SlideShare una empresa de Scribd logo
1 de 76
Descargar para leer sin conexión
Surfaces	
  and	
  Interfaces	
  
Microscopic	
  mechanisms	
  and	
  
macroscopic	
  consequences	
  
	
  Dr.	
  Keith	
  T.	
  Butler	
  
Department	
  of	
  Chemistry	
  
k.t.butler@bath.ac.uk	
  	
  
“God	
  made	
  the	
  bulk;	
  surfaces	
  were	
  invented	
  by	
  the	
  devil”	
  
Wolfgang	
  Pauli	
  
Content	
  
•  Background	
  and	
  history	
  of	
  surfaces	
  
–  History	
  
–  Importance	
  
•  Important	
  concepts	
  for	
  surface	
  
definiEons	
  
–  Energy-­‐band-­‐alignment	
  diagram	
  
–  Miller	
  indices	
  
–  Tasker	
  notaEon	
  
–  Polar	
  surfaces	
  
•  Surface	
  energeEcs	
  and	
  electronic	
  
structure	
  
–  Bond	
  breaking	
  approximaEon	
  
–  Surface	
  Tamm	
  states	
  
•  Surfaces	
  in	
  PV 	
  	
  
–  Trapping	
  
–  PassivaEon	
  
•  Interface	
  classificaEons	
  and	
  formaEon	
  
•  Strain	
  and	
  supercells	
  
•  WeKng	
  angle	
  and	
  cohesion	
  
•  Coherent/Semi-­‐coherent/Incoherent	
  
•  Interfaces	
  in	
  PV	
  
•  SchoMky	
  barrier	
  /	
  Ohmic	
  contacts	
  
•  Charge	
  neutrality	
  level	
  
•  Band	
  Alignment	
  in	
  PV	
  
•  Work	
  funcEons	
  and	
  electron	
  energies	
  
•  Measuring	
  work	
  funcEons	
  
•  CalculaEng	
  work	
  funcEons	
  
•  Bulk/surface	
  contribuEons	
  
•  Work	
  funcEon	
  engineering	
  	
  
•  PracEcal	
  examples	
  
•  CalculaEon	
  of	
  surface/interface	
  energy	
  
in	
  DFT	
  
•  Band	
  alignment	
  from	
  DFT	
  
	
  
SURFACES	
   INTERFACES	
  
At	
  a	
  loose	
  end?	
  
Early	
  surface	
  science	
  
Benjamin	
  Franklin	
  and	
  the	
  old	
  wives	
  
tale	
  
“[T]he oil, though not more than a teaspoonful, produced an
instant calm over a space several yards square which spread
amazingly and extended itself gradually till it reached the lee side,
making all that quarter of the pond, perhaps half an acre, as
smooth as a looking glass.”
The	
  study	
  of	
  surfaces	
  
•  Mostly	
  atoms	
  are	
  not	
  at	
  the	
  surface	
  
BULK	
  Surface	
  
The	
  study	
  of	
  surfaces	
  &	
  interfaces	
  
“The interface is the device”
Herbert	
  Kroemer	
  
Nobel	
  prize	
  in	
  Physics	
  2000	
  
“For	
  developing	
  semiconductor	
  
heterostructures	
  used	
  in	
  high-­‐speed-­‐	
  and	
  
opto-­‐electronics"	
  
Surfaces	
  in	
  PV	
  
Charge	
  separa?on	
  
	
  
Extrac?on	
  of	
  carriers	
  
Recombina?on	
  
	
  
Contact	
  resistance	
  
hMp://www.pveducaEon.org	
  
Content	
  
•  Background	
  and	
  history	
  of	
  surfaces	
  
–  History	
  
–  Importance	
  
•  Important	
  concepts	
  for	
  surface	
  
definiEons	
  
–  Energy-­‐band-­‐alignment	
  diagram	
  
–  Miller	
  indices	
  
–  Tasker	
  notaEon	
  
–  Polar	
  surfaces	
  
•  Surface	
  energeEcs	
  and	
  electronic	
  
structure	
  
–  Bond	
  breaking	
  approximaEon	
  
–  Surface	
  Tamm	
  states	
  
•  Surfaces	
  in	
  PV 	
  	
  
–  Trapping	
  
–  PassivaEon	
  
•  Interface	
  classificaEons	
  and	
  formaEon	
  
•  Strain	
  and	
  supercells	
  
•  WeKng	
  angle	
  and	
  cohesion	
  
•  Coherent/Semi-­‐coherent/Incoherent	
  
•  Interfaces	
  in	
  PV	
  
•  SchoMky	
  barrier	
  /	
  Ohmic	
  contacts	
  
•  Charge	
  neutrality	
  level	
  
•  Band	
  Alignment	
  in	
  PV	
  
•  Work	
  funcEons	
  and	
  electron	
  energies	
  
•  Measuring	
  work	
  funcEons	
  
•  CalculaEng	
  work	
  funcEons	
  
•  Bulk/surface	
  contribuEons	
  
•  Work	
  funcEon	
  engineering	
  	
  
•  PracEcal	
  examples	
  
•  CalculaEon	
  of	
  surface/interface	
  energy	
  
in	
  DFT	
  
•  Band	
  alignment	
  from	
  DFT	
  
SURFACES	
   INTERFACES	
  
Energy-­‐band-­‐diagrams	
  
Valence	
  Band	
  
(Occupied	
  states)	
  
ConducEon	
  Band	
  
(Unoccupied	
  states)	
  
Vacuum	
  level	
  
Band-­‐gap	
  
Electron	
  Affinity	
  
IonisaEon	
  potenEal	
  
Energy-­‐band-­‐diagrams	
  
Type	
  I	
   Type	
  II	
   Type	
  II	
  
Metal/
Semiconductor	
  
Energy-­‐band-­‐diagrams	
  
“If, in discussing a semiconductor
problem, you cannot draw an
Energy-Band-Diagram, this shows
that you don’t know what you are
talking about”
“If you can draw one, but don’t, then
your audience won’t know what you
are talking about.”
Surface	
  ClassificaEon	
  
Surface	
  ClassificaEon 	
  	
  
Surface	
  ClassificaEon	
  
Define	
  laKce	
  vectors	
  (a	
  b	
  c)	
  
Surface	
  ClassificaEon	
  
Define	
  the	
  intersecEon	
  (0	
  b	
  0)	
  
Surface	
  ClassificaEon	
  
IdenEfy	
  the	
  fracEonal	
  coordinates	
  of	
  
the	
  intercept	
  (∞/a	
  b/b	
  ∞/c)	
  
Surface	
  ClassificaEon	
  
IdenEfy	
  the	
  fracEonal	
  coordinates	
  of	
  
the	
  intercept	
  (0	
  1	
  0)	
  
Surface	
  ClassificaEon	
  
(011)	
  
Surface	
  ClassificaEon	
  
(111)	
  
ClassificaEon	
  
IdenEfy	
  intercepts	
  
FracEonal	
  coordinates	
  	
  
of	
  intercepts	
  
If	
  fracEons	
  result	
  in	
  step	
  (ii)	
  
then	
  round	
  up	
  all	
  indices	
  by	
  
mulEplicaEon;	
  e.g.	
  (1/3,0,1)	
  
-­‐>	
  (1,0,3)	
  
NegaEve	
  numbers	
  are	
  
indicated	
  by	
  an	
  over-­‐bar	
  	
  
Polar/Non-­‐polar	
  surfaces	
  
P	
  W	
  Tasker	
  1979	
  J.	
  Phys.	
  C:	
  Solid	
  State	
  Phys.	
  12	
  4977	
  
Type	
  I	
   Type	
  II	
   Type	
  III	
  
The	
  Polar	
  Catastrophe	
  
Type	
  III	
  
PotenEal	
  Energy	
  
P	
  W	
  Tasker	
  1979	
  J.	
  Phys.	
  C:	
  Solid	
  State	
  Phys.	
  12	
  4977	
  
Examples	
  of	
  Polar	
  Surfaces	
  
•  A	
  polar	
  surface	
  can	
  exist	
  –	
  
with	
  modificaEons.	
  
•  Zincblende	
  (100)	
  
•  Mechanisms	
  for	
  
stabilisaEon: 	
  	
  
–  Change	
  in	
  stoiciometry	
  in	
  
surface	
  layers	
  
–  AdsorpEon	
  of	
  ions	
  on	
  the	
  
surfaces	
  
–  Electron	
  redistribuEon	
  
	
  	
  	
  	
  2D	
  electron	
  gas	
  
C.	
  Noguera	
  ,	
  J.	
  Phys.:	
  Condens.	
  MaMer	
  12	
  R367	
  
σ j
j=1
m
∑ = −
σm+1
2
(−1)m
−
R2 − R1
R2 + R1
#
$
%
&
'
(
Content	
  
•  Background	
  and	
  history	
  of	
  surfaces	
  
–  History	
  
–  Importance	
  
•  Important	
  concepts	
  for	
  surface	
  
definiEons	
  
–  Energy-­‐band-­‐alignment	
  diagram	
  
–  Miller	
  indices	
  
–  Tasker	
  notaEon	
  
–  Polar	
  surfaces	
  
•  Surface	
  energeEcs	
  and	
  electronic	
  
structure	
  
–  Bond	
  breaking	
  approximaEon	
  
–  Surface	
  Tamm	
  states	
  
•  Surfaces	
  in	
  PV 	
  	
  
–  Trapping	
  
–  PassivaEon	
  
•  Interface	
  classificaEons	
  and	
  formaEon	
  
•  Strain	
  and	
  supercells	
  
•  WeKng	
  angle	
  and	
  cohesion	
  
•  Coherent/Semi-­‐coherent/Incoherent	
  
•  Interfaces	
  in	
  PV	
  
•  SchoMky	
  barrier	
  /	
  Ohmic	
  contacts	
  
•  Charge	
  neutrality	
  level	
  
•  Band	
  Alignment	
  in	
  PV	
  
•  Work	
  funcEons	
  and	
  electron	
  energies	
  
•  Measuring	
  work	
  funcEons	
  
•  CalculaEng	
  work	
  funcEons	
  
•  Bulk/surface	
  contribuEons	
  
•  Work	
  funcEon	
  engineering	
  	
  
•  PracEcal	
  examples	
  
•  CalculaEon	
  of	
  surface/interface	
  energy	
  
in	
  DFT	
  
•  Band	
  alignment	
  from	
  DFT	
  
SURFACES	
   INTERFACES	
  
Surface	
  energy	
  
Energy	
  is	
  proporEonal	
  to	
  the	
  number	
  of	
  bonds	
  broken.	
  	
  
Surface	
  Electronic	
  States	
  
Atom	
   Hybrid	
   Solid	
  
Eg	
  
Surface	
  Electronic	
  States	
  
Hybrid	
   Surface	
  
Eg	
  
Atom	
  
Content	
  
•  Background	
  and	
  history	
  of	
  surfaces	
  
–  History	
  
–  Importance	
  
•  Important	
  concepts	
  for	
  surface	
  
definiEons	
  
–  Energy-­‐band-­‐alignment	
  diagram	
  
–  Miller	
  indices	
  
–  Tasker	
  notaEon	
  
–  Polar	
  surfaces	
  
•  Surface	
  energeEcs	
  and	
  electronic	
  
structure	
  
–  Bond	
  breaking	
  approximaEon	
  
–  Surface	
  Tamm	
  states	
  
•  Surfaces	
  in	
  PV 	
  	
  
–  Trapping	
  
–  PassivaEon	
  
•  Interface	
  classificaEons	
  and	
  formaEon	
  
•  Strain	
  and	
  supercells	
  
•  WeKng	
  angle	
  and	
  cohesion	
  
•  Coherent/Semi-­‐coherent/Incoherent	
  
•  Interfaces	
  in	
  PV	
  
•  SchoMky	
  barrier	
  /	
  Ohmic	
  contacts	
  
•  Charge	
  neutrality	
  level	
  
•  Band	
  Alignment	
  in	
  PV	
  
•  Work	
  funcEons	
  and	
  electron	
  energies	
  
•  Measuring	
  work	
  funcEons	
  
•  CalculaEng	
  work	
  funcEons	
  
•  Bulk/surface	
  contribuEons	
  
•  Work	
  funcEon	
  engineering	
  	
  
•  PracEcal	
  examples	
  
•  CalculaEon	
  of	
  surface/interface	
  energy	
  
in	
  DFT	
  
•  Band	
  alignment	
  from	
  DFT	
  
SURFACES	
   INTERFACES	
  
Surface	
  recombinaEon	
  
•  Characterised	
  by	
  capture	
  and	
  release	
  rates	
  of	
  
carriers	
  and	
  energy	
  of	
  state	
  
RSE	
  
RSH	
  
RSE	
  
RSH	
  
Surface	
  passivaEon	
  
•  Chemical	
  passivaEon	
  
Surface	
  PassivaEon	
  	
  
•  Blocking	
  layer	
  
Surface	
  PassivaEon	
  	
  
•  Fixed	
  Charge	
  
Content	
  
•  Background	
  and	
  history	
  of	
  surfaces	
  
–  History	
  
–  Importance	
  
•  Important	
  concepts	
  for	
  surface	
  
definiEons	
  
–  Energy-­‐band-­‐alignment	
  diagram	
  
–  Miller	
  indices	
  
–  Tasker	
  notaEon	
  
–  Polar	
  surfaces	
  
•  Surface	
  energeEcs	
  and	
  electronic	
  
structure	
  
–  Bond	
  breaking	
  approximaEon	
  
–  Surface	
  Tamm	
  states	
  
•  Surfaces	
  in	
  PV 	
  	
  
–  Trapping	
  
–  PassivaEon	
  
•  Interface	
  classificaEons	
  and	
  formaEon	
  
•  Strain	
  and	
  supercells	
  
•  WeKng	
  angle	
  and	
  cohesion	
  
•  Coherent/Semi-­‐coherent/Incoherent	
  
•  Interfaces	
  in	
  PV	
  
•  SchoMky	
  barrier	
  /	
  Ohmic	
  contacts	
  
•  Charge	
  neutrality	
  level	
  
•  Band	
  Alignment	
  in	
  PV	
  
•  Work	
  funcEons	
  and	
  electron	
  energies	
  
•  Measuring	
  work	
  funcEons	
  
•  CalculaEng	
  work	
  funcEons	
  
•  Bulk/surface	
  contribuEons	
  
•  Work	
  funcEon	
  engineering	
  	
  
•  PracEcal	
  examples	
  
•  CalculaEon	
  of	
  surface/interface	
  energy	
  
in	
  DFT	
  
•  Band	
  alignment	
  from	
  DFT	
  
SURFACES	
   INTERFACES	
  
Interface	
  thermodynamics	
  
σ12	
  
σ1v	
  +	
  σ2v	
  
	
  
Wsep	
  
Fad	
  
Diffusion	
  and	
  surface	
  
segrega?on	
  
MW	
  Finnis	
  1996	
  J.	
  Phys:	
  Condens.	
  Ma4er.	
  8	
  5811	
  
Interface	
  thermodynamics	
  
•  Interface	
  energy	
  related	
  to	
  weKng	
  angle.	
  
σ1v	
  
	
  
σ2v	
  
	
  
σ12	
  
	
  
MW	
  Finnis	
  1996	
  J.	
  Phys:	
  Condens.	
  Ma4er.	
  8	
  5811	
  
LaKce	
  matching	
  
•  Depends	
  on	
  laKce	
  
parameters	
  of	
  the	
  
two	
  phases	
  
•  Determines	
  interface	
  
strain;	
  large	
  
contribuEon	
  to	
  
interface	
  energy	
  
a	
  
b	
  
Coherent	
  Interface	
  
Interface	
  laKce	
  planes	
  must	
  match.	
  
	
  
The	
  same	
  atomic	
  configuraEon	
  across	
  the	
  interface.	
  
	
  
Examples:	
  
	
  CuSi	
  alloys	
  
	
  GaAs/AlAs	
  
	
  InAs/GaAs	
  
	
  Ge/Si	
  
	
  PbTe/CdTe	
  
	
  
The	
  energy	
  of	
  coherent	
  interfaces:	
  
	
  Mismatching	
  bond	
  energy	
  
	
  Strain	
  energy	
  is	
  negligible	
  
	
  Energy	
  0	
  –	
  200	
  mJ/m^2	
  	
  
	
  	
  
Semi-­‐coherent	
  Interface	
  
When	
  strains	
  are	
  sufficiently	
  large.	
  
	
  
EnergeEcally	
  favorable	
  to	
  to	
  form	
  
misfit	
  dislocaEons	
  at	
  interfaces.	
  
	
  
	
  
Examples:	
  
	
  InAs/GaAs	
  
	
  
The	
  energy	
  of	
  semi-­‐coherent	
  
interfaces:	
  
	
  Strain	
  plus	
  chemical	
  bonding	
  
	
  Energy	
  200	
  –	
  500	
  mJ/m^2	
  
	
  
	
  
Incoherent	
  interface	
  
Very	
  different	
  configuraEons	
  on	
  either	
  
side	
  of	
  the	
  interface.	
  
	
  
OR	
  laKce	
  constants	
  >	
  25%	
  difference.	
  
	
  
Examples:	
  
	
  High	
  angle	
  grain	
  boundaries	
  
	
  Inclusions	
  in	
  alloys	
  
	
  	
  
	
  
The	
  energy	
  of	
  incoherent	
  interfaces:	
  
	
  Very	
  large	
  structural	
  contribuEon.	
  
	
  Energy	
  500	
  -­‐1000	
  mJ/m^2	
  
Content	
  
•  Background	
  and	
  history	
  of	
  surfaces	
  
–  History	
  
–  Importance	
  
•  Important	
  concepts	
  for	
  surface	
  
definiEons	
  
–  Energy-­‐band-­‐alignment	
  diagram	
  
–  Miller	
  indices	
  
–  Tasker	
  notaEon	
  
–  Polar	
  surfaces	
  
•  Surface	
  energeEcs	
  and	
  electronic	
  
structure	
  
–  Bond	
  breaking	
  approximaEon	
  
–  Surface	
  Tamm	
  states	
  
•  Surfaces	
  in	
  PV 	
  	
  
–  Trapping	
  
–  PassivaEon	
  
•  Interface	
  classificaEons	
  and	
  formaEon	
  
•  Strain	
  and	
  supercells	
  
•  WeKng	
  angle	
  and	
  cohesion	
  
•  Coherent/Semi-­‐coherent/Incoherent	
  
•  Interfaces	
  in	
  PV	
  
•  SchoMky	
  barrier	
  /	
  Ohmic	
  contacts	
  
•  Charge	
  neutrality	
  level	
  
•  Band	
  Alignment	
  in	
  PV	
  
•  Work	
  funcEons	
  and	
  electron	
  energies	
  
•  Measuring	
  work	
  funcEons	
  
•  CalculaEng	
  work	
  funcEons	
  
•  Bulk/surface	
  contribuEons	
  
•  Work	
  funcEon	
  engineering	
  	
  
•  PracEcal	
  examples	
  
•  CalculaEon	
  of	
  surface/interface	
  energy	
  
in	
  DFT	
  
•  Band	
  alignment	
  from	
  DFT	
  
SURFACES	
   INTERFACES	
  
Ohmic	
  Contacts	
  in	
  PV	
  
•  Minimising	
  losses	
  in	
  
PV	
  
•  V	
  ∝	
  I	
  	
  
•  Ideal	
  Ohmic	
  
contacts	
  will	
  not	
  
produce	
  potenEal	
  
barriers	
  
•  Ideal	
  contact	
  all	
  
Fermi	
  levels	
  align	
  
Metal	
  Semiconductor	
  Contacts	
  
Band	
  Bending	
  
The	
  SchoMky	
  limit.	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
SchoMky	
  barrier	
  –	
  limits	
  charge	
  
transport	
  across	
  the	
  interface.	
  
	
  
Contact	
  resistance	
  depends	
  
exponenEally	
  on	
  the	
  SchoMky	
  
barrier.	
  
	
  
Achieving	
  Ohmic	
  Contacts	
  
Ohmic	
  n-­‐type	
  contact	
   Ohmic	
  p-­‐type	
  contact	
  
ConsideraEons	
  for	
  devices	
  
n-­‐type	
   p-­‐type	
  
Space	
  charge	
   PosiEve	
   NegaEve	
  
Metal	
  work	
  funcEon	
   Small	
  /	
  shallow	
   Large	
  /	
  deep	
  
Examples	
   Li,	
  Na,	
  Ca,	
  K,	
  	
   Au,	
  Ag,	
  Fe	
  
Charge	
  Neutrality	
  Level/Surface	
  States	
  
States	
  in	
  the	
  gap	
  of	
  the	
  semiconductor.	
  
	
  
Can	
  result	
  in	
  addiEonal	
  charge	
  transfer.	
  
	
  
New	
  local	
  charge	
  region.	
  
	
  
Region	
  ~	
  0.2	
  –	
  0.3	
  nm	
  
	
  
	
  
Local	
  dipoles	
  
Content	
  
•  Background	
  and	
  history	
  of	
  surfaces	
  
–  History	
  
–  Importance	
  
•  Important	
  concepts	
  for	
  surface	
  
definiEons	
  
–  Energy-­‐band-­‐alignment	
  diagram	
  
–  Miller	
  indices	
  
–  Tasker	
  notaEon	
  
–  Polar	
  surfaces	
  
•  Surface	
  energeEcs	
  and	
  electronic	
  
structure	
  
–  Bond	
  breaking	
  approximaEon	
  
–  Surface	
  Tamm	
  states	
  
•  Surfaces	
  in	
  PV 	
  	
  
–  Trapping	
  
–  PassivaEon	
  
•  Interface	
  classificaEons	
  and	
  formaEon	
  
•  Strain	
  and	
  supercells	
  
•  WeKng	
  angle	
  and	
  cohesion	
  
•  Coherent/Semi-­‐coherent/Incoherent	
  
•  Interfaces	
  in	
  PV	
  
•  SchoMky	
  barrier	
  /	
  Ohmic	
  contacts	
  
•  Charge	
  neutrality	
  level	
  
•  Band	
  Alignment	
  in	
  PV	
  
•  Work	
  funcEons	
  and	
  electron	
  energies	
  
•  Measuring	
  work	
  funcEons	
  
•  CalculaEng	
  work	
  funcEons	
  
•  Bulk/surface	
  contribuEons	
  
•  Work	
  funcEon	
  engineering	
  	
  
•  PracEcal	
  examples	
  
•  CalculaEon	
  of	
  surface/interface	
  energy	
  
in	
  DFT	
  
•  Band	
  alignment	
  from	
  DFT	
  
SURFACES	
   INTERFACES	
  
Work	
  funcEons	
  
“The	
  minimum	
  energy	
  required	
  to	
  remove	
  an	
  electron	
  from	
  
deep	
  within	
  the	
  bulk,	
  to	
  a	
  point	
  a	
  macroscopic	
  distance	
  
outside	
  the	
  surface.	
  ”	
  
	
  
Measuring	
  work	
  funcEons	
  (I)	
  
Ultraviolet	
  Photoemission	
  Spectroscopy	
  (UPS/PES)	
  	
  
hMps://www.tu-­‐chemnitz.de/physik/HLPH/elec_spec.htmlhMps://www.tu-­‐chemnitz.de/physik/HLPH/elec_spec.html	
  
Measuring	
  work	
  funcEons	
  (II)	
  
Kelvin	
  Probe	
  
E	
  
Measuring	
  Work	
  funcEons	
  
Just	
  look	
  it	
  up…right?	
  
§	
  
“A single group often obtains different values on
different crystals, different cleaves, or different days”
Surface Science of Metal Oxides: Henrich & Cox
ContribuEons	
  to	
  work	
  funcEons	
  (Ia)	
  
•  Bulk	
  binding	
  energy	
  
Bulk	
  Polymorph	
  WorkfuncEons	
  
The	
  relaEonship	
  
between	
  crystal	
  
environment	
  and	
  
ionisaEon	
  potenEal.	
  
	
  
Engineer	
  levels	
  for	
  
improved	
  water	
  
spliKng.	
  
ContribuEons	
  to	
  work	
  funcEons	
  (Ib)	
  
Atom	
   Hybrid	
   Bond	
  
Eg	
  
Solid	
  
ContribuEons	
  to	
  work	
  funcEons	
  (II)	
  
The	
  surface	
  double-­‐layer	
  
DensityPotential
Mott-Littleton (1938)
Harwell Labs, UK
A. B. Lidiard, JCSFT 85, 341 (1989)
Daresbury Labs, UK
A. A. Sokol et al, IJCQ 99, 695 (2004)
Limitation: Convergence in region sizes and accurate
analytical MM potentials
Current Implementation:
ChemShell (QM/MM driver)
Bulk Values: An Embedded Crystal
Classical
region
Quantum
region
Continuum
region
Vacuum
region
Slab
region
Capping
layer
Quantum
Region
Active
Potentials
Region
Frozen
Potentials
Region Vacuum
Region
Slab
Region
ValenceBand
Maximum
Band Bending
Capping
Layer
Vacuum Level
IP IP
IP
surf
slab
Electrostatic
Potential
Phys. Rev. B 89, 115320 (2014)
“Absolute”	
  electron	
  energies	
  
Classical
region
Quantum
region
Continuum
region
Vacuum
region
Slab
region
Capping
layer
Quantum
Region
Active
Potentials
Region
Frozen
Potentials
Region Vacuum
Region
Slab
Region
ValenceBand
Maximum
Band Bending
Capping
Layer
Vacuum Level
IP IP
IP
surf
slab
Electrostatic
Potential
Phys. Rev. B 89, 115320 (2014)
Engineering	
  electron	
  energies	
  
Real	
  capping	
  layers	
  
PbO2 SiO2 TiO2
Capping	
  layer	
   IP	
  	
   Φ	
   ΔΦ	
  (wrt	
  ITO)	
  
SiO2	
   11.07	
   6.87	
   +0.77	
  
TiO2	
   10.19	
   5.99	
   -­‐0.11	
  
PbO2	
   10.25	
   6.05	
   -­‐0.05	
  
Phys. Rev. B 89, 115320 (2014)
ITO	
  replacement	
  
CIGS,	
  Si	
  
High	
  Φ	
  OPV!	
  
Content	
  
•  Background	
  and	
  history	
  of	
  surfaces	
  
–  History	
  
–  Importance	
  
•  Important	
  concepts	
  for	
  surface	
  
definiEons	
  
–  Energy-­‐band-­‐alignment	
  diagram	
  
–  Miller	
  indices	
  
–  Tasker	
  notaEon	
  
–  Polar	
  surfaces	
  
•  Surface	
  energeEcs	
  and	
  electronic	
  
structure	
  
–  Bond	
  breaking	
  approximaEon	
  
–  Surface	
  Tamm	
  states	
  
•  Surfaces	
  in	
  PV 	
  	
  
–  Trapping	
  
–  PassivaEon	
  
•  Interface	
  classificaEons	
  and	
  formaEon	
  
•  Strain	
  and	
  supercells	
  
•  WeKng	
  angle	
  and	
  cohesion	
  
•  Coherent/Semi-­‐coherent/Incoherent	
  
•  Interfaces	
  in	
  PV	
  
•  SchoMky	
  barrier	
  /	
  Ohmic	
  contacts	
  
•  Charge	
  neutrality	
  level	
  
•  Band	
  Alignment	
  in	
  PV	
  
•  Work	
  funcEons	
  and	
  electron	
  energies	
  
•  Measuring	
  work	
  funcEons	
  
•  CalculaEng	
  work	
  funcEons	
  
•  Bulk/surface	
  contribuEons	
  
•  Work	
  funcEon	
  engineering	
  	
  
•  PracEcal	
  examples	
  
•  CalculaEon	
  of	
  surface/interface	
  energy	
  
in	
  DFT	
  
•  Band	
  alignment	
  from	
  DFT	
  
SURFACES	
   INTERFACES	
  
PracEcal	
  Session	
  
•  Building	
  a	
  good	
  surface/interface	
  
•  CalculaEng	
  a	
  surface	
  energy	
  
•  CalculaEng	
  a	
  workfuncEon	
  from	
  DFT	
  
Cut	
  the	
  surface	
  :	
  METADISE	
  
•  Input	
  unit	
  cell	
  and	
  miller	
  
index	
  
•  SystemaEcally	
  generates	
  all	
  
cuts	
  
•  Checks	
  for	
  dipolar	
  surfaces	
  
CalculaEng	
  a	
  surface	
  energy	
  
Calculate	
  the	
  energy	
  of	
  the	
  pure	
  system.	
  
Calculate	
  the	
  energy	
  of	
  a	
  2D	
  slab.	
  
SMACT-­‐Interface	
  
•  Evaluate	
  laKces	
  with	
  mismatch	
  below	
  a	
  
certain	
  threshold.	
  	
  
•  CuI//CdO	
  	
  
•  110//110	
  
•  4x4//5x5	
  
CalculaEng	
  Interface	
  Energy	
  
Calculate	
  the	
  separate	
  bulk	
  energies.	
  
Calculate	
  the	
  energy	
  of	
  a	
  mixed	
  system.	
  
Pro-­‐Eps	
  for	
  surfaces	
  in	
  VASP	
  
•  k-­‐point	
  sampling	
  in	
  the	
  surface	
  normal	
  
direcEon	
  can	
  be	
  drasEcally	
  reduced.	
  
•  Vacuums	
  of	
  ~	
  15	
  Angstrom	
  are	
  usually	
  large	
  
enough…check	
  this	
  for	
  convergence	
  though.	
  
•  Slab	
  thickness	
  required	
  varies	
  –	
  depends	
  on	
  
the	
  system	
  type.	
  Generally	
  –	
  more	
  broken	
  
bonds	
  @	
  surface	
  means	
  more	
  surface	
  states	
  
requires	
  a	
  thicker	
  slab	
  …	
  eg	
  layered	
  systems	
  
are	
  easy!!	
  
Interface	
  energy	
  caveat	
  
•  SomeEmes	
  interface	
  
energies	
  calculated	
  as	
  
above	
  converge	
  very	
  
slowly.	
  
•  Calculate	
  energies	
  for	
  
several	
  layer	
  
thicknesses.	
  
Pro-­‐Eps:	
  CalculaEng	
  a	
  band	
  alignment	
  
diagram	
  from	
  DFT	
  
ICORELEVEL = 1
NEDOS = 1000
NBANDS = 468
1:	
  Get	
  the	
  energy	
  levels	
  of	
  the	
  bulk	
  structure	
  
DFT	
  band	
  structure	
  (usually	
  with	
  a	
  hybrid	
  funcEonal)	
  
Get	
  energy	
  difference	
  between	
  core	
  state	
  and	
  VBM	
  
hMps://github.com/keeeto/VASPBands	
  
Core	
  level,	
  serves	
  as	
  a	
  reference	
  state	
  
Increase	
  NEDOS	
  –	
  nicer	
  DOS	
  plots	
  
Increase	
  #	
  bands	
  quicker	
  convergence	
  	
  
	
  -­‐	
  NBANDS	
  =	
  #	
  electrons	
  (spin	
  unpolarised)	
  
	
  -­‐	
  NBAMDS	
  =	
  2x	
  #electrons	
  (spin	
  polarised)	
  
Pro-­‐Eps:	
  CalculaEng	
  a	
  band	
  alignment	
  
diagram	
  from	
  DFT	
  
ICORELEVEL = 1
LVHAR = .TRUE.
2:	
  Calculate	
  the	
  electrostaEc	
  potenEal	
  of	
  the	
  slab	
  structure	
  
Core	
  level,	
  serves	
  as	
  a	
  reference	
  state	
  
Hartree	
  potenEal	
  –	
  converges	
  more	
  
quickly	
  than	
  total	
  potenEal.	
  
Get	
  the	
  VBM	
  from	
  core	
  level	
  plus	
  energy	
  difference	
  from	
  
the	
  bulk	
  calculaEon.	
  Avoids	
  surface	
  state	
  influence.	
  
Pro-­‐Eps:	
  CalculaEng	
  a	
  band	
  alignment	
  
diagram	
  from	
  DFT	
  
2:	
  Calculate	
  the	
  electrostaEc	
  potenEal	
  of	
  the	
  slab	
  structure	
  
ExtracEng	
  the	
  electrostaEc	
  potenEal	
  from	
  LOCPOT	
  file.	
  
Our	
  code	
  MacroDensity	
  does	
  this	
  for	
  a	
  range	
  of	
  
systems	
  and	
  electronic	
  structure	
  codes.	
  
hMps://github.com/WMD-­‐Bath/MacroDensity	
  
input_file = 'LOCPOT.slab'
lattice_vector = 4.75
output_file = 'planar.dat'
# No need to alter anything after
here
#------------------------------------------------------
PlanarAvergae.py	
  
> python PlanarAverage.py
Pro-­‐Eps:	
  CalculaEng	
  a	
  band	
  alignment	
  
diagram	
  from	
  DFT	
  
2:	
  Calculate	
  the	
  electrostaEc	
  potenEal	
  of	
  the	
  slab	
  structure	
  
ExtracEng	
  the	
  electrostaEc	
  potenEal	
  from	
  LOCPOT	
  file.	
  
Our	
  code	
  MacroDensity	
  does	
  this	
  for	
  a	
  range	
  of	
  
systems	
  and	
  electronic	
  structure	
  codes.	
  
hMps://github.com/WMD-­‐Bath/MacroDensity	
  
input_file = 'LOCPOT.slab'
lattice_vector = 4.75
output_file = 'planar.dat'
# No need to alter anything after
here
#------------------------------------------------------
PlanarAvergae.py	
  
> python PlanarAverage.py
ElectrostaticPotentialPro-­‐Eps:	
  CalculaEng	
  a	
  band	
  alignment	
  
diagram	
  from	
  DFT	
  
Bulk	
  calculaEon	
  
the core state eigenenergies are
1- 1s -87.8177 2s -87.9364 2p -87.9364
2- 1s -87.9771 2s -88.1009 2p -88.1009
Important	
  Points	
  
•  Surfaces	
  consEtute	
  a	
  small	
  part	
  of	
  a	
  system,	
  but	
  
have	
  a	
  huge	
  influence	
  on	
  properEes.	
  
•  Energy-­‐band-­‐diagrams	
  are	
  criEcal	
  for	
  designing	
  
devices.	
  
•  Single	
  material	
  calculaEons	
  can	
  be	
  used	
  to	
  
predict	
  offsets	
  in	
  hetero-­‐juncEon	
  systems…but	
  
cauEon	
  is	
  always	
  advised.	
  
•  Both	
  experimental	
  and	
  theoreEcal	
  
characterisaEon	
  of	
  surfaces	
  are	
  difficult	
  and	
  
should	
  be	
  used	
  to	
  compliment	
  one	
  another	
  
wherever	
  possible.	
  

Más contenido relacionado

La actualidad más candente

Liquid Crystal and Liquid Crystal Polymer
Liquid Crystal and Liquid Crystal PolymerLiquid Crystal and Liquid Crystal Polymer
Liquid Crystal and Liquid Crystal PolymerSaurav Ch. Sarma
 
Properties of optical materials
Properties of optical materialsProperties of optical materials
Properties of optical materialsSAAD ARIF
 
Supramolecular chemistry
Supramolecular chemistrySupramolecular chemistry
Supramolecular chemistryWaniAadilAli
 
Supramolecular chemistry
Supramolecular chemistrySupramolecular chemistry
Supramolecular chemistryThoshina Thomas
 
BET surface area analysis
BET surface area analysisBET surface area analysis
BET surface area analysisMahsa Farqarazi
 
NANO Physics ppt ---2017
 NANO Physics ppt ---2017  NANO Physics ppt ---2017
NANO Physics ppt ---2017 ANANT VYAS
 
Electrical double layer theory
Electrical double layer theoryElectrical double layer theory
Electrical double layer theoryhasintha pathirage
 
Vapour Solid Liquid Growth
Vapour Solid Liquid GrowthVapour Solid Liquid Growth
Vapour Solid Liquid GrowthVinod Saini
 
Density of States (DOS) in Nanotechnology by Manu Shreshtha
Density of States (DOS) in Nanotechnology by Manu ShreshthaDensity of States (DOS) in Nanotechnology by Manu Shreshtha
Density of States (DOS) in Nanotechnology by Manu ShreshthaManu Shreshtha
 
Band structure
Band structureBand structure
Band structurenirupam12
 
Density functional theory (DFT) and the concepts of the augmented-plane-wave ...
Density functional theory (DFT) and the concepts of the augmented-plane-wave ...Density functional theory (DFT) and the concepts of the augmented-plane-wave ...
Density functional theory (DFT) and the concepts of the augmented-plane-wave ...ABDERRAHMANE REGGAD
 
Sol gel method and solid state reactions
Sol gel method and solid state reactionsSol gel method and solid state reactions
Sol gel method and solid state reactionsAdnan Majeed
 

La actualidad más candente (20)

Liquid Crystal and Liquid Crystal Polymer
Liquid Crystal and Liquid Crystal PolymerLiquid Crystal and Liquid Crystal Polymer
Liquid Crystal and Liquid Crystal Polymer
 
Properties of optical materials
Properties of optical materialsProperties of optical materials
Properties of optical materials
 
Supramolecular chemistry
Supramolecular chemistrySupramolecular chemistry
Supramolecular chemistry
 
Lecture7
Lecture7Lecture7
Lecture7
 
Supramolecular chemistry
Supramolecular chemistrySupramolecular chemistry
Supramolecular chemistry
 
BET surface area analysis
BET surface area analysisBET surface area analysis
BET surface area analysis
 
NANO Physics ppt ---2017
 NANO Physics ppt ---2017  NANO Physics ppt ---2017
NANO Physics ppt ---2017
 
Electrical double layer theory
Electrical double layer theoryElectrical double layer theory
Electrical double layer theory
 
Vapour Solid Liquid Growth
Vapour Solid Liquid GrowthVapour Solid Liquid Growth
Vapour Solid Liquid Growth
 
Electrical double layer theory
Electrical double layer theoryElectrical double layer theory
Electrical double layer theory
 
Density of States (DOS) in Nanotechnology by Manu Shreshtha
Density of States (DOS) in Nanotechnology by Manu ShreshthaDensity of States (DOS) in Nanotechnology by Manu Shreshtha
Density of States (DOS) in Nanotechnology by Manu Shreshtha
 
Band structure
Band structureBand structure
Band structure
 
Crystal defects
Crystal defectsCrystal defects
Crystal defects
 
Mos2-poster2
Mos2-poster2Mos2-poster2
Mos2-poster2
 
Fermi energy
Fermi energyFermi energy
Fermi energy
 
BET IIT DHANBAD
BET IIT DHANBADBET IIT DHANBAD
BET IIT DHANBAD
 
Nonstoichiometric defects
Nonstoichiometric defectsNonstoichiometric defects
Nonstoichiometric defects
 
bloch.pdf
bloch.pdfbloch.pdf
bloch.pdf
 
Density functional theory (DFT) and the concepts of the augmented-plane-wave ...
Density functional theory (DFT) and the concepts of the augmented-plane-wave ...Density functional theory (DFT) and the concepts of the augmented-plane-wave ...
Density functional theory (DFT) and the concepts of the augmented-plane-wave ...
 
Sol gel method and solid state reactions
Sol gel method and solid state reactionsSol gel method and solid state reactions
Sol gel method and solid state reactions
 

Destacado

Metal semiconductor contact
Metal semiconductor contactMetal semiconductor contact
Metal semiconductor contactAnchit Biswas
 
First Principles Thermodynamics and Kinetic Monte Carlo Simulations: A case s...
First Principles Thermodynamics and Kinetic Monte Carlo Simulations: A case s...First Principles Thermodynamics and Kinetic Monte Carlo Simulations: A case s...
First Principles Thermodynamics and Kinetic Monte Carlo Simulations: A case s...Ghanshyam Pilania
 
Lecture 4 4521 semiconductor device physics - metal-semiconductor system
Lecture 4   4521 semiconductor device physics - metal-semiconductor systemLecture 4   4521 semiconductor device physics - metal-semiconductor system
Lecture 4 4521 semiconductor device physics - metal-semiconductor systemNedal Al Taradeh
 
Soft x-ray nanoanalytical tools for thin film organic electronics
Soft x-ray nanoanalytical tools for thin film organic electronicsSoft x-ray nanoanalytical tools for thin film organic electronics
Soft x-ray nanoanalytical tools for thin film organic electronicsTrinity College Dublin
 
Metal semiconductor contacts
Metal semiconductor contactsMetal semiconductor contacts
Metal semiconductor contactsKasif Nabi
 
Surface defects in crystals
Surface defects in crystalsSurface defects in crystals
Surface defects in crystalsARUN K S
 
Photoelectron spectroscopy
Photoelectron spectroscopyPhotoelectron spectroscopy
Photoelectron spectroscopytesfayehh
 
X ray photoelectron spectroscopy
X ray photoelectron spectroscopyX ray photoelectron spectroscopy
X ray photoelectron spectroscopyZubair Aslam
 
Xps (x ray photoelectron spectroscopy)
Xps (x ray photoelectron spectroscopy)Xps (x ray photoelectron spectroscopy)
Xps (x ray photoelectron spectroscopy)Zaahir Salam
 
Basics Of Semiconductor Memories
Basics Of Semiconductor MemoriesBasics Of Semiconductor Memories
Basics Of Semiconductor MemoriesRahul Bandhe
 

Destacado (14)

Metal semiconductor contact
Metal semiconductor contactMetal semiconductor contact
Metal semiconductor contact
 
First Principles Thermodynamics and Kinetic Monte Carlo Simulations: A case s...
First Principles Thermodynamics and Kinetic Monte Carlo Simulations: A case s...First Principles Thermodynamics and Kinetic Monte Carlo Simulations: A case s...
First Principles Thermodynamics and Kinetic Monte Carlo Simulations: A case s...
 
Lecture 4 4521 semiconductor device physics - metal-semiconductor system
Lecture 4   4521 semiconductor device physics - metal-semiconductor systemLecture 4   4521 semiconductor device physics - metal-semiconductor system
Lecture 4 4521 semiconductor device physics - metal-semiconductor system
 
Al-Al2O3-interface
Al-Al2O3-interfaceAl-Al2O3-interface
Al-Al2O3-interface
 
Soft x-ray nanoanalytical tools for thin film organic electronics
Soft x-ray nanoanalytical tools for thin film organic electronicsSoft x-ray nanoanalytical tools for thin film organic electronics
Soft x-ray nanoanalytical tools for thin film organic electronics
 
Metal semiconductor contacts
Metal semiconductor contactsMetal semiconductor contacts
Metal semiconductor contacts
 
NANO266 - Lecture 11 - Surfaces and Interfaces
NANO266 - Lecture 11 - Surfaces and InterfacesNANO266 - Lecture 11 - Surfaces and Interfaces
NANO266 - Lecture 11 - Surfaces and Interfaces
 
Phase Transformation.
Phase Transformation.Phase Transformation.
Phase Transformation.
 
Surface defects in crystals
Surface defects in crystalsSurface defects in crystals
Surface defects in crystals
 
NANO266 - Lecture 13 - Ab initio molecular dyanmics
NANO266 - Lecture 13 - Ab initio molecular dyanmicsNANO266 - Lecture 13 - Ab initio molecular dyanmics
NANO266 - Lecture 13 - Ab initio molecular dyanmics
 
Photoelectron spectroscopy
Photoelectron spectroscopyPhotoelectron spectroscopy
Photoelectron spectroscopy
 
X ray photoelectron spectroscopy
X ray photoelectron spectroscopyX ray photoelectron spectroscopy
X ray photoelectron spectroscopy
 
Xps (x ray photoelectron spectroscopy)
Xps (x ray photoelectron spectroscopy)Xps (x ray photoelectron spectroscopy)
Xps (x ray photoelectron spectroscopy)
 
Basics Of Semiconductor Memories
Basics Of Semiconductor MemoriesBasics Of Semiconductor Memories
Basics Of Semiconductor Memories
 

Similar a Surfaces and Interfaces

Design methodology for undersea umbilical cables
Design methodology for undersea umbilical cablesDesign methodology for undersea umbilical cables
Design methodology for undersea umbilical cablesthinknice
 
Grade 11, Review topics for electricy test
Grade 11, Review topics for electricy testGrade 11, Review topics for electricy test
Grade 11, Review topics for electricy testgruszecki1
 
ANSYS Emag 8.0 Capabilities.ppt
ANSYS Emag 8.0 Capabilities.pptANSYS Emag 8.0 Capabilities.ppt
ANSYS Emag 8.0 Capabilities.pptDavidEscudero
 
Mems varactor paper 257
Mems varactor paper 257Mems varactor paper 257
Mems varactor paper 257prashant singh
 
Jntuh b.tech 3 year ece r16 syllabus
Jntuh b.tech 3 year ece r16 syllabusJntuh b.tech 3 year ece r16 syllabus
Jntuh b.tech 3 year ece r16 syllabusxyxz
 
RF MEMS in Energy Harvesting
RF MEMS in Energy HarvestingRF MEMS in Energy Harvesting
RF MEMS in Energy HarvestingAalay Kapadia
 
UNIT-2 EMF conductors and diodes PPT.pptx
UNIT-2 EMF conductors and diodes PPT.pptxUNIT-2 EMF conductors and diodes PPT.pptx
UNIT-2 EMF conductors and diodes PPT.pptxdeviifet2015
 
Properties of nano materials
Properties of nano materialsProperties of nano materials
Properties of nano materialsMohd. Bilal
 
The influences of T-joint core design on no-load losses in transformers
The influences of T-joint core design on no-load losses in transformersThe influences of T-joint core design on no-load losses in transformers
The influences of T-joint core design on no-load losses in transformersUpwork
 
Interaction of small molecules with grapheen supported on metal substrates: A...
Interaction of small molecules with grapheen supported on metal substrates: A...Interaction of small molecules with grapheen supported on metal substrates: A...
Interaction of small molecules with grapheen supported on metal substrates: A...MIHIR RANJAN SAHOO
 
Bcs eee written short syllabus
Bcs   eee written short syllabusBcs   eee written short syllabus
Bcs eee written short syllabusMahbub Skdr
 
7-metal_vs_semiconductor
7-metal_vs_semiconductor7-metal_vs_semiconductor
7-metal_vs_semiconductorjayamartha
 
7 -metal_vs_semiconductor
7 -metal_vs_semiconductor7 -metal_vs_semiconductor
7 -metal_vs_semiconductorjayamartha
 
Fisika Zat Padat (5 - 7) b-metal_vs_semiconductor
Fisika Zat Padat (5 - 7) b-metal_vs_semiconductorFisika Zat Padat (5 - 7) b-metal_vs_semiconductor
Fisika Zat Padat (5 - 7) b-metal_vs_semiconductorjayamartha
 
Microfluidic Flow Control using Magnetohydrodynamics
Microfluidic Flow Control using  Magnetohydrodynamics Microfluidic Flow Control using  Magnetohydrodynamics
Microfluidic Flow Control using Magnetohydrodynamics KayDrive
 

Similar a Surfaces and Interfaces (20)

Design methodology for undersea umbilical cables
Design methodology for undersea umbilical cablesDesign methodology for undersea umbilical cables
Design methodology for undersea umbilical cables
 
Grade 11, Review topics for electricy test
Grade 11, Review topics for electricy testGrade 11, Review topics for electricy test
Grade 11, Review topics for electricy test
 
ANSYS Emag 8.0 Capabilities.ppt
ANSYS Emag 8.0 Capabilities.pptANSYS Emag 8.0 Capabilities.ppt
ANSYS Emag 8.0 Capabilities.ppt
 
Resistivity Survey
Resistivity SurveyResistivity Survey
Resistivity Survey
 
Memristor
Memristor Memristor
Memristor
 
Mems varactor paper 257
Mems varactor paper 257Mems varactor paper 257
Mems varactor paper 257
 
Introduction to electricity, magnetism & electromagnetism
Introduction to electricity, magnetism & electromagnetismIntroduction to electricity, magnetism & electromagnetism
Introduction to electricity, magnetism & electromagnetism
 
Jntuh b.tech 3 year ece r16 syllabus
Jntuh b.tech 3 year ece r16 syllabusJntuh b.tech 3 year ece r16 syllabus
Jntuh b.tech 3 year ece r16 syllabus
 
RF MEMS in Energy Harvesting
RF MEMS in Energy HarvestingRF MEMS in Energy Harvesting
RF MEMS in Energy Harvesting
 
UNIT-2 EMF conductors and diodes PPT.pptx
UNIT-2 EMF conductors and diodes PPT.pptxUNIT-2 EMF conductors and diodes PPT.pptx
UNIT-2 EMF conductors and diodes PPT.pptx
 
Properties of nano materials
Properties of nano materialsProperties of nano materials
Properties of nano materials
 
Metal Semi-Conductor Junctions
Metal Semi-Conductor JunctionsMetal Semi-Conductor Junctions
Metal Semi-Conductor Junctions
 
The influences of T-joint core design on no-load losses in transformers
The influences of T-joint core design on no-load losses in transformersThe influences of T-joint core design on no-load losses in transformers
The influences of T-joint core design on no-load losses in transformers
 
Interaction of small molecules with grapheen supported on metal substrates: A...
Interaction of small molecules with grapheen supported on metal substrates: A...Interaction of small molecules with grapheen supported on metal substrates: A...
Interaction of small molecules with grapheen supported on metal substrates: A...
 
Bcs eee written short syllabus
Bcs   eee written short syllabusBcs   eee written short syllabus
Bcs eee written short syllabus
 
7-metal_vs_semiconductor
7-metal_vs_semiconductor7-metal_vs_semiconductor
7-metal_vs_semiconductor
 
7 -metal_vs_semiconductor
7 -metal_vs_semiconductor7 -metal_vs_semiconductor
7 -metal_vs_semiconductor
 
Fisika Zat Padat (5 - 7) b-metal_vs_semiconductor
Fisika Zat Padat (5 - 7) b-metal_vs_semiconductorFisika Zat Padat (5 - 7) b-metal_vs_semiconductor
Fisika Zat Padat (5 - 7) b-metal_vs_semiconductor
 
Microfluidic Flow Control using Magnetohydrodynamics
Microfluidic Flow Control using  Magnetohydrodynamics Microfluidic Flow Control using  Magnetohydrodynamics
Microfluidic Flow Control using Magnetohydrodynamics
 
4th sem new
4th sem new4th sem new
4th sem new
 

Más de cdtpv

Dye-sensitized and Perovskite Solar Cells | Peter Holliman, University of Bangor
Dye-sensitized and Perovskite Solar Cells | Peter Holliman, University of BangorDye-sensitized and Perovskite Solar Cells | Peter Holliman, University of Bangor
Dye-sensitized and Perovskite Solar Cells | Peter Holliman, University of Bangorcdtpv
 
Organic Photovoltaic Devices (OPVs)
Organic Photovoltaic Devices (OPVs)Organic Photovoltaic Devices (OPVs)
Organic Photovoltaic Devices (OPVs)cdtpv
 
CdTe Solar Cells
CdTe Solar CellsCdTe Solar Cells
CdTe Solar Cellscdtpv
 
CDTPy | Python for Scientists
CDTPy | Python for ScientistsCDTPy | Python for Scientists
CDTPy | Python for Scientistscdtpv
 
Vacuum Science and Technology for Thin Film Device Processing
Vacuum Science and Technology for Thin Film Device ProcessingVacuum Science and Technology for Thin Film Device Processing
Vacuum Science and Technology for Thin Film Device Processingcdtpv
 
Vibrational Spectrroscopy
Vibrational SpectrroscopyVibrational Spectrroscopy
Vibrational Spectrroscopycdtpv
 
Optical Spectroscopy
Optical SpectroscopyOptical Spectroscopy
Optical Spectroscopycdtpv
 
PVSAT 12
PVSAT 12PVSAT 12
PVSAT 12cdtpv
 
Silicon CPV Plc
Silicon CPV PlcSilicon CPV Plc
Silicon CPV Plccdtpv
 
Industrial Perspectives on Large-Area TCOs
Industrial Perspectives on Large-Area TCOsIndustrial Perspectives on Large-Area TCOs
Industrial Perspectives on Large-Area TCOscdtpv
 
British Photovoltaic Association
British Photovoltaic AssociationBritish Photovoltaic Association
British Photovoltaic Associationcdtpv
 
Organic Photovoltaics Thin-Film Processing Considerations
Organic Photovoltaics Thin-Film Processing ConsiderationsOrganic Photovoltaics Thin-Film Processing Considerations
Organic Photovoltaics Thin-Film Processing Considerationscdtpv
 
Welcome and Introduction
Welcome and IntroductionWelcome and Introduction
Welcome and Introductioncdtpv
 
Novel Semiconductor Alloys based on GaSb for domestic PV
Novel Semiconductor Alloys based on GaSb for domestic PVNovel Semiconductor Alloys based on GaSb for domestic PV
Novel Semiconductor Alloys based on GaSb for domestic PVcdtpv
 
The Role of Molecular Structure and Conformation in Polymer Opto-Electronics
The Role of Molecular Structure and Conformation in Polymer Opto-ElectronicsThe Role of Molecular Structure and Conformation in Polymer Opto-Electronics
The Role of Molecular Structure and Conformation in Polymer Opto-Electronicscdtpv
 
From Atoms to Solar Cells
From Atoms to Solar CellsFrom Atoms to Solar Cells
From Atoms to Solar Cellscdtpv
 
Materials Modelling: From theory to solar cells (Lecture 1)
Materials Modelling: From theory to solar cells  (Lecture 1)Materials Modelling: From theory to solar cells  (Lecture 1)
Materials Modelling: From theory to solar cells (Lecture 1)cdtpv
 
Course overview
Course overviewCourse overview
Course overviewcdtpv
 
Lectures 7-8: Charge and Energy Transfer, Photosynthesis, Biofules
Lectures 7-8: Charge and Energy Transfer, Photosynthesis, BiofulesLectures 7-8: Charge and Energy Transfer, Photosynthesis, Biofules
Lectures 7-8: Charge and Energy Transfer, Photosynthesis, Biofulescdtpv
 
Lecture 5-6: Hydrogen, Storage & Batteries
Lecture 5-6: Hydrogen, Storage & BatteriesLecture 5-6: Hydrogen, Storage & Batteries
Lecture 5-6: Hydrogen, Storage & Batteriescdtpv
 

Más de cdtpv (20)

Dye-sensitized and Perovskite Solar Cells | Peter Holliman, University of Bangor
Dye-sensitized and Perovskite Solar Cells | Peter Holliman, University of BangorDye-sensitized and Perovskite Solar Cells | Peter Holliman, University of Bangor
Dye-sensitized and Perovskite Solar Cells | Peter Holliman, University of Bangor
 
Organic Photovoltaic Devices (OPVs)
Organic Photovoltaic Devices (OPVs)Organic Photovoltaic Devices (OPVs)
Organic Photovoltaic Devices (OPVs)
 
CdTe Solar Cells
CdTe Solar CellsCdTe Solar Cells
CdTe Solar Cells
 
CDTPy | Python for Scientists
CDTPy | Python for ScientistsCDTPy | Python for Scientists
CDTPy | Python for Scientists
 
Vacuum Science and Technology for Thin Film Device Processing
Vacuum Science and Technology for Thin Film Device ProcessingVacuum Science and Technology for Thin Film Device Processing
Vacuum Science and Technology for Thin Film Device Processing
 
Vibrational Spectrroscopy
Vibrational SpectrroscopyVibrational Spectrroscopy
Vibrational Spectrroscopy
 
Optical Spectroscopy
Optical SpectroscopyOptical Spectroscopy
Optical Spectroscopy
 
PVSAT 12
PVSAT 12PVSAT 12
PVSAT 12
 
Silicon CPV Plc
Silicon CPV PlcSilicon CPV Plc
Silicon CPV Plc
 
Industrial Perspectives on Large-Area TCOs
Industrial Perspectives on Large-Area TCOsIndustrial Perspectives on Large-Area TCOs
Industrial Perspectives on Large-Area TCOs
 
British Photovoltaic Association
British Photovoltaic AssociationBritish Photovoltaic Association
British Photovoltaic Association
 
Organic Photovoltaics Thin-Film Processing Considerations
Organic Photovoltaics Thin-Film Processing ConsiderationsOrganic Photovoltaics Thin-Film Processing Considerations
Organic Photovoltaics Thin-Film Processing Considerations
 
Welcome and Introduction
Welcome and IntroductionWelcome and Introduction
Welcome and Introduction
 
Novel Semiconductor Alloys based on GaSb for domestic PV
Novel Semiconductor Alloys based on GaSb for domestic PVNovel Semiconductor Alloys based on GaSb for domestic PV
Novel Semiconductor Alloys based on GaSb for domestic PV
 
The Role of Molecular Structure and Conformation in Polymer Opto-Electronics
The Role of Molecular Structure and Conformation in Polymer Opto-ElectronicsThe Role of Molecular Structure and Conformation in Polymer Opto-Electronics
The Role of Molecular Structure and Conformation in Polymer Opto-Electronics
 
From Atoms to Solar Cells
From Atoms to Solar CellsFrom Atoms to Solar Cells
From Atoms to Solar Cells
 
Materials Modelling: From theory to solar cells (Lecture 1)
Materials Modelling: From theory to solar cells  (Lecture 1)Materials Modelling: From theory to solar cells  (Lecture 1)
Materials Modelling: From theory to solar cells (Lecture 1)
 
Course overview
Course overviewCourse overview
Course overview
 
Lectures 7-8: Charge and Energy Transfer, Photosynthesis, Biofules
Lectures 7-8: Charge and Energy Transfer, Photosynthesis, BiofulesLectures 7-8: Charge and Energy Transfer, Photosynthesis, Biofules
Lectures 7-8: Charge and Energy Transfer, Photosynthesis, Biofules
 
Lecture 5-6: Hydrogen, Storage & Batteries
Lecture 5-6: Hydrogen, Storage & BatteriesLecture 5-6: Hydrogen, Storage & Batteries
Lecture 5-6: Hydrogen, Storage & Batteries
 

Último

COMPUTING ANTI-DERIVATIVES (Integration by SUBSTITUTION)
COMPUTING ANTI-DERIVATIVES(Integration by SUBSTITUTION)COMPUTING ANTI-DERIVATIVES(Integration by SUBSTITUTION)
COMPUTING ANTI-DERIVATIVES (Integration by SUBSTITUTION)AkefAfaneh2
 
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 bAsymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 bSérgio Sacani
 
GBSN - Microbiology (Unit 1)
GBSN - Microbiology (Unit 1)GBSN - Microbiology (Unit 1)
GBSN - Microbiology (Unit 1)Areesha Ahmad
 
GBSN - Microbiology (Unit 3)
GBSN - Microbiology (Unit 3)GBSN - Microbiology (Unit 3)
GBSN - Microbiology (Unit 3)Areesha Ahmad
 
Selaginella: features, morphology ,anatomy and reproduction.
Selaginella: features, morphology ,anatomy and reproduction.Selaginella: features, morphology ,anatomy and reproduction.
Selaginella: features, morphology ,anatomy and reproduction.Silpa
 
Pulmonary drug delivery system M.pharm -2nd sem P'ceutics
Pulmonary drug delivery system M.pharm -2nd sem P'ceuticsPulmonary drug delivery system M.pharm -2nd sem P'ceutics
Pulmonary drug delivery system M.pharm -2nd sem P'ceuticssakshisoni2385
 
POGONATUM : morphology, anatomy, reproduction etc.
POGONATUM : morphology, anatomy, reproduction etc.POGONATUM : morphology, anatomy, reproduction etc.
POGONATUM : morphology, anatomy, reproduction etc.Silpa
 
300003-World Science Day For Peace And Development.pptx
300003-World Science Day For Peace And Development.pptx300003-World Science Day For Peace And Development.pptx
300003-World Science Day For Peace And Development.pptxryanrooker
 
Conjugation, transduction and transformation
Conjugation, transduction and transformationConjugation, transduction and transformation
Conjugation, transduction and transformationAreesha Ahmad
 
Bhiwandi Bhiwandi ❤CALL GIRL 7870993772 ❤CALL GIRLS ESCORT SERVICE In Bhiwan...
Bhiwandi Bhiwandi ❤CALL GIRL 7870993772 ❤CALL GIRLS  ESCORT SERVICE In Bhiwan...Bhiwandi Bhiwandi ❤CALL GIRL 7870993772 ❤CALL GIRLS  ESCORT SERVICE In Bhiwan...
Bhiwandi Bhiwandi ❤CALL GIRL 7870993772 ❤CALL GIRLS ESCORT SERVICE In Bhiwan...Monika Rani
 
Grade 7 - Lesson 1 - Microscope and Its Functions
Grade 7 - Lesson 1 - Microscope and Its FunctionsGrade 7 - Lesson 1 - Microscope and Its Functions
Grade 7 - Lesson 1 - Microscope and Its FunctionsOrtegaSyrineMay
 
Call Girls Ahmedabad +917728919243 call me Independent Escort Service
Call Girls Ahmedabad +917728919243 call me Independent Escort ServiceCall Girls Ahmedabad +917728919243 call me Independent Escort Service
Call Girls Ahmedabad +917728919243 call me Independent Escort Serviceshivanisharma5244
 
Digital Dentistry.Digital Dentistryvv.pptx
Digital Dentistry.Digital Dentistryvv.pptxDigital Dentistry.Digital Dentistryvv.pptx
Digital Dentistry.Digital Dentistryvv.pptxMohamedFarag457087
 
PSYCHOSOCIAL NEEDS. in nursing II sem pptx
PSYCHOSOCIAL NEEDS. in nursing II sem pptxPSYCHOSOCIAL NEEDS. in nursing II sem pptx
PSYCHOSOCIAL NEEDS. in nursing II sem pptxSuji236384
 
Module for Grade 9 for Asynchronous/Distance learning
Module for Grade 9 for Asynchronous/Distance learningModule for Grade 9 for Asynchronous/Distance learning
Module for Grade 9 for Asynchronous/Distance learninglevieagacer
 
GBSN - Microbiology (Unit 2)
GBSN - Microbiology (Unit 2)GBSN - Microbiology (Unit 2)
GBSN - Microbiology (Unit 2)Areesha Ahmad
 
Bacterial Identification and Classifications
Bacterial Identification and ClassificationsBacterial Identification and Classifications
Bacterial Identification and ClassificationsAreesha Ahmad
 
Stages in the normal growth curve
Stages in the normal growth curveStages in the normal growth curve
Stages in the normal growth curveAreesha Ahmad
 

Último (20)

COMPUTING ANTI-DERIVATIVES (Integration by SUBSTITUTION)
COMPUTING ANTI-DERIVATIVES(Integration by SUBSTITUTION)COMPUTING ANTI-DERIVATIVES(Integration by SUBSTITUTION)
COMPUTING ANTI-DERIVATIVES (Integration by SUBSTITUTION)
 
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 bAsymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
 
GBSN - Microbiology (Unit 1)
GBSN - Microbiology (Unit 1)GBSN - Microbiology (Unit 1)
GBSN - Microbiology (Unit 1)
 
GBSN - Microbiology (Unit 3)
GBSN - Microbiology (Unit 3)GBSN - Microbiology (Unit 3)
GBSN - Microbiology (Unit 3)
 
Selaginella: features, morphology ,anatomy and reproduction.
Selaginella: features, morphology ,anatomy and reproduction.Selaginella: features, morphology ,anatomy and reproduction.
Selaginella: features, morphology ,anatomy and reproduction.
 
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
 
Pulmonary drug delivery system M.pharm -2nd sem P'ceutics
Pulmonary drug delivery system M.pharm -2nd sem P'ceuticsPulmonary drug delivery system M.pharm -2nd sem P'ceutics
Pulmonary drug delivery system M.pharm -2nd sem P'ceutics
 
POGONATUM : morphology, anatomy, reproduction etc.
POGONATUM : morphology, anatomy, reproduction etc.POGONATUM : morphology, anatomy, reproduction etc.
POGONATUM : morphology, anatomy, reproduction etc.
 
300003-World Science Day For Peace And Development.pptx
300003-World Science Day For Peace And Development.pptx300003-World Science Day For Peace And Development.pptx
300003-World Science Day For Peace And Development.pptx
 
Conjugation, transduction and transformation
Conjugation, transduction and transformationConjugation, transduction and transformation
Conjugation, transduction and transformation
 
Bhiwandi Bhiwandi ❤CALL GIRL 7870993772 ❤CALL GIRLS ESCORT SERVICE In Bhiwan...
Bhiwandi Bhiwandi ❤CALL GIRL 7870993772 ❤CALL GIRLS  ESCORT SERVICE In Bhiwan...Bhiwandi Bhiwandi ❤CALL GIRL 7870993772 ❤CALL GIRLS  ESCORT SERVICE In Bhiwan...
Bhiwandi Bhiwandi ❤CALL GIRL 7870993772 ❤CALL GIRLS ESCORT SERVICE In Bhiwan...
 
Grade 7 - Lesson 1 - Microscope and Its Functions
Grade 7 - Lesson 1 - Microscope and Its FunctionsGrade 7 - Lesson 1 - Microscope and Its Functions
Grade 7 - Lesson 1 - Microscope and Its Functions
 
Call Girls Ahmedabad +917728919243 call me Independent Escort Service
Call Girls Ahmedabad +917728919243 call me Independent Escort ServiceCall Girls Ahmedabad +917728919243 call me Independent Escort Service
Call Girls Ahmedabad +917728919243 call me Independent Escort Service
 
Clean In Place(CIP).pptx .
Clean In Place(CIP).pptx                 .Clean In Place(CIP).pptx                 .
Clean In Place(CIP).pptx .
 
Digital Dentistry.Digital Dentistryvv.pptx
Digital Dentistry.Digital Dentistryvv.pptxDigital Dentistry.Digital Dentistryvv.pptx
Digital Dentistry.Digital Dentistryvv.pptx
 
PSYCHOSOCIAL NEEDS. in nursing II sem pptx
PSYCHOSOCIAL NEEDS. in nursing II sem pptxPSYCHOSOCIAL NEEDS. in nursing II sem pptx
PSYCHOSOCIAL NEEDS. in nursing II sem pptx
 
Module for Grade 9 for Asynchronous/Distance learning
Module for Grade 9 for Asynchronous/Distance learningModule for Grade 9 for Asynchronous/Distance learning
Module for Grade 9 for Asynchronous/Distance learning
 
GBSN - Microbiology (Unit 2)
GBSN - Microbiology (Unit 2)GBSN - Microbiology (Unit 2)
GBSN - Microbiology (Unit 2)
 
Bacterial Identification and Classifications
Bacterial Identification and ClassificationsBacterial Identification and Classifications
Bacterial Identification and Classifications
 
Stages in the normal growth curve
Stages in the normal growth curveStages in the normal growth curve
Stages in the normal growth curve
 

Surfaces and Interfaces

  • 1. Surfaces  and  Interfaces   Microscopic  mechanisms  and   macroscopic  consequences    Dr.  Keith  T.  Butler   Department  of  Chemistry   k.t.butler@bath.ac.uk     “God  made  the  bulk;  surfaces  were  invented  by  the  devil”   Wolfgang  Pauli  
  • 2. Content   •  Background  and  history  of  surfaces   –  History   –  Importance   •  Important  concepts  for  surface   definiEons   –  Energy-­‐band-­‐alignment  diagram   –  Miller  indices   –  Tasker  notaEon   –  Polar  surfaces   •  Surface  energeEcs  and  electronic   structure   –  Bond  breaking  approximaEon   –  Surface  Tamm  states   •  Surfaces  in  PV     –  Trapping   –  PassivaEon   •  Interface  classificaEons  and  formaEon   •  Strain  and  supercells   •  WeKng  angle  and  cohesion   •  Coherent/Semi-­‐coherent/Incoherent   •  Interfaces  in  PV   •  SchoMky  barrier  /  Ohmic  contacts   •  Charge  neutrality  level   •  Band  Alignment  in  PV   •  Work  funcEons  and  electron  energies   •  Measuring  work  funcEons   •  CalculaEng  work  funcEons   •  Bulk/surface  contribuEons   •  Work  funcEon  engineering     •  PracEcal  examples   •  CalculaEon  of  surface/interface  energy   in  DFT   •  Band  alignment  from  DFT     SURFACES   INTERFACES  
  • 3. At  a  loose  end?  
  • 5. Benjamin  Franklin  and  the  old  wives   tale   “[T]he oil, though not more than a teaspoonful, produced an instant calm over a space several yards square which spread amazingly and extended itself gradually till it reached the lee side, making all that quarter of the pond, perhaps half an acre, as smooth as a looking glass.”
  • 6. The  study  of  surfaces   •  Mostly  atoms  are  not  at  the  surface   BULK  Surface  
  • 7. The  study  of  surfaces  &  interfaces   “The interface is the device” Herbert  Kroemer   Nobel  prize  in  Physics  2000   “For  developing  semiconductor   heterostructures  used  in  high-­‐speed-­‐  and   opto-­‐electronics"  
  • 8. Surfaces  in  PV   Charge  separa?on     Extrac?on  of  carriers   Recombina?on     Contact  resistance   hMp://www.pveducaEon.org  
  • 9. Content   •  Background  and  history  of  surfaces   –  History   –  Importance   •  Important  concepts  for  surface   definiEons   –  Energy-­‐band-­‐alignment  diagram   –  Miller  indices   –  Tasker  notaEon   –  Polar  surfaces   •  Surface  energeEcs  and  electronic   structure   –  Bond  breaking  approximaEon   –  Surface  Tamm  states   •  Surfaces  in  PV     –  Trapping   –  PassivaEon   •  Interface  classificaEons  and  formaEon   •  Strain  and  supercells   •  WeKng  angle  and  cohesion   •  Coherent/Semi-­‐coherent/Incoherent   •  Interfaces  in  PV   •  SchoMky  barrier  /  Ohmic  contacts   •  Charge  neutrality  level   •  Band  Alignment  in  PV   •  Work  funcEons  and  electron  energies   •  Measuring  work  funcEons   •  CalculaEng  work  funcEons   •  Bulk/surface  contribuEons   •  Work  funcEon  engineering     •  PracEcal  examples   •  CalculaEon  of  surface/interface  energy   in  DFT   •  Band  alignment  from  DFT   SURFACES   INTERFACES  
  • 10. Energy-­‐band-­‐diagrams   Valence  Band   (Occupied  states)   ConducEon  Band   (Unoccupied  states)   Vacuum  level   Band-­‐gap   Electron  Affinity   IonisaEon  potenEal  
  • 11. Energy-­‐band-­‐diagrams   Type  I   Type  II   Type  II   Metal/ Semiconductor  
  • 12. Energy-­‐band-­‐diagrams   “If, in discussing a semiconductor problem, you cannot draw an Energy-Band-Diagram, this shows that you don’t know what you are talking about” “If you can draw one, but don’t, then your audience won’t know what you are talking about.”
  • 15. Surface  ClassificaEon   Define  laKce  vectors  (a  b  c)  
  • 16. Surface  ClassificaEon   Define  the  intersecEon  (0  b  0)  
  • 17. Surface  ClassificaEon   IdenEfy  the  fracEonal  coordinates  of   the  intercept  (∞/a  b/b  ∞/c)  
  • 18. Surface  ClassificaEon   IdenEfy  the  fracEonal  coordinates  of   the  intercept  (0  1  0)  
  • 21. ClassificaEon   IdenEfy  intercepts   FracEonal  coordinates     of  intercepts   If  fracEons  result  in  step  (ii)   then  round  up  all  indices  by   mulEplicaEon;  e.g.  (1/3,0,1)   -­‐>  (1,0,3)   NegaEve  numbers  are   indicated  by  an  over-­‐bar    
  • 22. Polar/Non-­‐polar  surfaces   P  W  Tasker  1979  J.  Phys.  C:  Solid  State  Phys.  12  4977   Type  I   Type  II   Type  III  
  • 23. The  Polar  Catastrophe   Type  III   PotenEal  Energy   P  W  Tasker  1979  J.  Phys.  C:  Solid  State  Phys.  12  4977  
  • 24. Examples  of  Polar  Surfaces   •  A  polar  surface  can  exist  –   with  modificaEons.   •  Zincblende  (100)   •  Mechanisms  for   stabilisaEon:     –  Change  in  stoiciometry  in   surface  layers   –  AdsorpEon  of  ions  on  the   surfaces   –  Electron  redistribuEon          2D  electron  gas   C.  Noguera  ,  J.  Phys.:  Condens.  MaMer  12  R367   σ j j=1 m ∑ = − σm+1 2 (−1)m − R2 − R1 R2 + R1 # $ % & ' (
  • 25. Content   •  Background  and  history  of  surfaces   –  History   –  Importance   •  Important  concepts  for  surface   definiEons   –  Energy-­‐band-­‐alignment  diagram   –  Miller  indices   –  Tasker  notaEon   –  Polar  surfaces   •  Surface  energeEcs  and  electronic   structure   –  Bond  breaking  approximaEon   –  Surface  Tamm  states   •  Surfaces  in  PV     –  Trapping   –  PassivaEon   •  Interface  classificaEons  and  formaEon   •  Strain  and  supercells   •  WeKng  angle  and  cohesion   •  Coherent/Semi-­‐coherent/Incoherent   •  Interfaces  in  PV   •  SchoMky  barrier  /  Ohmic  contacts   •  Charge  neutrality  level   •  Band  Alignment  in  PV   •  Work  funcEons  and  electron  energies   •  Measuring  work  funcEons   •  CalculaEng  work  funcEons   •  Bulk/surface  contribuEons   •  Work  funcEon  engineering     •  PracEcal  examples   •  CalculaEon  of  surface/interface  energy   in  DFT   •  Band  alignment  from  DFT   SURFACES   INTERFACES  
  • 26. Surface  energy   Energy  is  proporEonal  to  the  number  of  bonds  broken.    
  • 27. Surface  Electronic  States   Atom   Hybrid   Solid   Eg  
  • 28. Surface  Electronic  States   Hybrid   Surface   Eg   Atom  
  • 29. Content   •  Background  and  history  of  surfaces   –  History   –  Importance   •  Important  concepts  for  surface   definiEons   –  Energy-­‐band-­‐alignment  diagram   –  Miller  indices   –  Tasker  notaEon   –  Polar  surfaces   •  Surface  energeEcs  and  electronic   structure   –  Bond  breaking  approximaEon   –  Surface  Tamm  states   •  Surfaces  in  PV     –  Trapping   –  PassivaEon   •  Interface  classificaEons  and  formaEon   •  Strain  and  supercells   •  WeKng  angle  and  cohesion   •  Coherent/Semi-­‐coherent/Incoherent   •  Interfaces  in  PV   •  SchoMky  barrier  /  Ohmic  contacts   •  Charge  neutrality  level   •  Band  Alignment  in  PV   •  Work  funcEons  and  electron  energies   •  Measuring  work  funcEons   •  CalculaEng  work  funcEons   •  Bulk/surface  contribuEons   •  Work  funcEon  engineering     •  PracEcal  examples   •  CalculaEon  of  surface/interface  energy   in  DFT   •  Band  alignment  from  DFT   SURFACES   INTERFACES  
  • 30. Surface  recombinaEon   •  Characterised  by  capture  and  release  rates  of   carriers  and  energy  of  state   RSE   RSH   RSE   RSH  
  • 31. Surface  passivaEon   •  Chemical  passivaEon  
  • 32. Surface  PassivaEon     •  Blocking  layer  
  • 33. Surface  PassivaEon     •  Fixed  Charge  
  • 34. Content   •  Background  and  history  of  surfaces   –  History   –  Importance   •  Important  concepts  for  surface   definiEons   –  Energy-­‐band-­‐alignment  diagram   –  Miller  indices   –  Tasker  notaEon   –  Polar  surfaces   •  Surface  energeEcs  and  electronic   structure   –  Bond  breaking  approximaEon   –  Surface  Tamm  states   •  Surfaces  in  PV     –  Trapping   –  PassivaEon   •  Interface  classificaEons  and  formaEon   •  Strain  and  supercells   •  WeKng  angle  and  cohesion   •  Coherent/Semi-­‐coherent/Incoherent   •  Interfaces  in  PV   •  SchoMky  barrier  /  Ohmic  contacts   •  Charge  neutrality  level   •  Band  Alignment  in  PV   •  Work  funcEons  and  electron  energies   •  Measuring  work  funcEons   •  CalculaEng  work  funcEons   •  Bulk/surface  contribuEons   •  Work  funcEon  engineering     •  PracEcal  examples   •  CalculaEon  of  surface/interface  energy   in  DFT   •  Band  alignment  from  DFT   SURFACES   INTERFACES  
  • 35. Interface  thermodynamics   σ12   σ1v  +  σ2v     Wsep   Fad   Diffusion  and  surface   segrega?on   MW  Finnis  1996  J.  Phys:  Condens.  Ma4er.  8  5811  
  • 36. Interface  thermodynamics   •  Interface  energy  related  to  weKng  angle.   σ1v     σ2v     σ12     MW  Finnis  1996  J.  Phys:  Condens.  Ma4er.  8  5811  
  • 37. LaKce  matching   •  Depends  on  laKce   parameters  of  the   two  phases   •  Determines  interface   strain;  large   contribuEon  to   interface  energy   a   b  
  • 38. Coherent  Interface   Interface  laKce  planes  must  match.     The  same  atomic  configuraEon  across  the  interface.     Examples:    CuSi  alloys    GaAs/AlAs    InAs/GaAs    Ge/Si    PbTe/CdTe     The  energy  of  coherent  interfaces:    Mismatching  bond  energy    Strain  energy  is  negligible    Energy  0  –  200  mJ/m^2        
  • 39. Semi-­‐coherent  Interface   When  strains  are  sufficiently  large.     EnergeEcally  favorable  to  to  form   misfit  dislocaEons  at  interfaces.       Examples:    InAs/GaAs     The  energy  of  semi-­‐coherent   interfaces:    Strain  plus  chemical  bonding    Energy  200  –  500  mJ/m^2      
  • 40. Incoherent  interface   Very  different  configuraEons  on  either   side  of  the  interface.     OR  laKce  constants  >  25%  difference.     Examples:    High  angle  grain  boundaries    Inclusions  in  alloys         The  energy  of  incoherent  interfaces:    Very  large  structural  contribuEon.    Energy  500  -­‐1000  mJ/m^2  
  • 41. Content   •  Background  and  history  of  surfaces   –  History   –  Importance   •  Important  concepts  for  surface   definiEons   –  Energy-­‐band-­‐alignment  diagram   –  Miller  indices   –  Tasker  notaEon   –  Polar  surfaces   •  Surface  energeEcs  and  electronic   structure   –  Bond  breaking  approximaEon   –  Surface  Tamm  states   •  Surfaces  in  PV     –  Trapping   –  PassivaEon   •  Interface  classificaEons  and  formaEon   •  Strain  and  supercells   •  WeKng  angle  and  cohesion   •  Coherent/Semi-­‐coherent/Incoherent   •  Interfaces  in  PV   •  SchoMky  barrier  /  Ohmic  contacts   •  Charge  neutrality  level   •  Band  Alignment  in  PV   •  Work  funcEons  and  electron  energies   •  Measuring  work  funcEons   •  CalculaEng  work  funcEons   •  Bulk/surface  contribuEons   •  Work  funcEon  engineering     •  PracEcal  examples   •  CalculaEon  of  surface/interface  energy   in  DFT   •  Band  alignment  from  DFT   SURFACES   INTERFACES  
  • 42. Ohmic  Contacts  in  PV   •  Minimising  losses  in   PV   •  V  ∝  I     •  Ideal  Ohmic   contacts  will  not   produce  potenEal   barriers   •  Ideal  contact  all   Fermi  levels  align  
  • 44. Band  Bending   The  SchoMky  limit.                 SchoMky  barrier  –  limits  charge   transport  across  the  interface.     Contact  resistance  depends   exponenEally  on  the  SchoMky   barrier.    
  • 45. Achieving  Ohmic  Contacts   Ohmic  n-­‐type  contact   Ohmic  p-­‐type  contact  
  • 46. ConsideraEons  for  devices   n-­‐type   p-­‐type   Space  charge   PosiEve   NegaEve   Metal  work  funcEon   Small  /  shallow   Large  /  deep   Examples   Li,  Na,  Ca,  K,     Au,  Ag,  Fe  
  • 47. Charge  Neutrality  Level/Surface  States   States  in  the  gap  of  the  semiconductor.     Can  result  in  addiEonal  charge  transfer.     New  local  charge  region.     Region  ~  0.2  –  0.3  nm      
  • 49. Content   •  Background  and  history  of  surfaces   –  History   –  Importance   •  Important  concepts  for  surface   definiEons   –  Energy-­‐band-­‐alignment  diagram   –  Miller  indices   –  Tasker  notaEon   –  Polar  surfaces   •  Surface  energeEcs  and  electronic   structure   –  Bond  breaking  approximaEon   –  Surface  Tamm  states   •  Surfaces  in  PV     –  Trapping   –  PassivaEon   •  Interface  classificaEons  and  formaEon   •  Strain  and  supercells   •  WeKng  angle  and  cohesion   •  Coherent/Semi-­‐coherent/Incoherent   •  Interfaces  in  PV   •  SchoMky  barrier  /  Ohmic  contacts   •  Charge  neutrality  level   •  Band  Alignment  in  PV   •  Work  funcEons  and  electron  energies   •  Measuring  work  funcEons   •  CalculaEng  work  funcEons   •  Bulk/surface  contribuEons   •  Work  funcEon  engineering     •  PracEcal  examples   •  CalculaEon  of  surface/interface  energy   in  DFT   •  Band  alignment  from  DFT   SURFACES   INTERFACES  
  • 50. Work  funcEons   “The  minimum  energy  required  to  remove  an  electron  from   deep  within  the  bulk,  to  a  point  a  macroscopic  distance   outside  the  surface.  ”    
  • 51. Measuring  work  funcEons  (I)   Ultraviolet  Photoemission  Spectroscopy  (UPS/PES)     hMps://www.tu-­‐chemnitz.de/physik/HLPH/elec_spec.htmlhMps://www.tu-­‐chemnitz.de/physik/HLPH/elec_spec.html  
  • 52. Measuring  work  funcEons  (II)   Kelvin  Probe   E  
  • 53. Measuring  Work  funcEons   Just  look  it  up…right?   §   “A single group often obtains different values on different crystals, different cleaves, or different days” Surface Science of Metal Oxides: Henrich & Cox
  • 54. ContribuEons  to  work  funcEons  (Ia)   •  Bulk  binding  energy  
  • 55. Bulk  Polymorph  WorkfuncEons   The  relaEonship   between  crystal   environment  and   ionisaEon  potenEal.     Engineer  levels  for   improved  water   spliKng.  
  • 56. ContribuEons  to  work  funcEons  (Ib)   Atom   Hybrid   Bond   Eg   Solid  
  • 57. ContribuEons  to  work  funcEons  (II)  
  • 58. The  surface  double-­‐layer   DensityPotential
  • 59. Mott-Littleton (1938) Harwell Labs, UK A. B. Lidiard, JCSFT 85, 341 (1989) Daresbury Labs, UK A. A. Sokol et al, IJCQ 99, 695 (2004) Limitation: Convergence in region sizes and accurate analytical MM potentials Current Implementation: ChemShell (QM/MM driver) Bulk Values: An Embedded Crystal
  • 62. Real  capping  layers   PbO2 SiO2 TiO2 Capping  layer   IP     Φ   ΔΦ  (wrt  ITO)   SiO2   11.07   6.87   +0.77   TiO2   10.19   5.99   -­‐0.11   PbO2   10.25   6.05   -­‐0.05   Phys. Rev. B 89, 115320 (2014) ITO  replacement   CIGS,  Si   High  Φ  OPV!  
  • 63. Content   •  Background  and  history  of  surfaces   –  History   –  Importance   •  Important  concepts  for  surface   definiEons   –  Energy-­‐band-­‐alignment  diagram   –  Miller  indices   –  Tasker  notaEon   –  Polar  surfaces   •  Surface  energeEcs  and  electronic   structure   –  Bond  breaking  approximaEon   –  Surface  Tamm  states   •  Surfaces  in  PV     –  Trapping   –  PassivaEon   •  Interface  classificaEons  and  formaEon   •  Strain  and  supercells   •  WeKng  angle  and  cohesion   •  Coherent/Semi-­‐coherent/Incoherent   •  Interfaces  in  PV   •  SchoMky  barrier  /  Ohmic  contacts   •  Charge  neutrality  level   •  Band  Alignment  in  PV   •  Work  funcEons  and  electron  energies   •  Measuring  work  funcEons   •  CalculaEng  work  funcEons   •  Bulk/surface  contribuEons   •  Work  funcEon  engineering     •  PracEcal  examples   •  CalculaEon  of  surface/interface  energy   in  DFT   •  Band  alignment  from  DFT   SURFACES   INTERFACES  
  • 64. PracEcal  Session   •  Building  a  good  surface/interface   •  CalculaEng  a  surface  energy   •  CalculaEng  a  workfuncEon  from  DFT  
  • 65. Cut  the  surface  :  METADISE   •  Input  unit  cell  and  miller   index   •  SystemaEcally  generates  all   cuts   •  Checks  for  dipolar  surfaces  
  • 66. CalculaEng  a  surface  energy   Calculate  the  energy  of  the  pure  system.   Calculate  the  energy  of  a  2D  slab.  
  • 67. SMACT-­‐Interface   •  Evaluate  laKces  with  mismatch  below  a   certain  threshold.     •  CuI//CdO     •  110//110   •  4x4//5x5  
  • 68. CalculaEng  Interface  Energy   Calculate  the  separate  bulk  energies.   Calculate  the  energy  of  a  mixed  system.  
  • 69. Pro-­‐Eps  for  surfaces  in  VASP   •  k-­‐point  sampling  in  the  surface  normal   direcEon  can  be  drasEcally  reduced.   •  Vacuums  of  ~  15  Angstrom  are  usually  large   enough…check  this  for  convergence  though.   •  Slab  thickness  required  varies  –  depends  on   the  system  type.  Generally  –  more  broken   bonds  @  surface  means  more  surface  states   requires  a  thicker  slab  …  eg  layered  systems   are  easy!!  
  • 70. Interface  energy  caveat   •  SomeEmes  interface   energies  calculated  as   above  converge  very   slowly.   •  Calculate  energies  for   several  layer   thicknesses.  
  • 71. Pro-­‐Eps:  CalculaEng  a  band  alignment   diagram  from  DFT   ICORELEVEL = 1 NEDOS = 1000 NBANDS = 468 1:  Get  the  energy  levels  of  the  bulk  structure   DFT  band  structure  (usually  with  a  hybrid  funcEonal)   Get  energy  difference  between  core  state  and  VBM   hMps://github.com/keeeto/VASPBands   Core  level,  serves  as  a  reference  state   Increase  NEDOS  –  nicer  DOS  plots   Increase  #  bands  quicker  convergence      -­‐  NBANDS  =  #  electrons  (spin  unpolarised)    -­‐  NBAMDS  =  2x  #electrons  (spin  polarised)  
  • 72. Pro-­‐Eps:  CalculaEng  a  band  alignment   diagram  from  DFT   ICORELEVEL = 1 LVHAR = .TRUE. 2:  Calculate  the  electrostaEc  potenEal  of  the  slab  structure   Core  level,  serves  as  a  reference  state   Hartree  potenEal  –  converges  more   quickly  than  total  potenEal.   Get  the  VBM  from  core  level  plus  energy  difference  from   the  bulk  calculaEon.  Avoids  surface  state  influence.  
  • 73. Pro-­‐Eps:  CalculaEng  a  band  alignment   diagram  from  DFT   2:  Calculate  the  electrostaEc  potenEal  of  the  slab  structure   ExtracEng  the  electrostaEc  potenEal  from  LOCPOT  file.   Our  code  MacroDensity  does  this  for  a  range  of   systems  and  electronic  structure  codes.   hMps://github.com/WMD-­‐Bath/MacroDensity   input_file = 'LOCPOT.slab' lattice_vector = 4.75 output_file = 'planar.dat' # No need to alter anything after here #------------------------------------------------------ PlanarAvergae.py   > python PlanarAverage.py
  • 74. Pro-­‐Eps:  CalculaEng  a  band  alignment   diagram  from  DFT   2:  Calculate  the  electrostaEc  potenEal  of  the  slab  structure   ExtracEng  the  electrostaEc  potenEal  from  LOCPOT  file.   Our  code  MacroDensity  does  this  for  a  range  of   systems  and  electronic  structure  codes.   hMps://github.com/WMD-­‐Bath/MacroDensity   input_file = 'LOCPOT.slab' lattice_vector = 4.75 output_file = 'planar.dat' # No need to alter anything after here #------------------------------------------------------ PlanarAvergae.py   > python PlanarAverage.py
  • 75. ElectrostaticPotentialPro-­‐Eps:  CalculaEng  a  band  alignment   diagram  from  DFT   Bulk  calculaEon   the core state eigenenergies are 1- 1s -87.8177 2s -87.9364 2p -87.9364 2- 1s -87.9771 2s -88.1009 2p -88.1009
  • 76. Important  Points   •  Surfaces  consEtute  a  small  part  of  a  system,  but   have  a  huge  influence  on  properEes.   •  Energy-­‐band-­‐diagrams  are  criEcal  for  designing   devices.   •  Single  material  calculaEons  can  be  used  to   predict  offsets  in  hetero-­‐juncEon  systems…but   cauEon  is  always  advised.   •  Both  experimental  and  theoreEcal   characterisaEon  of  surfaces  are  difficult  and   should  be  used  to  compliment  one  another   wherever  possible.