SlideShare una empresa de Scribd logo
1 de 45
Descargar para leer sin conexión
Diffusion kernels on SNP data embedded in a
non-Euclidean metric
Animal Breeding & Genomics Seminar
Gota Morota
April 10, 2012
1 / 37
Kernel functions
Definition
A kernel is a weighting function which provides a similarity metric
1. define a function that measures distance (metric) for
genotypes
2. compute a similarity based on this metric space
⇓
function of a distance under certain metric space f(||x − x ||)
• Euclidean distance
• Manhattan distance
• Mahalanobis distance
• Minkowski distance
2 / 37
Metric (Distance function)
Definition
A function which defines a distance between two points
If one picks Euclidean metric, the Mat´ern covariance function
offers flexible kernels
K(x, x ) = σ2
K
21−ν
Γ(ν)
√
2ν(||x − x ||/h)ν
K(||x − x ||/h)
• Gaussian Kernel: ν = ∞, exp(−θ(||x − x ||2
))
• Exponentail Kernel: ν = 1
2 , exp(−θ(||x − x ||))
⇓
A choice of a metric determines characteristics of a kernel
3 / 37
Euclidean Metric
Definition
The distance function given by the Pythagorean theorem
(a2
+ b2
= c2
)
Euclidean distance on R2
xi = (xi1, xi2), xj = (xj1, xj2)
||xi − xj|| = (xi1 − xj1)2 + (xi2 − xj2)2
Figure 1: Euclidean distance
between two points A and B
Euclidean distance on Rp
||xi − xj|| = (xi1 − xj1)2 + · · · + (xik − xjk )2 + · · · + (xip − xjp)2
4 / 37
Euclidean space
Euclidean distance is a metric on a metric space callled Euclidean
space
Figure 2: 3-dimensional Euclidean
space. −∞ ≤ (X, Y, Z) ≤ ∞
Suppose, we observed two
individuals with 3 SNP
genotypes.
• ID1 = x1 = (0,2,2)
• ID2 = x2 = (2,1,0)
Euclidean distance on R3
||x1 − x2|| = (0 − 2)2 + (2 − 1)2 + (2 − 0)2 = 3
5 / 37
Metric on graphs
A graph is consisted of vertices and edges
0 1 2
012
0
1
2
1st Genotype
2ndGenotype
3rdGenotype
6 / 37
Metric on graphs (continue)
0 1 2
012
0
1
2
1st Genotype
2ndGenotype
3rdGenotype
(2,1,2)
(2,0,1)
(0,1,2)
(0,2,0)
(0,1,0)
(0,1,1)
(1,0,0) (2,0,0)
(1,1,0) (2,1,0)
(1,2,0) (2,2,0)
(1,0,1)
(1,1,1) (2,1,1)
(0,2,1) (1,2,1) (2,2,1)
(0,2,2) (1,2,2) (2,2,2)
(1,0,2)
(1,1,2)
7 / 37
Metric on graphs (continue)
Two individuals with 3 SNP genotypes previously shown.
• ID1 = x1 = (0,2,2), ID2 = x2 = (2,1,0)
0 1 2
012
0
1
2
1st Genotype
2ndGenotype
3rdGenotype
(2,1,0)
(0,2,2)
8 / 37
The purpose of this study
1. Is the Euclidean distance adequate for genotypes?
2. The metric on graphs seems to be given by the Manhattan
distance, but how to express the degree of similarity?
• Embed SNP data in a non-Euclidean metric space
• Define a metric for discrete genotypes on graphs and
construct a kernel on this metric
⇓
Develope a kernel that is suited for all kinds of kernel-based
genomic analyses
9 / 37
Diffusion on one-dimensional graphs (Z1
3)
We have three possible genotypes, 0 (aa), 1 (Aa) and 2 (’AA’).
0 − 1 − 2 (1)
0 − 1
 /
2
(2)
10 / 37
Diffusion on one-dimensional graphs (Z1
3)
We have three possible genotypes, 0 (aa), 1 (Aa) and 2 (’AA’).
0 − 1 − 2 (1)
0 − 1
 /
2
(2)
1. Graph (1) path graph
• genotype 1’s (’Aa’) influence diffuses to genotype 0 (’aa’) and
2 (’AA’)
• genotype 0’s (’aa’) influence diffuses to only genotype 1 (’Aa’)
• genotype 2’s (’AA’) influence diffuses to only genotype 1 (’Aa’)
2. Graph (2) complete graph
• the distance from genotype 0 (’aa’) to genotype 2 (’AA’) is the
same as that from 0 (’aa’) to 1 (’Aa’).
10 / 37
Diffusion on one-dimensional graphs (Z1
3)
We have three possible genotypes, 0 (aa), 1 (Aa) and 2 (’AA’).
0 − 1 − 2 (1)
0 − 1
 /
2
(2)
1. Graph (1) path graph
• genotype 1’s (’Aa’) influence diffuses to genotype 0 (’aa’) and
2 (’AA’)
• genotype 0’s (’aa’) influence diffuses to only genotype 1 (’Aa’)
• genotype 2’s (’AA’) influence diffuses to only genotype 1 (’Aa’)
2. Graph (2) complete graph
• the distance from genotype 0 (’aa’) to genotype 2 (’AA’) is the
same as that from 0 (’aa’) to 1 (’Aa’).
• more reasonable to assume that genotype ’Aa’ is closer than
’aa’ to ’AA’ which has two copies of the ’A’ allele.
• genotype 0 (’aa’) requires two mutations to become genotype
2 (’AA’), while genotype 1 (’Aa’) requires only one mutation 10 / 37
Diffusion on two-dimensional graphs (Z2
3)
Two-dimensional graphs are given by the Cartesian graph product
( ) of the 2 one-dimensional graphs 0 - 1 - 2.
0 − 1 − 2 0 − 1 − 2 (3)
Let Γ1 and Γ2 be two graphs. Consider a graph with vertex set
V(Γ1) × V(Γ2), with vertices (x, x ) ∈ V(Γ1) and (y, y ) ∈ V(Γ2).
Cartesian graph product
The Cartesian graph product connects two vertices (x, y) and
(x , y ) if only if x = x , y ∼ y or y = y , x ∼ x , where “∼” means
connected.
11 / 37
Example of the Cartesian graph product ( )
Cartesian graph product of the 2 one-dimensional graphs
0 − 1 − 2 0 − 1 − 2
Fisrt, list all possible configuration of vertices
02 12 22
01 11 21
00 10 20
12 / 37
Example of the Cartesian graph product ( ) (continue)
Cartesian graph product of the 2 one-dimensional graph
0 − 1 − 2 0 − 1 − 2
The Cartesian graph product connects two vertices (x, y) and
(x , y ) if only if x = x , y ∼ y or y = y , x ∼ x , where “∼” means
connected.
• 0 = 0, 0 ∼ 1 → connected
• 0 = 0, 1 ∼ 2 → connected
02 12 22
01 11 21
00 10 20
⇒
13 / 37
Example of the Cartesian graph product ( ) (continue)
Cartesian graph product of the 2 one-dimensional graph
0 − 1 − 2 0 − 1 − 2
The Cartesian graph product connects two vertices (x, y) and
(x , y ) if only if x = x , y ∼ y or y = y , x ∼ x , where “∼” means
connected.
• 0 = 0, 0 ∼ 1 → connected
• 0 = 0, 1 ∼ 2 → connected
02 12 22
01 11 21
00 10 20
⇒
13 / 37
Example of the Cartesian graph product ( ) (continue)
Cartesian graph product of the 2 one-dimensional graph
0 − 1 − 2 0 − 1 − 2
The Cartesian graph product connects two vertices (x, y) and
(x , y ) if only if x = x , y ∼ y or y = y , x ∼ x , where “∼” means
connected.
• 0 = 0, 0 ∼ 1 → connected
• 0 = 0, 1 ∼ 2 → connected
02 12 22
01 11 21
00 10 20
⇒
02 12 22
|
01 11 21
|
00 10 20
13 / 37
Example of the Cartesian graph product ( ) (continue)
Cartesian graph product of the 2 one-dimensional graphs
0 − 1 − 2 0 − 1 − 2
The Cartesian graph product connects two vertices (x, y) and
(x , y ) if only if x = x , y ∼ y or y = y , x ∼ x , where “∼” means
connected.
• 0 = 0, 0 ∼ 1 → connected
• 0 1, 0 1 → not connected
• 0 1, 0 2 → not connected
02 12 22
|
01 11 21
|
00 10 20
⇒
14 / 37
Example of the Cartesian graph product ( ) (continue)
Cartesian graph product of the 2 one-dimensional graphs
0 − 1 − 2 0 − 1 − 2
The Cartesian graph product connects two vertices (x, y) and
(x , y ) if only if x = x , y ∼ y or y = y , x ∼ x , where “∼” means
connected.
• 0 = 0, 0 ∼ 1 → connected
• 0 1, 0 1 → not connected
• 0 1, 0 2 → not connected
02 12 22
|
01 11 21
|
00 10 20
⇒
14 / 37
Example of the Cartesian graph product ( ) (continue)
Cartesian graph product of the 2 one-dimensional graphs
0 − 1 − 2 0 − 1 − 2
The Cartesian graph product connects two vertices (x, y) and
(x , y ) if only if x = x , y ∼ y or y = y , x ∼ x , where “∼” means
connected.
• 0 = 0, 0 ∼ 1 → connected
• 0 1, 0 1 → not connected
• 0 1, 0 2 → not connected
02 12 22
|
01 11 21
|
00 10 20
⇒
02 12 22
|
01 11 21
|
00 − 10 20
14 / 37
Diffusion on two-dimensional graphs (Z2
3) (continue)
A graph from the Cartesian graph product between path graphs of
any size takes the form of a grid.
02 − 12 − 22
| | |
01 − 11 − 21
| | |
00 − 10 − 20
A SNP grid of p loci is a p dimensional grid with vertices in Zp
3
, with
two vertices x and x adjacent if and only if
p
i=1
|xi − xi | = 1.
i.e., two vertices are adjacent if and only if just one SNP locus
differs by 1.
15 / 37
Diffusion on three-dimensional graphs (Z3
3
)
Cartesian graph product of the 3 one-dimensional graphs.
0 − 1 − 2 0 − 1 − 2 0 − 1 − 2
In general, the p-dimensional SNP grid graph is
p
i=1
Γ, where
Γ = 0 − 1 − 2.
0 1 2
012
0
1
2
1st Genotype
2ndGenotype
3rdGenotype
(2,1,2)
(2,0,1)
(0,1,2)
(0,2,0)
(0,1,0)
(0,1,1)
(1,0,0) (2,0,0)
(1,1,0) (2,1,0)
(1,2,0) (2,2,0)
(1,0,1)
(1,1,1) (2,1,1)
(0,2,1) (1,2,1) (2,2,1)
(0,2,2) (1,2,2) (2,2,2)
(1,0,2)
(1,1,2)
16 / 37
Graph Laplacians
The Laplacian of a graph 0 − 1 − 2 is
L(Γ) = −A(Γ) + Λ
= −


0 1 0
1 0 1
0 1 0


+


1 0 0
0 2 0
0 0 1


=


1 −1 0
−1 2 −1
0 −1 1


where A is an adjacency matrix and Λ is a diagonal matrix with
Λii = n
j=1 Aij.
17 / 37
Graph Laplacians (continue)
The Laplacian of a graph 0 − 1 − 2 0 − 1 − 2 is a square matrix of
dimension 32
× 32
.
L(Γ) =


200 −1 0 −1 0 0 0 0 0
−1 301 −1 0 −1 0 0 0 0
0 −1 202 0 0 −1 0 0 0
−1 0 0 310 −1 0 −1 0 0
0 −1 0 −1 411 −1 0 −1 0
0 0 −1 0 −1 312 0 0 −1
0 0 0 −1 0 0 220 −1 0
0 0 0 0 −1 0 −1 321 −1
0 0 0 0 0 −1 0 −1 222


18 / 37
Diffusion on graphs at time t
• kx is a function which measures the spread of ’influence’ of
the genotype x over other genotypes.
• k˜x(0, x) = 1x=˜x(x), at time 0.
• define the time t diffusion of the ’influence’ of genotype ˜x on
genotype x to be
k˜x(t, x) = k˜x(t − 1, x) +
|x−x |=1
α(k˜x(t − 1, x ) − k˜x(t − 1, x))
19 / 37
Diffusion on graphs at time t (continue)
k˜x(t, x) = k˜x(t − 1, x) +
|x−x |=1
α(k˜x(t − 1, x ) − k˜x(t − 1, x))
• x = (0, 1, 2) is the genotype code, α = (0.1, 0.2) is the
diffusion rate.
• k˜x(t, x) is the time t diffusion of the influence of genotype ˜x on
genotype x.
α= 0.1 α = 0.2
x = 0 1 2 x= 0 1 2
k1(0, x) 0 1 0 k1(0, x) 0 1 0
k1(1, x) 0.1 0.8 0.1 k1(1, x) 0.2 0.6 0.2
k1(2, x) 0.17 0.66 0.17 k1(2, x) 0.28 0.44 0.28
k1(3, x) 0.219 0.562 0.219 k1(3, x) 0.312 0.376 0.312
k1(15, x) 0.331 0.336 0.331 k1(15, x) 0.333 0.333 0.333
20 / 37
Diffusion on graphs at time t (continue)
Writing in vector form, with k˜x(t, x) = [k˜x(t)]x, we get
k˜x(t) = k˜x(t − 1) + αHk˜x(t − 1)
= (I + αH)k˜x(t − 1)
= (I + αH)t
k˜x(0)
• H is the negative of the graph Laplacian
• in order to make ’time’ continuous, let α = θh (θ > 0) and
t = 1/h.
• by using a small h, we can achieve a discretization of the
’diffusion time’
lim
h→0
(I + θhH(Γ))1/h
= exp(θH)
=
∞
k=0
θk
k!
Hk
= I + θH +
θ2
2
H2
+
θ3
3!
H3
+ · · · +
θn
n!
Hn
+ · · ·
21 / 37
Diffusion kernels
Definition
Suppose a graph Γ with a graph Laplacian L(Γ). Then exp(θH(Γ))
or exp(−θL(Γ)) is called the diffusion kernel or heat kernel for
graph Γ, where θ is a rate of diffusion.
Here putting K = exp(θH) and taking the derivative with respect to
θ gives,
d
dθ
K = HK (4)
which is a diffusion equation (heat equation) on a graph with
H = −L(Γ).
22 / 37
Gaussian kernels
Definition
A Gaussian kernel is a space continuous diffusion kernel
• in order to make ’space’ continuous, we create an infinite
number of ’fake’ genotypes between and outside of 0 and 2
• i.e., consider genotypes such as 1.23 or −10.5.
• each genotype x is connected to only two genotypes, x + dx
and x − dx for some infinitesimal dx.
• H becomes an infinite matrix, and H(x, x ) is −2 for x = x
and 1 for x + dx, x − dx.
H(Γ) =


−1 1 0
1 −2 1
0 1 −1


⇒
Infinite matrix with diagonal
elements equal to -2 and 1 for its
neighbors and 0 otherwise
23 / 37
Gaussian kernels (continue)
• a vector of genotypes: x = (−∞, · · · , x − dx, x, x + dx, · · · , ∞)
• an influence function:
f = (f(−∞), · · · , f(x − dx), f(x), f(x + dx), · · · , f(∞))
• Approximating dx by h, and dividing H by h2
, HfT
/h2
indexed
by the genotype x will be
1
h2
[H(x, ·)fT
] =
f(x + h) − 2f(x) + f(x − h)
h2
=
f(x+h)−f(x)
h −
f(x)−f(x−h)
h
h
f (x)
• Thus, with space continuity, H acts like d
dx2 . Using this analogy
back in (4), we get the heat equation.
d
dθ
Kθ(x) =
d
dx2
Kθ(x)
24 / 37
Gaussian kernels (continue)
• The solution to this partial differential equation (PDE) with
Dirac delta initial condition of concentration on x = 0,
k0(x) = 1x=0, is given by
Gθ(x) =
1
√
4πθ
exp −
x2
4θ
• This is a Gaussian density in one dimensional space with
θ = σ2
e/2.
• With the initial condition K0(x) = f(x), the solution to this PDE
is
Kθ(x) =
R
f(x )Gθ(x − x )dx
This kernel gθ(x, x ) = G(x − x ) is the Gaussian kernel with
bandwidth θ.
25 / 37
Gaussian kernels (continue)
• For example, allowing additional genotypes (0.25, 0.50, 0.75,
1.25, 1.50, 1.75).
• now, x ∈ R9
instead of x ∈ Z3
0 1 2
012
0
1
2
1st Genotype
2ndGenotype
3rdGenotype
(0,1.75,2)
26 / 37
Computation of diffusion kernels
Kernel notation:
• K as the kernel matrix indexed by the observed covariates
• K for the infinite dimensional kernel for the Gaussian, and the
3p
× 3p
dimensional kernel for the diffusion kernel
Gaussian kernels
• K: infinite dimensional
kernel
• K = exp(−θ(||x − x ||2
))
• we have a closed form for K,
so no need to deal with K
Diffusion kernels
• K: 3p
× 3p
dimensional
kernel
• K: is there any way to
directly compute K so that
we don’t need to deal with
K?
• closed form for K?
27 / 37
Computation of diffusion kernels (continue)
Let K1(θ) and K2(θ) be the kernels for the two graphs Γ1 and Γ2.
The diffusion kernel for Γ = Γ1 Γ2 is
K1(θ) ⊗ K2(θ).
were ⊗ is the tensor product.
Suppose, Γ1 = 0 − 1 − 2, K(Γ1) is a diffusion kernel on Γ1.
SNP grid graph on p dimensions
• p
i=1
Γ1
SNP grid kernel on p dimensions
•
p
i=1 K(Γ1)
⇓
We just need to compute K(Γ1) = exp(−θL(Γ1)) and take the
tensor product p times!
28 / 37
Matrix exponentiation
Γ1 = 0 − 1 − 2
H =


1 −1 0
−1 2 −1
0 −1 1


We make use of matrix diagonalization H = TDT−1
to obtain
Kθ = exp(θH)
= T exp(θD)T−1
=
1
6


e−3θ + 3e−θ + 2 −2e−3θ + 2 e−3θ − 3e−θ + 2
−2e−3θ + 2 4e−3θ + 2 −2e−3θ + 2
e−3θ − 3e−θ + 2 −2e−3θ + 2 e−3θ + 3e−θ + 2


Here, exp(θD) becomes simple componentwise exponentiation
because D is a diagonal matrix of eigenvalues.
29 / 37
Diffusion kernels indexed by the observed covariates
Symmetric property
Kθ(x, x ) =



−2e−3θ + 2 if |xi − xi
| = 1
e−3θ − 3e−θ + 2 if |xi − xi
| = 2
e−3θ + 3e−θ + 2 if xi = xi
, x 1
4e−3θ + 2 if xi = xi
= 1
Thus,
K
⊗p
θ (x, x ) ∝
p
i=1



(e−3θ
− 3e−θ
+ 2)δ|xi−xi
|=2 + (−2e−3θ
+ 2)δ|xi−xi
|=1
+ (e−3θ
+ 3e−θ
+ 2)δxi=xi
1 + (4e−3θ
+ 2)δxi=xi
=1



30 / 37
Diffusion kernels indexed by the observed covariates
(continue)
• let x and x be an SNP data for p loci; ns be the number of loci
for which |xi − xi
| = s
• let m11 be the number of loci for which xi = xi
= 1, i.e., m11 is
the number of loci that two individuals share heterozygous
states.
Using the fact that
n1 + n0 + n2 = p,
K
⊗p
θ (x, x ) =(−2e−3θ
+ 2)n1
(e−3θ
− 3e−θ
+ 2)n2
(e−3θ
+ 3e−θ
+ 2)n0−m11
(4e−3θ
+ 2)m11
∝
(−2e−3θ + 2)n1 (e−3θ − 3e−θ + 2)n2 (4e−3θ + 2)m11
(e−3θ + 3e−θ + 2)n1+n2+m11
We obtain a SNP grid kernel.
31 / 37
Example of computing a diffusion kernel
Two individuals with 3 SNP genotypes previously shown.
• ID1 = x1 = (0,2,2)
• ID2 = x2 = (2,1,0)
0 1 2
012
0
1
2
1st Genotype
2ndGenotype
3rdGenotype
(2,1,0)
(0,2,2)
Since
Kθ(x, x ) =



−2e−3θ + 2 if |xi − xi
| = 1
e−3θ − 3e−θ + 2 if |xi − xi
| = 2
e−3θ + 3e−θ + 2 if xi = xi
, x 1
4e−3θ + 2 if xi = xi
= 1
Similarity between ID1 and ID2 is
K⊗3
θ (x, x ) =
(−2e−3θ + 2)1
(e−3θ − 3e−θ + 2)2
(e−3θ + 3e−θ + 2)1+2
32 / 37
Diffusion kernels for binary genotypes
Here, x ∈ Zp
2
Γ = 0 − 2
L(Γ) = −H(Γ)
=
1 −1
−1 1
K
⊗p
θ (x, x ) ∝
1 − exp(−2θ)
1 + 2 exp(−2θ)
d(x,x )
where d(x, x ) is the Hamming distance, that is, number of
coordinates at which x and x differ.
33 / 37
Applications
A SNP kernel can be used in DNA-based genomic analyses
including
• regressions
• classifications
• kernel association studies
• kernel principal component analyses
Application of using the diffusion kernel on real data
• 7902 Holstein bulls (USDA-ARS AIPL)
• 43382 SNPs
34 / 37
Diffusion kernels based on for different θ
K(i,i')
Frequency
0.10 0.15 0.20 0.25 0.30 0.35
0.0e+001.0e+07
θ = 10
K(i,i')
Frequency
0.45 0.50 0.55 0.60 0.65 0.70
0.0e+001.0e+07
θ = 11
K(i,i')
Frequency
0.74 0.78 0.82 0.86
0.0e+006.0e+061.2e+07
θ = 12
K(i,i')
Frequency
0.90 0.91 0.92 0.93 0.94 0.95
0.0e+006.0e+061.2e+07
θ = 13
Figure 8: Elements of four diffusion kernels based on four different
bandwidth parameters (θ).
35 / 37
Conclusion
Diffusion kernels
• various graph structures can be used to represent sets of
discrete random variables, such as genotypes
• defines the distance between two vertices, and projects this
information into a more interpretable Rn
• matrix exponentiation of the graph Laplacian
36 / 37
Conclusion
Diffusion kernels
• various graph structures can be used to represent sets of
discrete random variables, such as genotypes
• defines the distance between two vertices, and projects this
information into a more interpretable Rn
• matrix exponentiation of the graph Laplacian
• which senario, the Gaussian can approximate the diffusion
kernel well?
36 / 37
Conclusion
Diffusion kernels
• various graph structures can be used to represent sets of
discrete random variables, such as genotypes
• defines the distance between two vertices, and projects this
information into a more interpretable Rn
• matrix exponentiation of the graph Laplacian
• which senario, the Gaussian can approximate the diffusion
kernel well?
R package ’dkDNA’ will be available on CRAN soon
• SNP grid kernel
• binary grid kernel
• other DNA structures/polymorphisms in future
• written in Fortran
36 / 37
Acknowledgments
• Daniel Gianola
• Grace Wahba
• Masanori Koyama
• Chen Yao
37 / 37

Más contenido relacionado

La actualidad más candente

Sau quantitative methods problem set 3
Sau   quantitative methods problem set  3Sau   quantitative methods problem set  3
Sau quantitative methods problem set 3Naresh Sehdev
 
NUMERICAL METHODS -Iterative methods(indirect method)
NUMERICAL METHODS -Iterative methods(indirect method)NUMERICAL METHODS -Iterative methods(indirect method)
NUMERICAL METHODS -Iterative methods(indirect method)krishnapriya R
 
system of algebraic equation by Iteration method
system of algebraic equation by Iteration methodsystem of algebraic equation by Iteration method
system of algebraic equation by Iteration methodAkhtar Kamal
 
Generarlized operations on fuzzy graphs
Generarlized operations on fuzzy graphsGenerarlized operations on fuzzy graphs
Generarlized operations on fuzzy graphsAlexander Decker
 
FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...
FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...
FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...ieijjournal
 
Inner product space
Inner product spaceInner product space
Inner product spaceSheharBano31
 
Student manual
Student manualStudent manual
Student manualec931657
 
Vcla - Inner Products
Vcla - Inner ProductsVcla - Inner Products
Vcla - Inner ProductsPreetshah1212
 
2012 mdsp pr11 ica part 2 face recognition
2012 mdsp pr11 ica part 2 face recognition2012 mdsp pr11 ica part 2 face recognition
2012 mdsp pr11 ica part 2 face recognitionnozomuhamada
 
Solved exercises double integration
Solved exercises double integrationSolved exercises double integration
Solved exercises double integrationKamel Attar
 
Shape drawing algs
Shape drawing algsShape drawing algs
Shape drawing algsMusawarNice
 

La actualidad más candente (18)

Manual solucoes ex_extras
Manual solucoes ex_extrasManual solucoes ex_extras
Manual solucoes ex_extras
 
Sau quantitative methods problem set 3
Sau   quantitative methods problem set  3Sau   quantitative methods problem set  3
Sau quantitative methods problem set 3
 
Solution homework2
Solution homework2Solution homework2
Solution homework2
 
NUMERICAL METHODS -Iterative methods(indirect method)
NUMERICAL METHODS -Iterative methods(indirect method)NUMERICAL METHODS -Iterative methods(indirect method)
NUMERICAL METHODS -Iterative methods(indirect method)
 
system of algebraic equation by Iteration method
system of algebraic equation by Iteration methodsystem of algebraic equation by Iteration method
system of algebraic equation by Iteration method
 
Generarlized operations on fuzzy graphs
Generarlized operations on fuzzy graphsGenerarlized operations on fuzzy graphs
Generarlized operations on fuzzy graphs
 
WITMSE 2013
WITMSE 2013WITMSE 2013
WITMSE 2013
 
FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...
FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...
FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...
 
Inner product space
Inner product spaceInner product space
Inner product space
 
Appendex
AppendexAppendex
Appendex
 
Maieee04
Maieee04Maieee04
Maieee04
 
Student manual
Student manualStudent manual
Student manual
 
Vcla - Inner Products
Vcla - Inner ProductsVcla - Inner Products
Vcla - Inner Products
 
2012 mdsp pr11 ica part 2 face recognition
2012 mdsp pr11 ica part 2 face recognition2012 mdsp pr11 ica part 2 face recognition
2012 mdsp pr11 ica part 2 face recognition
 
Solved exercises double integration
Solved exercises double integrationSolved exercises double integration
Solved exercises double integration
 
Chapter 01
Chapter 01Chapter 01
Chapter 01
 
Shape drawing algs
Shape drawing algsShape drawing algs
Shape drawing algs
 
11365.integral 2
11365.integral 211365.integral 2
11365.integral 2
 

Destacado

Whole-genome prediction of complex traits using kernel methods
Whole-genome prediction of complex traits using kernel methodsWhole-genome prediction of complex traits using kernel methods
Whole-genome prediction of complex traits using kernel methodsGota Morota
 
NGSを用いたジェノタイピングを様々な解析に用いるには?
NGSを用いたジェノタイピングを様々な解析に用いるには?NGSを用いたジェノタイピングを様々な解析に用いるには?
NGSを用いたジェノタイピングを様々な解析に用いるには?Hiromi Kajiya-Kanegae
 
[2013-12-05] NGS由来ゲノムワイド多型マーカ構築とそのRDF注釈情報統合化
[2013-12-05] NGS由来ゲノムワイド多型マーカ構築とそのRDF注釈情報統合化[2013-12-05] NGS由来ゲノムワイド多型マーカ構築とそのRDF注釈情報統合化
[2013-12-05] NGS由来ゲノムワイド多型マーカ構築とそのRDF注釈情報統合化Eli Kaminuma
 
[AWSマイスターシリーズ] AWS CLI / AWS Tools for Windows PowerShell
[AWSマイスターシリーズ] AWS CLI / AWS Tools for Windows PowerShell[AWSマイスターシリーズ] AWS CLI / AWS Tools for Windows PowerShell
[AWSマイスターシリーズ] AWS CLI / AWS Tools for Windows PowerShellAmazon Web Services Japan
 
スタートアップ組織づくりの具体策を学ぶ 先生:金子 陽三
スタートアップ組織づくりの具体策を学ぶ 先生:金子 陽三スタートアップ組織づくりの具体策を学ぶ 先生:金子 陽三
スタートアップ組織づくりの具体策を学ぶ 先生:金子 陽三schoowebcampus
 
TEDx Manchester: AI & The Future of Work
TEDx Manchester: AI & The Future of WorkTEDx Manchester: AI & The Future of Work
TEDx Manchester: AI & The Future of WorkVolker Hirsch
 

Destacado (6)

Whole-genome prediction of complex traits using kernel methods
Whole-genome prediction of complex traits using kernel methodsWhole-genome prediction of complex traits using kernel methods
Whole-genome prediction of complex traits using kernel methods
 
NGSを用いたジェノタイピングを様々な解析に用いるには?
NGSを用いたジェノタイピングを様々な解析に用いるには?NGSを用いたジェノタイピングを様々な解析に用いるには?
NGSを用いたジェノタイピングを様々な解析に用いるには?
 
[2013-12-05] NGS由来ゲノムワイド多型マーカ構築とそのRDF注釈情報統合化
[2013-12-05] NGS由来ゲノムワイド多型マーカ構築とそのRDF注釈情報統合化[2013-12-05] NGS由来ゲノムワイド多型マーカ構築とそのRDF注釈情報統合化
[2013-12-05] NGS由来ゲノムワイド多型マーカ構築とそのRDF注釈情報統合化
 
[AWSマイスターシリーズ] AWS CLI / AWS Tools for Windows PowerShell
[AWSマイスターシリーズ] AWS CLI / AWS Tools for Windows PowerShell[AWSマイスターシリーズ] AWS CLI / AWS Tools for Windows PowerShell
[AWSマイスターシリーズ] AWS CLI / AWS Tools for Windows PowerShell
 
スタートアップ組織づくりの具体策を学ぶ 先生:金子 陽三
スタートアップ組織づくりの具体策を学ぶ 先生:金子 陽三スタートアップ組織づくりの具体策を学ぶ 先生:金子 陽三
スタートアップ組織づくりの具体策を学ぶ 先生:金子 陽三
 
TEDx Manchester: AI & The Future of Work
TEDx Manchester: AI & The Future of WorkTEDx Manchester: AI & The Future of Work
TEDx Manchester: AI & The Future of Work
 

Similar a Diffusion kernels on SNP data embedded in a non-Euclidean metric

C 9 Coordinate Geometry Graphs
C 9 Coordinate Geometry GraphsC 9 Coordinate Geometry Graphs
C 9 Coordinate Geometry GraphsRashmi Taneja
 
IIT Jam math 2016 solutions BY Trajectoryeducation
IIT Jam math 2016 solutions BY TrajectoryeducationIIT Jam math 2016 solutions BY Trajectoryeducation
IIT Jam math 2016 solutions BY TrajectoryeducationDev Singh
 
Solutions Manual for Calculus Early Transcendentals 10th Edition by Anton
Solutions Manual for Calculus Early Transcendentals 10th Edition by AntonSolutions Manual for Calculus Early Transcendentals 10th Edition by Anton
Solutions Manual for Calculus Early Transcendentals 10th Edition by AntonPamelaew
 
Calculus Early Transcendentals 10th Edition Anton Solutions Manual
Calculus Early Transcendentals 10th Edition Anton Solutions ManualCalculus Early Transcendentals 10th Edition Anton Solutions Manual
Calculus Early Transcendentals 10th Edition Anton Solutions Manualnodyligomi
 
Different kind of distance and Statistical Distance
Different kind of distance and Statistical DistanceDifferent kind of distance and Statistical Distance
Different kind of distance and Statistical DistanceKhulna University
 
DISTANCE TWO LABELING FOR MULTI-STOREY GRAPHS
DISTANCE TWO LABELING FOR MULTI-STOREY GRAPHSDISTANCE TWO LABELING FOR MULTI-STOREY GRAPHS
DISTANCE TWO LABELING FOR MULTI-STOREY GRAPHSgraphhoc
 
Howard, anton calculo i- um novo horizonte - exercicio resolvidos v1
Howard, anton   calculo i- um novo horizonte - exercicio resolvidos v1Howard, anton   calculo i- um novo horizonte - exercicio resolvidos v1
Howard, anton calculo i- um novo horizonte - exercicio resolvidos v1cideni
 
Iceaa07 Foils
Iceaa07 FoilsIceaa07 Foils
Iceaa07 FoilsAntonini
 
ISI MSQE Entrance Question Paper (2008)
ISI MSQE Entrance Question Paper (2008)ISI MSQE Entrance Question Paper (2008)
ISI MSQE Entrance Question Paper (2008)CrackDSE
 
Amth250 octave matlab some solutions (2)
Amth250 octave matlab some solutions (2)Amth250 octave matlab some solutions (2)
Amth250 octave matlab some solutions (2)asghar123456
 
FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...
FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...
FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...ieijjournal
 
Unit 1 Operation on signals
Unit 1  Operation on signalsUnit 1  Operation on signals
Unit 1 Operation on signalsDr.SHANTHI K.G
 
Second-order Cosmological Perturbations Engendered by Point-like Masses
Second-order Cosmological Perturbations Engendered by Point-like MassesSecond-order Cosmological Perturbations Engendered by Point-like Masses
Second-order Cosmological Perturbations Engendered by Point-like MassesMaxim Eingorn
 
Decoding BCH-Code.pdf
Decoding BCH-Code.pdfDecoding BCH-Code.pdf
Decoding BCH-Code.pdfKundanSasi
 
Spm add-maths-formula-list-form4-091022090639-phpapp01
Spm add-maths-formula-list-form4-091022090639-phpapp01Spm add-maths-formula-list-form4-091022090639-phpapp01
Spm add-maths-formula-list-form4-091022090639-phpapp01Asad Bukhari
 
Spm add-maths-formula-list-form4-091022090639-phpapp01
Spm add-maths-formula-list-form4-091022090639-phpapp01Spm add-maths-formula-list-form4-091022090639-phpapp01
Spm add-maths-formula-list-form4-091022090639-phpapp01Nur Kamila
 
Additional Mathematics form 4 (formula)
Additional Mathematics form 4 (formula)Additional Mathematics form 4 (formula)
Additional Mathematics form 4 (formula)Fatini Adnan
 

Similar a Diffusion kernels on SNP data embedded in a non-Euclidean metric (20)

C 9 Coordinate Geometry Graphs
C 9 Coordinate Geometry GraphsC 9 Coordinate Geometry Graphs
C 9 Coordinate Geometry Graphs
 
IIT Jam math 2016 solutions BY Trajectoryeducation
IIT Jam math 2016 solutions BY TrajectoryeducationIIT Jam math 2016 solutions BY Trajectoryeducation
IIT Jam math 2016 solutions BY Trajectoryeducation
 
Solutions Manual for Calculus Early Transcendentals 10th Edition by Anton
Solutions Manual for Calculus Early Transcendentals 10th Edition by AntonSolutions Manual for Calculus Early Transcendentals 10th Edition by Anton
Solutions Manual for Calculus Early Transcendentals 10th Edition by Anton
 
Calculus Early Transcendentals 10th Edition Anton Solutions Manual
Calculus Early Transcendentals 10th Edition Anton Solutions ManualCalculus Early Transcendentals 10th Edition Anton Solutions Manual
Calculus Early Transcendentals 10th Edition Anton Solutions Manual
 
Different kind of distance and Statistical Distance
Different kind of distance and Statistical DistanceDifferent kind of distance and Statistical Distance
Different kind of distance and Statistical Distance
 
2D Geometry1
2D Geometry12D Geometry1
2D Geometry1
 
DISTANCE TWO LABELING FOR MULTI-STOREY GRAPHS
DISTANCE TWO LABELING FOR MULTI-STOREY GRAPHSDISTANCE TWO LABELING FOR MULTI-STOREY GRAPHS
DISTANCE TWO LABELING FOR MULTI-STOREY GRAPHS
 
Howard, anton calculo i- um novo horizonte - exercicio resolvidos v1
Howard, anton   calculo i- um novo horizonte - exercicio resolvidos v1Howard, anton   calculo i- um novo horizonte - exercicio resolvidos v1
Howard, anton calculo i- um novo horizonte - exercicio resolvidos v1
 
Iceaa07 Foils
Iceaa07 FoilsIceaa07 Foils
Iceaa07 Foils
 
ISI MSQE Entrance Question Paper (2008)
ISI MSQE Entrance Question Paper (2008)ISI MSQE Entrance Question Paper (2008)
ISI MSQE Entrance Question Paper (2008)
 
Amth250 octave matlab some solutions (2)
Amth250 octave matlab some solutions (2)Amth250 octave matlab some solutions (2)
Amth250 octave matlab some solutions (2)
 
FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...
FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...
FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...
 
Krishna
KrishnaKrishna
Krishna
 
Bayes gauss
Bayes gaussBayes gauss
Bayes gauss
 
Unit 1 Operation on signals
Unit 1  Operation on signalsUnit 1  Operation on signals
Unit 1 Operation on signals
 
Second-order Cosmological Perturbations Engendered by Point-like Masses
Second-order Cosmological Perturbations Engendered by Point-like MassesSecond-order Cosmological Perturbations Engendered by Point-like Masses
Second-order Cosmological Perturbations Engendered by Point-like Masses
 
Decoding BCH-Code.pdf
Decoding BCH-Code.pdfDecoding BCH-Code.pdf
Decoding BCH-Code.pdf
 
Spm add-maths-formula-list-form4-091022090639-phpapp01
Spm add-maths-formula-list-form4-091022090639-phpapp01Spm add-maths-formula-list-form4-091022090639-phpapp01
Spm add-maths-formula-list-form4-091022090639-phpapp01
 
Spm add-maths-formula-list-form4-091022090639-phpapp01
Spm add-maths-formula-list-form4-091022090639-phpapp01Spm add-maths-formula-list-form4-091022090639-phpapp01
Spm add-maths-formula-list-form4-091022090639-phpapp01
 
Additional Mathematics form 4 (formula)
Additional Mathematics form 4 (formula)Additional Mathematics form 4 (formula)
Additional Mathematics form 4 (formula)
 

Último

Isotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on IoIsotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on IoSérgio Sacani
 
Nanoparticles synthesis and characterization​ ​
Nanoparticles synthesis and characterization​  ​Nanoparticles synthesis and characterization​  ​
Nanoparticles synthesis and characterization​ ​kaibalyasahoo82800
 
Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.aasikanpl
 
Unlocking the Potential: Deep dive into ocean of Ceramic Magnets.pptx
Unlocking  the Potential: Deep dive into ocean of Ceramic Magnets.pptxUnlocking  the Potential: Deep dive into ocean of Ceramic Magnets.pptx
Unlocking the Potential: Deep dive into ocean of Ceramic Magnets.pptxanandsmhk
 
Spermiogenesis or Spermateleosis or metamorphosis of spermatid
Spermiogenesis or Spermateleosis or metamorphosis of spermatidSpermiogenesis or Spermateleosis or metamorphosis of spermatid
Spermiogenesis or Spermateleosis or metamorphosis of spermatidSarthak Sekhar Mondal
 
G9 Science Q4- Week 1-2 Projectile Motion.ppt
G9 Science Q4- Week 1-2 Projectile Motion.pptG9 Science Q4- Week 1-2 Projectile Motion.ppt
G9 Science Q4- Week 1-2 Projectile Motion.pptMAESTRELLAMesa2
 
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCESTERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCEPRINCE C P
 
Hubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroidsHubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroidsSérgio Sacani
 
Biological Classification BioHack (3).pdf
Biological Classification BioHack (3).pdfBiological Classification BioHack (3).pdf
Biological Classification BioHack (3).pdfmuntazimhurra
 
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.aasikanpl
 
Disentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOSTDisentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOSTSérgio Sacani
 
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service 🪡
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service  🪡CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service  🪡
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service 🪡anilsa9823
 
Analytical Profile of Coleus Forskohlii | Forskolin .pdf
Analytical Profile of Coleus Forskohlii | Forskolin .pdfAnalytical Profile of Coleus Forskohlii | Forskolin .pdf
Analytical Profile of Coleus Forskohlii | Forskolin .pdfSwapnil Therkar
 
Botany 4th semester file By Sumit Kumar yadav.pdf
Botany 4th semester file By Sumit Kumar yadav.pdfBotany 4th semester file By Sumit Kumar yadav.pdf
Botany 4th semester file By Sumit Kumar yadav.pdfSumit Kumar yadav
 
Physiochemical properties of nanomaterials and its nanotoxicity.pptx
Physiochemical properties of nanomaterials and its nanotoxicity.pptxPhysiochemical properties of nanomaterials and its nanotoxicity.pptx
Physiochemical properties of nanomaterials and its nanotoxicity.pptxAArockiyaNisha
 
Recombination DNA Technology (Nucleic Acid Hybridization )
Recombination DNA Technology (Nucleic Acid Hybridization )Recombination DNA Technology (Nucleic Acid Hybridization )
Recombination DNA Technology (Nucleic Acid Hybridization )aarthirajkumar25
 
Cultivation of KODO MILLET . made by Ghanshyam pptx
Cultivation of KODO MILLET . made by Ghanshyam pptxCultivation of KODO MILLET . made by Ghanshyam pptx
Cultivation of KODO MILLET . made by Ghanshyam pptxpradhanghanshyam7136
 
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...Sérgio Sacani
 
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...Lokesh Kothari
 

Último (20)

Isotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on IoIsotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on Io
 
Nanoparticles synthesis and characterization​ ​
Nanoparticles synthesis and characterization​  ​Nanoparticles synthesis and characterization​  ​
Nanoparticles synthesis and characterization​ ​
 
Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
 
Unlocking the Potential: Deep dive into ocean of Ceramic Magnets.pptx
Unlocking  the Potential: Deep dive into ocean of Ceramic Magnets.pptxUnlocking  the Potential: Deep dive into ocean of Ceramic Magnets.pptx
Unlocking the Potential: Deep dive into ocean of Ceramic Magnets.pptx
 
Spermiogenesis or Spermateleosis or metamorphosis of spermatid
Spermiogenesis or Spermateleosis or metamorphosis of spermatidSpermiogenesis or Spermateleosis or metamorphosis of spermatid
Spermiogenesis or Spermateleosis or metamorphosis of spermatid
 
G9 Science Q4- Week 1-2 Projectile Motion.ppt
G9 Science Q4- Week 1-2 Projectile Motion.pptG9 Science Q4- Week 1-2 Projectile Motion.ppt
G9 Science Q4- Week 1-2 Projectile Motion.ppt
 
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCESTERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
 
Hubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroidsHubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroids
 
Biological Classification BioHack (3).pdf
Biological Classification BioHack (3).pdfBiological Classification BioHack (3).pdf
Biological Classification BioHack (3).pdf
 
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
 
Disentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOSTDisentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOST
 
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service 🪡
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service  🪡CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service  🪡
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service 🪡
 
Analytical Profile of Coleus Forskohlii | Forskolin .pdf
Analytical Profile of Coleus Forskohlii | Forskolin .pdfAnalytical Profile of Coleus Forskohlii | Forskolin .pdf
Analytical Profile of Coleus Forskohlii | Forskolin .pdf
 
Botany 4th semester file By Sumit Kumar yadav.pdf
Botany 4th semester file By Sumit Kumar yadav.pdfBotany 4th semester file By Sumit Kumar yadav.pdf
Botany 4th semester file By Sumit Kumar yadav.pdf
 
Physiochemical properties of nanomaterials and its nanotoxicity.pptx
Physiochemical properties of nanomaterials and its nanotoxicity.pptxPhysiochemical properties of nanomaterials and its nanotoxicity.pptx
Physiochemical properties of nanomaterials and its nanotoxicity.pptx
 
Recombination DNA Technology (Nucleic Acid Hybridization )
Recombination DNA Technology (Nucleic Acid Hybridization )Recombination DNA Technology (Nucleic Acid Hybridization )
Recombination DNA Technology (Nucleic Acid Hybridization )
 
Cultivation of KODO MILLET . made by Ghanshyam pptx
Cultivation of KODO MILLET . made by Ghanshyam pptxCultivation of KODO MILLET . made by Ghanshyam pptx
Cultivation of KODO MILLET . made by Ghanshyam pptx
 
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
 
The Philosophy of Science
The Philosophy of ScienceThe Philosophy of Science
The Philosophy of Science
 
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
 

Diffusion kernels on SNP data embedded in a non-Euclidean metric

  • 1. Diffusion kernels on SNP data embedded in a non-Euclidean metric Animal Breeding & Genomics Seminar Gota Morota April 10, 2012 1 / 37
  • 2. Kernel functions Definition A kernel is a weighting function which provides a similarity metric 1. define a function that measures distance (metric) for genotypes 2. compute a similarity based on this metric space ⇓ function of a distance under certain metric space f(||x − x ||) • Euclidean distance • Manhattan distance • Mahalanobis distance • Minkowski distance 2 / 37
  • 3. Metric (Distance function) Definition A function which defines a distance between two points If one picks Euclidean metric, the Mat´ern covariance function offers flexible kernels K(x, x ) = σ2 K 21−ν Γ(ν) √ 2ν(||x − x ||/h)ν K(||x − x ||/h) • Gaussian Kernel: ν = ∞, exp(−θ(||x − x ||2 )) • Exponentail Kernel: ν = 1 2 , exp(−θ(||x − x ||)) ⇓ A choice of a metric determines characteristics of a kernel 3 / 37
  • 4. Euclidean Metric Definition The distance function given by the Pythagorean theorem (a2 + b2 = c2 ) Euclidean distance on R2 xi = (xi1, xi2), xj = (xj1, xj2) ||xi − xj|| = (xi1 − xj1)2 + (xi2 − xj2)2 Figure 1: Euclidean distance between two points A and B Euclidean distance on Rp ||xi − xj|| = (xi1 − xj1)2 + · · · + (xik − xjk )2 + · · · + (xip − xjp)2 4 / 37
  • 5. Euclidean space Euclidean distance is a metric on a metric space callled Euclidean space Figure 2: 3-dimensional Euclidean space. −∞ ≤ (X, Y, Z) ≤ ∞ Suppose, we observed two individuals with 3 SNP genotypes. • ID1 = x1 = (0,2,2) • ID2 = x2 = (2,1,0) Euclidean distance on R3 ||x1 − x2|| = (0 − 2)2 + (2 − 1)2 + (2 − 0)2 = 3 5 / 37
  • 6. Metric on graphs A graph is consisted of vertices and edges 0 1 2 012 0 1 2 1st Genotype 2ndGenotype 3rdGenotype 6 / 37
  • 7. Metric on graphs (continue) 0 1 2 012 0 1 2 1st Genotype 2ndGenotype 3rdGenotype (2,1,2) (2,0,1) (0,1,2) (0,2,0) (0,1,0) (0,1,1) (1,0,0) (2,0,0) (1,1,0) (2,1,0) (1,2,0) (2,2,0) (1,0,1) (1,1,1) (2,1,1) (0,2,1) (1,2,1) (2,2,1) (0,2,2) (1,2,2) (2,2,2) (1,0,2) (1,1,2) 7 / 37
  • 8. Metric on graphs (continue) Two individuals with 3 SNP genotypes previously shown. • ID1 = x1 = (0,2,2), ID2 = x2 = (2,1,0) 0 1 2 012 0 1 2 1st Genotype 2ndGenotype 3rdGenotype (2,1,0) (0,2,2) 8 / 37
  • 9. The purpose of this study 1. Is the Euclidean distance adequate for genotypes? 2. The metric on graphs seems to be given by the Manhattan distance, but how to express the degree of similarity? • Embed SNP data in a non-Euclidean metric space • Define a metric for discrete genotypes on graphs and construct a kernel on this metric ⇓ Develope a kernel that is suited for all kinds of kernel-based genomic analyses 9 / 37
  • 10. Diffusion on one-dimensional graphs (Z1 3) We have three possible genotypes, 0 (aa), 1 (Aa) and 2 (’AA’). 0 − 1 − 2 (1) 0 − 1 / 2 (2) 10 / 37
  • 11. Diffusion on one-dimensional graphs (Z1 3) We have three possible genotypes, 0 (aa), 1 (Aa) and 2 (’AA’). 0 − 1 − 2 (1) 0 − 1 / 2 (2) 1. Graph (1) path graph • genotype 1’s (’Aa’) influence diffuses to genotype 0 (’aa’) and 2 (’AA’) • genotype 0’s (’aa’) influence diffuses to only genotype 1 (’Aa’) • genotype 2’s (’AA’) influence diffuses to only genotype 1 (’Aa’) 2. Graph (2) complete graph • the distance from genotype 0 (’aa’) to genotype 2 (’AA’) is the same as that from 0 (’aa’) to 1 (’Aa’). 10 / 37
  • 12. Diffusion on one-dimensional graphs (Z1 3) We have three possible genotypes, 0 (aa), 1 (Aa) and 2 (’AA’). 0 − 1 − 2 (1) 0 − 1 / 2 (2) 1. Graph (1) path graph • genotype 1’s (’Aa’) influence diffuses to genotype 0 (’aa’) and 2 (’AA’) • genotype 0’s (’aa’) influence diffuses to only genotype 1 (’Aa’) • genotype 2’s (’AA’) influence diffuses to only genotype 1 (’Aa’) 2. Graph (2) complete graph • the distance from genotype 0 (’aa’) to genotype 2 (’AA’) is the same as that from 0 (’aa’) to 1 (’Aa’). • more reasonable to assume that genotype ’Aa’ is closer than ’aa’ to ’AA’ which has two copies of the ’A’ allele. • genotype 0 (’aa’) requires two mutations to become genotype 2 (’AA’), while genotype 1 (’Aa’) requires only one mutation 10 / 37
  • 13. Diffusion on two-dimensional graphs (Z2 3) Two-dimensional graphs are given by the Cartesian graph product ( ) of the 2 one-dimensional graphs 0 - 1 - 2. 0 − 1 − 2 0 − 1 − 2 (3) Let Γ1 and Γ2 be two graphs. Consider a graph with vertex set V(Γ1) × V(Γ2), with vertices (x, x ) ∈ V(Γ1) and (y, y ) ∈ V(Γ2). Cartesian graph product The Cartesian graph product connects two vertices (x, y) and (x , y ) if only if x = x , y ∼ y or y = y , x ∼ x , where “∼” means connected. 11 / 37
  • 14. Example of the Cartesian graph product ( ) Cartesian graph product of the 2 one-dimensional graphs 0 − 1 − 2 0 − 1 − 2 Fisrt, list all possible configuration of vertices 02 12 22 01 11 21 00 10 20 12 / 37
  • 15. Example of the Cartesian graph product ( ) (continue) Cartesian graph product of the 2 one-dimensional graph 0 − 1 − 2 0 − 1 − 2 The Cartesian graph product connects two vertices (x, y) and (x , y ) if only if x = x , y ∼ y or y = y , x ∼ x , where “∼” means connected. • 0 = 0, 0 ∼ 1 → connected • 0 = 0, 1 ∼ 2 → connected 02 12 22 01 11 21 00 10 20 ⇒ 13 / 37
  • 16. Example of the Cartesian graph product ( ) (continue) Cartesian graph product of the 2 one-dimensional graph 0 − 1 − 2 0 − 1 − 2 The Cartesian graph product connects two vertices (x, y) and (x , y ) if only if x = x , y ∼ y or y = y , x ∼ x , where “∼” means connected. • 0 = 0, 0 ∼ 1 → connected • 0 = 0, 1 ∼ 2 → connected 02 12 22 01 11 21 00 10 20 ⇒ 13 / 37
  • 17. Example of the Cartesian graph product ( ) (continue) Cartesian graph product of the 2 one-dimensional graph 0 − 1 − 2 0 − 1 − 2 The Cartesian graph product connects two vertices (x, y) and (x , y ) if only if x = x , y ∼ y or y = y , x ∼ x , where “∼” means connected. • 0 = 0, 0 ∼ 1 → connected • 0 = 0, 1 ∼ 2 → connected 02 12 22 01 11 21 00 10 20 ⇒ 02 12 22 | 01 11 21 | 00 10 20 13 / 37
  • 18. Example of the Cartesian graph product ( ) (continue) Cartesian graph product of the 2 one-dimensional graphs 0 − 1 − 2 0 − 1 − 2 The Cartesian graph product connects two vertices (x, y) and (x , y ) if only if x = x , y ∼ y or y = y , x ∼ x , where “∼” means connected. • 0 = 0, 0 ∼ 1 → connected • 0 1, 0 1 → not connected • 0 1, 0 2 → not connected 02 12 22 | 01 11 21 | 00 10 20 ⇒ 14 / 37
  • 19. Example of the Cartesian graph product ( ) (continue) Cartesian graph product of the 2 one-dimensional graphs 0 − 1 − 2 0 − 1 − 2 The Cartesian graph product connects two vertices (x, y) and (x , y ) if only if x = x , y ∼ y or y = y , x ∼ x , where “∼” means connected. • 0 = 0, 0 ∼ 1 → connected • 0 1, 0 1 → not connected • 0 1, 0 2 → not connected 02 12 22 | 01 11 21 | 00 10 20 ⇒ 14 / 37
  • 20. Example of the Cartesian graph product ( ) (continue) Cartesian graph product of the 2 one-dimensional graphs 0 − 1 − 2 0 − 1 − 2 The Cartesian graph product connects two vertices (x, y) and (x , y ) if only if x = x , y ∼ y or y = y , x ∼ x , where “∼” means connected. • 0 = 0, 0 ∼ 1 → connected • 0 1, 0 1 → not connected • 0 1, 0 2 → not connected 02 12 22 | 01 11 21 | 00 10 20 ⇒ 02 12 22 | 01 11 21 | 00 − 10 20 14 / 37
  • 21. Diffusion on two-dimensional graphs (Z2 3) (continue) A graph from the Cartesian graph product between path graphs of any size takes the form of a grid. 02 − 12 − 22 | | | 01 − 11 − 21 | | | 00 − 10 − 20 A SNP grid of p loci is a p dimensional grid with vertices in Zp 3 , with two vertices x and x adjacent if and only if p i=1 |xi − xi | = 1. i.e., two vertices are adjacent if and only if just one SNP locus differs by 1. 15 / 37
  • 22. Diffusion on three-dimensional graphs (Z3 3 ) Cartesian graph product of the 3 one-dimensional graphs. 0 − 1 − 2 0 − 1 − 2 0 − 1 − 2 In general, the p-dimensional SNP grid graph is p i=1 Γ, where Γ = 0 − 1 − 2. 0 1 2 012 0 1 2 1st Genotype 2ndGenotype 3rdGenotype (2,1,2) (2,0,1) (0,1,2) (0,2,0) (0,1,0) (0,1,1) (1,0,0) (2,0,0) (1,1,0) (2,1,0) (1,2,0) (2,2,0) (1,0,1) (1,1,1) (2,1,1) (0,2,1) (1,2,1) (2,2,1) (0,2,2) (1,2,2) (2,2,2) (1,0,2) (1,1,2) 16 / 37
  • 23. Graph Laplacians The Laplacian of a graph 0 − 1 − 2 is L(Γ) = −A(Γ) + Λ = −   0 1 0 1 0 1 0 1 0   +   1 0 0 0 2 0 0 0 1   =   1 −1 0 −1 2 −1 0 −1 1   where A is an adjacency matrix and Λ is a diagonal matrix with Λii = n j=1 Aij. 17 / 37
  • 24. Graph Laplacians (continue) The Laplacian of a graph 0 − 1 − 2 0 − 1 − 2 is a square matrix of dimension 32 × 32 . L(Γ) =   200 −1 0 −1 0 0 0 0 0 −1 301 −1 0 −1 0 0 0 0 0 −1 202 0 0 −1 0 0 0 −1 0 0 310 −1 0 −1 0 0 0 −1 0 −1 411 −1 0 −1 0 0 0 −1 0 −1 312 0 0 −1 0 0 0 −1 0 0 220 −1 0 0 0 0 0 −1 0 −1 321 −1 0 0 0 0 0 −1 0 −1 222   18 / 37
  • 25. Diffusion on graphs at time t • kx is a function which measures the spread of ’influence’ of the genotype x over other genotypes. • k˜x(0, x) = 1x=˜x(x), at time 0. • define the time t diffusion of the ’influence’ of genotype ˜x on genotype x to be k˜x(t, x) = k˜x(t − 1, x) + |x−x |=1 α(k˜x(t − 1, x ) − k˜x(t − 1, x)) 19 / 37
  • 26. Diffusion on graphs at time t (continue) k˜x(t, x) = k˜x(t − 1, x) + |x−x |=1 α(k˜x(t − 1, x ) − k˜x(t − 1, x)) • x = (0, 1, 2) is the genotype code, α = (0.1, 0.2) is the diffusion rate. • k˜x(t, x) is the time t diffusion of the influence of genotype ˜x on genotype x. α= 0.1 α = 0.2 x = 0 1 2 x= 0 1 2 k1(0, x) 0 1 0 k1(0, x) 0 1 0 k1(1, x) 0.1 0.8 0.1 k1(1, x) 0.2 0.6 0.2 k1(2, x) 0.17 0.66 0.17 k1(2, x) 0.28 0.44 0.28 k1(3, x) 0.219 0.562 0.219 k1(3, x) 0.312 0.376 0.312 k1(15, x) 0.331 0.336 0.331 k1(15, x) 0.333 0.333 0.333 20 / 37
  • 27. Diffusion on graphs at time t (continue) Writing in vector form, with k˜x(t, x) = [k˜x(t)]x, we get k˜x(t) = k˜x(t − 1) + αHk˜x(t − 1) = (I + αH)k˜x(t − 1) = (I + αH)t k˜x(0) • H is the negative of the graph Laplacian • in order to make ’time’ continuous, let α = θh (θ > 0) and t = 1/h. • by using a small h, we can achieve a discretization of the ’diffusion time’ lim h→0 (I + θhH(Γ))1/h = exp(θH) = ∞ k=0 θk k! Hk = I + θH + θ2 2 H2 + θ3 3! H3 + · · · + θn n! Hn + · · · 21 / 37
  • 28. Diffusion kernels Definition Suppose a graph Γ with a graph Laplacian L(Γ). Then exp(θH(Γ)) or exp(−θL(Γ)) is called the diffusion kernel or heat kernel for graph Γ, where θ is a rate of diffusion. Here putting K = exp(θH) and taking the derivative with respect to θ gives, d dθ K = HK (4) which is a diffusion equation (heat equation) on a graph with H = −L(Γ). 22 / 37
  • 29. Gaussian kernels Definition A Gaussian kernel is a space continuous diffusion kernel • in order to make ’space’ continuous, we create an infinite number of ’fake’ genotypes between and outside of 0 and 2 • i.e., consider genotypes such as 1.23 or −10.5. • each genotype x is connected to only two genotypes, x + dx and x − dx for some infinitesimal dx. • H becomes an infinite matrix, and H(x, x ) is −2 for x = x and 1 for x + dx, x − dx. H(Γ) =   −1 1 0 1 −2 1 0 1 −1   ⇒ Infinite matrix with diagonal elements equal to -2 and 1 for its neighbors and 0 otherwise 23 / 37
  • 30. Gaussian kernels (continue) • a vector of genotypes: x = (−∞, · · · , x − dx, x, x + dx, · · · , ∞) • an influence function: f = (f(−∞), · · · , f(x − dx), f(x), f(x + dx), · · · , f(∞)) • Approximating dx by h, and dividing H by h2 , HfT /h2 indexed by the genotype x will be 1 h2 [H(x, ·)fT ] = f(x + h) − 2f(x) + f(x − h) h2 = f(x+h)−f(x) h − f(x)−f(x−h) h h f (x) • Thus, with space continuity, H acts like d dx2 . Using this analogy back in (4), we get the heat equation. d dθ Kθ(x) = d dx2 Kθ(x) 24 / 37
  • 31. Gaussian kernels (continue) • The solution to this partial differential equation (PDE) with Dirac delta initial condition of concentration on x = 0, k0(x) = 1x=0, is given by Gθ(x) = 1 √ 4πθ exp − x2 4θ • This is a Gaussian density in one dimensional space with θ = σ2 e/2. • With the initial condition K0(x) = f(x), the solution to this PDE is Kθ(x) = R f(x )Gθ(x − x )dx This kernel gθ(x, x ) = G(x − x ) is the Gaussian kernel with bandwidth θ. 25 / 37
  • 32. Gaussian kernels (continue) • For example, allowing additional genotypes (0.25, 0.50, 0.75, 1.25, 1.50, 1.75). • now, x ∈ R9 instead of x ∈ Z3 0 1 2 012 0 1 2 1st Genotype 2ndGenotype 3rdGenotype (0,1.75,2) 26 / 37
  • 33. Computation of diffusion kernels Kernel notation: • K as the kernel matrix indexed by the observed covariates • K for the infinite dimensional kernel for the Gaussian, and the 3p × 3p dimensional kernel for the diffusion kernel Gaussian kernels • K: infinite dimensional kernel • K = exp(−θ(||x − x ||2 )) • we have a closed form for K, so no need to deal with K Diffusion kernels • K: 3p × 3p dimensional kernel • K: is there any way to directly compute K so that we don’t need to deal with K? • closed form for K? 27 / 37
  • 34. Computation of diffusion kernels (continue) Let K1(θ) and K2(θ) be the kernels for the two graphs Γ1 and Γ2. The diffusion kernel for Γ = Γ1 Γ2 is K1(θ) ⊗ K2(θ). were ⊗ is the tensor product. Suppose, Γ1 = 0 − 1 − 2, K(Γ1) is a diffusion kernel on Γ1. SNP grid graph on p dimensions • p i=1 Γ1 SNP grid kernel on p dimensions • p i=1 K(Γ1) ⇓ We just need to compute K(Γ1) = exp(−θL(Γ1)) and take the tensor product p times! 28 / 37
  • 35. Matrix exponentiation Γ1 = 0 − 1 − 2 H =   1 −1 0 −1 2 −1 0 −1 1   We make use of matrix diagonalization H = TDT−1 to obtain Kθ = exp(θH) = T exp(θD)T−1 = 1 6   e−3θ + 3e−θ + 2 −2e−3θ + 2 e−3θ − 3e−θ + 2 −2e−3θ + 2 4e−3θ + 2 −2e−3θ + 2 e−3θ − 3e−θ + 2 −2e−3θ + 2 e−3θ + 3e−θ + 2   Here, exp(θD) becomes simple componentwise exponentiation because D is a diagonal matrix of eigenvalues. 29 / 37
  • 36. Diffusion kernels indexed by the observed covariates Symmetric property Kθ(x, x ) =    −2e−3θ + 2 if |xi − xi | = 1 e−3θ − 3e−θ + 2 if |xi − xi | = 2 e−3θ + 3e−θ + 2 if xi = xi , x 1 4e−3θ + 2 if xi = xi = 1 Thus, K ⊗p θ (x, x ) ∝ p i=1    (e−3θ − 3e−θ + 2)δ|xi−xi |=2 + (−2e−3θ + 2)δ|xi−xi |=1 + (e−3θ + 3e−θ + 2)δxi=xi 1 + (4e−3θ + 2)δxi=xi =1    30 / 37
  • 37. Diffusion kernels indexed by the observed covariates (continue) • let x and x be an SNP data for p loci; ns be the number of loci for which |xi − xi | = s • let m11 be the number of loci for which xi = xi = 1, i.e., m11 is the number of loci that two individuals share heterozygous states. Using the fact that n1 + n0 + n2 = p, K ⊗p θ (x, x ) =(−2e−3θ + 2)n1 (e−3θ − 3e−θ + 2)n2 (e−3θ + 3e−θ + 2)n0−m11 (4e−3θ + 2)m11 ∝ (−2e−3θ + 2)n1 (e−3θ − 3e−θ + 2)n2 (4e−3θ + 2)m11 (e−3θ + 3e−θ + 2)n1+n2+m11 We obtain a SNP grid kernel. 31 / 37
  • 38. Example of computing a diffusion kernel Two individuals with 3 SNP genotypes previously shown. • ID1 = x1 = (0,2,2) • ID2 = x2 = (2,1,0) 0 1 2 012 0 1 2 1st Genotype 2ndGenotype 3rdGenotype (2,1,0) (0,2,2) Since Kθ(x, x ) =    −2e−3θ + 2 if |xi − xi | = 1 e−3θ − 3e−θ + 2 if |xi − xi | = 2 e−3θ + 3e−θ + 2 if xi = xi , x 1 4e−3θ + 2 if xi = xi = 1 Similarity between ID1 and ID2 is K⊗3 θ (x, x ) = (−2e−3θ + 2)1 (e−3θ − 3e−θ + 2)2 (e−3θ + 3e−θ + 2)1+2 32 / 37
  • 39. Diffusion kernels for binary genotypes Here, x ∈ Zp 2 Γ = 0 − 2 L(Γ) = −H(Γ) = 1 −1 −1 1 K ⊗p θ (x, x ) ∝ 1 − exp(−2θ) 1 + 2 exp(−2θ) d(x,x ) where d(x, x ) is the Hamming distance, that is, number of coordinates at which x and x differ. 33 / 37
  • 40. Applications A SNP kernel can be used in DNA-based genomic analyses including • regressions • classifications • kernel association studies • kernel principal component analyses Application of using the diffusion kernel on real data • 7902 Holstein bulls (USDA-ARS AIPL) • 43382 SNPs 34 / 37
  • 41. Diffusion kernels based on for different θ K(i,i') Frequency 0.10 0.15 0.20 0.25 0.30 0.35 0.0e+001.0e+07 θ = 10 K(i,i') Frequency 0.45 0.50 0.55 0.60 0.65 0.70 0.0e+001.0e+07 θ = 11 K(i,i') Frequency 0.74 0.78 0.82 0.86 0.0e+006.0e+061.2e+07 θ = 12 K(i,i') Frequency 0.90 0.91 0.92 0.93 0.94 0.95 0.0e+006.0e+061.2e+07 θ = 13 Figure 8: Elements of four diffusion kernels based on four different bandwidth parameters (θ). 35 / 37
  • 42. Conclusion Diffusion kernels • various graph structures can be used to represent sets of discrete random variables, such as genotypes • defines the distance between two vertices, and projects this information into a more interpretable Rn • matrix exponentiation of the graph Laplacian 36 / 37
  • 43. Conclusion Diffusion kernels • various graph structures can be used to represent sets of discrete random variables, such as genotypes • defines the distance between two vertices, and projects this information into a more interpretable Rn • matrix exponentiation of the graph Laplacian • which senario, the Gaussian can approximate the diffusion kernel well? 36 / 37
  • 44. Conclusion Diffusion kernels • various graph structures can be used to represent sets of discrete random variables, such as genotypes • defines the distance between two vertices, and projects this information into a more interpretable Rn • matrix exponentiation of the graph Laplacian • which senario, the Gaussian can approximate the diffusion kernel well? R package ’dkDNA’ will be available on CRAN soon • SNP grid kernel • binary grid kernel • other DNA structures/polymorphisms in future • written in Fortran 36 / 37
  • 45. Acknowledgments • Daniel Gianola • Grace Wahba • Masanori Koyama • Chen Yao 37 / 37