SlideShare una empresa de Scribd logo
1 de 55
Descargar para leer sin conexión
Arthur CHARPENTIER - Archimedean copulas.
Les copules Archimédiennes,
quelques motivations et applications
Arthur Charpentier
Katholieke Universiteit Leuven, ENSAE/CREST
Institut de Mathématiques Appliquées, Angers, Novembre 2006
1
Arthur CHARPENTIER - Archimedean copulas.
“Everybody who opens any journal on stochastic processes, probability theory,
statistics, econometrics, risk management, finance, insurance, etc., observes
that there is a fast growing industry on copulas [...] The International
Actuarial Association in its hefty paper on Solvency II recommends using
copulas for modeling dependence in insurance portfolios [...] Since Basle II
copulas are now standard tools in credit risk management”.
“Are copulas suitable for modeling multivariate extremes? Copulas generate
any multivariate distribution. If one wants to make an honest analysis of
multivariate extremes the distributions used should be related to extreme
value theory in some way.” Mikosh (2005).
2
Arthur CHARPENTIER - Archimedean copulas.
“We are thus generally sympathetic to the primary objective pursued by Dr.
Mikosch, which is to caution optimism about what copulas can and cannot
achieve as a dependence modeling tool”.
“Although copula theory has only recently emerged as a distinct field of
investigation, its roots go back at least to the 1940s, with the seminal work of
Hoeőding on margin-free measures of association [...] “It was possibly
Deheuvels who, in a series of papers published around 1980, revealed the full
potential of the fecund link between multivariate analysis and rank-based
statistical techniques”.
“However, the generalized use of copulas for model building (and
Archimedean copulas in particular) seems to have been largely fuelled at the
end of the 1980s by the publication of significant papers by Marshall and
Olkin (1988) and by Oakes (1989) in the influential Journal of the American
Statistical Association”. Genest & Rémillard (2006).
3
Arthur CHARPENTIER - Archimedean copulas.
Definition 1. A 2-dimensional copula is a 2-dimensional cumulative
distribution function restricted to [0, 1]2
with standard uniform margins.
Copula (cumulative distribution function) Level curves of the copula
Copula density Level curves of the copula
4
Arthur CHARPENTIER - Archimedean copulas.
Why using copulas ?
Theorem 2. (Sklar) Let C be a copula, and FX and FY two marginal
distributions, then F(x, y) = C(FX (x), FY (y)) is a bivariate distribution
function, with F ∈ F(FX, FY ).
Conversely, if F ∈ F(FX , FY ), there exists C such that
F(x, y) = C(FX(x), FY (y). Further, if FX and FY are continuous, then C is
unique, and given by
C(u, v) = F(F−1
X (u), F−1
Y (v)) for all (u, v) ∈ [0, 1] × [0, 1]
We will then define the copula of F, or the copula of (X, Y ).
5
Arthur CHARPENTIER - Archimedean copulas.
In dimension 2, consider the following family of copulae
Definition 3. Let ψ denote a convex decreasing function [0, 1] → [0, ∞] such
that ψ(1) = 0. Define the inverse (or quasi-inverse if ψ(0) < ∞) as
ψ←
(t) =



ψ−1
(t) for 0 ≤ t ≤ ψ(0)
0 for ψ(0) < t < ∞.
Then
C(u1, u2) = ψ←
(ψ(u1) + ψ(u2)), u1, u2 ∈ [0, 1],
is a copula, called an Archimedean copula, with generator ψ.
Note that ψ←
◦ ψ(t) = t on [0, 1]. ψ is said to be strict if ψ(0) = ∞.
The generator is unique up to a multiplicative positive constant.
6
Arthur CHARPENTIER - Archimedean copulas.
In higher dimension, most of the notions and results can be extended.
Definition 4. A d-dimensional copula is a d-dimensional cumulative
distribution function restricted to [0, 1]d
with standard uniform margins.
Sklar’s theorem can be extended in dimension d as follows
Theorem 5. (Sklar) Let C be a d-copula, and F1, ..., Fd be marginal
distributions, then F(x1, ..., , xd) = C(F1(x1), ..., Fd(xd)) is a d-dimensional
distribution function, with F ∈ F(F1, ..., Fd).
Conversely, if F ∈ F(F1, ..., Fd), there exists C such that
F(x1, ..., , xd) = C(F1(x1), ..., Fd(xd)). Further, if F1, ..., Fd are continuous,
then C is unique, and given by
C(u1, ..., ud) = F(F−1
1 (u1), ..., F−1
d (ud)) for all (u1, ..., ud) ∈ [0, 1]d
7
Arthur CHARPENTIER - Archimedean copulas.
Definition 6. Let ψ be an generator of order d, i.e. ψ is decreasing and
ψ(1) = 0, the inverse ψ−1
is d − 2 times continuously differentiable on
(0, ∞), and (ψ−1
)(d−2)
is convex. Then
C(u1, ..., ud) = ψ←
(ψ(u1) + ... + ψ(ud)), u1, ..., ud ∈ [0, 1],
is a copula, called an Archimedean copula, with generator ψ.
Note that ψ is a generator in any dimension d if and only if ψ(1) = 0 and
ψ−1
is completely monotone, i.e. (−1)k
(ψ−1
)(k)
(·) ≥ 0 on (0, ∞).
8
Arthur CHARPENTIER - Archimedean copulas.
• the lower Fréchet bound, ψ(t) = 1 − t, C−
(u, v) = min{u + v − 1, 0},
• the independent copula, ψ(t) = − log t, C⊥
(u, v) = uv,
• the Clayton’s copula, ψ(t) = t−θ
− 1, C(u, v) = (uθ
+ vθ
− 1)−1/θ
,
• the Gumbel’s copula, ψ(t) = (− log t)−θ
,
C(u, v) = exp − (− log u)θ
+ (− log v)θ 1/θ
,
• the Nelsen’s copula, ψ(t) = (1 − t)/t, C(u, v) = uv/(u + v − uv),
0.0 0.2 0.4 0.6 0.8 1.0
0.00.51.01.52.0
The lower Fréchet bound
0.0 0.2 0.4 0.6 0.8 1.0
0.00.51.01.52.0
The independent copula
0.0 0.2 0.4 0.6 0.8 1.0
0.00.51.01.52.0
Gumbel’s copula
0.0 0.2 0.4 0.6 0.8 1.0
0.00.51.01.52.0
Clayton’s copula
0.0 0.2 0.4 0.6 0.8 1.0
0.00.51.01.52.0
Nelsen’s copula
9
Arthur CHARPENTIER - Archimedean copulas.
Some more examples of Archimedean copulas
ψ(t) range θ
(1) 1
θ
(t−θ − 1) [−1, 0) ∪ (0, ∞) Clayton, Clayton (1978)
(2) (1 − t)θ [1, ∞)
(3) log
1−θ(1−t)
t
[−1, 1) Ali-Mikhail-Haq
(4) (− log t)θ [1, ∞) Gumbel, Gumbel (1960), Hougaard (1986)
(5) − log e−θt−1
e−θ−1
(−∞, 0) ∪ (0, ∞) Frank, Frank (1979), Nelsen (1987)
(6) − log{1 − (1 − t)θ} [1, ∞) Joe, Frank (1981), Joe (1993)
(7) − log{θt + (1 − θ)} (0, 1]
(8) 1−t
1+(θ−1)t
[1, ∞)
(9) log(1 − θ log t) (0, 1] Barnett (1980), Gumbel (1960)
(10) log(2t−θ − 1) (0, 1]
(11) log(2 − tθ) (0, 1/2]
(12) ( 1
t
− 1)θ [1, ∞)
(13) (1 − log t)θ − 1 (0, ∞)
(14) (t−1/θ − 1)θ [1, ∞)
(15) (1 − t1/θ)θ [1, ∞) Genest & Ghoudi (1994)
(16) ( θ
t
+ 1)(1 − t) [0, ∞)
Table 1: Archimedean copulas, from Nelsen (2006).
10
Arthur CHARPENTIER - Archimedean copulas.
Where do these copulas come from ?
• The conditional independence and frailty approach
Consider two risks, X and Y , such that
X|Θ = θG ∼ E(θG) and Y |Θ = θG ∼ E(θG) are independent,
X|Θ = θB ∼ E(θB) and Y |Θ = θB ∼ E(θB) are independent,
(unobservable good (G) and bad (B) risks).
The following figures start from 2 classes of risks, then 3, and then a
continuous risk factor θ ∈ (0, ∞).
11
Arthur CHARPENTIER - Archimedean copulas.
0 5 10 15
05101520
Conditional independence, two classes
−3 −2 −1 0 1 2 3
−3−2−10123
Conditional independence, two classes
Figure 1: Two classes of risks, (Xi, Yi) and (Φ−1
(FX(Xi)), Φ−1
(FY (Yi))).
12
Arthur CHARPENTIER - Archimedean copulas.
0 5 10 15 20 25 30
010203040
Conditional independence, three classes
−3 −2 −1 0 1 2 3
−3−2−10123
Conditional independence, three classes
Figure 2: Three classes of risks, (Xi, Yi) and (Φ−1
(FX(Xi)), Φ−1
(FY (Yi))).
13
Arthur CHARPENTIER - Archimedean copulas.
0 20 40 60 80 100
020406080100
Conditional independence, continuous risk factor
−3 −2 −1 0 1 2 3
−3−2−10123
Conditional independence, continuous risk factor
Figure 3: Continuous classes, (Xi, Yi) and (Φ−1
(FX(Xi)), Φ−1
(FY (Yi))).
14
Arthur CHARPENTIER - Archimedean copulas.
0 20 40 60 80 100
020406080100
Conditional independence, continuous risk factor
−3 −2 −1 0 1 2 3
−3−2−10123
Conditional independence, continuous risk factor
Figure 4: Continuous classes, (Xi, Yi) and (Φ−1
(FX(Xi)), Φ−1
(FY (Yi))).
15
Arthur CHARPENTIER - Archimedean copulas.
Assume that, given Θ, X|Θ ∼ E(αΘ) and Y |Θ ∼ E(βΘ) are independent,
P(X > x, Y > y) =
∞
0
P(X > x, Y > y|Θ = θ)π(θ)dθ
=
∞
0
P(X > x|Θ = θ)P(Y > y|Θ = θ)π(θ)dθ
=
∞
0
exp(−αθx) exp(−βθy)π(θ)dθ
=
∞
0
[exp(−[αx + βy]θ)] π(θ)dθ,
where ψ(t) = E(exp −tΘ) = exp(−tθ)π(θ)dθ is the Laplace transform of Θ.
16
Arthur CHARPENTIER - Archimedean copulas.
Hence P(X > x, Y > y) = φ(αx + βy). Or,
P(X > x) =
∞
0
P(X > x|Θ = θ)π(θ)dθ
=
∞
0
exp(−αθx)π(θ)dθ
= φ(αx),
and thus αx = φ−1
(P(X > x)) (similarly for βy). And therefore,
P(X > x, Y > y) = φ(φ−1
(P(X > x)) + φ−1
(P(Y > y)))
= C(P(X > x), P(Y > y)),
setting C(u, v) = φ(φ−1
(u) + φ−1
(v)) for any (u, v) ∈ [0, 1] × [0, 1].
Using any Laplace transforms, one can generate several families of
multivariate distributions.
Example 7. If Θ is Gamma distributed, the associated copula is Clayton’s.
If Θ has an α-stable distributed, the associated copula is Gumbel’s.
17
Arthur CHARPENTIER - Archimedean copulas.
This approach can be used in motor insurance ratemaking, and in credit risk.
A finite sequence {X1, ..., Xd} of random variables is exchangeable, or
d-exchangeable, if
(X1, ..., Xd)
L
= Xσ(1), ..., Xσ(d) , (1)
for any permutation σ of {1, ..., d}. More generally, an infinite sequence
{X1, X2...} of random variables is infinitely exchangeable (or simply
exchangeable) if
(X1, X2, ...)
L
= Xσ(1), Xσ(2), ... , (2)
for any finite permutation σ of N∗
(that is Card {i, σ (i) = i} < ∞).
A d-exchangeable sequence {X1, ..., Xd} is called m-extendible (for some
m > d), if (X1, ..., Xd)
L
= (Z1, ..., Zd), where {Z1, ..., Zm} is some
m-exchangeable sequence.
18
Arthur CHARPENTIER - Archimedean copulas.
Using the formulation of Aldous (1985), de Finetti’s theorem states that“an
infinite exchangeable sequence is a mixture of i.i.d. sequences”: X1, X2, ... of
Bernoulli random variables is exchangeable if and only there is a random
variable Θ, taking values in [0, 1] such that, given Θ = θ the Xi’s are
independent, and Xi ∼ B(θ) (see Schervish (1995) or Chow & Teicher
(1997)).
Example 8. This result can be easily interpreted in credit risk, where
variables of interest are dichotomous (default or non-default). Let X1, X2, ...
be an infinite exchangeable sequence of Bernoulli variables, and let
Sn = X1 + .... + Xn the number of defaults within n companies (for a given
period of time). Then, the distribution of Sn is a mixture of binomial
distributions, i.e. there is a distribution function H on [0, 1] such that
P (Sn = k) =
1
0
n
k
ωk
(1 − ω)
n−k
dH (θ) .
19
Arthur CHARPENTIER - Archimedean copulas.
• The survival distribution approach
Assume that for a random vector (X, Y ), there exists a convex survival
distribution S, such that S(0) = 1 and
P(X > x, Y > y) = S(x + y),
then the joint survival copula of (X, Y ), such that
P(X > x, Y > y) = C(P(X > x), P(Y > y),
is C(u, v) = S(S−1
(u) + S−1
(v)), which is an Archimedean copula with
generator ψ = S−1
.
This is the notion of Schur-constant survival distribution of random pair
(X, Y ).
Example 9. If S is the survival Pareto distribution, the associated copula is
Clayton’s. If S is the survival Weibull distribution, the associated copula is
Gumbel’s.
20
Arthur CHARPENTIER - Archimedean copulas.
• The serial iterate approach
A “natural” idea to define d dimension copula from 2 dimensional copulas
can be the serial iterate approach. Given a 2-copula C2, define recursively
Cn(u1, . . . , un−1, un) = C2(Cn−1(u1, . . . , un−1), un).
Proposition 10. C is an associative copula, i.e.
C(u, C(v, w) = C(C(u, v), w) for all u, v, w ∈ [0, 1], such that C(u, u) < u for
all u ∈ (0, 1) if and only if C is Archimedean.
Hence, the only copulas that can be constructed by serial iteration are
Archimedean copulas.
Remark 11. This is actually where the word Archimedean comes from.
21
Arthur CHARPENTIER - Archimedean copulas.
• The distorted copula approach
Definition 12. A distortion function is a function h : [0, 1] → [0, 1] strictly
increasing such that h(0) = 0 and h(1) = 1.
The set of distortion function will be denoted H.
Note that h ∈ H if and only if h−1
∈ H. Given a copula C, define
Ch(u, v) = h−1
(C(h(u), h(v))).
If h is convex, then Ch is a copula, called distorted copula.
Example 13. if h(x) = x1/n
, the distorted copula is
Ch(u, v) = Cn
(u1/n
, v1/n
), for all n ∈ N, (u, v) ∈ [0, 1]2
.
if the survival copula of the (Xi, Yi)’s is C, then the survival copula of
(Xn:n, Yn:n) = (max{X1, ..., Xn}, max{Y1, ..., Yn}) is Ch.
Example 14. if C(u, v) = uv = C⊥
(u, v) (the independent copula), and
φ(·) = log h(·), then
Ch(u, v) = h−1
(h(u)h(v)) = φ−1
(φ(u) + φ(v)).
22
Arthur CHARPENTIER - Archimedean copulas.
• Kendall’s distribution approach
Archimedean copulas can also be characterized through Kendall’s cdf, K,
K(t) = P(C(U, V ) ≤ t), t ∈ [0, 1].
where (U, V ) has cdf C.
Note that K(t) = t − λ(t) where λ(t) = ψ(t)/ψ (t). And conversely ψ is
ψ(u) = ψ(u0) exp
u
u0
1
λ(t)
dt for all 0 < u0 < 1.
23
Arthur CHARPENTIER - Archimedean copulas.
• Characterizations of some archimedean copulas
1. Frank copula is the only Archimedean such that (U, V )
L
= (1 − U, 1 − V )
(stability by symmetry),
2. Clayton copula is the only Archimedean such that (U, V ) has the same
copula as (U, V ) given (U ≤ u, V ≤ v), for all u, v ∈ (0, 1] (stability by
truncature),
3. Gumbel copula is the only Archimedean such that (U, V ) has the same
copula as (max{U1, ..., Un}, max{V1, ..., Vn}) for all n ≥ 1 (max-stability),
24
Arthur CHARPENTIER - Archimedean copulas.
Copula density
0.0 0.4 0.8
0.00.51.01.52.0
Archimedean generator
0 1 2 3 4 5 6
0.00.40.8
Laplace Transform
Level curves of the copula
0.0 0.4 0.8
−0.4−0.20.0
Lambda function
0.0 0.4 0.8
0.00.40.8
Kendall cdf
Figure 5: (Independent) Archimedean copula (C = C⊥
, ψ(t) = − log t).
25
Arthur CHARPENTIER - Archimedean copulas.
Some “famous” Archimedean copulas
Clayton’s copula (Figure 6), with parameter α ∈ [0, ∞) has generator
ψ(x; α) =
x−α
− 1
α
if 0 < α < ∞, with the limiting case ψ(x; 0) = − log(x), for any 0 < x ≤ 1.
The inverse function is the Laplace transform of a Gamma distribution.
The associated copula is
C(u, v; α) = (u−α
+ v−α
− 1)−1/α
if 0 < α < ∞, with the limiting case C(u, v; 0) = C⊥
(u, v), for any
(u, v) ∈ (0, 1]2
.
26
Arthur CHARPENTIER - Archimedean copulas.
Copula density
0.0 0.4 0.8
0.00.51.01.52.0
Archimedean generator
0 1 2 3 4 5 6
0.00.20.40.60.81.0
Laplace Transform
Level curves of the copula
0.0 0.4 0.8
−0.4−0.3−0.2−0.10.0
Lambda function
0.0 0.4 0.8
0.00.20.40.60.81.0
Kendall cdf
Figure 6: Clayton’s copula.
27
Arthur CHARPENTIER - Archimedean copulas.
Gumbel’s copula (Figure 7), with parameter α ∈ [1, ∞) has generator
ψ(x; α) = (− log x)α
if 1 ≤ α < ∞, with the limiting case ψ(x; 0) = − log(x), for any 0 < x ≤ 1.
The inverse function is the Laplace transform of a 1/α-stable distribution.
The associated copula is
C(u, v; α) = −
1
α
log 1 +
(e−αu
− 1) (e−αv
− 1)
e−α − 1
,
if 1 ≤ α < ∞, for any (u, v) ∈ (0, 1]2
.
28
Arthur CHARPENTIER - Archimedean copulas.
Copula density
0.0 0.4 0.8
0.00.51.01.52.0
Archimedean generator
0 1 2 3 4 5 6
0.00.20.40.60.81.0
Laplace Transform
Level curves of the copula
0.0 0.4 0.8
−0.4−0.3−0.2−0.10.0
Lambda function
0.0 0.4 0.8
0.00.20.40.60.81.0
Kendall cdf
Figure 7: Gumbel’s copula.
29
Arthur CHARPENTIER - Archimedean copulas.
How to define more general parametric families ?
Given an Archimedean generator ψ, define ψα and ψβ as follows,
ψα,1(x) = ψ(xα
) and ψ1,β(x) = ψ(x)β
,
where β ≥ 1 and α ∈ (0, 1]. Note that a composite family can also be
considered, ψα,β(x) = [ψ(xα
)]β
.
30
Arthur CHARPENTIER - Archimedean copulas.
Distorted Archimedean copula, from Frank
β = 1
α = 1
Distorted Archimedean copula, from Frank
β = 3 2
α = 1
Distorted Archimedean copula, from Frank
β = 1
α = 1 2
Distorted Archimedean copula, from Frank
β = 3 2
α = 1 2
Figure 8: Distorted Archimedean copula (φα,β), from Frank copula.
31
Arthur CHARPENTIER - Archimedean copulas.
A short word on the zero-set area
Define the zero-set boundary curve φ(u) + φ(v) = φ(0). If φ(0) = ∞, the
zero-set boundary curve has a null measure (e.g. Clayton’s copula). If
φ(0) < ∞, zero-set boundary curve is −φ(0)/φ (0) (e.g. Copula 4.2.2 in
Nelsen (2006)).
Example 15. Clayton’s copula can be defined for θ ∈ [−1, 0) ∪ (0, +∞), as
C(u, v) = max{ u−θ
+ v−θ
− 1
−1/θ
, 0}.
If θ < 0, this copula has a zero-set, below the curve y = (1 − x−θ
)−1/θ
Example 16. Consider Copula 4.2.2 in Nelsen (2006), defined for
θ ∈ [1, +∞), as
C(u, v) = max{1 − (1 − u)θ
+ (1 − v)θ 1/θ
, 0},
with generator (1 − t)θ
.
32
Arthur CHARPENTIER - Archimedean copulas.
0.0 0.2 0.4 0.6 0.8 1.0
0.00.20.40.60.81.0
Generating Clayton’s copula
0.0 0.2 0.4 0.6 0.8 1.0
0.00.20.40.60.81.0
Generating Clayton’s copula
Figure 9: Clayton’s copula, θ = 2 and θ = −1/2.
33
Arthur CHARPENTIER - Archimedean copulas.
0.0 0.2 0.4 0.6 0.8 1.0
0.20.40.60.81.0
Generating copula 4.2.2
0.0 0.2 0.4 0.6 0.8 1.0
0.20.40.60.81.0
Generating copula 4.2.2
Figure 10: Copula 4.2.2, θ = 2 and θ = 5.
34
Arthur CHARPENTIER - Archimedean copulas.
Sequences of Archimedean copulas
Extension of results due to Genest & Rivest (1986),
Proposition The five following statements are equivalent,
(i) lim
n→∞
Cn(u, v) = C(u, v) for all (u, v) ∈ [0, 1]2
,
(ii) lim
n→∞
ψn(x)/ψn(y) = ψ(x)/ψ (y) for all x ∈ (0, 1] and y ∈ (0, 1) such that
ψ such that is continuous in y,
(iii) lim
n→∞
λn(x) = λ(x) for all x ∈ (0, 1) such that λ is continuous in x,
(iv) there exists positive constants κn such that limn→∞ κnψn(x) = ψ(x) for
all x ∈ [0, 1],
(v) lim
n→∞
Kn(x) = K(x) for all x ∈ (0, 1) such that K is continuous in x.
35
Arthur CHARPENTIER - Archimedean copulas.
Proposition 17. The four following statements are equivalent
(i) lim
n→∞
Cn(u, v) = C+
(u, v) = min(u, v) for all (u, v) ∈ [0, 1]2
,
(ii) lim
n→∞
λn(x) = 0 for all x ∈ (0, 1),
(iii) lim
n→∞
ψn(y)/ψn(x) = 0 for all 0 ≤ x < y ≤ 1,
(iv) lim
n→∞
Kn(x) = x for all x ∈ (0, 1).
Note that one can get non Archimedean limits,
0.0 0.4 0.8
051015
0.0 0.4 0.8
0.00.20.40.60.81.0
Sequence of generators and Kendall cdf’s
36
Arthur CHARPENTIER - Archimedean copulas.
Statistical inference for Archimedean copulas
Recall that the Archimedean generator can be expressed as
ψ(u) = ψ(u0) exp
u
u0
1
λ(t)
dt for all 0 < u0 < 1,
where λ(t) = t − K(t), K begin Kendall’s distribution function, i.e.
K(t) = P(F(X, Y ) ≤ t), t ∈ [0, 1].
where F(x, y) = P(X ≤ x, Y ≤ y).
Note that K can be written
K(t) = Pr[F(X, Y ) ≤ t] = E[1{F(X, Y ) ≤ t}]
=
∞
0
∞
0
1[F(x, y) ≤ t]dF(x, y).
37
Arthur CHARPENTIER - Archimedean copulas.
Thus, a natural estimator can be defined as
K(t) =
∞
0
∞
0
1[F(x, y) ≤ t]dF(x, y)
where F is a nonparametric estimate of the joint cdf F.
Hence, a natural estimate for φ is then
φ(u) = exp
u
u0
1
λ(t)
dt = exp
u
u0
1
t − K(t)
dt
which leads to Cφ (see Genest & Rivest (1993)).
38
Arthur CHARPENTIER - Archimedean copulas.
−2 −1 0 1 2
−2−1012
Scatterplot
0.0 0.2 0.4 0.6 0.8 1.0
0.00.20.40.60.81.0
Kendall’s distribution function
0.0 0.2 0.4 0.6 0.8 1.0
−0.25−0.20−0.15−0.10−0.050.00
Lambda function
0.0 0.2 0.4 0.6 0.8 1.0
0123456
Archimedean generator
Figure 11: Estimation of the Archimedean generator, n = 100.
39
Arthur CHARPENTIER - Archimedean copulas.
−2 −1 0 1 2
−2−1012
Scatterplot
0.0 0.2 0.4 0.6 0.8 1.0
0.00.20.40.60.81.0
Kendall’s distribution function
0.0 0.2 0.4 0.6 0.8 1.0
−0.25−0.20−0.15−0.10−0.050.00
Lambda function
0.0 0.2 0.4 0.6 0.8 1.001234567
Archimedean generator
Figure 12: Estimation of the Archimedean generator, n = 100.
40
Arthur CHARPENTIER - Archimedean copulas.
Generating Archimedean copulas
In dimension 2, recall that if (U, V ) has joint distribution C.
P (V ≤ v|U = u) = lim
h→0
P (V ≤ v|u ≤ U < u + h)
= lim
h→0
P (U < u + h, V ≤ v) − P (U < u, V ≤ v)
P (U < u + h) − P (U < u)
= lim
h→0
C(u + h, v) − C(u, v)
(u + h) − u
= lim
h→0
C(u + h, v) − C(u, v)
(u + h) − u
=
∂C
∂u (u,v)
.
The general algorithm is then
U ← Random, and V ←
∂C(U, ·)
∂u
−1
(Random),
Genest & MacKay (1986), Genest (1987) and Lee (1993) proposed the
following algorithm to generate random vectors (X, Y ) with Archimedean
41
Arthur CHARPENTIER - Archimedean copulas.
copula.
U ⇐= Random,
V is the solution of Random =
(φ−1
) (V ))
(φ−1) (0)
.
Note that other algorithms can be used, to generate pairs (U, V )
U ⇐=Random, T ⇐=Random,
W ⇐= (φ )−1
(φ (U)/T)
V ⇐= φ−1
(φ(W) − φ(U))
Or equivalently
W ⇐= K−1
(Random), S ⇐=Random,
U ⇐= φ−1
(Sφ(W))
V ⇐= φ−1
((1 − S)φ(W))
42
Arthur CHARPENTIER - Archimedean copulas.
Histogram, first component
0.0 0.2 0.4 0.6 0.8 1.0
020406080100
−2 0 2 4
−3−2−1012
Gaussian distribution N(0,1)
GaussiandistributionN(0,1)0.0 0.2 0.4 0.6 0.8 1.0
0.00.20.40.60.81.0
Uniform distribution on [0,1]
Uniformdistributionon[0,1]
Histogram, second component
0.0 0.2 0.4 0.6 0.8 1.0
020406080100
Figure 13: Simulations using Clayton’s copula.
43
Arthur CHARPENTIER - Archimedean copulas.
Tails for Archimedean copulas (Fisher-Tippett)
Standard approach, introduce λL and λU (lower and upper tail indices),
λL = lim
u→0
P X ≤ F−1
X (u) |Y ≤ F−1
Y (u) ,
λU = lim
u→1
P X > F−1
X (u) |Y > F−1
Y (u) .
Those measures are copula based, i.e. λL = lim
u→0
C(u, u)
u
For Archimedean copulas, note that
λU = 2 − lim
x→0
1 − φ−1
(2x)
1 − φ−1(x)
and λL = lim
x→0
φ−1
(2φ(x))
x
= lim
x→∞
φ−1
(2x)
φ−1(x)
.
44
Arthur CHARPENTIER - Archimedean copulas.
ψ(t) range θ λL λU
(1) 1
θ
(t−θ − 1) [−1, 0) ∪ (0, ∞) max(2−1/θ, 0) 0
(2) (1 − t)θ [1, ∞) 0 2 − 21/θ
(3) log
1−θ(1−t)
t
[−1, 1) 0 0
(4) (− log t)θ [1, ∞) 0 2 − 21/θ
(5) − log e−θt−1
e−θ−1
(−∞, 0) ∪ (0, ∞) 0 0
(6) − log{1 − (1 − t)θ} [1, ∞) 0 2 − 21/θ
(7) (θ − 1) log{θt + (1 − θ)} (0, 1] 0 0
(8) 1−t
1+(θ−1)t
[1, ∞) 0 0
(9) log(1 − θ log t) (0, 1] 0 0
(10) log(2t−θ − 1) (0, 1] 0 0
(11) log(2 − tθ) (0, 1/2] 0 0
(12) ( 1
t
− 1)θ [1, ∞) 2−1/θ 2 − 21/θ
(13) (1 − log t)θ − 1 (0, ∞) 0 0
(14) (t−1/θ − 1)θ [1, ∞) 1/2 2 − 21/θ
(15) (1 − t1/θ)θ [1, ∞) 0 2 − 21/θ
(16) ( θ
t
+ 1)(1 − t) [0, ∞) 1/2 0
(17) − log
(1+t)−θ−1
2−θ−1
(−∞, 0) ∪ (0, ∞) 0 0
(18) eθ/(t−1) [2, ∞) 0 1
(19) eθ/t − eθ (0, ∞) 1 0
(20) e−tθ
− e (0, ∞) 1 0
(21) 1 − {1 − (1 − t)θ}1/θ [1, ∞) 0 2 − 21/θ
(22) arcsin(1 − tθ) (0, 1] 0 0
45
Arthur CHARPENTIER - Archimedean copulas.
Truncature of Archimedean copulas
Definition 18. Let U = (U1, ..., Un) be a random vector with uniform
margins, and distribution function C. Let Cr denote the copula of random
vector
(U1, ..., Un)|U1 ≤ r1, ..., Ud ≤ rd, (3)
where r1, ..., rd ∈ (0, 1].
If Fi|r(·) denotes the (marginal) distribution function of Ui given
{U1 ≤ r1, ..., Ui ≤ ri, ..., Ud ≤ rd} = {U ≤ r},
Fi|r(xi) =
C(r1, ..., ri−1, xi, ri+1, ..., rd)
C(r1, ..., ri−1, ri, ri+1, ..., rd)
,
and therefore, the conditional copula (or truncated copula) is
Cr(u) =
C(F←
1|r(u1), ..., F←
d|r(ud))
C(r1, ..., rd)
. (4)
46
Arthur CHARPENTIER - Archimedean copulas.
Proposition 19. The class of Archimedean copulae is stable by truncature.
More precisely, if U has cdf C, with generator ψ, U given {U ≤ r}, for any
r ∈ (0, 1]d
, will also have an Archimedean generator, with generator
ψr(t) = ψ(tc) − ψ(c) where c = C(r1, ..., rd).
0.0 0.2 0.4 0.6 0.8 1.0
0.00.51.01.52.02.53.0 Generators of conditional Archimedean copulae
(1) (2)
(3)
47
Arthur CHARPENTIER - Archimedean copulas.
Tails for Archimedean copulas (Pickands-Balkema-de Haan)
Proposition 20. Let C be an Archimedean copula with generator ψ, and
0 ≤ α ≤ ∞. If C(·, ·; α) denote Clayton’s copula with parameter α.
(i) limu→0 Cu(x, y) = C(x, y; α) for all (x, y) ∈ [0, 1]2
;
(ii) −ψ ∈ R−α−1.
(iii) ψ ∈ R−α.
(iv) limu→0 uψ (u)/ψ(u) = −α.
If α = 0 (tail independence),
(i) ⇐⇒ (ii)=⇒(iii) ⇐⇒ (iv),
and if α ∈ (0, ∞] (tail dependence),
(i) ⇐⇒ (ii) ⇐⇒ (iii) ⇐⇒ (iv).
48
Arthur CHARPENTIER - Archimedean copulas.
Proposition 21. There exists Archimedean copulae, with generators having
continuous derivatives, slowly varying such that the conditional copula does
not convergence to the independence.
Generator ψ integration of a function piecewise linear, with knots 1/2k
,
If −ψ ∈ R−1, then ψ ∈ Πg (de Haan class), and not ψ /∈ R0.
This generator is slowly varying, with the limiting copula is not C⊥
.
Note that lower tail index is
λL = lim
u↓0
C(u, u)
u
= 2−1/α
,
with proper interpretations for α equal to zero or infinity (see e.g. Theorem
3.9 of Juri and Wüthrich (2003)).
49
Arthur CHARPENTIER - Archimedean copulas.
ψ(t) range θ α
(1) 1
θ
(t−θ − 1) [−1, 0) ∪ (0, ∞) max(θ, 0)
(2) (1 − t)θ [1, ∞) 0
(3) log
1−θ(1−t)
t
[−1, 1) 0
(4) (− log t)θ [1, ∞) 0
(5) − log e−θt−1
e−θ−1
(−∞, 0) ∪ (0, ∞) 0
(6) − log{1 − (1 − t)θ} [1, ∞) 0
(7) (θ − 1) log{θt + (1 − θ)} (0, 1] 0
(8) 1−t
1+(θ−1)t
[1, ∞) 0
(9) log(1 − θ log t) (0, 1] 0
(10) log(2t−θ − 1) (0, 1] 0
(11) log(2 − tθ) (0, 1/2] 0
(12) ( 1
t
− 1)θ [1, ∞) θ
(13) (1 − log t)θ − 1 (0, ∞) 0
(14) (t−1/θ − 1)θ [1, ∞) 1
(15) (1 − t1/θ)θ [1, ∞) 0
(16) ( θ
t
+ 1)(1 − t) [0, ∞) 1
(17) − log
(1+t)−θ−1
2−θ−1
(−∞, 0) ∪ (0, ∞) 0
(18) eθ/(t−1) [2, ∞) 0
(19) eθ/t − eθ (0, ∞) ∞
(20) e−tθ
− e (0, ∞) 0
(21) 1 − {1 − (1 − t)θ}1/θ [1, ∞) 0
(22) arcsin(1 − tθ) (0, 1] 0
50
Arthur CHARPENTIER - Archimedean copulas.
Tails for Archimedean copulas (Pickands-Balkema-de Haan)
Analogy with lower tails.
Recall that ψ(1) = 0, and therefore, using Taylor’s expansion yields
ψ(1 − s) = −sψ (1) + o(s) as s → 0.
And moreover, since ψ is convex, if ψ(1 − ·) is regularly varying with index
α, then necessarily α ∈ [1, ∞). If if (−D)ψ(1) > 0, then α = 1 (but the
converse is not true).
0.5 0.6 0.7 0.8 0.9 1.0
0.00.10.20.30.40.50.60.7
Archimedean copula at 1
0.5 0.6 0.7 0.8 0.9 1.0
0.00.10.20.30.40.50.6
Archimedean copula at 1
0.5 0.6 0.7 0.8 0.9 1.0
0.000.020.040.060.080.100.12
Archimedean copula at 1
0.5 0.6 0.7 0.8 0.9 1.0
−0.020.000.020.040.060.080.10
Archimedean copula at 1
51
Arthur CHARPENTIER - Archimedean copulas.
Proposition 22. Let C be an Archimedean copula with generator ψ.
Assume that f : s → ψ(1 − s) is regularly varying with index α ∈ [1, ∞) and
that −ψ (1) = κ. Then three cases can be considered
(i) if α ∈ (1, ∞), case of asymptotic dependence,
(ii) if α = 1 and if κ = 0, case of dependence in independence,
(iii) if α = 1 and if κ > 0, case of independence in independence.
52
Arthur CHARPENTIER - Archimedean copulas.
ψ(t) range θ α κ
(1) 1
θ
(t−θ − 1) [−1, 0) ∪ (0, ∞) 1 1
(2) (1 − t)θ [1, ∞) θ 0
(3) log
1−θ(1−t)
t
[−1, 1) 1 1 − θ
(4) (− log t)θ [1, ∞) θ 0
(5) − log e−θt−1
e−θ−1
(−∞, 0) ∪ (0, ∞) 1 θe−θ
e−θ−1
(6) − log{1 − (1 − t)θ} [1, ∞) θ 0
(7) − log{θt + (1 − θ)} (0, 1] 1 θ
(8) 1−t
1+(θ−1)t
[1, ∞) 1 1/θ
(9) log(1 − θ log t) (0, 1] 1 θ
(10) log(2t−θ − 1) (0, 1] 1 2θ
(11) log(2 − tθ) (0, 1/2] 1 θ
(12) ( 1
t
− 1)θ [1, ∞) θ 0
(13) (1 − log t)θ − 1 (0, ∞) 1 θ
(14) (t−1/θ − 1)θ [1, ∞) θ 0
(15) (1 − t1/θ)θ [1, ∞) θ 0
(16) ( θ
t
+ 1)(1 − t) [0, ∞) 1 θ + 1
(17) − log
(1+t)−θ−1
2−θ−1
(−∞, 0) ∪ (0, ∞) 1 −θ2−θ−1
2−θ−1
(18) eθ/(t−1) [2, ∞) ∞ 0
(19) eθ/t − eθ (0, ∞) 1 θeθ
(20) e−tθ
− e (0, ∞) 1 θe
(21) 1 − {1 − (1 − t)θ}1/θ [1, ∞) θ 0
(22) arcsin(1 − tθ) (0, 1] 1 θ
(·) (1 − t) log(t − 1) 1 0
53
Arthur CHARPENTIER - Archimedean copulas.
0.0 0.2 0.4 0.6 0.8 1.0
0246810
Archimedean copula density on the diagonal
Dependence
Dependence in independence
Independence in independence
Copula density
54
Arthur CHARPENTIER - Archimedean copulas.
A short word on hierarchical copulas
As pointed out in Genest, Quesada Molina & Rodríguez Lallena
(1995), or Li, Scarsini & Shaked (1996) it is usually difficult to define
copulas as follows,
C(u1, u2, u3, u4) = C0(C1,2(u1, u2), C3,4(u3, u4))
where only 2-dimensional copulas are considered. But this can be done
simply in the case of Archimedean copulas. Consider φ, ψ and λ three
Archimedean copulas, and set
C(u1, u2, u3, u4) = λ←
(λ ◦ ψ←
(ψ(u1) + ψ(u2)) + λ ◦ φ←
(φ(u3) + φ(u4))).
Under weak conditions such a function defines a 4 dimensional copula.
55

Más contenido relacionado

La actualidad más candente (20)

Slides ensae 8
Slides ensae 8Slides ensae 8
Slides ensae 8
 
Slides ineq-4
Slides ineq-4Slides ineq-4
Slides ineq-4
 
Multiattribute utility copula
Multiattribute utility copulaMultiattribute utility copula
Multiattribute utility copula
 
Slides toulouse
Slides toulouseSlides toulouse
Slides toulouse
 
Slides amsterdam-2013
Slides amsterdam-2013Slides amsterdam-2013
Slides amsterdam-2013
 
Quantile and Expectile Regression
Quantile and Expectile RegressionQuantile and Expectile Regression
Quantile and Expectile Regression
 
Slides ensae 11bis
Slides ensae 11bisSlides ensae 11bis
Slides ensae 11bis
 
Slides univ-van-amsterdam
Slides univ-van-amsterdamSlides univ-van-amsterdam
Slides univ-van-amsterdam
 
Slides ineq-2
Slides ineq-2Slides ineq-2
Slides ineq-2
 
Slides ensae-2016-9
Slides ensae-2016-9Slides ensae-2016-9
Slides ensae-2016-9
 
Testing for Extreme Volatility Transmission
Testing for Extreme Volatility Transmission Testing for Extreme Volatility Transmission
Testing for Extreme Volatility Transmission
 
Slides Bank England
Slides Bank EnglandSlides Bank England
Slides Bank England
 
Proba stats-r1-2017
Proba stats-r1-2017Proba stats-r1-2017
Proba stats-r1-2017
 
Inequality #4
Inequality #4Inequality #4
Inequality #4
 
Sildes buenos aires
Sildes buenos airesSildes buenos aires
Sildes buenos aires
 
Inequalities #2
Inequalities #2Inequalities #2
Inequalities #2
 
Slides barcelona Machine Learning
Slides barcelona Machine LearningSlides barcelona Machine Learning
Slides barcelona Machine Learning
 
Chapter 13
Chapter 13Chapter 13
Chapter 13
 
Slides lln-risques
Slides lln-risquesSlides lln-risques
Slides lln-risques
 
Slides econometrics-2018-graduate-2
Slides econometrics-2018-graduate-2Slides econometrics-2018-graduate-2
Slides econometrics-2018-graduate-2
 

Destacado

Mesure & Analyse: Mesurer les Risques
Mesure & Analyse: Mesurer les RisquesMesure & Analyse: Mesurer les Risques
Mesure & Analyse: Mesurer les RisquesOlivier Pinette
 
value at risk
value at riskvalue at risk
value at riskamine145
 
Statistiquedescriptivess1 et s2
Statistiquedescriptivess1 et s2 Statistiquedescriptivess1 et s2
Statistiquedescriptivess1 et s2 Abdlhakim Fallatte
 
Intro to Value at Risk (VaR)
Intro to Value at Risk (VaR)Intro to Value at Risk (VaR)
Intro to Value at Risk (VaR)davidharper
 

Destacado (6)

Mesure & Analyse: Mesurer les Risques
Mesure & Analyse: Mesurer les RisquesMesure & Analyse: Mesurer les Risques
Mesure & Analyse: Mesurer les Risques
 
value at risk
value at riskvalue at risk
value at risk
 
Statistiquedescriptivess1 et s2
Statistiquedescriptivess1 et s2 Statistiquedescriptivess1 et s2
Statistiquedescriptivess1 et s2
 
Intro to Value at Risk (VaR)
Intro to Value at Risk (VaR)Intro to Value at Risk (VaR)
Intro to Value at Risk (VaR)
 
Slides brussels
Slides brusselsSlides brussels
Slides brussels
 
Slides picard-6
Slides picard-6Slides picard-6
Slides picard-6
 

Similar a Slides ima (20)

Slides compiegne
Slides compiegneSlides compiegne
Slides compiegne
 
Slides mevt
Slides mevtSlides mevt
Slides mevt
 
Slides erm-cea-ia
Slides erm-cea-iaSlides erm-cea-ia
Slides erm-cea-ia
 
Slides erm-cea-ia
Slides erm-cea-iaSlides erm-cea-ia
Slides erm-cea-ia
 
slides tails copulas
slides tails copulasslides tails copulas
slides tails copulas
 
Slides essec
Slides essecSlides essec
Slides essec
 
Slides erm
Slides ermSlides erm
Slides erm
 
Multivariate Distributions, an overview
Multivariate Distributions, an overviewMultivariate Distributions, an overview
Multivariate Distributions, an overview
 
Slides mc gill-v3
Slides mc gill-v3Slides mc gill-v3
Slides mc gill-v3
 
On Clustering Financial Time Series - Beyond Correlation
On Clustering Financial Time Series - Beyond CorrelationOn Clustering Financial Time Series - Beyond Correlation
On Clustering Financial Time Series - Beyond Correlation
 
Slides mc gill-v4
Slides mc gill-v4Slides mc gill-v4
Slides mc gill-v4
 
Lecture notes
Lecture notes Lecture notes
Lecture notes
 
Slides econometrics-2018-graduate-4
Slides econometrics-2018-graduate-4Slides econometrics-2018-graduate-4
Slides econometrics-2018-graduate-4
 
Side 2019, part 2
Side 2019, part 2Side 2019, part 2
Side 2019, part 2
 
Clustering Random Walk Time Series
Clustering Random Walk Time SeriesClustering Random Walk Time Series
Clustering Random Walk Time Series
 
MMsemester project
MMsemester projectMMsemester project
MMsemester project
 
Hierarchical matrices for approximating large covariance matries and computin...
Hierarchical matrices for approximating large covariance matries and computin...Hierarchical matrices for approximating large covariance matries and computin...
Hierarchical matrices for approximating large covariance matries and computin...
 
Notes on Intersection theory
Notes on Intersection theoryNotes on Intersection theory
Notes on Intersection theory
 
Slides astin
Slides astinSlides astin
Slides astin
 
Slides risk-rennes
Slides risk-rennesSlides risk-rennes
Slides risk-rennes
 

Más de Arthur Charpentier (20)

Family History and Life Insurance
Family History and Life InsuranceFamily History and Life Insurance
Family History and Life Insurance
 
ACT6100 introduction
ACT6100 introductionACT6100 introduction
ACT6100 introduction
 
Family History and Life Insurance (UConn actuarial seminar)
Family History and Life Insurance (UConn actuarial seminar)Family History and Life Insurance (UConn actuarial seminar)
Family History and Life Insurance (UConn actuarial seminar)
 
Control epidemics
Control epidemics Control epidemics
Control epidemics
 
STT5100 Automne 2020, introduction
STT5100 Automne 2020, introductionSTT5100 Automne 2020, introduction
STT5100 Automne 2020, introduction
 
Family History and Life Insurance
Family History and Life InsuranceFamily History and Life Insurance
Family History and Life Insurance
 
Machine Learning in Actuarial Science & Insurance
Machine Learning in Actuarial Science & InsuranceMachine Learning in Actuarial Science & Insurance
Machine Learning in Actuarial Science & Insurance
 
Reinforcement Learning in Economics and Finance
Reinforcement Learning in Economics and FinanceReinforcement Learning in Economics and Finance
Reinforcement Learning in Economics and Finance
 
Optimal Control and COVID-19
Optimal Control and COVID-19Optimal Control and COVID-19
Optimal Control and COVID-19
 
Slides OICA 2020
Slides OICA 2020Slides OICA 2020
Slides OICA 2020
 
Lausanne 2019 #3
Lausanne 2019 #3Lausanne 2019 #3
Lausanne 2019 #3
 
Lausanne 2019 #4
Lausanne 2019 #4Lausanne 2019 #4
Lausanne 2019 #4
 
Lausanne 2019 #2
Lausanne 2019 #2Lausanne 2019 #2
Lausanne 2019 #2
 
Lausanne 2019 #1
Lausanne 2019 #1Lausanne 2019 #1
Lausanne 2019 #1
 
Side 2019 #10
Side 2019 #10Side 2019 #10
Side 2019 #10
 
Side 2019 #11
Side 2019 #11Side 2019 #11
Side 2019 #11
 
Side 2019 #12
Side 2019 #12Side 2019 #12
Side 2019 #12
 
Side 2019 #9
Side 2019 #9Side 2019 #9
Side 2019 #9
 
Side 2019 #8
Side 2019 #8Side 2019 #8
Side 2019 #8
 
Side 2019 #7
Side 2019 #7Side 2019 #7
Side 2019 #7
 

Último

VIP Call Girl Jamshedpur Aashi 8250192130 Independent Escort Service Jamshedpur
VIP Call Girl Jamshedpur Aashi 8250192130 Independent Escort Service JamshedpurVIP Call Girl Jamshedpur Aashi 8250192130 Independent Escort Service Jamshedpur
VIP Call Girl Jamshedpur Aashi 8250192130 Independent Escort Service JamshedpurSuhani Kapoor
 
Insurers' journeys to build a mastery in the IoT usage
Insurers' journeys to build a mastery in the IoT usageInsurers' journeys to build a mastery in the IoT usage
Insurers' journeys to build a mastery in the IoT usageMatteo Carbone
 
Cash Payment 9602870969 Escort Service in Udaipur Call Girls
Cash Payment 9602870969 Escort Service in Udaipur Call GirlsCash Payment 9602870969 Escort Service in Udaipur Call Girls
Cash Payment 9602870969 Escort Service in Udaipur Call GirlsApsara Of India
 
Russian Faridabad Call Girls(Badarpur) : ☎ 8168257667, @4999
Russian Faridabad Call Girls(Badarpur) : ☎ 8168257667, @4999Russian Faridabad Call Girls(Badarpur) : ☎ 8168257667, @4999
Russian Faridabad Call Girls(Badarpur) : ☎ 8168257667, @4999Tina Ji
 
Unlocking the Secrets of Affiliate Marketing.pdf
Unlocking the Secrets of Affiliate Marketing.pdfUnlocking the Secrets of Affiliate Marketing.pdf
Unlocking the Secrets of Affiliate Marketing.pdfOnline Income Engine
 
GD Birla and his contribution in management
GD Birla and his contribution in managementGD Birla and his contribution in management
GD Birla and his contribution in managementchhavia330
 
The Coffee Bean & Tea Leaf(CBTL), Business strategy case study
The Coffee Bean & Tea Leaf(CBTL), Business strategy case studyThe Coffee Bean & Tea Leaf(CBTL), Business strategy case study
The Coffee Bean & Tea Leaf(CBTL), Business strategy case studyEthan lee
 
Yaroslav Rozhankivskyy: Три складові і три передумови максимальної продуктивн...
Yaroslav Rozhankivskyy: Три складові і три передумови максимальної продуктивн...Yaroslav Rozhankivskyy: Три складові і три передумови максимальної продуктивн...
Yaroslav Rozhankivskyy: Три складові і три передумови максимальної продуктивн...Lviv Startup Club
 
Call Girls Pune Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Pune Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Pune Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Pune Just Call 9907093804 Top Class Call Girl Service AvailableDipal Arora
 
Call Girls In Panjim North Goa 9971646499 Genuine Service
Call Girls In Panjim North Goa 9971646499 Genuine ServiceCall Girls In Panjim North Goa 9971646499 Genuine Service
Call Girls In Panjim North Goa 9971646499 Genuine Serviceritikaroy0888
 
0183760ssssssssssssssssssssssssssss00101011 (27).pdf
0183760ssssssssssssssssssssssssssss00101011 (27).pdf0183760ssssssssssssssssssssssssssss00101011 (27).pdf
0183760ssssssssssssssssssssssssssss00101011 (27).pdfRenandantas16
 
7.pdf This presentation captures many uses and the significance of the number...
7.pdf This presentation captures many uses and the significance of the number...7.pdf This presentation captures many uses and the significance of the number...
7.pdf This presentation captures many uses and the significance of the number...Paul Menig
 
9599632723 Top Call Girls in Delhi at your Door Step Available 24x7 Delhi
9599632723 Top Call Girls in Delhi at your Door Step Available 24x7 Delhi9599632723 Top Call Girls in Delhi at your Door Step Available 24x7 Delhi
9599632723 Top Call Girls in Delhi at your Door Step Available 24x7 DelhiCall Girls in Delhi
 
Grateful 7 speech thanking everyone that has helped.pdf
Grateful 7 speech thanking everyone that has helped.pdfGrateful 7 speech thanking everyone that has helped.pdf
Grateful 7 speech thanking everyone that has helped.pdfPaul Menig
 
Understanding the Pakistan Budgeting Process: Basics and Key Insights
Understanding the Pakistan Budgeting Process: Basics and Key InsightsUnderstanding the Pakistan Budgeting Process: Basics and Key Insights
Understanding the Pakistan Budgeting Process: Basics and Key Insightsseri bangash
 
Monte Carlo simulation : Simulation using MCSM
Monte Carlo simulation : Simulation using MCSMMonte Carlo simulation : Simulation using MCSM
Monte Carlo simulation : Simulation using MCSMRavindra Nath Shukla
 
Sales & Marketing Alignment: How to Synergize for Success
Sales & Marketing Alignment: How to Synergize for SuccessSales & Marketing Alignment: How to Synergize for Success
Sales & Marketing Alignment: How to Synergize for SuccessAggregage
 
Boost the utilization of your HCL environment by reevaluating use cases and f...
Boost the utilization of your HCL environment by reevaluating use cases and f...Boost the utilization of your HCL environment by reevaluating use cases and f...
Boost the utilization of your HCL environment by reevaluating use cases and f...Roland Driesen
 

Último (20)

VIP Call Girl Jamshedpur Aashi 8250192130 Independent Escort Service Jamshedpur
VIP Call Girl Jamshedpur Aashi 8250192130 Independent Escort Service JamshedpurVIP Call Girl Jamshedpur Aashi 8250192130 Independent Escort Service Jamshedpur
VIP Call Girl Jamshedpur Aashi 8250192130 Independent Escort Service Jamshedpur
 
Insurers' journeys to build a mastery in the IoT usage
Insurers' journeys to build a mastery in the IoT usageInsurers' journeys to build a mastery in the IoT usage
Insurers' journeys to build a mastery in the IoT usage
 
Cash Payment 9602870969 Escort Service in Udaipur Call Girls
Cash Payment 9602870969 Escort Service in Udaipur Call GirlsCash Payment 9602870969 Escort Service in Udaipur Call Girls
Cash Payment 9602870969 Escort Service in Udaipur Call Girls
 
Russian Faridabad Call Girls(Badarpur) : ☎ 8168257667, @4999
Russian Faridabad Call Girls(Badarpur) : ☎ 8168257667, @4999Russian Faridabad Call Girls(Badarpur) : ☎ 8168257667, @4999
Russian Faridabad Call Girls(Badarpur) : ☎ 8168257667, @4999
 
Unlocking the Secrets of Affiliate Marketing.pdf
Unlocking the Secrets of Affiliate Marketing.pdfUnlocking the Secrets of Affiliate Marketing.pdf
Unlocking the Secrets of Affiliate Marketing.pdf
 
Nepali Escort Girl Kakori \ 9548273370 Indian Call Girls Service Lucknow ₹,9517
Nepali Escort Girl Kakori \ 9548273370 Indian Call Girls Service Lucknow ₹,9517Nepali Escort Girl Kakori \ 9548273370 Indian Call Girls Service Lucknow ₹,9517
Nepali Escort Girl Kakori \ 9548273370 Indian Call Girls Service Lucknow ₹,9517
 
GD Birla and his contribution in management
GD Birla and his contribution in managementGD Birla and his contribution in management
GD Birla and his contribution in management
 
The Coffee Bean & Tea Leaf(CBTL), Business strategy case study
The Coffee Bean & Tea Leaf(CBTL), Business strategy case studyThe Coffee Bean & Tea Leaf(CBTL), Business strategy case study
The Coffee Bean & Tea Leaf(CBTL), Business strategy case study
 
Yaroslav Rozhankivskyy: Три складові і три передумови максимальної продуктивн...
Yaroslav Rozhankivskyy: Три складові і три передумови максимальної продуктивн...Yaroslav Rozhankivskyy: Три складові і три передумови максимальної продуктивн...
Yaroslav Rozhankivskyy: Три складові і три передумови максимальної продуктивн...
 
Call Girls Pune Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Pune Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Pune Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Pune Just Call 9907093804 Top Class Call Girl Service Available
 
Call Girls In Panjim North Goa 9971646499 Genuine Service
Call Girls In Panjim North Goa 9971646499 Genuine ServiceCall Girls In Panjim North Goa 9971646499 Genuine Service
Call Girls In Panjim North Goa 9971646499 Genuine Service
 
0183760ssssssssssssssssssssssssssss00101011 (27).pdf
0183760ssssssssssssssssssssssssssss00101011 (27).pdf0183760ssssssssssssssssssssssssssss00101011 (27).pdf
0183760ssssssssssssssssssssssssssss00101011 (27).pdf
 
7.pdf This presentation captures many uses and the significance of the number...
7.pdf This presentation captures many uses and the significance of the number...7.pdf This presentation captures many uses and the significance of the number...
7.pdf This presentation captures many uses and the significance of the number...
 
9599632723 Top Call Girls in Delhi at your Door Step Available 24x7 Delhi
9599632723 Top Call Girls in Delhi at your Door Step Available 24x7 Delhi9599632723 Top Call Girls in Delhi at your Door Step Available 24x7 Delhi
9599632723 Top Call Girls in Delhi at your Door Step Available 24x7 Delhi
 
Grateful 7 speech thanking everyone that has helped.pdf
Grateful 7 speech thanking everyone that has helped.pdfGrateful 7 speech thanking everyone that has helped.pdf
Grateful 7 speech thanking everyone that has helped.pdf
 
VVVIP Call Girls In Greater Kailash ➡️ Delhi ➡️ 9999965857 🚀 No Advance 24HRS...
VVVIP Call Girls In Greater Kailash ➡️ Delhi ➡️ 9999965857 🚀 No Advance 24HRS...VVVIP Call Girls In Greater Kailash ➡️ Delhi ➡️ 9999965857 🚀 No Advance 24HRS...
VVVIP Call Girls In Greater Kailash ➡️ Delhi ➡️ 9999965857 🚀 No Advance 24HRS...
 
Understanding the Pakistan Budgeting Process: Basics and Key Insights
Understanding the Pakistan Budgeting Process: Basics and Key InsightsUnderstanding the Pakistan Budgeting Process: Basics and Key Insights
Understanding the Pakistan Budgeting Process: Basics and Key Insights
 
Monte Carlo simulation : Simulation using MCSM
Monte Carlo simulation : Simulation using MCSMMonte Carlo simulation : Simulation using MCSM
Monte Carlo simulation : Simulation using MCSM
 
Sales & Marketing Alignment: How to Synergize for Success
Sales & Marketing Alignment: How to Synergize for SuccessSales & Marketing Alignment: How to Synergize for Success
Sales & Marketing Alignment: How to Synergize for Success
 
Boost the utilization of your HCL environment by reevaluating use cases and f...
Boost the utilization of your HCL environment by reevaluating use cases and f...Boost the utilization of your HCL environment by reevaluating use cases and f...
Boost the utilization of your HCL environment by reevaluating use cases and f...
 

Slides ima

  • 1. Arthur CHARPENTIER - Archimedean copulas. Les copules Archimédiennes, quelques motivations et applications Arthur Charpentier Katholieke Universiteit Leuven, ENSAE/CREST Institut de Mathématiques Appliquées, Angers, Novembre 2006 1
  • 2. Arthur CHARPENTIER - Archimedean copulas. “Everybody who opens any journal on stochastic processes, probability theory, statistics, econometrics, risk management, finance, insurance, etc., observes that there is a fast growing industry on copulas [...] The International Actuarial Association in its hefty paper on Solvency II recommends using copulas for modeling dependence in insurance portfolios [...] Since Basle II copulas are now standard tools in credit risk management”. “Are copulas suitable for modeling multivariate extremes? Copulas generate any multivariate distribution. If one wants to make an honest analysis of multivariate extremes the distributions used should be related to extreme value theory in some way.” Mikosh (2005). 2
  • 3. Arthur CHARPENTIER - Archimedean copulas. “We are thus generally sympathetic to the primary objective pursued by Dr. Mikosch, which is to caution optimism about what copulas can and cannot achieve as a dependence modeling tool”. “Although copula theory has only recently emerged as a distinct field of investigation, its roots go back at least to the 1940s, with the seminal work of Hoeőding on margin-free measures of association [...] “It was possibly Deheuvels who, in a series of papers published around 1980, revealed the full potential of the fecund link between multivariate analysis and rank-based statistical techniques”. “However, the generalized use of copulas for model building (and Archimedean copulas in particular) seems to have been largely fuelled at the end of the 1980s by the publication of significant papers by Marshall and Olkin (1988) and by Oakes (1989) in the influential Journal of the American Statistical Association”. Genest & Rémillard (2006). 3
  • 4. Arthur CHARPENTIER - Archimedean copulas. Definition 1. A 2-dimensional copula is a 2-dimensional cumulative distribution function restricted to [0, 1]2 with standard uniform margins. Copula (cumulative distribution function) Level curves of the copula Copula density Level curves of the copula 4
  • 5. Arthur CHARPENTIER - Archimedean copulas. Why using copulas ? Theorem 2. (Sklar) Let C be a copula, and FX and FY two marginal distributions, then F(x, y) = C(FX (x), FY (y)) is a bivariate distribution function, with F ∈ F(FX, FY ). Conversely, if F ∈ F(FX , FY ), there exists C such that F(x, y) = C(FX(x), FY (y). Further, if FX and FY are continuous, then C is unique, and given by C(u, v) = F(F−1 X (u), F−1 Y (v)) for all (u, v) ∈ [0, 1] × [0, 1] We will then define the copula of F, or the copula of (X, Y ). 5
  • 6. Arthur CHARPENTIER - Archimedean copulas. In dimension 2, consider the following family of copulae Definition 3. Let ψ denote a convex decreasing function [0, 1] → [0, ∞] such that ψ(1) = 0. Define the inverse (or quasi-inverse if ψ(0) < ∞) as ψ← (t) =    ψ−1 (t) for 0 ≤ t ≤ ψ(0) 0 for ψ(0) < t < ∞. Then C(u1, u2) = ψ← (ψ(u1) + ψ(u2)), u1, u2 ∈ [0, 1], is a copula, called an Archimedean copula, with generator ψ. Note that ψ← ◦ ψ(t) = t on [0, 1]. ψ is said to be strict if ψ(0) = ∞. The generator is unique up to a multiplicative positive constant. 6
  • 7. Arthur CHARPENTIER - Archimedean copulas. In higher dimension, most of the notions and results can be extended. Definition 4. A d-dimensional copula is a d-dimensional cumulative distribution function restricted to [0, 1]d with standard uniform margins. Sklar’s theorem can be extended in dimension d as follows Theorem 5. (Sklar) Let C be a d-copula, and F1, ..., Fd be marginal distributions, then F(x1, ..., , xd) = C(F1(x1), ..., Fd(xd)) is a d-dimensional distribution function, with F ∈ F(F1, ..., Fd). Conversely, if F ∈ F(F1, ..., Fd), there exists C such that F(x1, ..., , xd) = C(F1(x1), ..., Fd(xd)). Further, if F1, ..., Fd are continuous, then C is unique, and given by C(u1, ..., ud) = F(F−1 1 (u1), ..., F−1 d (ud)) for all (u1, ..., ud) ∈ [0, 1]d 7
  • 8. Arthur CHARPENTIER - Archimedean copulas. Definition 6. Let ψ be an generator of order d, i.e. ψ is decreasing and ψ(1) = 0, the inverse ψ−1 is d − 2 times continuously differentiable on (0, ∞), and (ψ−1 )(d−2) is convex. Then C(u1, ..., ud) = ψ← (ψ(u1) + ... + ψ(ud)), u1, ..., ud ∈ [0, 1], is a copula, called an Archimedean copula, with generator ψ. Note that ψ is a generator in any dimension d if and only if ψ(1) = 0 and ψ−1 is completely monotone, i.e. (−1)k (ψ−1 )(k) (·) ≥ 0 on (0, ∞). 8
  • 9. Arthur CHARPENTIER - Archimedean copulas. • the lower Fréchet bound, ψ(t) = 1 − t, C− (u, v) = min{u + v − 1, 0}, • the independent copula, ψ(t) = − log t, C⊥ (u, v) = uv, • the Clayton’s copula, ψ(t) = t−θ − 1, C(u, v) = (uθ + vθ − 1)−1/θ , • the Gumbel’s copula, ψ(t) = (− log t)−θ , C(u, v) = exp − (− log u)θ + (− log v)θ 1/θ , • the Nelsen’s copula, ψ(t) = (1 − t)/t, C(u, v) = uv/(u + v − uv), 0.0 0.2 0.4 0.6 0.8 1.0 0.00.51.01.52.0 The lower Fréchet bound 0.0 0.2 0.4 0.6 0.8 1.0 0.00.51.01.52.0 The independent copula 0.0 0.2 0.4 0.6 0.8 1.0 0.00.51.01.52.0 Gumbel’s copula 0.0 0.2 0.4 0.6 0.8 1.0 0.00.51.01.52.0 Clayton’s copula 0.0 0.2 0.4 0.6 0.8 1.0 0.00.51.01.52.0 Nelsen’s copula 9
  • 10. Arthur CHARPENTIER - Archimedean copulas. Some more examples of Archimedean copulas ψ(t) range θ (1) 1 θ (t−θ − 1) [−1, 0) ∪ (0, ∞) Clayton, Clayton (1978) (2) (1 − t)θ [1, ∞) (3) log 1−θ(1−t) t [−1, 1) Ali-Mikhail-Haq (4) (− log t)θ [1, ∞) Gumbel, Gumbel (1960), Hougaard (1986) (5) − log e−θt−1 e−θ−1 (−∞, 0) ∪ (0, ∞) Frank, Frank (1979), Nelsen (1987) (6) − log{1 − (1 − t)θ} [1, ∞) Joe, Frank (1981), Joe (1993) (7) − log{θt + (1 − θ)} (0, 1] (8) 1−t 1+(θ−1)t [1, ∞) (9) log(1 − θ log t) (0, 1] Barnett (1980), Gumbel (1960) (10) log(2t−θ − 1) (0, 1] (11) log(2 − tθ) (0, 1/2] (12) ( 1 t − 1)θ [1, ∞) (13) (1 − log t)θ − 1 (0, ∞) (14) (t−1/θ − 1)θ [1, ∞) (15) (1 − t1/θ)θ [1, ∞) Genest & Ghoudi (1994) (16) ( θ t + 1)(1 − t) [0, ∞) Table 1: Archimedean copulas, from Nelsen (2006). 10
  • 11. Arthur CHARPENTIER - Archimedean copulas. Where do these copulas come from ? • The conditional independence and frailty approach Consider two risks, X and Y , such that X|Θ = θG ∼ E(θG) and Y |Θ = θG ∼ E(θG) are independent, X|Θ = θB ∼ E(θB) and Y |Θ = θB ∼ E(θB) are independent, (unobservable good (G) and bad (B) risks). The following figures start from 2 classes of risks, then 3, and then a continuous risk factor θ ∈ (0, ∞). 11
  • 12. Arthur CHARPENTIER - Archimedean copulas. 0 5 10 15 05101520 Conditional independence, two classes −3 −2 −1 0 1 2 3 −3−2−10123 Conditional independence, two classes Figure 1: Two classes of risks, (Xi, Yi) and (Φ−1 (FX(Xi)), Φ−1 (FY (Yi))). 12
  • 13. Arthur CHARPENTIER - Archimedean copulas. 0 5 10 15 20 25 30 010203040 Conditional independence, three classes −3 −2 −1 0 1 2 3 −3−2−10123 Conditional independence, three classes Figure 2: Three classes of risks, (Xi, Yi) and (Φ−1 (FX(Xi)), Φ−1 (FY (Yi))). 13
  • 14. Arthur CHARPENTIER - Archimedean copulas. 0 20 40 60 80 100 020406080100 Conditional independence, continuous risk factor −3 −2 −1 0 1 2 3 −3−2−10123 Conditional independence, continuous risk factor Figure 3: Continuous classes, (Xi, Yi) and (Φ−1 (FX(Xi)), Φ−1 (FY (Yi))). 14
  • 15. Arthur CHARPENTIER - Archimedean copulas. 0 20 40 60 80 100 020406080100 Conditional independence, continuous risk factor −3 −2 −1 0 1 2 3 −3−2−10123 Conditional independence, continuous risk factor Figure 4: Continuous classes, (Xi, Yi) and (Φ−1 (FX(Xi)), Φ−1 (FY (Yi))). 15
  • 16. Arthur CHARPENTIER - Archimedean copulas. Assume that, given Θ, X|Θ ∼ E(αΘ) and Y |Θ ∼ E(βΘ) are independent, P(X > x, Y > y) = ∞ 0 P(X > x, Y > y|Θ = θ)π(θ)dθ = ∞ 0 P(X > x|Θ = θ)P(Y > y|Θ = θ)π(θ)dθ = ∞ 0 exp(−αθx) exp(−βθy)π(θ)dθ = ∞ 0 [exp(−[αx + βy]θ)] π(θ)dθ, where ψ(t) = E(exp −tΘ) = exp(−tθ)π(θ)dθ is the Laplace transform of Θ. 16
  • 17. Arthur CHARPENTIER - Archimedean copulas. Hence P(X > x, Y > y) = φ(αx + βy). Or, P(X > x) = ∞ 0 P(X > x|Θ = θ)π(θ)dθ = ∞ 0 exp(−αθx)π(θ)dθ = φ(αx), and thus αx = φ−1 (P(X > x)) (similarly for βy). And therefore, P(X > x, Y > y) = φ(φ−1 (P(X > x)) + φ−1 (P(Y > y))) = C(P(X > x), P(Y > y)), setting C(u, v) = φ(φ−1 (u) + φ−1 (v)) for any (u, v) ∈ [0, 1] × [0, 1]. Using any Laplace transforms, one can generate several families of multivariate distributions. Example 7. If Θ is Gamma distributed, the associated copula is Clayton’s. If Θ has an α-stable distributed, the associated copula is Gumbel’s. 17
  • 18. Arthur CHARPENTIER - Archimedean copulas. This approach can be used in motor insurance ratemaking, and in credit risk. A finite sequence {X1, ..., Xd} of random variables is exchangeable, or d-exchangeable, if (X1, ..., Xd) L = Xσ(1), ..., Xσ(d) , (1) for any permutation σ of {1, ..., d}. More generally, an infinite sequence {X1, X2...} of random variables is infinitely exchangeable (or simply exchangeable) if (X1, X2, ...) L = Xσ(1), Xσ(2), ... , (2) for any finite permutation σ of N∗ (that is Card {i, σ (i) = i} < ∞). A d-exchangeable sequence {X1, ..., Xd} is called m-extendible (for some m > d), if (X1, ..., Xd) L = (Z1, ..., Zd), where {Z1, ..., Zm} is some m-exchangeable sequence. 18
  • 19. Arthur CHARPENTIER - Archimedean copulas. Using the formulation of Aldous (1985), de Finetti’s theorem states that“an infinite exchangeable sequence is a mixture of i.i.d. sequences”: X1, X2, ... of Bernoulli random variables is exchangeable if and only there is a random variable Θ, taking values in [0, 1] such that, given Θ = θ the Xi’s are independent, and Xi ∼ B(θ) (see Schervish (1995) or Chow & Teicher (1997)). Example 8. This result can be easily interpreted in credit risk, where variables of interest are dichotomous (default or non-default). Let X1, X2, ... be an infinite exchangeable sequence of Bernoulli variables, and let Sn = X1 + .... + Xn the number of defaults within n companies (for a given period of time). Then, the distribution of Sn is a mixture of binomial distributions, i.e. there is a distribution function H on [0, 1] such that P (Sn = k) = 1 0 n k ωk (1 − ω) n−k dH (θ) . 19
  • 20. Arthur CHARPENTIER - Archimedean copulas. • The survival distribution approach Assume that for a random vector (X, Y ), there exists a convex survival distribution S, such that S(0) = 1 and P(X > x, Y > y) = S(x + y), then the joint survival copula of (X, Y ), such that P(X > x, Y > y) = C(P(X > x), P(Y > y), is C(u, v) = S(S−1 (u) + S−1 (v)), which is an Archimedean copula with generator ψ = S−1 . This is the notion of Schur-constant survival distribution of random pair (X, Y ). Example 9. If S is the survival Pareto distribution, the associated copula is Clayton’s. If S is the survival Weibull distribution, the associated copula is Gumbel’s. 20
  • 21. Arthur CHARPENTIER - Archimedean copulas. • The serial iterate approach A “natural” idea to define d dimension copula from 2 dimensional copulas can be the serial iterate approach. Given a 2-copula C2, define recursively Cn(u1, . . . , un−1, un) = C2(Cn−1(u1, . . . , un−1), un). Proposition 10. C is an associative copula, i.e. C(u, C(v, w) = C(C(u, v), w) for all u, v, w ∈ [0, 1], such that C(u, u) < u for all u ∈ (0, 1) if and only if C is Archimedean. Hence, the only copulas that can be constructed by serial iteration are Archimedean copulas. Remark 11. This is actually where the word Archimedean comes from. 21
  • 22. Arthur CHARPENTIER - Archimedean copulas. • The distorted copula approach Definition 12. A distortion function is a function h : [0, 1] → [0, 1] strictly increasing such that h(0) = 0 and h(1) = 1. The set of distortion function will be denoted H. Note that h ∈ H if and only if h−1 ∈ H. Given a copula C, define Ch(u, v) = h−1 (C(h(u), h(v))). If h is convex, then Ch is a copula, called distorted copula. Example 13. if h(x) = x1/n , the distorted copula is Ch(u, v) = Cn (u1/n , v1/n ), for all n ∈ N, (u, v) ∈ [0, 1]2 . if the survival copula of the (Xi, Yi)’s is C, then the survival copula of (Xn:n, Yn:n) = (max{X1, ..., Xn}, max{Y1, ..., Yn}) is Ch. Example 14. if C(u, v) = uv = C⊥ (u, v) (the independent copula), and φ(·) = log h(·), then Ch(u, v) = h−1 (h(u)h(v)) = φ−1 (φ(u) + φ(v)). 22
  • 23. Arthur CHARPENTIER - Archimedean copulas. • Kendall’s distribution approach Archimedean copulas can also be characterized through Kendall’s cdf, K, K(t) = P(C(U, V ) ≤ t), t ∈ [0, 1]. where (U, V ) has cdf C. Note that K(t) = t − λ(t) where λ(t) = ψ(t)/ψ (t). And conversely ψ is ψ(u) = ψ(u0) exp u u0 1 λ(t) dt for all 0 < u0 < 1. 23
  • 24. Arthur CHARPENTIER - Archimedean copulas. • Characterizations of some archimedean copulas 1. Frank copula is the only Archimedean such that (U, V ) L = (1 − U, 1 − V ) (stability by symmetry), 2. Clayton copula is the only Archimedean such that (U, V ) has the same copula as (U, V ) given (U ≤ u, V ≤ v), for all u, v ∈ (0, 1] (stability by truncature), 3. Gumbel copula is the only Archimedean such that (U, V ) has the same copula as (max{U1, ..., Un}, max{V1, ..., Vn}) for all n ≥ 1 (max-stability), 24
  • 25. Arthur CHARPENTIER - Archimedean copulas. Copula density 0.0 0.4 0.8 0.00.51.01.52.0 Archimedean generator 0 1 2 3 4 5 6 0.00.40.8 Laplace Transform Level curves of the copula 0.0 0.4 0.8 −0.4−0.20.0 Lambda function 0.0 0.4 0.8 0.00.40.8 Kendall cdf Figure 5: (Independent) Archimedean copula (C = C⊥ , ψ(t) = − log t). 25
  • 26. Arthur CHARPENTIER - Archimedean copulas. Some “famous” Archimedean copulas Clayton’s copula (Figure 6), with parameter α ∈ [0, ∞) has generator ψ(x; α) = x−α − 1 α if 0 < α < ∞, with the limiting case ψ(x; 0) = − log(x), for any 0 < x ≤ 1. The inverse function is the Laplace transform of a Gamma distribution. The associated copula is C(u, v; α) = (u−α + v−α − 1)−1/α if 0 < α < ∞, with the limiting case C(u, v; 0) = C⊥ (u, v), for any (u, v) ∈ (0, 1]2 . 26
  • 27. Arthur CHARPENTIER - Archimedean copulas. Copula density 0.0 0.4 0.8 0.00.51.01.52.0 Archimedean generator 0 1 2 3 4 5 6 0.00.20.40.60.81.0 Laplace Transform Level curves of the copula 0.0 0.4 0.8 −0.4−0.3−0.2−0.10.0 Lambda function 0.0 0.4 0.8 0.00.20.40.60.81.0 Kendall cdf Figure 6: Clayton’s copula. 27
  • 28. Arthur CHARPENTIER - Archimedean copulas. Gumbel’s copula (Figure 7), with parameter α ∈ [1, ∞) has generator ψ(x; α) = (− log x)α if 1 ≤ α < ∞, with the limiting case ψ(x; 0) = − log(x), for any 0 < x ≤ 1. The inverse function is the Laplace transform of a 1/α-stable distribution. The associated copula is C(u, v; α) = − 1 α log 1 + (e−αu − 1) (e−αv − 1) e−α − 1 , if 1 ≤ α < ∞, for any (u, v) ∈ (0, 1]2 . 28
  • 29. Arthur CHARPENTIER - Archimedean copulas. Copula density 0.0 0.4 0.8 0.00.51.01.52.0 Archimedean generator 0 1 2 3 4 5 6 0.00.20.40.60.81.0 Laplace Transform Level curves of the copula 0.0 0.4 0.8 −0.4−0.3−0.2−0.10.0 Lambda function 0.0 0.4 0.8 0.00.20.40.60.81.0 Kendall cdf Figure 7: Gumbel’s copula. 29
  • 30. Arthur CHARPENTIER - Archimedean copulas. How to define more general parametric families ? Given an Archimedean generator ψ, define ψα and ψβ as follows, ψα,1(x) = ψ(xα ) and ψ1,β(x) = ψ(x)β , where β ≥ 1 and α ∈ (0, 1]. Note that a composite family can also be considered, ψα,β(x) = [ψ(xα )]β . 30
  • 31. Arthur CHARPENTIER - Archimedean copulas. Distorted Archimedean copula, from Frank β = 1 α = 1 Distorted Archimedean copula, from Frank β = 3 2 α = 1 Distorted Archimedean copula, from Frank β = 1 α = 1 2 Distorted Archimedean copula, from Frank β = 3 2 α = 1 2 Figure 8: Distorted Archimedean copula (φα,β), from Frank copula. 31
  • 32. Arthur CHARPENTIER - Archimedean copulas. A short word on the zero-set area Define the zero-set boundary curve φ(u) + φ(v) = φ(0). If φ(0) = ∞, the zero-set boundary curve has a null measure (e.g. Clayton’s copula). If φ(0) < ∞, zero-set boundary curve is −φ(0)/φ (0) (e.g. Copula 4.2.2 in Nelsen (2006)). Example 15. Clayton’s copula can be defined for θ ∈ [−1, 0) ∪ (0, +∞), as C(u, v) = max{ u−θ + v−θ − 1 −1/θ , 0}. If θ < 0, this copula has a zero-set, below the curve y = (1 − x−θ )−1/θ Example 16. Consider Copula 4.2.2 in Nelsen (2006), defined for θ ∈ [1, +∞), as C(u, v) = max{1 − (1 − u)θ + (1 − v)θ 1/θ , 0}, with generator (1 − t)θ . 32
  • 33. Arthur CHARPENTIER - Archimedean copulas. 0.0 0.2 0.4 0.6 0.8 1.0 0.00.20.40.60.81.0 Generating Clayton’s copula 0.0 0.2 0.4 0.6 0.8 1.0 0.00.20.40.60.81.0 Generating Clayton’s copula Figure 9: Clayton’s copula, θ = 2 and θ = −1/2. 33
  • 34. Arthur CHARPENTIER - Archimedean copulas. 0.0 0.2 0.4 0.6 0.8 1.0 0.20.40.60.81.0 Generating copula 4.2.2 0.0 0.2 0.4 0.6 0.8 1.0 0.20.40.60.81.0 Generating copula 4.2.2 Figure 10: Copula 4.2.2, θ = 2 and θ = 5. 34
  • 35. Arthur CHARPENTIER - Archimedean copulas. Sequences of Archimedean copulas Extension of results due to Genest & Rivest (1986), Proposition The five following statements are equivalent, (i) lim n→∞ Cn(u, v) = C(u, v) for all (u, v) ∈ [0, 1]2 , (ii) lim n→∞ ψn(x)/ψn(y) = ψ(x)/ψ (y) for all x ∈ (0, 1] and y ∈ (0, 1) such that ψ such that is continuous in y, (iii) lim n→∞ λn(x) = λ(x) for all x ∈ (0, 1) such that λ is continuous in x, (iv) there exists positive constants κn such that limn→∞ κnψn(x) = ψ(x) for all x ∈ [0, 1], (v) lim n→∞ Kn(x) = K(x) for all x ∈ (0, 1) such that K is continuous in x. 35
  • 36. Arthur CHARPENTIER - Archimedean copulas. Proposition 17. The four following statements are equivalent (i) lim n→∞ Cn(u, v) = C+ (u, v) = min(u, v) for all (u, v) ∈ [0, 1]2 , (ii) lim n→∞ λn(x) = 0 for all x ∈ (0, 1), (iii) lim n→∞ ψn(y)/ψn(x) = 0 for all 0 ≤ x < y ≤ 1, (iv) lim n→∞ Kn(x) = x for all x ∈ (0, 1). Note that one can get non Archimedean limits, 0.0 0.4 0.8 051015 0.0 0.4 0.8 0.00.20.40.60.81.0 Sequence of generators and Kendall cdf’s 36
  • 37. Arthur CHARPENTIER - Archimedean copulas. Statistical inference for Archimedean copulas Recall that the Archimedean generator can be expressed as ψ(u) = ψ(u0) exp u u0 1 λ(t) dt for all 0 < u0 < 1, where λ(t) = t − K(t), K begin Kendall’s distribution function, i.e. K(t) = P(F(X, Y ) ≤ t), t ∈ [0, 1]. where F(x, y) = P(X ≤ x, Y ≤ y). Note that K can be written K(t) = Pr[F(X, Y ) ≤ t] = E[1{F(X, Y ) ≤ t}] = ∞ 0 ∞ 0 1[F(x, y) ≤ t]dF(x, y). 37
  • 38. Arthur CHARPENTIER - Archimedean copulas. Thus, a natural estimator can be defined as K(t) = ∞ 0 ∞ 0 1[F(x, y) ≤ t]dF(x, y) where F is a nonparametric estimate of the joint cdf F. Hence, a natural estimate for φ is then φ(u) = exp u u0 1 λ(t) dt = exp u u0 1 t − K(t) dt which leads to Cφ (see Genest & Rivest (1993)). 38
  • 39. Arthur CHARPENTIER - Archimedean copulas. −2 −1 0 1 2 −2−1012 Scatterplot 0.0 0.2 0.4 0.6 0.8 1.0 0.00.20.40.60.81.0 Kendall’s distribution function 0.0 0.2 0.4 0.6 0.8 1.0 −0.25−0.20−0.15−0.10−0.050.00 Lambda function 0.0 0.2 0.4 0.6 0.8 1.0 0123456 Archimedean generator Figure 11: Estimation of the Archimedean generator, n = 100. 39
  • 40. Arthur CHARPENTIER - Archimedean copulas. −2 −1 0 1 2 −2−1012 Scatterplot 0.0 0.2 0.4 0.6 0.8 1.0 0.00.20.40.60.81.0 Kendall’s distribution function 0.0 0.2 0.4 0.6 0.8 1.0 −0.25−0.20−0.15−0.10−0.050.00 Lambda function 0.0 0.2 0.4 0.6 0.8 1.001234567 Archimedean generator Figure 12: Estimation of the Archimedean generator, n = 100. 40
  • 41. Arthur CHARPENTIER - Archimedean copulas. Generating Archimedean copulas In dimension 2, recall that if (U, V ) has joint distribution C. P (V ≤ v|U = u) = lim h→0 P (V ≤ v|u ≤ U < u + h) = lim h→0 P (U < u + h, V ≤ v) − P (U < u, V ≤ v) P (U < u + h) − P (U < u) = lim h→0 C(u + h, v) − C(u, v) (u + h) − u = lim h→0 C(u + h, v) − C(u, v) (u + h) − u = ∂C ∂u (u,v) . The general algorithm is then U ← Random, and V ← ∂C(U, ·) ∂u −1 (Random), Genest & MacKay (1986), Genest (1987) and Lee (1993) proposed the following algorithm to generate random vectors (X, Y ) with Archimedean 41
  • 42. Arthur CHARPENTIER - Archimedean copulas. copula. U ⇐= Random, V is the solution of Random = (φ−1 ) (V )) (φ−1) (0) . Note that other algorithms can be used, to generate pairs (U, V ) U ⇐=Random, T ⇐=Random, W ⇐= (φ )−1 (φ (U)/T) V ⇐= φ−1 (φ(W) − φ(U)) Or equivalently W ⇐= K−1 (Random), S ⇐=Random, U ⇐= φ−1 (Sφ(W)) V ⇐= φ−1 ((1 − S)φ(W)) 42
  • 43. Arthur CHARPENTIER - Archimedean copulas. Histogram, first component 0.0 0.2 0.4 0.6 0.8 1.0 020406080100 −2 0 2 4 −3−2−1012 Gaussian distribution N(0,1) GaussiandistributionN(0,1)0.0 0.2 0.4 0.6 0.8 1.0 0.00.20.40.60.81.0 Uniform distribution on [0,1] Uniformdistributionon[0,1] Histogram, second component 0.0 0.2 0.4 0.6 0.8 1.0 020406080100 Figure 13: Simulations using Clayton’s copula. 43
  • 44. Arthur CHARPENTIER - Archimedean copulas. Tails for Archimedean copulas (Fisher-Tippett) Standard approach, introduce λL and λU (lower and upper tail indices), λL = lim u→0 P X ≤ F−1 X (u) |Y ≤ F−1 Y (u) , λU = lim u→1 P X > F−1 X (u) |Y > F−1 Y (u) . Those measures are copula based, i.e. λL = lim u→0 C(u, u) u For Archimedean copulas, note that λU = 2 − lim x→0 1 − φ−1 (2x) 1 − φ−1(x) and λL = lim x→0 φ−1 (2φ(x)) x = lim x→∞ φ−1 (2x) φ−1(x) . 44
  • 45. Arthur CHARPENTIER - Archimedean copulas. ψ(t) range θ λL λU (1) 1 θ (t−θ − 1) [−1, 0) ∪ (0, ∞) max(2−1/θ, 0) 0 (2) (1 − t)θ [1, ∞) 0 2 − 21/θ (3) log 1−θ(1−t) t [−1, 1) 0 0 (4) (− log t)θ [1, ∞) 0 2 − 21/θ (5) − log e−θt−1 e−θ−1 (−∞, 0) ∪ (0, ∞) 0 0 (6) − log{1 − (1 − t)θ} [1, ∞) 0 2 − 21/θ (7) (θ − 1) log{θt + (1 − θ)} (0, 1] 0 0 (8) 1−t 1+(θ−1)t [1, ∞) 0 0 (9) log(1 − θ log t) (0, 1] 0 0 (10) log(2t−θ − 1) (0, 1] 0 0 (11) log(2 − tθ) (0, 1/2] 0 0 (12) ( 1 t − 1)θ [1, ∞) 2−1/θ 2 − 21/θ (13) (1 − log t)θ − 1 (0, ∞) 0 0 (14) (t−1/θ − 1)θ [1, ∞) 1/2 2 − 21/θ (15) (1 − t1/θ)θ [1, ∞) 0 2 − 21/θ (16) ( θ t + 1)(1 − t) [0, ∞) 1/2 0 (17) − log (1+t)−θ−1 2−θ−1 (−∞, 0) ∪ (0, ∞) 0 0 (18) eθ/(t−1) [2, ∞) 0 1 (19) eθ/t − eθ (0, ∞) 1 0 (20) e−tθ − e (0, ∞) 1 0 (21) 1 − {1 − (1 − t)θ}1/θ [1, ∞) 0 2 − 21/θ (22) arcsin(1 − tθ) (0, 1] 0 0 45
  • 46. Arthur CHARPENTIER - Archimedean copulas. Truncature of Archimedean copulas Definition 18. Let U = (U1, ..., Un) be a random vector with uniform margins, and distribution function C. Let Cr denote the copula of random vector (U1, ..., Un)|U1 ≤ r1, ..., Ud ≤ rd, (3) where r1, ..., rd ∈ (0, 1]. If Fi|r(·) denotes the (marginal) distribution function of Ui given {U1 ≤ r1, ..., Ui ≤ ri, ..., Ud ≤ rd} = {U ≤ r}, Fi|r(xi) = C(r1, ..., ri−1, xi, ri+1, ..., rd) C(r1, ..., ri−1, ri, ri+1, ..., rd) , and therefore, the conditional copula (or truncated copula) is Cr(u) = C(F← 1|r(u1), ..., F← d|r(ud)) C(r1, ..., rd) . (4) 46
  • 47. Arthur CHARPENTIER - Archimedean copulas. Proposition 19. The class of Archimedean copulae is stable by truncature. More precisely, if U has cdf C, with generator ψ, U given {U ≤ r}, for any r ∈ (0, 1]d , will also have an Archimedean generator, with generator ψr(t) = ψ(tc) − ψ(c) where c = C(r1, ..., rd). 0.0 0.2 0.4 0.6 0.8 1.0 0.00.51.01.52.02.53.0 Generators of conditional Archimedean copulae (1) (2) (3) 47
  • 48. Arthur CHARPENTIER - Archimedean copulas. Tails for Archimedean copulas (Pickands-Balkema-de Haan) Proposition 20. Let C be an Archimedean copula with generator ψ, and 0 ≤ α ≤ ∞. If C(·, ·; α) denote Clayton’s copula with parameter α. (i) limu→0 Cu(x, y) = C(x, y; α) for all (x, y) ∈ [0, 1]2 ; (ii) −ψ ∈ R−α−1. (iii) ψ ∈ R−α. (iv) limu→0 uψ (u)/ψ(u) = −α. If α = 0 (tail independence), (i) ⇐⇒ (ii)=⇒(iii) ⇐⇒ (iv), and if α ∈ (0, ∞] (tail dependence), (i) ⇐⇒ (ii) ⇐⇒ (iii) ⇐⇒ (iv). 48
  • 49. Arthur CHARPENTIER - Archimedean copulas. Proposition 21. There exists Archimedean copulae, with generators having continuous derivatives, slowly varying such that the conditional copula does not convergence to the independence. Generator ψ integration of a function piecewise linear, with knots 1/2k , If −ψ ∈ R−1, then ψ ∈ Πg (de Haan class), and not ψ /∈ R0. This generator is slowly varying, with the limiting copula is not C⊥ . Note that lower tail index is λL = lim u↓0 C(u, u) u = 2−1/α , with proper interpretations for α equal to zero or infinity (see e.g. Theorem 3.9 of Juri and Wüthrich (2003)). 49
  • 50. Arthur CHARPENTIER - Archimedean copulas. ψ(t) range θ α (1) 1 θ (t−θ − 1) [−1, 0) ∪ (0, ∞) max(θ, 0) (2) (1 − t)θ [1, ∞) 0 (3) log 1−θ(1−t) t [−1, 1) 0 (4) (− log t)θ [1, ∞) 0 (5) − log e−θt−1 e−θ−1 (−∞, 0) ∪ (0, ∞) 0 (6) − log{1 − (1 − t)θ} [1, ∞) 0 (7) (θ − 1) log{θt + (1 − θ)} (0, 1] 0 (8) 1−t 1+(θ−1)t [1, ∞) 0 (9) log(1 − θ log t) (0, 1] 0 (10) log(2t−θ − 1) (0, 1] 0 (11) log(2 − tθ) (0, 1/2] 0 (12) ( 1 t − 1)θ [1, ∞) θ (13) (1 − log t)θ − 1 (0, ∞) 0 (14) (t−1/θ − 1)θ [1, ∞) 1 (15) (1 − t1/θ)θ [1, ∞) 0 (16) ( θ t + 1)(1 − t) [0, ∞) 1 (17) − log (1+t)−θ−1 2−θ−1 (−∞, 0) ∪ (0, ∞) 0 (18) eθ/(t−1) [2, ∞) 0 (19) eθ/t − eθ (0, ∞) ∞ (20) e−tθ − e (0, ∞) 0 (21) 1 − {1 − (1 − t)θ}1/θ [1, ∞) 0 (22) arcsin(1 − tθ) (0, 1] 0 50
  • 51. Arthur CHARPENTIER - Archimedean copulas. Tails for Archimedean copulas (Pickands-Balkema-de Haan) Analogy with lower tails. Recall that ψ(1) = 0, and therefore, using Taylor’s expansion yields ψ(1 − s) = −sψ (1) + o(s) as s → 0. And moreover, since ψ is convex, if ψ(1 − ·) is regularly varying with index α, then necessarily α ∈ [1, ∞). If if (−D)ψ(1) > 0, then α = 1 (but the converse is not true). 0.5 0.6 0.7 0.8 0.9 1.0 0.00.10.20.30.40.50.60.7 Archimedean copula at 1 0.5 0.6 0.7 0.8 0.9 1.0 0.00.10.20.30.40.50.6 Archimedean copula at 1 0.5 0.6 0.7 0.8 0.9 1.0 0.000.020.040.060.080.100.12 Archimedean copula at 1 0.5 0.6 0.7 0.8 0.9 1.0 −0.020.000.020.040.060.080.10 Archimedean copula at 1 51
  • 52. Arthur CHARPENTIER - Archimedean copulas. Proposition 22. Let C be an Archimedean copula with generator ψ. Assume that f : s → ψ(1 − s) is regularly varying with index α ∈ [1, ∞) and that −ψ (1) = κ. Then three cases can be considered (i) if α ∈ (1, ∞), case of asymptotic dependence, (ii) if α = 1 and if κ = 0, case of dependence in independence, (iii) if α = 1 and if κ > 0, case of independence in independence. 52
  • 53. Arthur CHARPENTIER - Archimedean copulas. ψ(t) range θ α κ (1) 1 θ (t−θ − 1) [−1, 0) ∪ (0, ∞) 1 1 (2) (1 − t)θ [1, ∞) θ 0 (3) log 1−θ(1−t) t [−1, 1) 1 1 − θ (4) (− log t)θ [1, ∞) θ 0 (5) − log e−θt−1 e−θ−1 (−∞, 0) ∪ (0, ∞) 1 θe−θ e−θ−1 (6) − log{1 − (1 − t)θ} [1, ∞) θ 0 (7) − log{θt + (1 − θ)} (0, 1] 1 θ (8) 1−t 1+(θ−1)t [1, ∞) 1 1/θ (9) log(1 − θ log t) (0, 1] 1 θ (10) log(2t−θ − 1) (0, 1] 1 2θ (11) log(2 − tθ) (0, 1/2] 1 θ (12) ( 1 t − 1)θ [1, ∞) θ 0 (13) (1 − log t)θ − 1 (0, ∞) 1 θ (14) (t−1/θ − 1)θ [1, ∞) θ 0 (15) (1 − t1/θ)θ [1, ∞) θ 0 (16) ( θ t + 1)(1 − t) [0, ∞) 1 θ + 1 (17) − log (1+t)−θ−1 2−θ−1 (−∞, 0) ∪ (0, ∞) 1 −θ2−θ−1 2−θ−1 (18) eθ/(t−1) [2, ∞) ∞ 0 (19) eθ/t − eθ (0, ∞) 1 θeθ (20) e−tθ − e (0, ∞) 1 θe (21) 1 − {1 − (1 − t)θ}1/θ [1, ∞) θ 0 (22) arcsin(1 − tθ) (0, 1] 1 θ (·) (1 − t) log(t − 1) 1 0 53
  • 54. Arthur CHARPENTIER - Archimedean copulas. 0.0 0.2 0.4 0.6 0.8 1.0 0246810 Archimedean copula density on the diagonal Dependence Dependence in independence Independence in independence Copula density 54
  • 55. Arthur CHARPENTIER - Archimedean copulas. A short word on hierarchical copulas As pointed out in Genest, Quesada Molina & Rodríguez Lallena (1995), or Li, Scarsini & Shaked (1996) it is usually difficult to define copulas as follows, C(u1, u2, u3, u4) = C0(C1,2(u1, u2), C3,4(u3, u4)) where only 2-dimensional copulas are considered. But this can be done simply in the case of Archimedean copulas. Consider φ, ψ and λ three Archimedean copulas, and set C(u1, u2, u3, u4) = λ← (λ ◦ ψ← (ψ(u1) + ψ(u2)) + λ ◦ φ← (φ(u3) + φ(u4))). Under weak conditions such a function defines a 4 dimensional copula. 55