SlideShare una empresa de Scribd logo
1 de 15
Chapter 12.3 Molecular Composition of Gases
Solve problems using ideal gas law. Describe the relationships between gas behavior and chemical formulas, such as those expressed by Graham’s law of diffusion, law of combining gas volumes, and Dalton’s law of partial pressures. Objectives:
The Ideal Gas Law ,[object Object],Here’s how it works!!!
Deriving the Ideal gas law ,[object Object]
Charles’s law  V/T = k
Avogadro’s law   V/n = k
V  =   1/P  x  T  x  n
V  = R x  1/P  x  T  x  n
 V  =    nRT			or   	PV = nRT
PThe Ideal Gas Constant ,[object Object]
R  =   PV	=    (1 atm)(22.4 L)	=     0.0821  L*atm
nT(1 mol)(273.15 K)		        mol*K,[object Object]
Problem 2 ,[object Object],PV = nRT P = 0.974 atm V = ? P P nRT (0.250 mol)(0.0821                 )(293 K) n = 0.250 mol = V = L*atm L*atm o.0821 P R = 0.974 atm mol*K mol*K T = 20.0oC   6.17 L of O2 = + 273 = 293 K ***Temperature must be in Kelvin!!! ***Solve for V
Problem 3 ,[object Object],PV = nRT P = 3.50 atm RT RT V = 10.0 L PV (3.50 atm)(10.0 L) n = ? n = = R = RT (0.0821                 )(300.k)    L*atm L*atm o.0821 mol*K mol*K T = 27 oC   + 273 = 300. K = 1.42 mol Cl2 ***Temperature must be in Kelvin!!! ***Solve for n
Effusion Process whereby the molecules of a gas confined in a container randomly pass through a tiny opening in the container. Effusion ,[object Object]

Más contenido relacionado

Más de Chris Foltz

Life Science 2.2 : Blood
Life Science 2.2 : BloodLife Science 2.2 : Blood
Life Science 2.2 : BloodChris Foltz
 
Life Science 2.4 : The Respiratory System
Life Science 2.4 : The Respiratory SystemLife Science 2.4 : The Respiratory System
Life Science 2.4 : The Respiratory SystemChris Foltz
 
Life Science 1.3 : The Muscular System
Life Science 1.3 : The Muscular SystemLife Science 1.3 : The Muscular System
Life Science 1.3 : The Muscular SystemChris Foltz
 
Life Science 1.2 : The Skeletal System
Life Science 1.2 : The Skeletal SystemLife Science 1.2 : The Skeletal System
Life Science 1.2 : The Skeletal SystemChris Foltz
 
Life Science 1.1 : Body Organization
Life Science 1.1 : Body OrganizationLife Science 1.1 : Body Organization
Life Science 1.1 : Body OrganizationChris Foltz
 
Earth Science 6.3 : Causes of Volcanic Eruptions
Earth Science 6.3 : Causes of Volcanic EruptionsEarth Science 6.3 : Causes of Volcanic Eruptions
Earth Science 6.3 : Causes of Volcanic EruptionsChris Foltz
 
Earth Science 6.2 : Effects of Volcanic Eruptions
Earth Science 6.2 : Effects of Volcanic EruptionsEarth Science 6.2 : Effects of Volcanic Eruptions
Earth Science 6.2 : Effects of Volcanic EruptionsChris Foltz
 
Earth Science 6.1 : Volcanic Eruptions
Earth Science 6.1 : Volcanic EruptionsEarth Science 6.1 : Volcanic Eruptions
Earth Science 6.1 : Volcanic EruptionsChris Foltz
 
Earth Science 5.2 : Earthquake Measurement
Earth Science 5.2 : Earthquake MeasurementEarth Science 5.2 : Earthquake Measurement
Earth Science 5.2 : Earthquake MeasurementChris Foltz
 
Earth Science 5.3 : Earthquakes and Society
Earth Science 5.3 : Earthquakes and SocietyEarth Science 5.3 : Earthquakes and Society
Earth Science 5.3 : Earthquakes and SocietyChris Foltz
 
Earth Science 5.1: What are Earthquakes?
Earth Science 5.1: What are Earthquakes?Earth Science 5.1: What are Earthquakes?
Earth Science 5.1: What are Earthquakes?Chris Foltz
 
Earth Science 4.2 : Restless Continents
Earth Science 4.2 : Restless ContinentsEarth Science 4.2 : Restless Continents
Earth Science 4.2 : Restless ContinentsChris Foltz
 
Earth Science 4.1 : Inside the Earth
Earth Science 4.1 : Inside the EarthEarth Science 4.1 : Inside the Earth
Earth Science 4.1 : Inside the EarthChris Foltz
 
Earth Science 4.4 : Deforming the Earth's Crust
Earth Science 4.4 : Deforming the Earth's CrustEarth Science 4.4 : Deforming the Earth's Crust
Earth Science 4.4 : Deforming the Earth's CrustChris Foltz
 
Earth Science 4.3 : The Theory of Plate Tectonics
Earth Science 4.3 : The Theory of Plate TectonicsEarth Science 4.3 : The Theory of Plate Tectonics
Earth Science 4.3 : The Theory of Plate TectonicsChris Foltz
 
Chapter 15.3 : Acid - Base Reactions
Chapter 15.3 : Acid - Base ReactionsChapter 15.3 : Acid - Base Reactions
Chapter 15.3 : Acid - Base ReactionsChris Foltz
 
Earth Science 3.4 : Looking at Fossils
Earth Science 3.4 : Looking at FossilsEarth Science 3.4 : Looking at Fossils
Earth Science 3.4 : Looking at FossilsChris Foltz
 
Earth Science 3.5 : Time Marches On
Earth Science 3.5 : Time Marches OnEarth Science 3.5 : Time Marches On
Earth Science 3.5 : Time Marches OnChris Foltz
 
Earth Science 3.3 : Absolute Dating: A Measure of Time
Earth Science 3.3 : Absolute Dating: A Measure of TimeEarth Science 3.3 : Absolute Dating: A Measure of Time
Earth Science 3.3 : Absolute Dating: A Measure of TimeChris Foltz
 
Earth Science 3.1 : Earth's Story and Those Who First Listened.
Earth Science 3.1 : Earth's Story and Those Who First Listened.Earth Science 3.1 : Earth's Story and Those Who First Listened.
Earth Science 3.1 : Earth's Story and Those Who First Listened.Chris Foltz
 

Más de Chris Foltz (20)

Life Science 2.2 : Blood
Life Science 2.2 : BloodLife Science 2.2 : Blood
Life Science 2.2 : Blood
 
Life Science 2.4 : The Respiratory System
Life Science 2.4 : The Respiratory SystemLife Science 2.4 : The Respiratory System
Life Science 2.4 : The Respiratory System
 
Life Science 1.3 : The Muscular System
Life Science 1.3 : The Muscular SystemLife Science 1.3 : The Muscular System
Life Science 1.3 : The Muscular System
 
Life Science 1.2 : The Skeletal System
Life Science 1.2 : The Skeletal SystemLife Science 1.2 : The Skeletal System
Life Science 1.2 : The Skeletal System
 
Life Science 1.1 : Body Organization
Life Science 1.1 : Body OrganizationLife Science 1.1 : Body Organization
Life Science 1.1 : Body Organization
 
Earth Science 6.3 : Causes of Volcanic Eruptions
Earth Science 6.3 : Causes of Volcanic EruptionsEarth Science 6.3 : Causes of Volcanic Eruptions
Earth Science 6.3 : Causes of Volcanic Eruptions
 
Earth Science 6.2 : Effects of Volcanic Eruptions
Earth Science 6.2 : Effects of Volcanic EruptionsEarth Science 6.2 : Effects of Volcanic Eruptions
Earth Science 6.2 : Effects of Volcanic Eruptions
 
Earth Science 6.1 : Volcanic Eruptions
Earth Science 6.1 : Volcanic EruptionsEarth Science 6.1 : Volcanic Eruptions
Earth Science 6.1 : Volcanic Eruptions
 
Earth Science 5.2 : Earthquake Measurement
Earth Science 5.2 : Earthquake MeasurementEarth Science 5.2 : Earthquake Measurement
Earth Science 5.2 : Earthquake Measurement
 
Earth Science 5.3 : Earthquakes and Society
Earth Science 5.3 : Earthquakes and SocietyEarth Science 5.3 : Earthquakes and Society
Earth Science 5.3 : Earthquakes and Society
 
Earth Science 5.1: What are Earthquakes?
Earth Science 5.1: What are Earthquakes?Earth Science 5.1: What are Earthquakes?
Earth Science 5.1: What are Earthquakes?
 
Earth Science 4.2 : Restless Continents
Earth Science 4.2 : Restless ContinentsEarth Science 4.2 : Restless Continents
Earth Science 4.2 : Restless Continents
 
Earth Science 4.1 : Inside the Earth
Earth Science 4.1 : Inside the EarthEarth Science 4.1 : Inside the Earth
Earth Science 4.1 : Inside the Earth
 
Earth Science 4.4 : Deforming the Earth's Crust
Earth Science 4.4 : Deforming the Earth's CrustEarth Science 4.4 : Deforming the Earth's Crust
Earth Science 4.4 : Deforming the Earth's Crust
 
Earth Science 4.3 : The Theory of Plate Tectonics
Earth Science 4.3 : The Theory of Plate TectonicsEarth Science 4.3 : The Theory of Plate Tectonics
Earth Science 4.3 : The Theory of Plate Tectonics
 
Chapter 15.3 : Acid - Base Reactions
Chapter 15.3 : Acid - Base ReactionsChapter 15.3 : Acid - Base Reactions
Chapter 15.3 : Acid - Base Reactions
 
Earth Science 3.4 : Looking at Fossils
Earth Science 3.4 : Looking at FossilsEarth Science 3.4 : Looking at Fossils
Earth Science 3.4 : Looking at Fossils
 
Earth Science 3.5 : Time Marches On
Earth Science 3.5 : Time Marches OnEarth Science 3.5 : Time Marches On
Earth Science 3.5 : Time Marches On
 
Earth Science 3.3 : Absolute Dating: A Measure of Time
Earth Science 3.3 : Absolute Dating: A Measure of TimeEarth Science 3.3 : Absolute Dating: A Measure of Time
Earth Science 3.3 : Absolute Dating: A Measure of Time
 
Earth Science 3.1 : Earth's Story and Those Who First Listened.
Earth Science 3.1 : Earth's Story and Those Who First Listened.Earth Science 3.1 : Earth's Story and Those Who First Listened.
Earth Science 3.1 : Earth's Story and Those Who First Listened.
 

Applied Chapter 12.3 : Molecular Composition of Gases

  • 1. Chapter 12.3 Molecular Composition of Gases
  • 2. Solve problems using ideal gas law. Describe the relationships between gas behavior and chemical formulas, such as those expressed by Graham’s law of diffusion, law of combining gas volumes, and Dalton’s law of partial pressures. Objectives:
  • 3.
  • 4.
  • 7. V = 1/P x T x n
  • 8. V = R x 1/P x T x n
  • 9. V = nRT or PV = nRT
  • 10.
  • 11. R = PV = (1 atm)(22.4 L) = 0.0821 L*atm
  • 12.
  • 13.
  • 14.
  • 15.
  • 16.
  • 17. The rates of effusion of gases at the same temperature and pressure are inversely proportional to the square roots of their molar masses.= vB2 MA vA MB = vB MA
  • 18. Application of Graham’s Law Lighter gases (lower Molar mass or densities) diffuse faster than heavier gases. Also provides a method for determining molar masses. Rates of effusion of known and unknown gases can be compared to one another Rates of effusion of different gases
  • 19. Problem 1 Compare the rates of effusion of hydrogen and oxygen at the same temperature and pressure. 32.00 g/mol Rate of effusion of H2 MO2 = 3.98 = = Rate of effusion of O2 2.02 g/mol MH2 ***Remember that the molar masses are inversely related ***Find the molar masses of each Hydrogen effuses 3.98 times faster than oxygen ***Expressed like this
  • 20. Problem 2 A sample of hydrogen effuses through a porous container about 9 times faster than an unknown gas. Estimate the molar mass of the unknown gas. Rate of effusion of H2 Munknown = Rate of effusion of unknown MH2 2 Munknown 2 = 9 2.02 g/mol Munknown 81 = x 2.o2 g/mol 2.o2 g/mol x 2.02 g/mol Munknown = 160 g/mol
  • 21. Dalton’s Law of Partial Pressures States that the total pressure of a mixture of gases is equal to the sum of the partial pressures of the component gases. Partial pressure: pressure of each gas in a mixture PT = p1 + p2 + p3 + …… PT= Total Pressure p1 + p2 + p3 = partial pressures
  • 22. Dalton’s Law of Partial Pressures Gas collected by water displacement. Must include the pressure exerted by water vapor PT = p1 + p2 + p3 + …… So: Patm = pgas + pH2O
  • 23. Dalton’s Law of Partial Pressures Sample Problem 5 Oxygen gas from the decomposition of potassium chlorate, KClO3, was collected by water displacement. The barometric pressure and the temperature during the experiment were 731.0 torr and 20.0oC, respectively. What was the partial pressure of the oxygen collected? Patm = pO2 + pH2O Patm = 731.0 torr PO2 = ? PH2O = 17.5 torr (from appendix in table A-8, pg. 899) pO2 = Patm - pH2O pO2 = 731.0 torr – 17.5 torr = 713.5 torr