SlideShare una empresa de Scribd logo
1 de 1
Introduction
Moving beyond bacterial repressors and operators
How can the Guide to PHARMACOLOGY database help?
Christopher Southan, Helen E. Benson, Elena Faccenda, Joanna L. Sharman, Adam J. Pawson & Jamie A. Davies
Centre for Integrative Physiology & Synthsys, The University of Edinburgh, Edinburgh, EH8 9XD, UK.
Contact: jamie.davies@ed.ac.uk
Exploiting Edinburgh's Guide to PHARMACOLOGY
database as a source of protein design information for
synthetic biology.
Which protein types are most suited to drug control?
To assess which functional protein classes are most likely to be
amenable to modulation by drugs, the graph below divides 1236
targets in GtoPdb by functional class (by the terms in the Gene
Ontology, a standard classification used across bioinformatics).
Is the GtoPdb optimised for synthetic biologists?
In a word, ‘no’: this application is a new idea not covered by
GtoPdb’s existing funding. If there is interest, we can try to raise
funding to create specific interfaces for synthetic biological protein
engineering. In the meantime, we encourage anyone interested in
controlling protein activity to explore the database and to contact
the group for specific help. We have skilled pharmacologists and
cheminformaticians who can help to identify protein modules that
may be transferrable to engineered proteins, and who can navigate
wider chemogenomic spaces to find candidate new potential
drug/target module matches. While our data are predominantly
human, we have direct affinity results for many rodent proteins and
homology “walking” out to other species can be explored.
If you are interested in this approach, please come and talk to us!
The above graph treats all drug/target interactions equally. If we
restrict the data to very high affinity (e.g. Ki <0.1nM)
interactions, receptors dominate (this probably reflects the
historical effort into making very good drugs to modulate
receptors for clinical applications). The four graphs below show
(to the same key as above) the relative contribution of targets of
different classes, if we include only affinities <0.1, <1.0, <10
and <100nM respectively. In research applications, there is no
reason not to accept a Ki of <100nM as a strong interaction.
This aim of this poster is to encourage connections between the
Scottish synthetic biology community and a potentially very
useful local resource.
Synthetic biological systems have two broad requirements:
1) Robust internal mechanisms to produce the required output
(e.g. a biomolecule, a fuel, a morphogenetic event).
2) Methods to control these mechanisms from outside, during
both testing and ‘production’ phases.
This poster addresses the requirements for improved external
control.
The ‘traditional’ way of imposing external control on synthetic
systems has been to use bacterial transcription factors that are
modulated by binding specific nutrients or antibiotics: examples
include the lac and tet operons.
These systems are well-tried, but they are limited in number and they
operate slowly, response times being limited by transcription and
translational delays and, in the case of the on-to-off transition, by
decay kinetics of already-made mRNA and protein. Given that most
outputs of synthetic systems are achieved by proteins, it would make
more sense to regulate the activity of the proteins directly.
The history of pharmacology has consisted of developing drugs to
modulate specific natural proteins. Synthetic biologists can now run
pharmacology in reverse, to add modules to their proteins to
make these proteins controllable by specific existing drugs.
The Guide to PHARMACOLOGY database (‘GtoPdb’) is database of
ligand (‘drug’)/target interactions, run in Edinburgh for the
International Union of Basic and Clinical Pharmacology and the
British Pharmacological Society.
http://www.guidetopharmacology.org/
The entire ligand section of GtoPdb can be considered as a
compendium of modulation reagents for protein function, searchable
in a variety of ways, with much detailed quantitative information.
Targets can be searched by classes (e.g. kinases, metabolic
enzymes, channels, nuclear hormone receptors) and, within a class,
each example can be examined for agonist and antagonist drugs.
There are links to original literature for more detailed information on
the particular drug-responsive domains.
Th
Supported by:
<0.1nM <1.0nM
<10nM <100nM

Más contenido relacionado

La actualidad más candente

Metabolon Global Metabolomics
Metabolon Global MetabolomicsMetabolon Global Metabolomics
Metabolon Global Metabolomics
Dave Maske
 
Tandem affinity purification
Tandem affinity purificationTandem affinity purification
Tandem affinity purification
Ramish Saher
 
Applications Of Bioinformatics In Drug Discovery And Process
Applications Of Bioinformatics In Drug Discovery And ProcessApplications Of Bioinformatics In Drug Discovery And Process
Applications Of Bioinformatics In Drug Discovery And Process
Prof. Dr. Basavaraj Nanjwade
 

La actualidad más candente (20)

Methods to Detect Protein-Protein Interaction
Methods to Detect Protein-Protein InteractionMethods to Detect Protein-Protein Interaction
Methods to Detect Protein-Protein Interaction
 
Metabolon Global Metabolomics
Metabolon Global MetabolomicsMetabolon Global Metabolomics
Metabolon Global Metabolomics
 
Systems Pharmacology 1: Drug re-positioning prediction
Systems Pharmacology 1: Drug re-positioning predictionSystems Pharmacology 1: Drug re-positioning prediction
Systems Pharmacology 1: Drug re-positioning prediction
 
Poster on systems pharmacology of the cholesterol biosynthesis pathway
Poster on systems pharmacology of the cholesterol biosynthesis pathwayPoster on systems pharmacology of the cholesterol biosynthesis pathway
Poster on systems pharmacology of the cholesterol biosynthesis pathway
 
Estimating bioactivity database error rates, tiikkainen
Estimating bioactivity database error rates, tiikkainenEstimating bioactivity database error rates, tiikkainen
Estimating bioactivity database error rates, tiikkainen
 
Metabolomics
MetabolomicsMetabolomics
Metabolomics
 
A Brief Introduction to Metabolomics
A Brief Introduction to Metabolomics A Brief Introduction to Metabolomics
A Brief Introduction to Metabolomics
 
Metabolomics for finding new drug targets
Metabolomics for finding new drug targetsMetabolomics for finding new drug targets
Metabolomics for finding new drug targets
 
Tandem affinity purification
Tandem affinity purificationTandem affinity purification
Tandem affinity purification
 
Brief Introduction of SILAC
Brief Introduction of SILACBrief Introduction of SILAC
Brief Introduction of SILAC
 
Genomics & Proteomics Based Drug Discovery
Genomics & Proteomics Based Drug DiscoveryGenomics & Proteomics Based Drug Discovery
Genomics & Proteomics Based Drug Discovery
 
OncoPrime - Patient derived platform for Biologics research
OncoPrime - Patient derived platform for Biologics research OncoPrime - Patient derived platform for Biologics research
OncoPrime - Patient derived platform for Biologics research
 
Metabolic pathway mapping against KEGG, Reactome, HMDB and CPDB
Metabolic pathway mapping against KEGG, Reactome, HMDB and CPDBMetabolic pathway mapping against KEGG, Reactome, HMDB and CPDB
Metabolic pathway mapping against KEGG, Reactome, HMDB and CPDB
 
Metabolomics
MetabolomicsMetabolomics
Metabolomics
 
T cell infiltration
T cell infiltrationT cell infiltration
T cell infiltration
 
Applications Of Bioinformatics In Drug Discovery And Process
Applications Of Bioinformatics In Drug Discovery And ProcessApplications Of Bioinformatics In Drug Discovery And Process
Applications Of Bioinformatics In Drug Discovery And Process
 
Identification of PFOA linked metabolic diseases by crossing databases
Identification of PFOA linked metabolic diseases by crossing databasesIdentification of PFOA linked metabolic diseases by crossing databases
Identification of PFOA linked metabolic diseases by crossing databases
 
Metabolomics- concepts and applications
Metabolomics- concepts and applicationsMetabolomics- concepts and applications
Metabolomics- concepts and applications
 
Role of bioinformatics of drug designing
Role of bioinformatics of drug designingRole of bioinformatics of drug designing
Role of bioinformatics of drug designing
 
Mass Spectrometry-Based Proteomics Quantification: iTRAQ
Mass Spectrometry-Based Proteomics Quantification: iTRAQ Mass Spectrometry-Based Proteomics Quantification: iTRAQ
Mass Spectrometry-Based Proteomics Quantification: iTRAQ
 

Similar a Exploiting Edinburgh's Guide to PHARMACOLOGY database as a source of protein design information for synthetic biology.

Data Mining and Big Data Analytics in Pharma
Data Mining and Big Data Analytics in Pharma Data Mining and Big Data Analytics in Pharma
Data Mining and Big Data Analytics in Pharma
Ankur Khanna
 

Similar a Exploiting Edinburgh's Guide to PHARMACOLOGY database as a source of protein design information for synthetic biology. (20)

Analysing curated protein targets: Partitioning the drugged and the druggable
Analysing curated protein targets: Partitioning the drugged and the druggable Analysing curated protein targets: Partitioning the drugged and the druggable
Analysing curated protein targets: Partitioning the drugged and the druggable
 
Genomics and proteomics in drug discovery and development
Genomics and proteomics in drug discovery and developmentGenomics and proteomics in drug discovery and development
Genomics and proteomics in drug discovery and development
 
Research Avenues in Drug discovery of natural products
Research Avenues in Drug discovery of natural productsResearch Avenues in Drug discovery of natural products
Research Avenues in Drug discovery of natural products
 
Introduction to the drug discovery process
Introduction to the drug discovery processIntroduction to the drug discovery process
Introduction to the drug discovery process
 
Vanderwall cheminformatics Drexel Part 1
Vanderwall cheminformatics Drexel Part 1Vanderwall cheminformatics Drexel Part 1
Vanderwall cheminformatics Drexel Part 1
 
Oct.13 tips ntn
Oct.13 tips ntn Oct.13 tips ntn
Oct.13 tips ntn
 
oct.13 tips NTN
oct.13 tips NTN oct.13 tips NTN
oct.13 tips NTN
 
Poster rovida lorenzetti v2.0
Poster rovida lorenzetti v2.0Poster rovida lorenzetti v2.0
Poster rovida lorenzetti v2.0
 
Bioinformatica 15-12-2011-t9-t10-bio cheminformatics
Bioinformatica 15-12-2011-t9-t10-bio cheminformaticsBioinformatica 15-12-2011-t9-t10-bio cheminformatics
Bioinformatica 15-12-2011-t9-t10-bio cheminformatics
 
proteomics and system biology
proteomics and system biologyproteomics and system biology
proteomics and system biology
 
Bioinformatics .pptx
Bioinformatics .pptxBioinformatics .pptx
Bioinformatics .pptx
 
Drug discovery anthony crasto
Drug discovery  anthony crastoDrug discovery  anthony crasto
Drug discovery anthony crasto
 
IUPHAR Guide to IMMUNOPHARMACOLOGY Poster - Pharmacology 2016
IUPHAR Guide to IMMUNOPHARMACOLOGY Poster - Pharmacology 2016IUPHAR Guide to IMMUNOPHARMACOLOGY Poster - Pharmacology 2016
IUPHAR Guide to IMMUNOPHARMACOLOGY Poster - Pharmacology 2016
 
Data Mining and Big Data Analytics in Pharma
Data Mining and Big Data Analytics in Pharma Data Mining and Big Data Analytics in Pharma
Data Mining and Big Data Analytics in Pharma
 
Summary of Targeted Protein Degradation in Clinical Trials.pdf
Summary of Targeted Protein Degradation in Clinical Trials.pdfSummary of Targeted Protein Degradation in Clinical Trials.pdf
Summary of Targeted Protein Degradation in Clinical Trials.pdf
 
Genomics and proteomics
Genomics and proteomicsGenomics and proteomics
Genomics and proteomics
 
Genomic proteomics
Genomic proteomicsGenomic proteomics
Genomic proteomics
 
Study on multi-target mechanism of Radix et Rhizoma Rhei (Dahuang) and Semen ...
Study on multi-target mechanism of Radix et Rhizoma Rhei (Dahuang) and Semen ...Study on multi-target mechanism of Radix et Rhizoma Rhei (Dahuang) and Semen ...
Study on multi-target mechanism of Radix et Rhizoma Rhei (Dahuang) and Semen ...
 
Impacts of genomics, proteomics, and metabolomics ppt
Impacts of genomics, proteomics, and metabolomics pptImpacts of genomics, proteomics, and metabolomics ppt
Impacts of genomics, proteomics, and metabolomics ppt
 
new drug discovery studies
new drug discovery studiesnew drug discovery studies
new drug discovery studies
 

Más de Chris Southan

Vicissitudes of target validation for BACE1 and BACE2
Vicissitudes of target validation for BACE1 and BACE2 Vicissitudes of target validation for BACE1 and BACE2
Vicissitudes of target validation for BACE1 and BACE2
Chris Southan
 
In silico 360 Analysis for Drug Development
In silico 360 Analysis for Drug DevelopmentIn silico 360 Analysis for Drug Development
In silico 360 Analysis for Drug Development
Chris Southan
 

Más de Chris Southan (20)

FAIR connectivity for DARCP
FAIR  connectivity for DARCPFAIR  connectivity for DARCP
FAIR connectivity for DARCP
 
Connectivity > documents > structures > bioactivity
Connectivity > documents > structures > bioactivityConnectivity > documents > structures > bioactivity
Connectivity > documents > structures > bioactivity
 
Peptide tribulations
Peptide tribulationsPeptide tribulations
Peptide tribulations
 
Vicissitudes of target validation for BACE1 and BACE2
Vicissitudes of target validation for BACE1 and BACE2 Vicissitudes of target validation for BACE1 and BACE2
Vicissitudes of target validation for BACE1 and BACE2
 
Guide to Pharmacology database: ELIXIR updae
Guide to Pharmacology database: ELIXIR updaeGuide to Pharmacology database: ELIXIR updae
Guide to Pharmacology database: ELIXIR updae
 
In silico 360 Analysis for Drug Development
In silico 360 Analysis for Drug DevelopmentIn silico 360 Analysis for Drug Development
In silico 360 Analysis for Drug Development
 
Will the correct BACE ORFs please stand up?
Will the correct BACE ORFs please stand up?Will the correct BACE ORFs please stand up?
Will the correct BACE ORFs please stand up?
 
Desperately seeking DARCP
Desperately seeking DARCPDesperately seeking DARCP
Desperately seeking DARCP
 
Seeking glimmers of light in Pharos “Tdark” proteins
Seeking glimmers of light in  Pharos “Tdark” proteinsSeeking glimmers of light in  Pharos “Tdark” proteins
Seeking glimmers of light in Pharos “Tdark” proteins
 
5HT2A modulators update for SAFER
5HT2A modulators update for SAFER5HT2A modulators update for SAFER
5HT2A modulators update for SAFER
 
Quality and noise in big chemistry databases
Quality and noise in big chemistry databasesQuality and noise in big chemistry databases
Quality and noise in big chemistry databases
 
Connecting chemistry-to-biology
Connecting chemistry-to-biology Connecting chemistry-to-biology
Connecting chemistry-to-biology
 
GtoPdb June 2019 poster
GtoPdb June 2019 posterGtoPdb June 2019 poster
GtoPdb June 2019 poster
 
PubChem as a source of systems biology perturbagens
PubChem as a source of  systems biology perturbagensPubChem as a source of  systems biology perturbagens
PubChem as a source of systems biology perturbagens
 
PubChem for drug discovery and chemical biology
PubChem for drug discovery and chemical biologyPubChem for drug discovery and chemical biology
PubChem for drug discovery and chemical biology
 
Will the real proteins please stand up
Will the real proteins please stand upWill the real proteins please stand up
Will the real proteins please stand up
 
Peptide Tribulations
Peptide TribulationsPeptide Tribulations
Peptide Tribulations
 
Looking at chemistry - protein - papers connectivity in ELIXIR
Looking at chemistry - protein - papers connectivity in ELIXIRLooking at chemistry - protein - papers connectivity in ELIXIR
Looking at chemistry - protein - papers connectivity in ELIXIR
 
Guide to Immunopharmacology update
Guide to Immunopharmacology updateGuide to Immunopharmacology update
Guide to Immunopharmacology update
 
Druggable Proteome sources in UniProt
Druggable Proteome sources in UniProtDruggable Proteome sources in UniProt
Druggable Proteome sources in UniProt
 

Último

Call Girl in Indore 8827247818 {LowPrice} ❤️ (ahana) Indore Call Girls * UPA...
Call Girl in Indore 8827247818 {LowPrice} ❤️ (ahana) Indore Call Girls  * UPA...Call Girl in Indore 8827247818 {LowPrice} ❤️ (ahana) Indore Call Girls  * UPA...
Call Girl in Indore 8827247818 {LowPrice} ❤️ (ahana) Indore Call Girls * UPA...
mahaiklolahd
 

Último (20)

Call Girl in Indore 8827247818 {LowPrice} ❤️ (ahana) Indore Call Girls * UPA...
Call Girl in Indore 8827247818 {LowPrice} ❤️ (ahana) Indore Call Girls  * UPA...Call Girl in Indore 8827247818 {LowPrice} ❤️ (ahana) Indore Call Girls  * UPA...
Call Girl in Indore 8827247818 {LowPrice} ❤️ (ahana) Indore Call Girls * UPA...
 
Call Girls Service Jaipur {9521753030} ❤️VVIP RIDDHI Call Girl in Jaipur Raja...
Call Girls Service Jaipur {9521753030} ❤️VVIP RIDDHI Call Girl in Jaipur Raja...Call Girls Service Jaipur {9521753030} ❤️VVIP RIDDHI Call Girl in Jaipur Raja...
Call Girls Service Jaipur {9521753030} ❤️VVIP RIDDHI Call Girl in Jaipur Raja...
 
Best Rate (Patna ) Call Girls Patna ⟟ 8617370543 ⟟ High Class Call Girl In 5 ...
Best Rate (Patna ) Call Girls Patna ⟟ 8617370543 ⟟ High Class Call Girl In 5 ...Best Rate (Patna ) Call Girls Patna ⟟ 8617370543 ⟟ High Class Call Girl In 5 ...
Best Rate (Patna ) Call Girls Patna ⟟ 8617370543 ⟟ High Class Call Girl In 5 ...
 
The Most Attractive Hyderabad Call Girls Kothapet 𖠋 9332606886 𖠋 Will You Mis...
The Most Attractive Hyderabad Call Girls Kothapet 𖠋 9332606886 𖠋 Will You Mis...The Most Attractive Hyderabad Call Girls Kothapet 𖠋 9332606886 𖠋 Will You Mis...
The Most Attractive Hyderabad Call Girls Kothapet 𖠋 9332606886 𖠋 Will You Mis...
 
Call Girls Raipur Just Call 9630942363 Top Class Call Girl Service Available
Call Girls Raipur Just Call 9630942363 Top Class Call Girl Service AvailableCall Girls Raipur Just Call 9630942363 Top Class Call Girl Service Available
Call Girls Raipur Just Call 9630942363 Top Class Call Girl Service Available
 
Night 7k to 12k Navi Mumbai Call Girl Photo 👉 BOOK NOW 9833363713 👈 ♀️ night ...
Night 7k to 12k Navi Mumbai Call Girl Photo 👉 BOOK NOW 9833363713 👈 ♀️ night ...Night 7k to 12k Navi Mumbai Call Girl Photo 👉 BOOK NOW 9833363713 👈 ♀️ night ...
Night 7k to 12k Navi Mumbai Call Girl Photo 👉 BOOK NOW 9833363713 👈 ♀️ night ...
 
Manyata Tech Park ( Call Girls ) Bangalore ✔ 6297143586 ✔ Hot Model With Sexy...
Manyata Tech Park ( Call Girls ) Bangalore ✔ 6297143586 ✔ Hot Model With Sexy...Manyata Tech Park ( Call Girls ) Bangalore ✔ 6297143586 ✔ Hot Model With Sexy...
Manyata Tech Park ( Call Girls ) Bangalore ✔ 6297143586 ✔ Hot Model With Sexy...
 
(Low Rate RASHMI ) Rate Of Call Girls Jaipur ❣ 8445551418 ❣ Elite Models & Ce...
(Low Rate RASHMI ) Rate Of Call Girls Jaipur ❣ 8445551418 ❣ Elite Models & Ce...(Low Rate RASHMI ) Rate Of Call Girls Jaipur ❣ 8445551418 ❣ Elite Models & Ce...
(Low Rate RASHMI ) Rate Of Call Girls Jaipur ❣ 8445551418 ❣ Elite Models & Ce...
 
Call Girls Shimla Just Call 8617370543 Top Class Call Girl Service Available
Call Girls Shimla Just Call 8617370543 Top Class Call Girl Service AvailableCall Girls Shimla Just Call 8617370543 Top Class Call Girl Service Available
Call Girls Shimla Just Call 8617370543 Top Class Call Girl Service Available
 
Premium Bangalore Call Girls Jigani Dail 6378878445 Escort Service For Hot Ma...
Premium Bangalore Call Girls Jigani Dail 6378878445 Escort Service For Hot Ma...Premium Bangalore Call Girls Jigani Dail 6378878445 Escort Service For Hot Ma...
Premium Bangalore Call Girls Jigani Dail 6378878445 Escort Service For Hot Ma...
 
Call Girls in Delhi Triveni Complex Escort Service(🔝))/WhatsApp 97111⇛47426
Call Girls in Delhi Triveni Complex Escort Service(🔝))/WhatsApp 97111⇛47426Call Girls in Delhi Triveni Complex Escort Service(🔝))/WhatsApp 97111⇛47426
Call Girls in Delhi Triveni Complex Escort Service(🔝))/WhatsApp 97111⇛47426
 
Call Girls Visakhapatnam Just Call 8250077686 Top Class Call Girl Service Ava...
Call Girls Visakhapatnam Just Call 8250077686 Top Class Call Girl Service Ava...Call Girls Visakhapatnam Just Call 8250077686 Top Class Call Girl Service Ava...
Call Girls Visakhapatnam Just Call 8250077686 Top Class Call Girl Service Ava...
 
Best Rate (Guwahati ) Call Girls Guwahati ⟟ 8617370543 ⟟ High Class Call Girl...
Best Rate (Guwahati ) Call Girls Guwahati ⟟ 8617370543 ⟟ High Class Call Girl...Best Rate (Guwahati ) Call Girls Guwahati ⟟ 8617370543 ⟟ High Class Call Girl...
Best Rate (Guwahati ) Call Girls Guwahati ⟟ 8617370543 ⟟ High Class Call Girl...
 
All Time Service Available Call Girls Marine Drive 📳 9820252231 For 18+ VIP C...
All Time Service Available Call Girls Marine Drive 📳 9820252231 For 18+ VIP C...All Time Service Available Call Girls Marine Drive 📳 9820252231 For 18+ VIP C...
All Time Service Available Call Girls Marine Drive 📳 9820252231 For 18+ VIP C...
 
Top Rated Bangalore Call Girls Majestic ⟟ 9332606886 ⟟ Call Me For Genuine S...
Top Rated Bangalore Call Girls Majestic ⟟  9332606886 ⟟ Call Me For Genuine S...Top Rated Bangalore Call Girls Majestic ⟟  9332606886 ⟟ Call Me For Genuine S...
Top Rated Bangalore Call Girls Majestic ⟟ 9332606886 ⟟ Call Me For Genuine S...
 
VIP Hyderabad Call Girls Bahadurpally 7877925207 ₹5000 To 25K With AC Room 💚😋
VIP Hyderabad Call Girls Bahadurpally 7877925207 ₹5000 To 25K With AC Room 💚😋VIP Hyderabad Call Girls Bahadurpally 7877925207 ₹5000 To 25K With AC Room 💚😋
VIP Hyderabad Call Girls Bahadurpally 7877925207 ₹5000 To 25K With AC Room 💚😋
 
Call Girls Gwalior Just Call 8617370543 Top Class Call Girl Service Available
Call Girls Gwalior Just Call 8617370543 Top Class Call Girl Service AvailableCall Girls Gwalior Just Call 8617370543 Top Class Call Girl Service Available
Call Girls Gwalior Just Call 8617370543 Top Class Call Girl Service Available
 
Top Rated Bangalore Call Girls Ramamurthy Nagar ⟟ 9332606886 ⟟ Call Me For G...
Top Rated Bangalore Call Girls Ramamurthy Nagar ⟟  9332606886 ⟟ Call Me For G...Top Rated Bangalore Call Girls Ramamurthy Nagar ⟟  9332606886 ⟟ Call Me For G...
Top Rated Bangalore Call Girls Ramamurthy Nagar ⟟ 9332606886 ⟟ Call Me For G...
 
Independent Call Girls In Jaipur { 8445551418 } ✔ ANIKA MEHTA ✔ Get High Prof...
Independent Call Girls In Jaipur { 8445551418 } ✔ ANIKA MEHTA ✔ Get High Prof...Independent Call Girls In Jaipur { 8445551418 } ✔ ANIKA MEHTA ✔ Get High Prof...
Independent Call Girls In Jaipur { 8445551418 } ✔ ANIKA MEHTA ✔ Get High Prof...
 
Call Girls Kurnool Just Call 8250077686 Top Class Call Girl Service Available
Call Girls Kurnool Just Call 8250077686 Top Class Call Girl Service AvailableCall Girls Kurnool Just Call 8250077686 Top Class Call Girl Service Available
Call Girls Kurnool Just Call 8250077686 Top Class Call Girl Service Available
 

Exploiting Edinburgh's Guide to PHARMACOLOGY database as a source of protein design information for synthetic biology.

  • 1. Introduction Moving beyond bacterial repressors and operators How can the Guide to PHARMACOLOGY database help? Christopher Southan, Helen E. Benson, Elena Faccenda, Joanna L. Sharman, Adam J. Pawson & Jamie A. Davies Centre for Integrative Physiology & Synthsys, The University of Edinburgh, Edinburgh, EH8 9XD, UK. Contact: jamie.davies@ed.ac.uk Exploiting Edinburgh's Guide to PHARMACOLOGY database as a source of protein design information for synthetic biology. Which protein types are most suited to drug control? To assess which functional protein classes are most likely to be amenable to modulation by drugs, the graph below divides 1236 targets in GtoPdb by functional class (by the terms in the Gene Ontology, a standard classification used across bioinformatics). Is the GtoPdb optimised for synthetic biologists? In a word, ‘no’: this application is a new idea not covered by GtoPdb’s existing funding. If there is interest, we can try to raise funding to create specific interfaces for synthetic biological protein engineering. In the meantime, we encourage anyone interested in controlling protein activity to explore the database and to contact the group for specific help. We have skilled pharmacologists and cheminformaticians who can help to identify protein modules that may be transferrable to engineered proteins, and who can navigate wider chemogenomic spaces to find candidate new potential drug/target module matches. While our data are predominantly human, we have direct affinity results for many rodent proteins and homology “walking” out to other species can be explored. If you are interested in this approach, please come and talk to us! The above graph treats all drug/target interactions equally. If we restrict the data to very high affinity (e.g. Ki <0.1nM) interactions, receptors dominate (this probably reflects the historical effort into making very good drugs to modulate receptors for clinical applications). The four graphs below show (to the same key as above) the relative contribution of targets of different classes, if we include only affinities <0.1, <1.0, <10 and <100nM respectively. In research applications, there is no reason not to accept a Ki of <100nM as a strong interaction. This aim of this poster is to encourage connections between the Scottish synthetic biology community and a potentially very useful local resource. Synthetic biological systems have two broad requirements: 1) Robust internal mechanisms to produce the required output (e.g. a biomolecule, a fuel, a morphogenetic event). 2) Methods to control these mechanisms from outside, during both testing and ‘production’ phases. This poster addresses the requirements for improved external control. The ‘traditional’ way of imposing external control on synthetic systems has been to use bacterial transcription factors that are modulated by binding specific nutrients or antibiotics: examples include the lac and tet operons. These systems are well-tried, but they are limited in number and they operate slowly, response times being limited by transcription and translational delays and, in the case of the on-to-off transition, by decay kinetics of already-made mRNA and protein. Given that most outputs of synthetic systems are achieved by proteins, it would make more sense to regulate the activity of the proteins directly. The history of pharmacology has consisted of developing drugs to modulate specific natural proteins. Synthetic biologists can now run pharmacology in reverse, to add modules to their proteins to make these proteins controllable by specific existing drugs. The Guide to PHARMACOLOGY database (‘GtoPdb’) is database of ligand (‘drug’)/target interactions, run in Edinburgh for the International Union of Basic and Clinical Pharmacology and the British Pharmacological Society. http://www.guidetopharmacology.org/ The entire ligand section of GtoPdb can be considered as a compendium of modulation reagents for protein function, searchable in a variety of ways, with much detailed quantitative information. Targets can be searched by classes (e.g. kinases, metabolic enzymes, channels, nuclear hormone receptors) and, within a class, each example can be examined for agonist and antagonist drugs. There are links to original literature for more detailed information on the particular drug-responsive domains. Th Supported by: <0.1nM <1.0nM <10nM <100nM