML Demystified / @carologic / MWUX2017
Guiding Principles – Ethical AI
• Purpose
– Aid humans, not replace them
– S...
AI and ML Demystified / @carologic / MWUX2017
Transparency
• How was AI taught?
• What data was used?
• Humans remain in c...
AI and ML Demystified / @carologic / MWUX2017
Skills
• Built with people in the industry
• Human workers trained
how to us...
AI and ML Demystified / @carologic / MWUX2017
Regulations
• Almost everyone agrees they are necessary
• Who will create re...
“We often have
no way of knowing
when and why people
are biased.”
- Sandra Wachter
Q&A: Should artificial intelligence be ...
AI and ML Demystified / @carologic / MWUX2017
The EU General Data Protection Regulation (GDPR)
• Framework for transparenc...
AI and ML Demystified / @carologic / MWUX2017
Regulations take forever
• Humans and algorithms aren’t without bias
• ML ha...
AI and ML Demystified / @carologic / MWUX2017
How do we evolve the practice of UX
to deal with the new issues
these techno...
AI and ML Demystified / @carologic / MWUX2017
Take Responsibility
• Create a code of conduct
– What do you value?
– What l...
AI and ML Demystified / @carologic / MWUX2017
Don’t fear AI - Explore AI
Try the tools
Pair with others
IBM Watson Develop...
AI and ML Demystified / @carologic / MWUX2017
Go forth and create ethical AI’s
• Purpose: Intelligence and actions to maxi...
AI and ML Demystified / @carologic / MWUX2017
Contact Carol
LinkedIn: https://www.linkedin.com/in/caroljsmith
Twitter - @C...
AI and ML Demystified / @carologic / MWUX2017
Additional Information
and Resources
AI and ML Demystified / @carologic / MWUX2017
Watson is a cognitive technology that can think like a human.
• Understand
•...
AI and ML Demystified / @carologic / MWUX2017
More on Strategic Games
Graphic, Science Magazine: http://www.sciencemag.org...
AI and ML Demystified / @carologic / MWUX2017
The Job Question
• Make new economies
and opportunities –
potentially:
–Crea...
AI and ML Demystified / @carologic / MWUX2017
Tone Analyzer - Watson
IBM Watson Developer Cloud, Tone Analyzer
https://ton...
AI and ML Demystified / @carologic / MWUX2017
Optimist’s guide to the robot apocalypse - @sarahfkessler
“The optimist’s gu...
AI and ML Demystified / @carologic / MWUX2017
Additional Resources
• “How IBM is Competing with Google in AI.” The Informa...
AI and ML Demystified / @carologic / MWUX2017
More Resources
• “Update: Why this week’s man-versus-machine Go match doesn’...
AI and ML Demystified / @carologic / MWUX2017
Even More Resources
• “IBM’s Automated Radiologist Can Read Images and Medic...
AI and ML Demystified / @carologic / MWUX2017
Yes, even more resources
• Video: “IBM Watson Knowledge Studio: Teach Watson...
AI and ML Demystified / @carologic / MWUX2017
Last bit: I promise
• "The importance of human innovation in A.I. ethics" by...
AI and ML Demystified / @carologic / MWUX2017
Definition: Artificial Intelligence
• Artificial intelligence (AI) is intell...
AI and ML Demystified / @carologic / MWUX2017
Definition: The Singularity
• If research into Strong AI produced sufficient...
AI and ML Demystified / @carologic / MWUX2017
Definition: Machine Learning
• Ability for system to take basic knowledge (d...
AI and Machine Learning Demystified by Carol Smith at Midwest UX 2017
Próxima SlideShare
Cargando en…5
×

AI and Machine Learning Demystified by Carol Smith at Midwest UX 2017

171.770 visualizaciones

Publicado el

What is machine learning? Is UX relevant in the age of artificial intelligence (AI)? How can I take advantage of cognitive computing? Get answers to these questions and learn about the implications for your work in this session. Carol will help you understand at a basic level how these systems are built and what is required to get insights from them. Carol will present examples of how machine learning is already being used and explore the ethical challenges inherent in creating AI. You will walk away with an awareness of the weaknesses of AI and the knowledge of how these systems work.

  • dd
       Responder 
    ¿Estás seguro?    No
    Tu mensaje aparecerá aquí
  • *I knew I was a bad wife and mother for invariably pushing my husband to the point of hating me or seeing me with the kids. But I never let my bad attitude towards him let me feel like I am the worst woman out there. So, I fought inside of me to change the bad attitude and win back my husband’s heart for over six years but could not until he threatened me with a divorce and a restraining order, not only to keep me away from him, but away from our kids. *Because I can’t stand losing them, I threw away my pride and went spiritual on myself with the aid of doctor wakina (dr.wakinalovetemple@gmail.com), I was brought to light and made to understand that “it is of a great significant to make my husband happy and I must start by making myself happy”. *I boldly acknowledge the spiritual power doctor wakina carries that cured me from myself for four days and overturned my husband’s decisions. For over four months I have been having an entertaining moment with myself and family, a lot of things has changed both physical and spiritual. I say thank you Dr. Wakina for saving me from myself and restoring my marriage. *Love… Paris Tyne
       Responder 
    ¿Estás seguro?    No
    Tu mensaje aparecerá aquí
  • Nice !! Download 100 % Free Ebooks, PPts, Study Notes, Novels, etc @ https://www.ThesisScientist.com
       Responder 
    ¿Estás seguro?    No
    Tu mensaje aparecerá aquí
  • https://goo.gl/nf9zDg
       Responder 
    ¿Estás seguro?    No
    Tu mensaje aparecerá aquí
  • ncaaf https://goo.gl/nf9zDg Seawolves vs Spartans 4:00p ET
       Responder 
    ¿Estás seguro?    No
    Tu mensaje aparecerá aquí

AI and Machine Learning Demystified by Carol Smith at Midwest UX 2017

  1. AI and Machine Learning Demystified Carol Smith @carologic Midwest UX 2017, Cincinnati, Ohio October 13, 2017
  2. AI is when Machines – Exhibit intelligence – Perceive their environment – Take actions/make decision to maximize chance of success at a goal NAO’s New Job as “Connie” the concierge at Hilton Hotels https://developer.softbankrobotics.com/us-en/showcase/nao-ibm-create-new-hilton-concierge
  3. AI and ML Demystified / @carologic / MWUX2017 In the extreme… Google Search for “movies with AI” Copyrights as labeled.
  4. “Most people working in AI have a healthy skepticism for the idea of the singularity. We know how hard it is to get even a little intelligence into a machine, let alone enough to achieve recursive self- improvement.” – Toby Walsh http://www.wired.co.uk/article/elon-musk- artificial-intelligence-scaremongering
  5. Remember: “We can unplug the machines!” Grady Booch, Scientist, philosopher, IBM’er https://www.ted.com/talks/grady_booch_don_t_fear_superintelligence
  6. AI and ML Demystified / @carologic / MWUX2017 Cognitive computers are • Made with algorithms • Knowledgeable ONLY about what taught • Control ONLY what we give them control of • Aware of nuances and can continue to learn more
  7. AI and ML Demystified / @carologic / MWUX2017 Cognitive computers (algorithms) can… • Do very boring work for you • Often make better, more consistent decisions than humans • Be efficient, won’t get tired Q&A: Should artificial intelligence be legally required to explain itself? By Matthew Hutson, May. 31, 2017. Interview with Sandra Wachter, data ethics researcher at Univ. of Oxford and Alan Turing Institute. http://www.sciencemag.org/news/2017/05/qa-should-artificial-intelligence-be-legally-required-explain-itself
  8. AI and ML Demystified / @carologic / MWUX2017 Exhibit intelligence - transfer human concepts and relationships Photo by sunlightfoundation https://www.flickr.com/photos/sunlightfoundation/2385174105
  9. AI and ML Demystified / @carologic / MWUX2017 Dependent on Experts • Subject Matter Experts (SME’s) Availability – Lawyers – Machinists – Insurance adjusters – Physicians • Usually not experienced in machine learning – Need close collaboration with those making algorithms
  10. AI and ML Demystified / @carologic / MWUX2017 Number Five “Needs Input” Short Circuit (1986 film) - Ally Sheedy and Number Five https://en.wikipedia.org/wiki/Short_Circuit_(1986_film)
  11. AI and ML Demystified / @carologic / MWUX2017 Content is annotated by experts Image created by Angela Swindell, Visual Designer, Watson Knowledge Studio
  12. AI and ML Demystified / @carologic / MWUX2017 AI is taxonomies and ontologies coming to life (NOT like humans learn) Photo: https://commons.wikimedia.org/wiki/File:Baby_Boy_Oliver.jpg
  13. Enormous amount of work.
  14. Only as good as data and time spent improving it Biased based on what it taught
  15. AI and ML Demystified / @carologic / MWUX2017 Creating an AI requires • Algorithms • Documents • Ground truth (annotation) • Teaching • Iteration • Repeat
  16. AI and ML Demystified / @carologic / MWUX2017 Supervised (by a human) Machine Learning Watson Knowledge Studio https://www.ibm.com/us-en/marketplace/supervised-machine-learning
  17. AI and ML Demystified / @carologic / MWUX2017 Knowledge and Accuracy • How important is accuracy? • Consider a reverse card sorting exercise Image: Gerry Gaffney. (2000) What is Card Sorting? Usability Techniques Series, Information & Design. http://www.infodesign.com.au/usabilityresources/design/cardsorting.asp
  18. AI and ML Demystified / @carologic / MWUX2017 Across industries – priority of accuracy varies Higher Priority 90-99%+ Lower Priority 60-89% accuracy is acceptable
  19. AI and ML Demystified / @carologic / MWUX2017 Goal is saving time Machine learning creates more highly trained specialists Not an “all knowing” being
  20. AI and ML Demystified / @carologic / MWUX2017 Cancer Burden in Sub-Saharan Africa Risk of getting cancer and Risk of Dying ~same The Cancer Atlas http://canceratlas.cancer.org/the-burden/
  21. AI and ML Demystified / @carologic / MWUX2017 What if we could reduce the burden? • Bring taxonomies and ontologies to life • Broaden access to evidence based medicine • More informed treatment decisions
  22. AI and ML Demystified / @carologic / MWUX2017 AI actions for success • Example: Healthcare – AI analyzes data (treatment options, similar patients) – Goal: Provide quick, evidence based options – Physician selects treatment for patients based on situation • AI success is helping physician (not replacing)
  23. AI and ML Demystified / @carologic / MWUX2017 Examples of AI and Cognitive Computing
  24. AI and ML Demystified / @carologic / MWUX2017 Consider for each example • What intelligence does the system need? • What is the AI perceiving in their environment? • What actions are taken to maximize chance of success at goal?
  25. AI and ML Demystified / @carologic / MWUX2017 Strategic Games • 1997 Chess, IBM • 2016 Go, Google • Intelligence? • Perception? • Action/Decision? Floor goban, 2007, By Goban1 https://commons.wikimedia.org/wiki/File:FloorGoban.JPG
  26. AI and ML Demystified / @carologic / MWUX2017 Understanding human speech • Watson developed for quiz show Jeopardy! • Won against champions in 2011 for $1 million Video: “IBM's Watson Supercomputer Destroys Humans in Jeopardy! Engadget” https://www.youtube.com/watch?v=WFR3lOm_xhE Watson definition: https://en.wikipedia.org/wiki/Watson_(computer)
  27. AI and ML Demystified / @carologic / MWUX2017 Decision Making: Self Driving (autonomous) vehicles Junior, a robotic Volkswagen Passat, in a parking lot at Stanford University 24 October 2009, By: Steve Jurvetson https://en.wikipedia.org/wiki/File:Hands-free_Driving.jpg
  28. AI and ML Demystified / @carologic / MWUX2017 Image Recognition – Google Photos Carol’s search for “cats” on her Google Photos account.
  29. AI and ML Demystified / @carologic / MWUX2017 Sound recognition: Labeling of birdsongs “Comparison of machine learning methods applied to birdsong element classification” by David Nicholson. Proceedings of the 15th Python in Science Conference (SCIPY 2016). http://conference.scipy.org/proceedings/scipy2016/pdfs/david_nicholson.pdf Photo by Gallo71 (Own work) [Public domain], via Wikimedia Commons https://commons.wikimedia.org/wiki/File%3ARbruni.JPG
  30. AI and ML Demystified / @carologic / MWUX2017 Analyzing Text: Personality of @carologic (not quite) Personality Insights applied to @Carologic on Twitter IBM Watson Developer Cloud: https://personality-insights-livedemo.mybluemix.net/
  31. AI and ML Demystified / @carologic / MWUX2017 Automating Repetitive Work • Automated Radiologist highlights possible issues • Radiologist confirms IBM’s Automated Radiologist Can Read Images and Medical Records, MIT Technology Review https://www.technologyreview.com/s/600706/ibms-automated-radiologist-can-read-images-and-medical-records/
  32. AI and ML Demystified / @carologic / MWUX2017 88,000 retina images • Watson knows what a healthy eye looks like • Glaucoma is the second leading cause of blindness worldwide –50% of cases go undetected Seeing is preventing. https://twitter.com/IBMWatson/status/844545761740292096
  33. AI and ML Demystified / @carologic / MWUX2017 Chatbots for Easy ordering • Order via text, email, Facebook Messenger or with a Slackbot • Cognitive pieces: –Speech-to-text –Chat –API’s in backend Story: http://www.businesswire.com/news/home/20161025006273/en/Staples%E2%80%99-%E2%80%9CEasy- Button%E2%80%9D-Life-IBM-Watson Photo: Easy Button from Staples: http://www.staples.com/Staples-Easy-Button/product_606396
  34. AI and ML Demystified / @carologic / MWUX2017 Chatbots – not really AI, yet • Mapping Q & A –Expected language –Appropriate automated responses –When to escalate to a human Images: https://www.pexels.com/photo/close-up-of-mobile-phone-248512/ https://www.amazon.com/Amazon-Echo-Bluetooth-Speaker-with-WiFi-Alexa/dp/B00X4WHP5E https://www.ibm.com/watson/developercloud/doc/conversation/index.html
  35. AI and ML Demystified / @carologic / MWUX2017 Optical character recognition (OCR) • Used to be AI • Now considered routine computing Portable scanner and OCR (video) https://en.wikipedia.org/wiki/File:Portable_scanner_and_OCR_(video).webm
  36. AI and ML Demystified / @carologic / MWUX2017 Ethics in Design for AI
  37. Humans teach what we feel is important… teach them to share our values. Super knowing - not super doing Grady Booch, Scientist, philosopher, IBM’er https://www.ted.com/talks/grady_booch_don_t_fear_superintelligence
  38. AI and ML Demystified / @carologic / MWUX2017 How might we… • build systems that have ethical and moral foundation?’ • that are transparent to users? • teach mercy and justice of law? • extend and advance healthcare? • increase safety in dangerous work? Inspired by Grady Booch, Scientist, philosopher, IBM’er https://www.ted.com/talks/grady_booch_don_t_fear_superintelligence
  39. Trust machines just as much as a well-trained human?
  40. AI and ML Demystified / @carologic / MWUX2017 Guiding Principles – Ethical AI • Purpose – Aid humans, not replace them – Symbiotic relationship “3 guiding principles for ethical AI, from IBM CEO Ginni Rometty” by Alison DeNisco. January 17, 2017, Tech Republic http://www.techrepublic.com/article/3-guiding- principles-for-ethical-ai-from-ibm-ceo-ginni-rometty/
  41. AI and ML Demystified / @carologic / MWUX2017 Transparency • How was AI taught? • What data was used? • Humans remain in control of the system “3 guiding principles for ethical AI, from IBM CEO Ginni Rometty” by Alison DeNisco. January 17, 2017, Tech Republic http://www.techrepublic.com/article/3-guiding- principles-for-ethical-ai-from-ibm-ceo-ginni-rometty/
  42. AI and ML Demystified / @carologic / MWUX2017 Skills • Built with people in the industry • Human workers trained how to use tools to their advantage “3 guiding principles for ethical AI, from IBM CEO Ginni Rometty” by Alison DeNisco. January 17, 2017, Tech Republic http://www.techrepublic.com/article/3-guiding- principles-for-ethical-ai-from-ibm-ceo-ginni-rometty/
  43. AI and ML Demystified / @carologic / MWUX2017 Regulations • Almost everyone agrees they are necessary • Who will create regulations? • Enforce?
  44. “We often have no way of knowing when and why people are biased.” - Sandra Wachter Q&A: Should artificial intelligence be legally required to explain itself? By Matthew Hutson, May. 31, 2017. Interview with Sandra Wachter, data ethics researcher at Univ. of Oxford and Alan Turing Institute. http://www.sciencemag.org/news/2017/05/qa-should-artificial-intelligence-be-legally-required-explain-itself
  45. AI and ML Demystified / @carologic / MWUX2017 The EU General Data Protection Regulation (GDPR) • Framework for transparency rights and safeguards against automated decision-making • Right to contest a completely automated decision if it has legal or other significant effects on them Q&A: Should artificial intelligence be legally required to explain itself? By Matthew Hutson, May. 31, 2017. Interview with Sandra Wachter, data ethics researcher at Univ. of Oxford and Alan Turing Institute. http://www.sciencemag.org/news/2017/05/qa-should-artificial-intelligence-be-legally-required-explain-itself
  46. AI and ML Demystified / @carologic / MWUX2017 Regulations take forever • Humans and algorithms aren’t without bias • ML has potential to make less biased decisions • Algorithms trained with biased data pick up and replicate biases, and develop new ones Q&A: Should artificial intelligence be legally required to explain itself? By Matthew Hutson, May. 31, 2017. Interview with Sandra Wachter, data ethics researcher at Univ. of Oxford and Alan Turing Institute. http://www.sciencemag.org/news/2017/05/qa-should-artificial-intelligence-be-legally-required-explain-itself
  47. AI and ML Demystified / @carologic / MWUX2017 How do we evolve the practice of UX to deal with the new issues these technologies bring and the new information that is created?
  48. AI and ML Demystified / @carologic / MWUX2017 Take Responsibility • Create a code of conduct – What do you value? – What lines won’t your AI cross? • Make your AI transparent – How was it made and what does it do? – How do you reduce bias? • Keep humans in control
  49. AI and ML Demystified / @carologic / MWUX2017 Don’t fear AI - Explore AI Try the tools Pair with others IBM Watson Developer Tools (free trials): https://console.ng.bluemix.net/catalog/?category=watson
  50. AI and ML Demystified / @carologic / MWUX2017 Go forth and create ethical AI’s • Purpose: Intelligence and actions to maximize success • Transparency: Code of Conduct • Skills: How will humans learn to use it?
  51. AI and ML Demystified / @carologic / MWUX2017 Contact Carol LinkedIn: https://www.linkedin.com/in/caroljsmith Twitter - @Carologic: https://twitter.com/carologic Slides on Slideshare: https://www.slideshare.net/carologic
  52. AI and ML Demystified / @carologic / MWUX2017 Additional Information and Resources
  53. AI and ML Demystified / @carologic / MWUX2017 Watson is a cognitive technology that can think like a human. • Understand • Analyze and interpret all kinds of data • Unstructured text, images, audio and video • Reason • Understand the personality, tone, and emotion of content • Learn • Grow the subject matter expertise in your apps and systems • Interact • Create chat bots that can engage in dialog https://www.ibm.com/watson/
  54. AI and ML Demystified / @carologic / MWUX2017 More on Strategic Games Graphic, Science Magazine: http://www.sciencemag.org/news/2016/03/update-why-week-s- man-versus-machine-go-match-doesn-t-matter-and-what-does
  55. AI and ML Demystified / @carologic / MWUX2017 The Job Question • Make new economies and opportunities – potentially: –Create jobs –Entire new fields • Some jobs will be lost –What can we do to mitigate this? Jobs that no longer exist The Lector http://www.ranker.com/list/jobs-that-no-longer-exist/coy-jandreau
  56. AI and ML Demystified / @carologic / MWUX2017 Tone Analyzer - Watson IBM Watson Developer Cloud, Tone Analyzer https://tone-analyzer-demo.mybluemix.net/
  57. AI and ML Demystified / @carologic / MWUX2017 Optimist’s guide to the robot apocalypse - @sarahfkessler “The optimist’s guide to the robot apocalypse” by Sarah Kessler. March 09, 2017. QZ. @sarahfkessler https://qz.com/904285/the-optimists-guide-to-the-robot-apocalypse/
  58. AI and ML Demystified / @carologic / MWUX2017 Additional Resources • “How IBM is Competing with Google in AI.” The Information. https://www.theinformation.com/how-ibm-is- competing-with-google-in-ai?eu=2zIDMNYNjDp7KqL4YqAXXA • “The business case for augmented intelligence” https://medium.com/cognitivebusiness/the-business-case-for- augmented-intelligence-36afa64cd675 • “Comparison of machine learning methods applied to birdsong element classification” by David Nicholson. Proceedings of the 15th Python in Science Conference (SCIPY 2016). http://conference.scipy.org/proceedings/scipy2016/pdfs/david_nicholson.pdf • “Staples’ “Easy Button” Comes to Life with IBM Watson” in Business Wire, October 25, 2016. http://www.businesswire.com/news/home/20161025006273/en/Staples%E2%80%99-%E2%80%9CEasy- Button%E2%80%9D-Life-IBM-Watson • “How Staples Is Making Its Easy Button Even Easier With A.I.” by Chris Cancialosi, Forbes. https://www.forbes.com/sites/chriscancialosi/2016/12/13/how-staples-is-making-its-easy-button-even-easier- with-a-i/#4ae66e8359ef • “Inside Intel: The Race for Faster Machine Learning” http://www.intel.com/content/www/us/en/analytics/machine-learning/the-race-for-faster-machine-learning.html
  59. AI and ML Demystified / @carologic / MWUX2017 More Resources • “Update: Why this week’s man-versus-machine Go match doesn’t matter (and what does)” by Dana Mackenzie. Science Magazine. Mar. 15, 2016 http://www.sciencemag.org/news/2016/03/update-why-week-s- man-versus-machine-go-match-doesn-t-matter-and-what-does • “For IBM’s CTO for Watson, not a lot of value in replicating the human mind in a computer.” by Frederic Lardinois (@fredericl), TechCrunch, Posted Feb 27, 2017. https://techcrunch.com/2017/02/27/for-ibms-cto-for- watson-not-a-lot-of-value-in-replicating-the-human-mind-in-a-computer/ • “Google and IBM: We Want Artificial Intelligence to Help You, Not Replace You” Most Powerful Women by Michelle Toh. Mar 02, 2017. Fortune. http://fortune.com/2017/03/02/google-ibm-artificial-intelligence/ • “Facebook scales back AI flagship after chatbots hit 70% f-AI-lure rate - 'The limitations of automation‘” by Andrew Orlowski. Feb 22, 2017. The Register https://www.theregister.co.uk/2017/02/22/facebook_ai_fail/ • “Microsoft is deleting its AI chatbot's incredibly racist tweets” by Rob Price. Mar. 24, 2016. Business Insider UK. http://www.businessinsider.com/microsoft-deletes-racist-genocidal-tweets-from-ai-chatbot-tay-2016-3 Special Thanks: Soundtrack to 'Run Lola Run', 1998 German thriller film written and directed by Tom Tykwer, and starring Franka Potente as Lola and Moritz Bleibtreu as Manni. Soundtrack by Tykwer, Johnny Klimek, and Reinhold Heil
  60. AI and ML Demystified / @carologic / MWUX2017 Even More Resources • “IBM’s Automated Radiologist Can Read Images and Medical Records” by Tom Simonite, February 4, 2016. Intelligent Machines, MIT Technology Review. https://www.technologyreview.com/s/600706/ibms-automated- radiologist-can-read-images-and-medical-records/ • “The IBM, Salesforce AI Mash-Up Could Be a Stroke of Genius” by Adam Lashinsky, Mar 07, 2017. Fortune. http://fortune.com/2017/03/07/data-sheet-ibm-salesforce/ • "Google can now tell you're not a robot with just one click" by Andy Greenberg. Dec. 3, 2014. Security: Wired. https://www.wired.com/2014/12/google-one-click-recaptcha/ • “Essentials of Machine Learning Algorithms (with Python and R Codes)” by Sunil Ray, August 10, 2015. Analytics Vidhya. https://www.analyticsvidhya.com/blog/2015/08/common-machine-learning-algorithms/ • IBM on Machine Learning https://www.ibm.com/analytics/us/en/technology/machine-learning/ • “At Davos, IBM CEO Ginni Rometty Downplays Fears of a Robot Takeover” by Claire Zillman, Jan 18, 2017. Fortune. http://fortune.com/2017/01/18/ibm-ceo-ginni-rometty-ai-davos/ • “Google and IBM: We Want Artificial Intelligence to Help You, Not Replace You” by Michelle Toh. Mar 02, 2017. Fortune. http://fortune.com/2017/03/02/google-ibm-artificial-intelligence/
  61. AI and ML Demystified / @carologic / MWUX2017 Yes, even more resources • Video: “IBM Watson Knowledge Studio: Teach Watson about your unstructured data” https://www.youtube.com/watch?v=caIdJjtvX1s&t=6s • “The optimist’s guide to the robot apocalypse” by Sarah Kessler, @sarahfkessler. March 09, 2017. QZ. https://qz.com/904285/the-optimists-guide-to-the-robot-apocalypse/ • “AI Influencers 2017: Top 30 people in AI you should follow on Twitter" by Trips Reddy @tripsy, Senior Content Manager, IBM Watson . February 10, 2017 https://www.ibm.com/blogs/watson/2017/02/ai- influencers-2017-top-25-people-ai-follow-twitter/ • “3 guiding principles for ethical AI, from IBM CEO Ginni Rometty” by Alison DeNisco. January 17, 2017, Tech Republic http://www.techrepublic.com/article/3-guiding-principles-for-ethical-ai-from-ibm-ceo-ginni-rometty/ • "Transparency and Trust in the Cognitive Era" January 17, 2017 Written by: IBM THINK Blog https://www.ibm.com/blogs/think/2017/01/ibm-cognitive-principles/ • "Ethics and Artificial Intelligence: The Moral Compass of a Machine“ by Kris Hammond, April 13, 2016. Recode. http://www.recode.net/2016/4/13/11644890/ethics-and-artificial-intelligence-the-moral-compass-of-a- machine
  62. AI and ML Demystified / @carologic / MWUX2017 Last bit: I promise • "The importance of human innovation in A.I. ethics" by John C. Havens. Oct. 03, 2015 http://mashable.com/2015/10/03/ethics-artificial-intelligence/#yljsShvAFsqy • "Me, Myself and AI" Fjordnet Limited 2017 - Accenture Digital. https://trends.fjordnet.com/trends/me-myself-ai • "Testing AI concepts in user research" By Chris Butler, Mar 2, 2017. https://uxdesign.cc/testing-ai- concepts-in-user-research-b742a9a92e55#.58jtc7nzo • "CMU prof says computers that can 'see' soon will permeate our lives“ by Aaron Aupperlee. March 16, 2017. http://triblive.com/news/adminpage/12080408-74/cmu-prof-says-computers-that-can- see-soon-will-permeate-our-lives • “The business case for augmented intelligence” by Nancy Pearson, VP Marketing, IBM Cognitive. https://medium.com/cognitivebusiness/the-business-case-for-augmented-intelligence- 36afa64cd675#.qqzvunakw
  63. AI and ML Demystified / @carologic / MWUX2017 Definition: Artificial Intelligence • Artificial intelligence (AI) is intelligence exhibited by machines. • In computer science, an ideal "intelligent" machine is a flexible rational agent that perceives its environment and takes actions that maximize its chance of success at some goal.[1] Colloquially, the term "artificial intelligence" is applied when a machine mimics "cognitive" functions that humans associate with other human minds, such as "learning" and "problem solving".[2] • Capabilities currently classified as AI include successfully understanding human speech,[4] competing at a high level in strategic game systems (such as Chess and Go[5]), self-driving cars, and interpreting complex data. Wikipedia: https://en.wikipedia.org/wiki/Artificial_intelligence#cite_note-Intelligent_agents-1
  64. AI and ML Demystified / @carologic / MWUX2017 Definition: The Singularity • If research into Strong AI produced sufficiently intelligent software, it might be able to reprogram and improve itself. The improved software would be even better at improving itself, leading to recursive self-improvement.[245] The new intelligence could thus increase exponentially and dramatically surpass humans. Science fiction writer Vernor Vinge named this scenario "singularity".[246] Technological singularity is when accelerating progress in technologies will cause a runaway effect wherein artificial intelligence will exceed human intellectual capacity and control, thus radically changing or even ending civilization. Because the capabilities of such an intelligence may be impossible to comprehend, the technological singularity is an occurrence beyond which events are unpredictable or even unfathomable.[246] • Ray Kurzweil has used Moore's law (which describes the relentless exponential improvement in digital technology) to calculate that desktop computers will have the same processing power as human brains by the year 2029, and predicts that the singularity will occur in 2045.[246] Wikipedia: https://en.wikipedia.org/wiki/Artificial_intelligence#cite_note-Intelligent_agents-1
  65. AI and ML Demystified / @carologic / MWUX2017 Definition: Machine Learning • Ability for system to take basic knowledge (does not mean simple or non-complex) and apply that knowledge to new data • Raises ability to discover new information. Find unknowns in data. • https://en.wikipedia.org/wiki/Machine_learning More Definitions: • Algorithm: a process or set of rules to be followed in calculations or other problem- solving operations, especially by a computer. https://en.wikipedia.org/wiki/Algorithm • Natural Language Processing (NLP): https://en.wikipedia.org/wiki/Natural_language_processing

×