SlideShare una empresa de Scribd logo
1 de 7
Physics Journal Club
Robust breathing signal extraction from cone beam CT projections based on
adaptive and global optimization techniques
Ming Chao, Jie Wei, Tianfang Li, Yading Yuan, Kenneth E Rosenzweig and Yeh-Chi Lo
Department of Radiation Oncology, Mount Sinai Medical Center, New York, NY 0029, USA
Department of Computer Science, City College of New York, New York, NY 10031, USA
Department of Radiation Oncology, University of Pittsburgh Medical Center, Pittsburgh, PA 15232, USA
Innovation/Impact
A novel Markerless breathing signal extraction using
Amsterdam Shroud (AS) image from CBCT projections for thoracic
and abdominal patients.
1. An adaptive robust z-normalization filtering to enhance weak
oscillating structures
2. A two-step optimization approach to effectively reveal the large-
scale regularity of the breathing signals
Turin Shroud Amsterdam Shroud
Sonke el al. Respiratory correlated cone beam CT, Medical Physics 2005
Purpose
Extracting breathing signals from CBCT projections within the framework of
the AS technique.
• The least square optimization for the matching between the adjacent
vertical lines (columns) in the AS image
• The wavy pattern is not clear, no reliable breathing signal can be
extracted
• Aimed to improve both the AS image and the signal extraction algorithm
Illustration of the steps used to generate the AS image: (a) original
projection image; (b) logarithmic transform and superior-inferior
derivative to enhance features; (c) horizontally summed pixels; (d)
concatenation of all projections to form a 2D AS image (cropped to a
smaller region showing the wavy pattern)
Low quality of the 2D AS image (a) and the
extracted signal (b) by the adjacent vertical line
matching.
Methods
1. An adaptive robust z -normalization filtering
• to enhance AS image contrast
2. A two-step optimization method
1) Local search step
• to estimate initial breathing signal V
• large-scale regularity evaluation: to obtain the directional vector D
from V
2) Constrained search step
• to arrive at the final breathing signal B using the optimization
procedure with D
Key Results
• Reference waveforms – air bellows belt (Philips Medical Systems,
Cleveland, OH)
• The average error was -0.07±1.58 BPM.
• The new algorithm outperformed the original AS technique for all
patients by 8.5% to 30%.
The reference bpm for five patient data sets as numbered in
the horizontal axis: red circle-mean bpm, red bars-breath
rate range. The average bpms estimated by the proposed
algorithm for eight different row sizes: the blue circles from
left to right within each of the five data sets: 40%, 45%, 50%,
55%, 60%, 65%, 70%, 75%. The bpms computed by the
original method for all five data sets are shown as circles
filled by green color in each group.
The impact of gantry rotation on the breathing signal was
assessed; (a) The AS image from the Quasar phantom with
predefined motion along SI moving amplitude of 2.0 cm and
motion cycle of 4.0 s. (b) The extracted signal (blue) overlapped
with the known programmed sine wave (green), the relative error
of the extracted bpm is merely 0.0049.
Take Home Message
• Anatomy feature (diaphragm) plays a key role in yielding
breathing signals from the CBCT projection images.
• The adaptive image filter facilitated the contrast
enhancement significantly.
• The two-step extraction method provided a robust algorithm
to extract less noisy breathing signals.
• The new method will offer a practical solution to obtaining
markerless breathing signal and help better control breathing
motion in radiation therapy.
Shortcomings or Critiques
• Small number of data sets – only five
• It is still limited by the low image quality.
http://openrtk.org http://wiki.openrtk.org/index.php/RTK
/Scripts/AmsterdamShroud

Más contenido relacionado

La actualidad más candente

computer aided detection of pulmonary nodules in ct scans
computer aided detection of pulmonary nodules in ct scanscomputer aided detection of pulmonary nodules in ct scans
computer aided detection of pulmonary nodules in ct scansWookjin Choi
 
Radiomics and Deep Learning for Lung Cancer Screening
Radiomics and Deep Learning for Lung Cancer ScreeningRadiomics and Deep Learning for Lung Cancer Screening
Radiomics and Deep Learning for Lung Cancer ScreeningWookjin Choi
 
automatic detection of pulmonary nodules in lung ct images
automatic detection of pulmonary nodules in lung ct imagesautomatic detection of pulmonary nodules in lung ct images
automatic detection of pulmonary nodules in lung ct imagesWookjin Choi
 
Quantitative Image Feature Analysis of Multiphase Liver CT for Hepatocellular...
Quantitative Image Feature Analysis of Multiphase Liver CT for Hepatocellular...Quantitative Image Feature Analysis of Multiphase Liver CT for Hepatocellular...
Quantitative Image Feature Analysis of Multiphase Liver CT for Hepatocellular...Wookjin Choi
 
Robust Normal Lung CT Texture Features for the Prediction of Radiation-Induce...
Robust Normal Lung CT Texture Features for the Prediction of Radiation-Induce...Robust Normal Lung CT Texture Features for the Prediction of Radiation-Induce...
Robust Normal Lung CT Texture Features for the Prediction of Radiation-Induce...Wookjin Choi
 
Robust Normal Lung CT Texture Features for the Prediction of Radiation-Induce...
Robust Normal Lung CT Texture Features for the Prediction of Radiation-Induce...Robust Normal Lung CT Texture Features for the Prediction of Radiation-Induce...
Robust Normal Lung CT Texture Features for the Prediction of Radiation-Induce...Wookjin Choi
 
Radiomics Analysis of Pulmonary Nodules in Low Dose CT for Early Detection of...
Radiomics Analysis of Pulmonary Nodules in Low Dose CT for Early Detection of...Radiomics Analysis of Pulmonary Nodules in Low Dose CT for Early Detection of...
Radiomics Analysis of Pulmonary Nodules in Low Dose CT for Early Detection of...Wookjin Choi
 
Aggressive Lung Adenocarcinoma Subtype Prediction Using FDG-PET/CT Radiomics
Aggressive Lung Adenocarcinoma Subtype Prediction Using FDG-PET/CT RadiomicsAggressive Lung Adenocarcinoma Subtype Prediction Using FDG-PET/CT Radiomics
Aggressive Lung Adenocarcinoma Subtype Prediction Using FDG-PET/CT RadiomicsWookjin Choi
 
Optimal fuzzy rule based pulmonary nodule detection
Optimal fuzzy rule based pulmonary nodule detectionOptimal fuzzy rule based pulmonary nodule detection
Optimal fuzzy rule based pulmonary nodule detectionWookjin Choi
 
Lung Nodule detection System
Lung Nodule detection SystemLung Nodule detection System
Lung Nodule detection SystemEditor IJMTER
 
PERFORMANCE EVALUATION OF TUMOR DETECTION TECHNIQUES
PERFORMANCE EVALUATION OF TUMOR DETECTION TECHNIQUES PERFORMANCE EVALUATION OF TUMOR DETECTION TECHNIQUES
PERFORMANCE EVALUATION OF TUMOR DETECTION TECHNIQUES ijcsa
 
Technical Advances in radiotherapy for Lung (and liver) Cancer
Technical Advances in radiotherapy for Lung (and liver) CancerTechnical Advances in radiotherapy for Lung (and liver) Cancer
Technical Advances in radiotherapy for Lung (and liver) Cancerspa718
 
Innovations conference 2014 dr shalini vinod dedicated magnetic resonance i...
Innovations conference 2014   dr shalini vinod dedicated magnetic resonance i...Innovations conference 2014   dr shalini vinod dedicated magnetic resonance i...
Innovations conference 2014 dr shalini vinod dedicated magnetic resonance i...Cancer Institute NSW
 
A novel CAD system to automatically detect cancerous lung nodules using wav...
  A novel CAD system to automatically detect cancerous lung nodules using wav...  A novel CAD system to automatically detect cancerous lung nodules using wav...
A novel CAD system to automatically detect cancerous lung nodules using wav...IJECEIAES
 
Automatic detection of lung cancer in ct images
Automatic detection of lung cancer in ct imagesAutomatic detection of lung cancer in ct images
Automatic detection of lung cancer in ct imageseSAT Publishing House
 
Use of pre treatment protocols
Use of pre treatment protocols   Use of pre treatment protocols
Use of pre treatment protocols Bartosz Bąk
 
Quantitative Cancer Image Analysis
Quantitative Cancer Image AnalysisQuantitative Cancer Image Analysis
Quantitative Cancer Image AnalysisWookjin Choi
 
LIVER CANCER DETECTION USING CT/(MRI) IMAGES
LIVER CANCER DETECTION USING CT/(MRI) IMAGESLIVER CANCER DETECTION USING CT/(MRI) IMAGES
LIVER CANCER DETECTION USING CT/(MRI) IMAGESSadia Ijaz
 
Innovations conference 2014 prof peter metcalfe moving towards mri along ra...
Innovations conference 2014   prof peter metcalfe moving towards mri along ra...Innovations conference 2014   prof peter metcalfe moving towards mri along ra...
Innovations conference 2014 prof peter metcalfe moving towards mri along ra...Cancer Institute NSW
 

La actualidad más candente (20)

computer aided detection of pulmonary nodules in ct scans
computer aided detection of pulmonary nodules in ct scanscomputer aided detection of pulmonary nodules in ct scans
computer aided detection of pulmonary nodules in ct scans
 
Radiomics and Deep Learning for Lung Cancer Screening
Radiomics and Deep Learning for Lung Cancer ScreeningRadiomics and Deep Learning for Lung Cancer Screening
Radiomics and Deep Learning for Lung Cancer Screening
 
automatic detection of pulmonary nodules in lung ct images
automatic detection of pulmonary nodules in lung ct imagesautomatic detection of pulmonary nodules in lung ct images
automatic detection of pulmonary nodules in lung ct images
 
Quantitative Image Feature Analysis of Multiphase Liver CT for Hepatocellular...
Quantitative Image Feature Analysis of Multiphase Liver CT for Hepatocellular...Quantitative Image Feature Analysis of Multiphase Liver CT for Hepatocellular...
Quantitative Image Feature Analysis of Multiphase Liver CT for Hepatocellular...
 
Robust Normal Lung CT Texture Features for the Prediction of Radiation-Induce...
Robust Normal Lung CT Texture Features for the Prediction of Radiation-Induce...Robust Normal Lung CT Texture Features for the Prediction of Radiation-Induce...
Robust Normal Lung CT Texture Features for the Prediction of Radiation-Induce...
 
Robust Normal Lung CT Texture Features for the Prediction of Radiation-Induce...
Robust Normal Lung CT Texture Features for the Prediction of Radiation-Induce...Robust Normal Lung CT Texture Features for the Prediction of Radiation-Induce...
Robust Normal Lung CT Texture Features for the Prediction of Radiation-Induce...
 
Radiomics Analysis of Pulmonary Nodules in Low Dose CT for Early Detection of...
Radiomics Analysis of Pulmonary Nodules in Low Dose CT for Early Detection of...Radiomics Analysis of Pulmonary Nodules in Low Dose CT for Early Detection of...
Radiomics Analysis of Pulmonary Nodules in Low Dose CT for Early Detection of...
 
Aggressive Lung Adenocarcinoma Subtype Prediction Using FDG-PET/CT Radiomics
Aggressive Lung Adenocarcinoma Subtype Prediction Using FDG-PET/CT RadiomicsAggressive Lung Adenocarcinoma Subtype Prediction Using FDG-PET/CT Radiomics
Aggressive Lung Adenocarcinoma Subtype Prediction Using FDG-PET/CT Radiomics
 
Optimal fuzzy rule based pulmonary nodule detection
Optimal fuzzy rule based pulmonary nodule detectionOptimal fuzzy rule based pulmonary nodule detection
Optimal fuzzy rule based pulmonary nodule detection
 
Lung Nodule detection System
Lung Nodule detection SystemLung Nodule detection System
Lung Nodule detection System
 
PERFORMANCE EVALUATION OF TUMOR DETECTION TECHNIQUES
PERFORMANCE EVALUATION OF TUMOR DETECTION TECHNIQUES PERFORMANCE EVALUATION OF TUMOR DETECTION TECHNIQUES
PERFORMANCE EVALUATION OF TUMOR DETECTION TECHNIQUES
 
Tomotherapy
TomotherapyTomotherapy
Tomotherapy
 
Technical Advances in radiotherapy for Lung (and liver) Cancer
Technical Advances in radiotherapy for Lung (and liver) CancerTechnical Advances in radiotherapy for Lung (and liver) Cancer
Technical Advances in radiotherapy for Lung (and liver) Cancer
 
Innovations conference 2014 dr shalini vinod dedicated magnetic resonance i...
Innovations conference 2014   dr shalini vinod dedicated magnetic resonance i...Innovations conference 2014   dr shalini vinod dedicated magnetic resonance i...
Innovations conference 2014 dr shalini vinod dedicated magnetic resonance i...
 
A novel CAD system to automatically detect cancerous lung nodules using wav...
  A novel CAD system to automatically detect cancerous lung nodules using wav...  A novel CAD system to automatically detect cancerous lung nodules using wav...
A novel CAD system to automatically detect cancerous lung nodules using wav...
 
Automatic detection of lung cancer in ct images
Automatic detection of lung cancer in ct imagesAutomatic detection of lung cancer in ct images
Automatic detection of lung cancer in ct images
 
Use of pre treatment protocols
Use of pre treatment protocols   Use of pre treatment protocols
Use of pre treatment protocols
 
Quantitative Cancer Image Analysis
Quantitative Cancer Image AnalysisQuantitative Cancer Image Analysis
Quantitative Cancer Image Analysis
 
LIVER CANCER DETECTION USING CT/(MRI) IMAGES
LIVER CANCER DETECTION USING CT/(MRI) IMAGESLIVER CANCER DETECTION USING CT/(MRI) IMAGES
LIVER CANCER DETECTION USING CT/(MRI) IMAGES
 
Innovations conference 2014 prof peter metcalfe moving towards mri along ra...
Innovations conference 2014   prof peter metcalfe moving towards mri along ra...Innovations conference 2014   prof peter metcalfe moving towards mri along ra...
Innovations conference 2014 prof peter metcalfe moving towards mri along ra...
 

Similar a Robust breathing signal extraction from cone beam CT projections based on adaptive and global optimization techniques

ThompsonEtal2013.pdfAccurate localization of incidental fi.docx
ThompsonEtal2013.pdfAccurate localization of incidental fi.docxThompsonEtal2013.pdfAccurate localization of incidental fi.docx
ThompsonEtal2013.pdfAccurate localization of incidental fi.docxherthalearmont
 
On Dose Reduction and View Number
On Dose Reduction and View NumberOn Dose Reduction and View Number
On Dose Reduction and View NumberKaijie Lu
 
Austin Journal of Radiation Oncology and Cancer
Austin Journal of Radiation Oncology and CancerAustin Journal of Radiation Oncology and Cancer
Austin Journal of Radiation Oncology and CancerAustin Publishing Group
 
SPECT/CT: HOW Much Radiation Dose CT Constitute
SPECT/CT: HOW Much Radiation Dose CT ConstituteSPECT/CT: HOW Much Radiation Dose CT Constitute
SPECT/CT: HOW Much Radiation Dose CT ConstituteShahid Younas
 
Artificial Intelligence To Reduce Radiation-induced Cardiotoxicity In Lung Ca...
Artificial Intelligence To Reduce Radiation-induced Cardiotoxicity In Lung Ca...Artificial Intelligence To Reduce Radiation-induced Cardiotoxicity In Lung Ca...
Artificial Intelligence To Reduce Radiation-induced Cardiotoxicity In Lung Ca...Wookjin Choi
 
Dosimetric Consequences of Intrafraction Variation of Tumor Motion in Lung St...
Dosimetric Consequences of Intrafraction Variation of Tumor Motion in Lung St...Dosimetric Consequences of Intrafraction Variation of Tumor Motion in Lung St...
Dosimetric Consequences of Intrafraction Variation of Tumor Motion in Lung St...semualkaira
 
Dosimetric Consequences of Intrafraction Variation of Tumor Motion in Lung St...
Dosimetric Consequences of Intrafraction Variation of Tumor Motion in Lung St...Dosimetric Consequences of Intrafraction Variation of Tumor Motion in Lung St...
Dosimetric Consequences of Intrafraction Variation of Tumor Motion in Lung St...semualkaira
 
Dosimetric Consequences of Intrafraction Variation of Tumor Motion in Lung St...
Dosimetric Consequences of Intrafraction Variation of Tumor Motion in Lung St...Dosimetric Consequences of Intrafraction Variation of Tumor Motion in Lung St...
Dosimetric Consequences of Intrafraction Variation of Tumor Motion in Lung St...semualkaira
 
-Lecture 2.ppt
-Lecture 2.ppt-Lecture 2.ppt
-Lecture 2.pptMagde Gad
 
Neutrosophic sets and fuzzy c means clustering for improving ct liver image s...
Neutrosophic sets and fuzzy c means clustering for improving ct liver image s...Neutrosophic sets and fuzzy c means clustering for improving ct liver image s...
Neutrosophic sets and fuzzy c means clustering for improving ct liver image s...Aboul Ella Hassanien
 
4D-CBCT (Symmetry) - a useful tool to verify and treat traditional ITV withou...
4D-CBCT (Symmetry) - a useful tool to verify and treat traditional ITV withou...4D-CBCT (Symmetry) - a useful tool to verify and treat traditional ITV withou...
4D-CBCT (Symmetry) - a useful tool to verify and treat traditional ITV withou...Dr. Malhar Patel
 
Effective Dose of Computed Tomography (CT) Chest and Abdomen-Pelvis in Some S...
Effective Dose of Computed Tomography (CT) Chest and Abdomen-Pelvis in Some S...Effective Dose of Computed Tomography (CT) Chest and Abdomen-Pelvis in Some S...
Effective Dose of Computed Tomography (CT) Chest and Abdomen-Pelvis in Some S...Healthcare and Medical Sciences
 
Efficient lung air volume estimation using
Efficient lung air volume estimation usingEfficient lung air volume estimation using
Efficient lung air volume estimation usingijcsa
 

Similar a Robust breathing signal extraction from cone beam CT projections based on adaptive and global optimization techniques (20)

CT dose reduction
CT dose reductionCT dose reduction
CT dose reduction
 
ThompsonEtal2013.pdfAccurate localization of incidental fi.docx
ThompsonEtal2013.pdfAccurate localization of incidental fi.docxThompsonEtal2013.pdfAccurate localization of incidental fi.docx
ThompsonEtal2013.pdfAccurate localization of incidental fi.docx
 
Lavanya poster for Dhaka - Copy
Lavanya poster for Dhaka - CopyLavanya poster for Dhaka - Copy
Lavanya poster for Dhaka - Copy
 
On Dose Reduction and View Number
On Dose Reduction and View NumberOn Dose Reduction and View Number
On Dose Reduction and View Number
 
Tomo modulation
Tomo modulationTomo modulation
Tomo modulation
 
Austin Journal of Radiation Oncology and Cancer
Austin Journal of Radiation Oncology and CancerAustin Journal of Radiation Oncology and Cancer
Austin Journal of Radiation Oncology and Cancer
 
Random and systematic errors 25.10.12
Random and systematic errors 25.10.12Random and systematic errors 25.10.12
Random and systematic errors 25.10.12
 
SPECT/CT: HOW Much Radiation Dose CT Constitute
SPECT/CT: HOW Much Radiation Dose CT ConstituteSPECT/CT: HOW Much Radiation Dose CT Constitute
SPECT/CT: HOW Much Radiation Dose CT Constitute
 
Artificial Intelligence To Reduce Radiation-induced Cardiotoxicity In Lung Ca...
Artificial Intelligence To Reduce Radiation-induced Cardiotoxicity In Lung Ca...Artificial Intelligence To Reduce Radiation-induced Cardiotoxicity In Lung Ca...
Artificial Intelligence To Reduce Radiation-induced Cardiotoxicity In Lung Ca...
 
Dosimetric Consequences of Intrafraction Variation of Tumor Motion in Lung St...
Dosimetric Consequences of Intrafraction Variation of Tumor Motion in Lung St...Dosimetric Consequences of Intrafraction Variation of Tumor Motion in Lung St...
Dosimetric Consequences of Intrafraction Variation of Tumor Motion in Lung St...
 
Dosimetric Consequences of Intrafraction Variation of Tumor Motion in Lung St...
Dosimetric Consequences of Intrafraction Variation of Tumor Motion in Lung St...Dosimetric Consequences of Intrafraction Variation of Tumor Motion in Lung St...
Dosimetric Consequences of Intrafraction Variation of Tumor Motion in Lung St...
 
Dosimetric Consequences of Intrafraction Variation of Tumor Motion in Lung St...
Dosimetric Consequences of Intrafraction Variation of Tumor Motion in Lung St...Dosimetric Consequences of Intrafraction Variation of Tumor Motion in Lung St...
Dosimetric Consequences of Intrafraction Variation of Tumor Motion in Lung St...
 
-Lecture 2.ppt
-Lecture 2.ppt-Lecture 2.ppt
-Lecture 2.ppt
 
Neutrosophic sets and fuzzy c means clustering for improving ct liver image s...
Neutrosophic sets and fuzzy c means clustering for improving ct liver image s...Neutrosophic sets and fuzzy c means clustering for improving ct liver image s...
Neutrosophic sets and fuzzy c means clustering for improving ct liver image s...
 
Fluckiger_myo_sat
Fluckiger_myo_satFluckiger_myo_sat
Fluckiger_myo_sat
 
SCMR Edition - Issue 51
SCMR Edition - Issue 51SCMR Edition - Issue 51
SCMR Edition - Issue 51
 
International Journal of Cardiovascular Diseases & Diagnosis
International Journal of Cardiovascular Diseases & DiagnosisInternational Journal of Cardiovascular Diseases & Diagnosis
International Journal of Cardiovascular Diseases & Diagnosis
 
4D-CBCT (Symmetry) - a useful tool to verify and treat traditional ITV withou...
4D-CBCT (Symmetry) - a useful tool to verify and treat traditional ITV withou...4D-CBCT (Symmetry) - a useful tool to verify and treat traditional ITV withou...
4D-CBCT (Symmetry) - a useful tool to verify and treat traditional ITV withou...
 
Effective Dose of Computed Tomography (CT) Chest and Abdomen-Pelvis in Some S...
Effective Dose of Computed Tomography (CT) Chest and Abdomen-Pelvis in Some S...Effective Dose of Computed Tomography (CT) Chest and Abdomen-Pelvis in Some S...
Effective Dose of Computed Tomography (CT) Chest and Abdomen-Pelvis in Some S...
 
Efficient lung air volume estimation using
Efficient lung air volume estimation usingEfficient lung air volume estimation using
Efficient lung air volume estimation using
 

Más de Wookjin Choi

Deep Learning-based Histological Segmentation Differentiates Cavitation Patte...
Deep Learning-based Histological SegmentationDifferentiates Cavitation Patte...Deep Learning-based Histological SegmentationDifferentiates Cavitation Patte...
Deep Learning-based Histological Segmentation Differentiates Cavitation Patte...Wookjin Choi
 
Novel Functional Radiomics for Prediction of Cardiac PET Avidity in Lung Canc...
Novel Functional Radiomics for Prediction of Cardiac PET Avidity in Lung Canc...Novel Functional Radiomics for Prediction of Cardiac PET Avidity in Lung Canc...
Novel Functional Radiomics for Prediction of Cardiac PET Avidity in Lung Canc...Wookjin Choi
 
Novel Deep Learning Segmentation Models for Accurate GTV and OAR Segmentation...
Novel Deep Learning Segmentation Models for Accurate GTV and OAR Segmentation...Novel Deep Learning Segmentation Models for Accurate GTV and OAR Segmentation...
Novel Deep Learning Segmentation Models for Accurate GTV and OAR Segmentation...Wookjin Choi
 
Novel Functional Delta-Radiomics for Predicting Overall Survival in Lung Canc...
Novel Functional Delta-Radiomics for Predicting Overall Survival in Lung Canc...Novel Functional Delta-Radiomics for Predicting Overall Survival in Lung Canc...
Novel Functional Delta-Radiomics for Predicting Overall Survival in Lung Canc...Wookjin Choi
 
CIRDataset: A large-scale Dataset for Clinically-Interpretable lung nodule Ra...
CIRDataset: A large-scale Dataset for Clinically-Interpretable lung nodule Ra...CIRDataset: A large-scale Dataset for Clinically-Interpretable lung nodule Ra...
CIRDataset: A large-scale Dataset for Clinically-Interpretable lung nodule Ra...Wookjin Choi
 
Artificial Intelligence in Radiation Oncology.pptx
 Artificial Intelligence in Radiation Oncology.pptx Artificial Intelligence in Radiation Oncology.pptx
Artificial Intelligence in Radiation Oncology.pptxWookjin Choi
 
Artificial Intelligence in Radiation Oncology
Artificial Intelligence in Radiation OncologyArtificial Intelligence in Radiation Oncology
Artificial Intelligence in Radiation OncologyWookjin Choi
 
Artificial Intelligence in Radiation Oncology
Artificial Intelligence in Radiation OncologyArtificial Intelligence in Radiation Oncology
Artificial Intelligence in Radiation OncologyWookjin Choi
 
Artificial Intelligence in Radiation Oncology
Artificial Intelligence in Radiation OncologyArtificial Intelligence in Radiation Oncology
Artificial Intelligence in Radiation OncologyWookjin Choi
 
Automatic motion tracking system for analysis of insect behavior
Automatic motion tracking system for analysis of insect behaviorAutomatic motion tracking system for analysis of insect behavior
Automatic motion tracking system for analysis of insect behaviorWookjin Choi
 
Assessing the Dosimetric Links between Organ-At-Risk Delineation Variability ...
Assessing the Dosimetric Links between Organ-At-Risk Delineation Variability ...Assessing the Dosimetric Links between Organ-At-Risk Delineation Variability ...
Assessing the Dosimetric Links between Organ-At-Risk Delineation Variability ...Wookjin Choi
 
Simulation of Realistic Organ-At-Risk Delineation Variability in Head and Nec...
Simulation of Realistic Organ-At-Risk Delineation Variability in Head and Nec...Simulation of Realistic Organ-At-Risk Delineation Variability in Head and Nec...
Simulation of Realistic Organ-At-Risk Delineation Variability in Head and Nec...Wookjin Choi
 
Quantitative image analysis for cancer diagnosis and radiation therapy
Quantitative image analysis for cancer diagnosis and radiation therapyQuantitative image analysis for cancer diagnosis and radiation therapy
Quantitative image analysis for cancer diagnosis and radiation therapyWookjin Choi
 
Interpretable Spiculation Quantification for Lung Cancer Screening
Interpretable Spiculation Quantification for Lung Cancer ScreeningInterpretable Spiculation Quantification for Lung Cancer Screening
Interpretable Spiculation Quantification for Lung Cancer ScreeningWookjin Choi
 
Radiomics in Lung Cancer
Radiomics in Lung CancerRadiomics in Lung Cancer
Radiomics in Lung CancerWookjin Choi
 
Interpretable Spiculation Quantification for Lung Cancer Screening
Interpretable Spiculation Quantification for Lung Cancer ScreeningInterpretable Spiculation Quantification for Lung Cancer Screening
Interpretable Spiculation Quantification for Lung Cancer ScreeningWookjin Choi
 
Quantitative Image Analysis for Cancer Diagnosis and Radiation Therapy
Quantitative Image Analysis for Cancer Diagnosis and Radiation TherapyQuantitative Image Analysis for Cancer Diagnosis and Radiation Therapy
Quantitative Image Analysis for Cancer Diagnosis and Radiation TherapyWookjin Choi
 
Dual energy CT in radiotherapy: Current applications and future outlook
Dual energy CT in radiotherapy: Current applications and future outlookDual energy CT in radiotherapy: Current applications and future outlook
Dual energy CT in radiotherapy: Current applications and future outlookWookjin Choi
 

Más de Wookjin Choi (18)

Deep Learning-based Histological Segmentation Differentiates Cavitation Patte...
Deep Learning-based Histological SegmentationDifferentiates Cavitation Patte...Deep Learning-based Histological SegmentationDifferentiates Cavitation Patte...
Deep Learning-based Histological Segmentation Differentiates Cavitation Patte...
 
Novel Functional Radiomics for Prediction of Cardiac PET Avidity in Lung Canc...
Novel Functional Radiomics for Prediction of Cardiac PET Avidity in Lung Canc...Novel Functional Radiomics for Prediction of Cardiac PET Avidity in Lung Canc...
Novel Functional Radiomics for Prediction of Cardiac PET Avidity in Lung Canc...
 
Novel Deep Learning Segmentation Models for Accurate GTV and OAR Segmentation...
Novel Deep Learning Segmentation Models for Accurate GTV and OAR Segmentation...Novel Deep Learning Segmentation Models for Accurate GTV and OAR Segmentation...
Novel Deep Learning Segmentation Models for Accurate GTV and OAR Segmentation...
 
Novel Functional Delta-Radiomics for Predicting Overall Survival in Lung Canc...
Novel Functional Delta-Radiomics for Predicting Overall Survival in Lung Canc...Novel Functional Delta-Radiomics for Predicting Overall Survival in Lung Canc...
Novel Functional Delta-Radiomics for Predicting Overall Survival in Lung Canc...
 
CIRDataset: A large-scale Dataset for Clinically-Interpretable lung nodule Ra...
CIRDataset: A large-scale Dataset for Clinically-Interpretable lung nodule Ra...CIRDataset: A large-scale Dataset for Clinically-Interpretable lung nodule Ra...
CIRDataset: A large-scale Dataset for Clinically-Interpretable lung nodule Ra...
 
Artificial Intelligence in Radiation Oncology.pptx
 Artificial Intelligence in Radiation Oncology.pptx Artificial Intelligence in Radiation Oncology.pptx
Artificial Intelligence in Radiation Oncology.pptx
 
Artificial Intelligence in Radiation Oncology
Artificial Intelligence in Radiation OncologyArtificial Intelligence in Radiation Oncology
Artificial Intelligence in Radiation Oncology
 
Artificial Intelligence in Radiation Oncology
Artificial Intelligence in Radiation OncologyArtificial Intelligence in Radiation Oncology
Artificial Intelligence in Radiation Oncology
 
Artificial Intelligence in Radiation Oncology
Artificial Intelligence in Radiation OncologyArtificial Intelligence in Radiation Oncology
Artificial Intelligence in Radiation Oncology
 
Automatic motion tracking system for analysis of insect behavior
Automatic motion tracking system for analysis of insect behaviorAutomatic motion tracking system for analysis of insect behavior
Automatic motion tracking system for analysis of insect behavior
 
Assessing the Dosimetric Links between Organ-At-Risk Delineation Variability ...
Assessing the Dosimetric Links between Organ-At-Risk Delineation Variability ...Assessing the Dosimetric Links between Organ-At-Risk Delineation Variability ...
Assessing the Dosimetric Links between Organ-At-Risk Delineation Variability ...
 
Simulation of Realistic Organ-At-Risk Delineation Variability in Head and Nec...
Simulation of Realistic Organ-At-Risk Delineation Variability in Head and Nec...Simulation of Realistic Organ-At-Risk Delineation Variability in Head and Nec...
Simulation of Realistic Organ-At-Risk Delineation Variability in Head and Nec...
 
Quantitative image analysis for cancer diagnosis and radiation therapy
Quantitative image analysis for cancer diagnosis and radiation therapyQuantitative image analysis for cancer diagnosis and radiation therapy
Quantitative image analysis for cancer diagnosis and radiation therapy
 
Interpretable Spiculation Quantification for Lung Cancer Screening
Interpretable Spiculation Quantification for Lung Cancer ScreeningInterpretable Spiculation Quantification for Lung Cancer Screening
Interpretable Spiculation Quantification for Lung Cancer Screening
 
Radiomics in Lung Cancer
Radiomics in Lung CancerRadiomics in Lung Cancer
Radiomics in Lung Cancer
 
Interpretable Spiculation Quantification for Lung Cancer Screening
Interpretable Spiculation Quantification for Lung Cancer ScreeningInterpretable Spiculation Quantification for Lung Cancer Screening
Interpretable Spiculation Quantification for Lung Cancer Screening
 
Quantitative Image Analysis for Cancer Diagnosis and Radiation Therapy
Quantitative Image Analysis for Cancer Diagnosis and Radiation TherapyQuantitative Image Analysis for Cancer Diagnosis and Radiation Therapy
Quantitative Image Analysis for Cancer Diagnosis and Radiation Therapy
 
Dual energy CT in radiotherapy: Current applications and future outlook
Dual energy CT in radiotherapy: Current applications and future outlookDual energy CT in radiotherapy: Current applications and future outlook
Dual energy CT in radiotherapy: Current applications and future outlook
 

Último

GBSN - Microbiology (Unit 1)
GBSN - Microbiology (Unit 1)GBSN - Microbiology (Unit 1)
GBSN - Microbiology (Unit 1)Areesha Ahmad
 
Feature-aligned N-BEATS with Sinkhorn divergence (ICLR '24)
Feature-aligned N-BEATS with Sinkhorn divergence (ICLR '24)Feature-aligned N-BEATS with Sinkhorn divergence (ICLR '24)
Feature-aligned N-BEATS with Sinkhorn divergence (ICLR '24)Joonhun Lee
 
High Profile 🔝 8250077686 📞 Call Girls Service in GTB Nagar🍑
High Profile 🔝 8250077686 📞 Call Girls Service in GTB Nagar🍑High Profile 🔝 8250077686 📞 Call Girls Service in GTB Nagar🍑
High Profile 🔝 8250077686 📞 Call Girls Service in GTB Nagar🍑Damini Dixit
 
module for grade 9 for distance learning
module for grade 9 for distance learningmodule for grade 9 for distance learning
module for grade 9 for distance learninglevieagacer
 
SAMASTIPUR CALL GIRL 7857803690 LOW PRICE ESCORT SERVICE
SAMASTIPUR CALL GIRL 7857803690  LOW PRICE  ESCORT SERVICESAMASTIPUR CALL GIRL 7857803690  LOW PRICE  ESCORT SERVICE
SAMASTIPUR CALL GIRL 7857803690 LOW PRICE ESCORT SERVICEayushi9330
 
COST ESTIMATION FOR A RESEARCH PROJECT.pptx
COST ESTIMATION FOR A RESEARCH PROJECT.pptxCOST ESTIMATION FOR A RESEARCH PROJECT.pptx
COST ESTIMATION FOR A RESEARCH PROJECT.pptxFarihaAbdulRasheed
 
Kochi ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Kochi ESCORT SERVICE❤CALL GIRL
Kochi ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Kochi ESCORT SERVICE❤CALL GIRLKochi ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Kochi ESCORT SERVICE❤CALL GIRL
Kochi ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Kochi ESCORT SERVICE❤CALL GIRLkantirani197
 
PSYCHOSOCIAL NEEDS. in nursing II sem pptx
PSYCHOSOCIAL NEEDS. in nursing II sem pptxPSYCHOSOCIAL NEEDS. in nursing II sem pptx
PSYCHOSOCIAL NEEDS. in nursing II sem pptxSuji236384
 
❤Jammu Kashmir Call Girls 8617697112 Personal Whatsapp Number 💦✅.
❤Jammu Kashmir Call Girls 8617697112 Personal Whatsapp Number 💦✅.❤Jammu Kashmir Call Girls 8617697112 Personal Whatsapp Number 💦✅.
❤Jammu Kashmir Call Girls 8617697112 Personal Whatsapp Number 💦✅.Nitya salvi
 
Forensic Biology & Its biological significance.pdf
Forensic Biology & Its biological significance.pdfForensic Biology & Its biological significance.pdf
Forensic Biology & Its biological significance.pdfrohankumarsinghrore1
 
Formation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disksFormation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disksSérgio Sacani
 
Unit5-Cloud.pptx for lpu course cse121 o
Unit5-Cloud.pptx for lpu course cse121 oUnit5-Cloud.pptx for lpu course cse121 o
Unit5-Cloud.pptx for lpu course cse121 oManavSingh202607
 
IDENTIFICATION OF THE LIVING- forensic medicine
IDENTIFICATION OF THE LIVING- forensic medicineIDENTIFICATION OF THE LIVING- forensic medicine
IDENTIFICATION OF THE LIVING- forensic medicinesherlingomez2
 
Dopamine neurotransmitter determination using graphite sheet- graphene nano-s...
Dopamine neurotransmitter determination using graphite sheet- graphene nano-s...Dopamine neurotransmitter determination using graphite sheet- graphene nano-s...
Dopamine neurotransmitter determination using graphite sheet- graphene nano-s...Mohammad Khajehpour
 
GBSN - Microbiology (Unit 3)
GBSN - Microbiology (Unit 3)GBSN - Microbiology (Unit 3)
GBSN - Microbiology (Unit 3)Areesha Ahmad
 
9654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 6000
9654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 60009654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 6000
9654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 6000Sapana Sha
 
Proteomics: types, protein profiling steps etc.
Proteomics: types, protein profiling steps etc.Proteomics: types, protein profiling steps etc.
Proteomics: types, protein profiling steps etc.Silpa
 

Último (20)

GBSN - Microbiology (Unit 1)
GBSN - Microbiology (Unit 1)GBSN - Microbiology (Unit 1)
GBSN - Microbiology (Unit 1)
 
Feature-aligned N-BEATS with Sinkhorn divergence (ICLR '24)
Feature-aligned N-BEATS with Sinkhorn divergence (ICLR '24)Feature-aligned N-BEATS with Sinkhorn divergence (ICLR '24)
Feature-aligned N-BEATS with Sinkhorn divergence (ICLR '24)
 
High Profile 🔝 8250077686 📞 Call Girls Service in GTB Nagar🍑
High Profile 🔝 8250077686 📞 Call Girls Service in GTB Nagar🍑High Profile 🔝 8250077686 📞 Call Girls Service in GTB Nagar🍑
High Profile 🔝 8250077686 📞 Call Girls Service in GTB Nagar🍑
 
module for grade 9 for distance learning
module for grade 9 for distance learningmodule for grade 9 for distance learning
module for grade 9 for distance learning
 
Site Acceptance Test .
Site Acceptance Test                    .Site Acceptance Test                    .
Site Acceptance Test .
 
SAMASTIPUR CALL GIRL 7857803690 LOW PRICE ESCORT SERVICE
SAMASTIPUR CALL GIRL 7857803690  LOW PRICE  ESCORT SERVICESAMASTIPUR CALL GIRL 7857803690  LOW PRICE  ESCORT SERVICE
SAMASTIPUR CALL GIRL 7857803690 LOW PRICE ESCORT SERVICE
 
COST ESTIMATION FOR A RESEARCH PROJECT.pptx
COST ESTIMATION FOR A RESEARCH PROJECT.pptxCOST ESTIMATION FOR A RESEARCH PROJECT.pptx
COST ESTIMATION FOR A RESEARCH PROJECT.pptx
 
Kochi ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Kochi ESCORT SERVICE❤CALL GIRL
Kochi ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Kochi ESCORT SERVICE❤CALL GIRLKochi ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Kochi ESCORT SERVICE❤CALL GIRL
Kochi ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Kochi ESCORT SERVICE❤CALL GIRL
 
PSYCHOSOCIAL NEEDS. in nursing II sem pptx
PSYCHOSOCIAL NEEDS. in nursing II sem pptxPSYCHOSOCIAL NEEDS. in nursing II sem pptx
PSYCHOSOCIAL NEEDS. in nursing II sem pptx
 
❤Jammu Kashmir Call Girls 8617697112 Personal Whatsapp Number 💦✅.
❤Jammu Kashmir Call Girls 8617697112 Personal Whatsapp Number 💦✅.❤Jammu Kashmir Call Girls 8617697112 Personal Whatsapp Number 💦✅.
❤Jammu Kashmir Call Girls 8617697112 Personal Whatsapp Number 💦✅.
 
Forensic Biology & Its biological significance.pdf
Forensic Biology & Its biological significance.pdfForensic Biology & Its biological significance.pdf
Forensic Biology & Its biological significance.pdf
 
Formation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disksFormation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disks
 
Unit5-Cloud.pptx for lpu course cse121 o
Unit5-Cloud.pptx for lpu course cse121 oUnit5-Cloud.pptx for lpu course cse121 o
Unit5-Cloud.pptx for lpu course cse121 o
 
CELL -Structural and Functional unit of life.pdf
CELL -Structural and Functional unit of life.pdfCELL -Structural and Functional unit of life.pdf
CELL -Structural and Functional unit of life.pdf
 
IDENTIFICATION OF THE LIVING- forensic medicine
IDENTIFICATION OF THE LIVING- forensic medicineIDENTIFICATION OF THE LIVING- forensic medicine
IDENTIFICATION OF THE LIVING- forensic medicine
 
Dopamine neurotransmitter determination using graphite sheet- graphene nano-s...
Dopamine neurotransmitter determination using graphite sheet- graphene nano-s...Dopamine neurotransmitter determination using graphite sheet- graphene nano-s...
Dopamine neurotransmitter determination using graphite sheet- graphene nano-s...
 
GBSN - Microbiology (Unit 3)
GBSN - Microbiology (Unit 3)GBSN - Microbiology (Unit 3)
GBSN - Microbiology (Unit 3)
 
Clean In Place(CIP).pptx .
Clean In Place(CIP).pptx                 .Clean In Place(CIP).pptx                 .
Clean In Place(CIP).pptx .
 
9654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 6000
9654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 60009654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 6000
9654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 6000
 
Proteomics: types, protein profiling steps etc.
Proteomics: types, protein profiling steps etc.Proteomics: types, protein profiling steps etc.
Proteomics: types, protein profiling steps etc.
 

Robust breathing signal extraction from cone beam CT projections based on adaptive and global optimization techniques

  • 1. Physics Journal Club Robust breathing signal extraction from cone beam CT projections based on adaptive and global optimization techniques Ming Chao, Jie Wei, Tianfang Li, Yading Yuan, Kenneth E Rosenzweig and Yeh-Chi Lo Department of Radiation Oncology, Mount Sinai Medical Center, New York, NY 0029, USA Department of Computer Science, City College of New York, New York, NY 10031, USA Department of Radiation Oncology, University of Pittsburgh Medical Center, Pittsburgh, PA 15232, USA
  • 2. Innovation/Impact A novel Markerless breathing signal extraction using Amsterdam Shroud (AS) image from CBCT projections for thoracic and abdominal patients. 1. An adaptive robust z-normalization filtering to enhance weak oscillating structures 2. A two-step optimization approach to effectively reveal the large- scale regularity of the breathing signals Turin Shroud Amsterdam Shroud Sonke el al. Respiratory correlated cone beam CT, Medical Physics 2005
  • 3. Purpose Extracting breathing signals from CBCT projections within the framework of the AS technique. • The least square optimization for the matching between the adjacent vertical lines (columns) in the AS image • The wavy pattern is not clear, no reliable breathing signal can be extracted • Aimed to improve both the AS image and the signal extraction algorithm Illustration of the steps used to generate the AS image: (a) original projection image; (b) logarithmic transform and superior-inferior derivative to enhance features; (c) horizontally summed pixels; (d) concatenation of all projections to form a 2D AS image (cropped to a smaller region showing the wavy pattern) Low quality of the 2D AS image (a) and the extracted signal (b) by the adjacent vertical line matching.
  • 4. Methods 1. An adaptive robust z -normalization filtering • to enhance AS image contrast 2. A two-step optimization method 1) Local search step • to estimate initial breathing signal V • large-scale regularity evaluation: to obtain the directional vector D from V 2) Constrained search step • to arrive at the final breathing signal B using the optimization procedure with D
  • 5. Key Results • Reference waveforms – air bellows belt (Philips Medical Systems, Cleveland, OH) • The average error was -0.07±1.58 BPM. • The new algorithm outperformed the original AS technique for all patients by 8.5% to 30%. The reference bpm for five patient data sets as numbered in the horizontal axis: red circle-mean bpm, red bars-breath rate range. The average bpms estimated by the proposed algorithm for eight different row sizes: the blue circles from left to right within each of the five data sets: 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%. The bpms computed by the original method for all five data sets are shown as circles filled by green color in each group. The impact of gantry rotation on the breathing signal was assessed; (a) The AS image from the Quasar phantom with predefined motion along SI moving amplitude of 2.0 cm and motion cycle of 4.0 s. (b) The extracted signal (blue) overlapped with the known programmed sine wave (green), the relative error of the extracted bpm is merely 0.0049.
  • 6. Take Home Message • Anatomy feature (diaphragm) plays a key role in yielding breathing signals from the CBCT projection images. • The adaptive image filter facilitated the contrast enhancement significantly. • The two-step extraction method provided a robust algorithm to extract less noisy breathing signals. • The new method will offer a practical solution to obtaining markerless breathing signal and help better control breathing motion in radiation therapy.
  • 7. Shortcomings or Critiques • Small number of data sets – only five • It is still limited by the low image quality. http://openrtk.org http://wiki.openrtk.org/index.php/RTK /Scripts/AmsterdamShroud

Notas del editor

  1. Anatomy feature on these images plays a key role in obtaining the breathing signal, and is highly dependent on the image contrast. It was originally introduced to extract the breathing signals to sort the respiratory phases by Sonke el al. Respiratory correlated cone beam CT, Medical Physics 2005.
  2. The breathing signal extracted from an AS image is based on the matching between the adjacent vertical lines (columns) in the AS image There are two problems with the motion estimation adopted by the approach based on equation (4): 1. The use of LSE, or the L2 norm, in the minimization of correspondence errors. According to robust statistics (Hoaglin et al 2000), the L1 norm is more desirable than the L2 norm since the latter overly amplifies the negative impacts of outliers. 2. Probably more importantly, in this breathing signal extraction approach, to estimate movement for column i + 1, only its difference from column i is taken account of. In principle, this local correspondence search method is extremely vulnerable to noises within these small regions, which cannot be combated by any image enhancement techniques alone. This is a more serious problem for this AS breathing signal extraction procedure.
  3. c is a small constant value to avoid over-emphasizing when a certain I value is too small; Iall is the mean value of the original AS image only to ensure the non-negativity of the resulting I Projection image preprocessing for contrast enhancement AS image technique and breathing signal extraction Adaptive robust z-normalization filtering To further augment the weak oscillating structures locally Global regularity of breathing signals based on spectral density analysis Two-step breathing signal extraction algorithm To effectively reveal the large-scale regularity of the breathing signals FLow3 of the largest magnitude whose frequencies are less than 0.15 Hz and larger than 0 to approximate the contribution of the low-frequency component; whereas one can use the three coefficients FRes3 of the largest magnitude whose frequencies are larger than 0.15 Hz to represent the contribution of the respiratory motion.
  4. Reference waveforms obtained using an air bellows belt (Philips Medical Systems, Cleveland, OH) were exported and compared to those with the AS based signals. The average errors for the enrolled patients between the estimated breath per minute (bpm) and the reference waveform bpm can be as low as −0.07 with the standard deviation 1.58. The new algorithm outperformed the original AS technique for all patients by 8.5% to 30%. The impact of gantry rotation on the breathing signal was assessed with data acquired with a Quasar phantom (Modus Medical Devices Inc., London, Canada) and found to be minimal on the signal frequency.
  5. In contrast to the breathing signal tracking approaches using external sources such as the real-time position management (RPM) system (Varian Medical Systems, Palo Alto, CA) or the fluoroscopic tracking where both the patient and the imaging devices remain still, CBCT projections are acquired at various gantry angles.