SlideShare una empresa de Scribd logo
1 de 123
Descargar para leer sin conexión
cisec

Plus d’information à http://asso-cisec.org

2013-2014
Le lundi mardi, de 17h à 19h

Série de Conférences
Ingénierie des systèmes embarqués critiques

1- Introduction, systèmes critiques
Aéronautique (P. Traverse, Airbus, 18/11/2013)
Espace (JP. Blanquart, Astrium, 25/11/2013)
Automobile (H. Foligné, Continental Automotive, Reportée,au 11/03/2014
2- Sûreté, historique
Histoire de la sécurité du Concorde à l’A380 (JP. Heckmann, Apsys, 9/12/2013)
Comparaison de normes de sûreté (JP. Blanquart, Astrium, JM. Astruc, Continental, 16/12/2013)
3- Développement logiciel, assurance (H. Bonnin, Capgemini, 21/1/2014)
4- Développement matériel, assurance
Automobile (JP. Loncle, Continental, 28/1/2014)

Aéronautique (P. Pons, Airbus, 11/2/2014)
5- Intégration système et compatibilité électromagnétique (JC. Gautherot, ex DGA/CEAT)
Partie 1, 18/2/2014
Partie 2, 25/2/2014
6- Interactions homme-système (F, Reuzeau, Airbus, P. Palanque, IRIT, 18/3/2014)
7- Chaîne de production d’électronique pour l’automobile (Continental, 25/3/2014)
8- Diagnostic et maintenance de systèmes (Actia, 1/4/2014)
9- Systèmes autonomes dans les transports (drones, aide à la conduite automobile) (ONERA, Continental, 8/4/2014)

10- Les systèmes domotiques (R. Alami, LAAS, 15/4/2014)

CISEC: intégration systèmes et CEM phénomènes électromagnétiques

1/
SUMMARY


PART1



GENERAL CONTEXT in the AERONAUTICAL FIELD
• 1/3 Structures composite materials
• 2/3 Electronics and critical functions
• 3/3 New architectures and System evolution
ELECTROMAGNETIC PHENOMENA
• Panorama of electromagnetic phenomena and threats
• High intensity radiated field HIRF
• LIGTHNING direct effect





PART2
•
•
•

LIGTHNING indirect effect
Electromagnetic Compatibility EMC
Hardening and electromagnetic protection



APPENDIX:



Technical elements necessary to work out a financial estimate
CONCLUSION
•

CISEC: intégration systèmes et CEM phénomènes électromagnétiques

2/
GENERAL CONTEXT 1/3: New Materials


COMPOSITES STRUCTURES
• Better mechanical properties
• Mass gain and improved stiffness
• Reduced delay and manufacturing process
• Maintenance (external corrosion? & Ref: refer 787 li-battery fire)
• Absorbing properties (STEALTH military aircraft)
• But poor Faraday performances (attenuation ) and poor
electrical properties VS light alloys (aluminum) i.e. grounding
and metallization problems (resistivity of carbon fiber 1000 more
greater than aluminum alloy)
• Bad electrochemical compatibility (emf: 900 mV with aluminum)
which need in particular locations the use of TITANE in order to
avoid corrosion phenomena

CISEC: intégration systèmes et CEM phénomènes électromagnétiques

3/
Aircraft composites structure 1/3
B787 & A350

CISEC: intégration systèmes et CEM phénomènes électromagnétiques

4/
GENERAL CONTEXT 1/3: A380 COMPOSITES

CISEC: intégration systèmes et CEM phénomènes électromagnétiques

5/
Aircraft composites structure 1/3
Military aircraft & helicopter


Rafale

CISEC: intégration systèmes et CEM phénomènes électromagnétiques

6/
General view of the trend to increased use of
composites materials 1/3

CISEC: intégration systèmes et CEM phénomènes électromagnétiques

7/
GENERAL CONTEXT 2/3: Electronic & critical functions


Even more Electronic
•
•
•
•



FMS,GPWS,TCAS,IFE (2500 kg for A 380 2 à 3 Mips 4,7 M€)
Increased density of electronic equipment
Analogical electronic disappear for the profit all numerical electronic
Easy change thanks to embedded soft

Critical functions (no mechanical back-up)
FADEC (Engine control)
• Fly by wire (FBW)
• etc.
FREQUENCY SPECTRUM
• Up to 18 GHz or more (40 GHz)
• Increased sensitivity (ex. GPS, )
•



CISEC: intégration systèmes et CEM phénomènes électromagnétiques

8/
Illustration of avionics changes 2/3:
Example of old helicopter
generation analogical Electronic
(AS 355)

Example of new helicopter (EC 725)
Numerical electronic

CISEC: intégration systèmes et CEM phénomènes électromagnétiques

9/
GENERAL CONTEXT 2/3: Electronic critical functions natural
stability VS artificial which need computer operating with high safety
Fv

Fe
Aircraft with natural stability

P
Fv
Fe

P
Aircraft with artificial stability provided by electronic computer
CISEC: intégration systèmes et CEM phénomènes électromagnétiques

10/
General context Frequency spectrum 2/3

Frequency spectrum in the world

Typical radio-navigation
frequencies for civil aircraft

CISEC: intégration systèmes et CEM phénomènes électromagnétiques

11/
GENERAL CONTEXT 3/3: New architectures and concepts
for the aircraft system


INCREASED ELECTRIC POWER
• Even more electric actuators and less hydraulic
• Deicing & no Engine bleed air (ex B 787)
• Air conditioning compressor driven with electric motor (ex B 787)
• Mass gain (more particularly starter-generator )
• Regulations and control law more easy
• Cable routing more easy than hydraulic rigid pipes
• Improved Maintenance opposite hydraulic (drain, leakage, pollution,
fire risk….)
• but….

• Electromagnetic disturbances to be solved

CISEC: intégration systèmes et CEM phénomènes électromagnétiques

12/
GENERAL CONTEXT 3/3: TREND to INCREASED ELECTRIC POWER

CISEC: intégration systèmes et CEM phénomènes électromagnétiques

13/
Change in the aircraft architecture 3/3

conventionnal architecture

New architecture: example air
conditioning system driven with
electrical motor

CISEC: intégration systèmes et CEM phénomènes électromagnétiques

14/
Just a look inside aircraft body: you can see……
Of course many hydraulic
pipes…..

But also even more electrical
cables (low level signal &
power supply wires)

This the reason why electromagnetic threats shall be taken into account
at the first step of the design This was the case for A 320 airworthiness
with Special condition 75 for lightning & 76 for HIRF
CISEC: intégration systèmes et CEM phénomènes électromagnétiques

15/
Evolution to more electric Aircraft 3/3



BOEING 787
 95 km of cables
 More than 60 000 electrical
bonding
 40 000 cables segments
 1 500 Electrical harness
 400 optical bonding



AIRBUS A 380
 500 km of cables
 More than 9 000
connectors
 1 600 electrical harness

CISEC: intégration systèmes et CEM phénomènes électromagnétiques

16/
ELECTROMAGNETIC PHENOMENA & THREATS

non-intentional

Artificial sources

Natural sources
SPIKE

HIRF
CHAMPS FORTS

Transitoires
d'alimentation

EMC

ESD

Couplage
Radioélectrique

Bruit

Tempest

Furtivité

Terrestre
Atmosphérique
Galactique
Solaire

PHENOMENES
PHENOMENES

Anticompromission

intentional

électrostatiques

Compatibilité
Electromagnétique

CRE

DES
Décharges

LEMP

CEM

ERC

FOUDRE

ELECTROMAGNETIQUES
ELECTROMAGNETIQUES

Stealth
HERP
MFP
Sécurité du

Micro-onde
Forte Puissance

IEMN
HPM
EMP

DRAM

Personnel

Dommages des rayonnements
sur armes et munitions

HERO

CISEC: intégration systèmes et CEM phénomènes électromagnétiques

17/
Nuclear Electromagnetic Pulse


Generated by a High altitude
nuclear explosion






Compton effect in the atmosphere

Principal Characteristics
 bi-exponential
 Crest Amplitude 50 kV/m
 Rise time approximately:10 ns
 Half time duration 200 ns
 Capture area notion
Military system are essentially
concerned

CISEC: intégration systèmes et CEM phénomènes électromagnétiques

18/
Electromagnetic tests / Electrostatic discharges


created by rubbing:
 On isolating or low
conductivity materials with low
air moisture ratio



Principal characteristics
 Bi exponential waveform
 Crest amplitude approximately
15 kV
 Rise time: some ns
 Half time duration : 20 ns

CISEC: intégration systèmes et CEM phénomènes électromagnétiques

19/
Example measurement of electrostatic charging due to
blades rotation and hot gas turbine exhaust during load
winching operation for helicopter : equivalent to a capacitor
of 1nF charged up to 40 kV which can be lethal

CISEC: intégration systèmes et CEM phénomènes électromagnétiques

20/
Electrostatic charges: Example of efficiency
measurement of e-discharger. The objective of the
design is to get a continuous flow of low current in order to avoid high
discontinuous high current discharges and then to reduce the noise
which can introduce disturbances & a loss of sensitivity on aircraft radio
receiver. But as we will see those devices are often damaged in the case
of aircraft lightning event

CISEC: intégration systèmes et CEM phénomènes électromagnétiques

21/
Example of High Power transmitter antenna
balanced hardening notion (limit in the level of electromagnetic protection)

Military aircraft or helicopter has enough agility to avoid collision, this
is not the case for civil aircraft, in that way safety distance which are
taken into account in regulatory document are increased

Curtain antenna

CISEC: intégration systèmes et CEM phénomènes électromagnétiques

22/
HIGH INTENSITY RADIATED FIELD :
Power transmitter OTHB 12 elements 1MW EIRP = 100 MW 5 to 28 MHz
41,70 N 121,18 W

CISEC: intégration systèmes et CEM phénomènes électromagnétiques

23/
Some example of Incidence due to HIRF









Tornado crash in the vicinity of VOA Transmitters (was at the
origin of CS 76 for A320 Certification)
ECMU failure of Ecureuil AS 355N In the vicinity of CENTAURE
Radar
INS ALIZE MARINE Failure on Aircraft Carrier
AS332 disturbance of NG DNG T4 indicators when landing on
ship
Phone which was forget « on » in the freight compartment near
fire detector unit
Inopportune opening of hydraulic barrage gate during security
inspection due to TW emission
Don’t make confusion for turning “off “ portable computer
during take off and landing operation: it’s an EMC problem
(noise and or radio interference with radio navigation system
CISEC: intégration systèmes et CEM phénomènes électromagnétiques

24/
HIGH INTENSITY RADIATED FIELD : near field for electric dipole

CISEC: intégration systèmes et CEM phénomènes électromagnétiques

25/
HIGH INTENSITY RADIATED FIELD: near field for magnetic loop

CISEC: intégration systèmes et CEM phénomènes électromagnétiques

26/
HIGH INTENSITY RADIATED FIELD
Example of Radiated field in the vicinity of high power transmitter

Curtain antenna 250 kW 15 MHz

Rhombic antenna 150 kW 15 MHz

CISEC: intégration systèmes et CEM phénomènes électromagnétiques

27/
HIGH INTENSITY RADIATED FIELD: formulas simplification

CISEC: intégration systèmes et CEM phénomènes électromagnétiques

28/
HIGH INTENSITY RADIATED FIELD: formulas
simplification substantiation


According that the
electromagnetic field in
the vicinity of antenna
vary strongly with the AC
distance and if we
observe for example the
radiation pattern of
aperture it can be seen
that the law in 1/R2 for
the value power density
is an overestimation but
conservative and then
acceptable

CISEC: intégration systèmes et CEM phénomènes électromagnétiques

29/
HIGH INTENSITY RADIATED FIELD
simple formulas for field calculation field calculation
Basic formulas for a radiated electromagnetic field approximate calculation
2
P=E /Z0 W/m2
with Z0 = E/H = 120 p = 377 W
- E Electric field V/m
- H magnetic field A/m
Knowing the transmitter power and the numerical antenna gain
We can calculate the power radiated density and then the field for the distance R
2
P = GW/4 p R

E = (30GW)1/2/R
2

For Near field (if R< D /2l) this formula is majoring
l Is the wavelength in m calculated with l = f (in MHz)/ 300
D (in m) is the greatest antenna dimension en (Ex RADAR parabola diameter)
Don’t make confusion between effective mean value and effective peak value Em
For rectangular signal as for typical radar modulation with pulse duration t et
repetition time T

Em = Ec (t /T)1/2
CISEC: intégration systèmes et CEM phénomènes électromagnétiques

30/
HIGH INTENSITY RADIATED FIELD:
Special condition SC76 was edited for the certification of A320

CISEC: intégration systèmes et CEM phénomènes électromagnétiques

31/
HIGH INTENSITY RADIATED FIELD:
value and distance

CISEC: intégration systèmes et CEM phénomènes électromagnétiques

32/
HIGH INTENSITY RADIATED FIELD:
average value and peak value (for RADAR modulation)

CISEC: intégration systèmes et CEM phénomènes électromagnétiques

33/
HIGH INTENSITY RADIATED FIELD:
acceptable method of demonstration 1/2
Acceptable methods of demonstration are :
1° low level method based on electric field attenuation measurements performed
where critical or essential equipments are located and also for the cables
induced current coming from exposed zones, thus one have 2 transfer basic
functions
After extrapolation to the external threat (linearity hypothesis) comparison of
the value obtained in laboratory test center with the value to be demonstrated.
The quantified margin between this the extrapolated value and the laboratory
value shall be positive
However this method is sometime problematic if we take into account the
representativeness of test s in the FARADAY chamber
2 high level demonstration directly on the aircraft
this method is not possible in the whole frequency domain particularly for low
frequency due to the great dimensions of civil aircraft
Example direct injection in a coaxial line for a military aircraft limited to 100 MHz

CISEC: intégration systèmes et CEM phénomènes électromagnétiques

34/
HIGH INTENSITY RADIATED FIELD:
demonstration methods 2/2
3° Calculation codes
Approximately valid up to 400 MHz for internal electromagnetic parameters,
but important problems to get a true representative model
In any case the model shall be validated with the help of great experimental
means associated with high performance measuring equipment on particular
points
In practice:
this different methods are combined in order to take into account:
- aircraft dimensions
- test center facilities (amplifier power and antenna gain…)
- data on similar aircraft (same technology)
- New concept and technologies
In any case it is necessary to quantify a hardening margin face to the specified
external threat. This margin shall include :
- a consumable part (putting back to initial level thanks to defined periodic
maintenance operations in order to cover wear , aging and corrosion
phenomena…)
- and a permanent part in order to cover error measurements, manufacturing
process drift etc., in order to get a good level of safety.
CISEC: intégration systèmes et CEM phénomènes électromagnétiques

35/
HIGH INTENSITY RADIATED FIELD:
low level method or transfer function measurement
Radiated field in the vicinity of
avionic bay

Cable induced Current
measurement probe

CISEC: intégration systèmes et CEM phénomènes électromagnétiques

36/
HIGH INTENSITY RADIATED FIELD:

CISEC: intégration systèmes et CEM phénomènes électromagnétiques

37/
HIGH INTENSITY RADIATED FIELD: a minimum of 4
incidences and polarizations are performed for each frequency

CISEC: intégration systèmes et CEM phénomènes électromagnétiques

38/
HIRF TEST PROBLEMATIC: amplitude accuracy
Taking

for example this recorded
curve where we get high resonant
and anti resonant amplitude in
relation with the frequency, in order
to get an error less than 3 db we have
to calculate the sampling by using
this formula

N=log(F2/F1)/log (1+1/Q)
 F1,

and F2 lower and upper
frequency

For

F1= 400 MHz and F2= 18 GHz for
Q= 10 a minimum of 40 frequencies
and for Q=100 382 frequencies are
necessary to cover correctly the
spectrum
CISEC: intégration systèmes et CEM phénomènes électromagnétiques

39/
HIRF TEST PROBLEMATIC: data to be recorded
For a aircraft qualification we have to take into account
4 to 5 Equipment locations
10 to 20 critical or essential equipments (mean 15)
2cables minimum per equipment
4 incidences minimum
2 polarizations H et V

Consequences:

For internal radiated Field:
Frequency domain1 MHz to18 GHz
Q= 100
i.e. 984 (1000) spot frequencies
that leads to:
2x5x4x 1000 = 40 000 measurements

For wire induced current
Frequency domain10kHz à 100 MHz
Q= 10 or 100
i.e. 96 (100) or 925 (1000) spot frequencies
that leads to:
15x2x4x2x100 = 24 000 ou 240 000 measurements

CISEC: intégration systèmes et CEM phénomènes électromagnétiques

40/
Danger of the non ionizing radiations:
Electric Field (thermal effects only)

CISEC: intégration systèmes et CEM phénomènes électromagnétiques

41/
Danger of the non ionizing radiations: Electric Field thermal effects only
ICNIRP (International Commission on Non-Ionizing Radiation Protection)

CISEC: intégration systèmes et CEM phénomènes électromagnétiques

42/
LIGHTNING STROKE from CLOUD TO GROUND

CISEC: intégration systèmes et CEM phénomènes électromagnétiques

43/
Some examples of Lightning incidence & accident









Loss of 2 engines of small jet above Atlantic Sea (acoustic phenomena)
Mirage F1 of CAMBRAI AAAF Base ejector seat was energized
Helicopter replenishment service from BRISTOW ditching in north SEA
after loss of tail rotor JAN 19 1995
Personal experience during Paris Toulouse A 300 Flight and
discussion after landing: pilot tell me he was in North Sea stroked by
lightning 6 times in 10 minutes
ULM flight actuator blocked due to ARC WELDING crash follow
Amateur Video recording from tower during 747 take off

Important Studies were performed in USA by NASA F106B and
USAF with CV 580 and in France by ONERA /CEV&CEAT on Transall
C160 instrumented with electromagnetic sensor for measuring
condition of occurrences amplitude and rise time, duration time, nbr of
stroke…..
CISEC: intégration systèmes et CEM phénomènes électromagnétiques

44/
Two example of Helicopter struck by Lightning
incidence & accident

CISEC: intégration systèmes et CEM phénomènes électromagnétiques

45/
Different cases of aircraft lightning event to consider


Intra or inter-cloud: in those cases the aircraft in the vicinity of clouds has
triggered the arcing phenomena. it’s 80 % of lightning recorded cases. In
flight measurement (CV 580 USAF or C160 AAF in France has shown that
the amplitude is less than 40 kA)



Intercept stroke from cloud to ground: amplitude taken actually for
airworthiness authority is 200kA
Civil aircraft are struck by lightning every 4000 hrs, military: 7000 hrs



CISEC: intégration systèmes et CEM phénomènes électromagnétiques

46/
Cockpit glass illumination due to high electrical field
before lightning stroke holy ELME effect

CISEC: intégration systèmes et CEM phénomènes électromagnétiques

47/
LIGHTNING: result off the process electric cloud

charge
Cloud to ground Lightning process

precursors
Return stroke

CISEC: intégration systèmes et CEM phénomènes électromagnétiques

48/
Lightning threat modelization


Lightning Process








Precursor (fires of the holy ELME)
Return stroke
Intermediate current
DC current
Secondary discharges

Phenomena


inter cloud & Intra cloud frequently aircraft initiated (cf. flight test CV 580 &
Transall C160)





Cloud to ground (strongest values from the contained energy point of view)

high voltage strong current and pulse repetition impossible to
generate simultaneously




Points of attachment related to the tension
Damages related to the current
Coupling related to the local densities of current (see lightning simulation
slides

CISEC: intégration systèmes et CEM phénomènes électromagnétiques

49/
Definition: multiple burst / multiple stroke
LIGHTNING
attachement

Courant établi

re-attachement

Courant établi

Composante
persistante

Multiple
burst

Multiple stroke

Composante
persistante

Multiple
burst

Multiple stroke

CISEC: intégration systèmes et CEM phénomènes électromagnétiques

50/
Lightning current amplitude and probability

CISEC: intégration systèmes et CEM phénomènes électromagnétiques

51/
Aircraft lightning interaction: Directs & indirects effects


As it was said previously, one cannot simulate in experiments at the same time
the effects of the high electric field and the strong current; one thus studies
with large simulators the specific ones:



Direct effects








Return stroke or secondary lightning waveform A &t D
Impact of the arc, lightning currents flow
2
Structural thermo mechanical damages
Spark between poor metalized part (cover and structure) above vapor in fuel tank ( shall be
less than 200m J)

Im ax , ∫ )dt , ∫(t )dt
i (t
i

Indirect effects






multistroke, multiburst phenomena
Electromagnetic coupling
Over voltage or current surges, noise
Reversible Functional disturbances or non reversible equipment damages

di (t ) d 2 i (t ) de(t )
Im ax ,
,
,
dt
dt
dt
CISEC: intégration systèmes et CEM phénomènes électromagnétiques

52/
Civil aircraft: First recorded lightning stroke
with direct effects (thermal….)

CISEC: intégration systèmes et CEM phénomènes électromagnétiques

53/
Direct lightning effects on a weapon system
Illustration
of CORONA
Effect !!!

Example of
irreversible
damages

CISEC: intégration systèmes et CEM phénomènes électromagnétiques

54/
CISEC: intégration systèmes et CEM phénomènes électromagnétiques

55/
LIGHTNING: waveform characteristics for direct effects
current

waveform A: 1er return stroke
I max = 200 kA

i 2dt  2.10 6 A2 .s

waveform D: secondary stroke
Imax = 100 kA

waveform B: intermediate current
I mean = 2 kA

i 2 dt  0,25.10 6 A 2 .s


 idt  10C

waveform C: sustaining current
I mean = 200 A

 idt  200C
*non representative scale

< 500µs

5 ms

0,1 à 1 s

< 500µs

durée

CISEC: intégration systèmes et CEM phénomènes électromagnétiques

56/
LIGHTNING Direct effect: ZONING concept


Zone 1
•
•



Zone 2
•
•



Zone 1A: initial attachment point with a low probability of arc hang on
Zone 1B: initial attachment point with a high probability of arc hang on
Zone 2A: swept zone attachment point with a low probability of arc hang on
Zone 2B: swept zone attachment point with a high probability of arc hang
on

Zone 3
•

All the other zones of the plane other than those of zones 1 and 2, there is a
low possibility of attachment of the direct arc the lightning. Surfaces of
Zone 3 can be traversed by important currents but only by direct
conduction between 2 point of initial attachment or sweeping

CISEC: intégration systèmes et CEM phénomènes électromagnétiques

57/
LIGHTNING Direct effect: ZONING concept

CISEC: intégration systèmes et CEM phénomènes électromagnétiques

58/
LIGHTNING Direct effect: ZONING concept

CISEC: intégration systèmes et CEM phénomènes électromagnétiques

59/
Lightning as a function of Flight altitude

300-400

Civilian A/C

270-300

Military A/C

240-270
210-240
180-210
150-180
120-150
90-120
60-90
30-60
0-30
Ground
0

5

10

15

20

25

CISEC: intégration systèmes et CEM phénomènes électromagnétiques

30

60/
Aircraft damages distribution
50

47,3

45
40
35
30
25

17,7

20

16,1

15

8,7

10

6,9

5,9

4,5

4

5

0,3

W
in
gs

r
ad
a
R

m
e
ad
o

ne

s
nn
a

En
gi

R

A

nt
e

ag
e
se
l

Fu

ili
s

t
St
ab

A

/C

lo
s

ag
e
da
m
o
N

er
s

0

CISEC: intégration systèmes et CEM phénomènes électromagnétiques

61/
Example of lightning AIR SAFETY REPORT

CISEC: intégration systèmes et CEM phénomènes électromagnétiques

62/
Example of high voltage test with MARX generator
25 stages charged at 200 kV = 5 MV
Test on instrumented mock –up in
order to study electro-charge
distribution just before first arc
junction under high electrical field

Blade attachment

CISEC: intégration systèmes et CEM phénomènes électromagnétiques

63/
Effectiveness test of lightning strip diverter: Marx
generator 5 MV pek current limited to 10 kA

CISEC: intégration systèmes et CEM phénomènes électromagnétiques

64/
CISEC: intégration systèmes et CEM phénomènes électromagnétiques

65/
LIGHTNING direct effect:
example of radome damage

CISEC: intégration systèmes et CEM phénomènes électromagnétiques

66/
cisec

Plus d’information à http://asso-cisec.org

2013-2014
Le lundi mardi, de 17h à 19h

Série de Conférences
Ingénierie des systèmes embarqués critiques

1- Introduction, systèmes critiques
Aéronautique (P. Traverse, Airbus, 18/11/2013)
Espace (JP. Blanquart, Astrium, 25/11/2013)
Automobile (H. Foligné, Continental Automotive, Reportée,au 11/03/2014
2- Sûreté, historique
Histoire de la sécurité du Concorde à l’A380 (JP. Heckmann, Apsys, 9/12/2013)
Comparaison de normes de sûreté (JP. Blanquart, Astrium, JM. Astruc, Continental, 16/12/2013)
3- Développement logiciel, assurance (H. Bonnin, Capgemini, 21/1/2014)
4- Développement matériel, assurance
Automobile (JP. Loncle, Continental, 28/1/2014)

Aéronautique (P. Pons, Airbus, 11/2/2014)
5- Intégration système et compatibilité électromagnétique (JC. Gautherot, DGA)
Partie 1, 18/2/2014
Partie 2, 25/2/2014
6- Interactions homme-système (F, Reuzeau, Airbus, P. Palanque, IRIT, 18/3/2014)
7- Chaîne de production d’électronique pour l’automobile (Continental, 25/3/2014)
8- Diagnostic et maintenance de systèmes (Actia, 1/4/2014)
9- Systèmes autonomes dans les transports (drones, aide à la conduite automobile) (ONERA, Continental, 8/4/2014)
10- Les systèmes domotiques (R. Alami, LAAS, 15/4/2014)

CISEC: intégration systèmes et CEM phénomènes électromagnétiques

67/
Lightning indirect effect on complex system

CISEC: intégration systèmes et CEM phénomènes électromagnétiques

68/
Lightning waveform to take into account for indirect
effect assessment
Onde A
200 kA

di/dt = 140 kA/µs
2 MJ/ohm

Onde D

100 kA

Onde H

d/dt = 140 kA/µs
0.25 MJ/ohm
Onde D/2

dI/dt = 200 kA/µs
50 kA
50 µs < dt < 1 ms

Onde B
Q = 10 C

10 kA

Onde C
200 C

30 ms < dt < 300 ms
3 fois 20 pulses

1.5 s
13 pulses

CISEC: intégration systèmes et CEM phénomènes électromagnétiques

69/
From external lightning stroke to internal induced
pulses

CISEC: intégration systèmes et CEM phénomènes électromagnétiques

70/
Lightning indirect effects :
From external to internal pulses
In a very simplified manner one can write :

φext (t ) = kI (t )
φ int (t ) = A( f )φext (t )
dφ int (t )
dI (t )
e (t ) =
=k
dt
dt
dI (t )
V (t ) = RI (t ) + k
dt
Homothetic form

Derivative form

CISEC: intégration systèmes et CEM phénomènes électromagnétiques

71/
Typical induced waveform at equipment level
Long waveform
(A, D,D/2)

Long waveform

Fast waveform

Fast waveform
(H)

Fast waveform

Oscillatory waveform

Fast rise time= DIRAC pulse

CISEC: intégration systèmes et CEM phénomènes électromagnétiques

72/
CISEC: intégration systèmes et CEM phénomènes électromagnétiques

73/
CISEC: intégration systèmes et CEM phénomènes électromagnétiques

74/
Functional susceptibility: incidence of the occurrence of the
pulses with respect to the computer cycle

1 pulse

many
Pulses

pulses
burst

1 erroneous bit

1 erroneous
data

many
erroneous
data

Error Detection
code

Message
repeated

equipment
declared
faulty

Necessity to achieve lightning tests on iron bird
CISEC: intégration systèmes et CEM phénomènes électromagnétiques

75/
Simulator in order to inject mutiple pulses
Aircraft installation representative Cable

Equipment under test

Test
Equipement

control
computer

waveform
de
synthesizer

converter
Pulsed Power amplifier
voltage Vco

CISEC: intégration systèmes et CEM phénomènes électromagnétiques

current It

76/
BASIC ELECTROMAGNETIC COUPLING
INTERNAL
ENVIRONMENT

EXTERNAL
ENVIRONMENT

I bulkhead
AGRESSION
E internal
E external

H external
I cable
Equipement

Structure

CISEC: intégration systèmes et CEM phénomènes électromagnétiques

77/
External and internal Threats Modelization 2/2


Electromagnetic parameters





Electric Field E : (volt/meter)
Magnetic Field H : (amps/meter)
current:
I (amps)



Time domain: Voltage or current waveform



Frequency Domain : current or field amplitude VS frequency curves
(mean value , peak value)



Examples




LIGHTNING (LEMP): time domain current waveform
EMP: time domain electric field
HIRF: frequency domain

CISEC: intégration systèmes et CEM phénomènes électromagnétiques

78/
External and internal Threats Modelization 1/2







The current means of theoretical modeling of the electromagnetic
phenomena make it possible to predict the electromagnetic
constraints intern of a system subjected to an electromagnetic
aggression
The computer code and the grid are selected according to the
accuracy which one wants to obtain for the field time/frequency that
one wants to explore
It is necessary, however, to validate the models by putting into
operation great experimental means
These great experimental means are complex of a high cost and
immobilize the system to be evaluated in a context of increasingly
tended programs

CISEC: intégration systèmes et CEM phénomènes électromagnétiques

79/
Electromagnetic Simulation & Modelization 1/5: different methods

CISEC: intégration systèmes et CEM phénomènes électromagnétiques

80/
Electromagnetic Simulation & Modelization 1/5: different methods 2/5: advantages
& drawback of each methods

CISEC: intégration systèmes et CEM phénomènes électromagnétiques

81/
Electromagnetic Simulation & Modelization 3/5: examples for lightning
probability

CISEC: intégration systèmes et CEM phénomènes électromagnétiques

82/
Example Lightning current distribution on
the structure (arc between aircraft nose and right wing)

CISEC: intégration systèmes et CEM phénomènes électromagnétiques

83/
Electromagnetic Simulation & Modelization : theoretical demonstration

in seven

steps experimentation/validation

du modèle

CISEC: intégration systèmes et CEM phénomènes électromagnétiques

84/
Experimental simulation on mock up
limited to external phenomena applications examples: antenna pattern, ESR






It is possible in particular cases as for aero dynamical model in wind tunnel (cf.
Reynolds number) to perform measurement at reduced scale
However some electromagnetic law for similarity shall be applied in order to be
representative
Non linear phenomena are not taking into account such as :
 Hysteresis
 Magnetic Saturation
 Ionization
It’s necessary to reproduce skin effect dielectric & magnetic losses






emf2= e’m’f’2/r2
smf = s’m’f’/r2

If the tests are achieved in the same surrounding (see mock up inthe following table
then e = e’ et m = m’
In particular cases conductivity can not be enough increased (problem of copper Vs
aluminum and also ground for which it’s necessary to inject salt with water solution)

CISEC: intégration systèmes et CEM phénomènes électromagnétiques

85/
Electromagnetic law for experimental simulation on
mock-up at reduced scale
parameter

Real system

reduced scale

Mock up

Length

L ( meter)

l’ = l/r

L’ = L/r

Time

T (second)

t’ = t/g

t’ = t/r

Electrical field

E (V/m)

E’ = E/a

E’ = E/a

Magnetic field

H (A/m)

H’ = H/b

H’ = H/a

Magnetic permeability

m (H/m)

m’  m x (rb/ga)

m’  m

permittivity

e (F/m)

e’  e x (ra/bg)

e’  e

Electrical conductivity

s (W/m)

s’  s x (ra/b)

s’  s x r

voltage

V (V)

V’ = V /(ra)

V’ = V /(ar)

current

I (A)

I’ = I /(br)

I’ = I /(ar)

Surface current

J (A/m2)

J’ = J/b

J’ = J/a

frequency

f (hertz)

f’ = f x g

f’ = f x r

Résistance

R (W)

R’ = R x (b/a)

R’ = R

Inductance

L (Henry)

L’ = L x (b/ag)

L’ = L/r

Capacitance

C (Farad)

C’ = C x (a/bg)

C’ = C/r

CISEC: intégration systèmes et CEM phénomènes électromagnétiques

86/
Example of Antenna characterization on typical mock up

CISEC: intégration systèmes et CEM phénomènes électromagnétiques

87/
Electromagnetic phenomena & threats
CEM
Aptitude d’un dispositif, d’un équipement ou d’un système à
fonctionner de façon satisfaisante dans son environnement
électromagnétique sans produire lui même des perturbations
électromagnétiques intolérables pour tout ce qui se trouve dans cet
environnement

EMC
The ability of equipments (or Systems) to operate satisfactorily in its
electromagnetic environments without introducing intolerable
disturbances to anything in that environment

jean-charles.gautherot@wanadoo.fr

CISEC: intégration systèmes et CEM phénomènes électromagnétiques

88/
ELECTRO MAGNETIC COMPATIBILITY
Definition & related basic documents






Electromagnetic disturbance is any phenomenon that may
degrade the performance of a device, equipment, or system or
adversely affect living or inert matter
DO 160 F (equipment) for civil aircraft
MILSTD 461 E (equipment) & MIL STD 464 (system) for military
qualification
And many other documents: FCC, IEC , CISPR…….OTAN
document (AETCP 500 & 250) including French document in the
past such as GAM EG13 (AIR 7306 for military aircraft)

CISEC: intégration systèmes et CEM phénomènes électromagnétiques

89/
ELECTRO MAGNETIC COMPATIBILITY
COUPLING MODE

EMITTER
CULPRIT

interconnexion

RECEIVER
VICTIM

masse

supply
radiation : (wire, antenna or aperture) towards (wire, antenna or aperture)
conduction : towards supply or interconnecting cables

CISEC: intégration systèmes et CEM phénomènes électromagnétiques

90/
ELECTRO MAGNETIC COMPATIBILITY
4 basic tests ref:
DO 160 (for civil aircraft) & MILSTD 461 (for military aircraft)

CEM
Emission
CE
Section 19

Susceptibilité
RE
Section 21

CS
Section 18 & 20

RS
Section 20

CISEC: intégration systèmes et CEM phénomènes électromagnétiques

91/
Fundamental principle of the CEM: trilogy
A

B

EMITTER
CULPRIT

RECEIVER
VICTIM

COUPLING

Negative margin
Positive margin

Emission level

Susceptibility level

B disturbed

B non disturbed
frequency

CISEC: intégration systèmes et CEM phénomènes électromagnétiques

92/
CEM: example limit for radiated emission taking into
account radio receiver sensitivity an not only intrinsic EMC

CISEC: intégration systèmes et CEM phénomènes électromagnétiques

93/
EMC: Type of signal which are measured, spectrum in
frequency domain (radiation or conduction)
There are narrow band signal and broadband signal (d is pulse duration at 50% &T is
rise and fall time between 10 & 90 %)
Example of unique ( non repetitive ) pulse spectrum
amplitude in frequency domain is given for example in dBm or dBµV/m or dBµA /Hz
Time to frequency representation

CISEC: intégration systèmes et CEM phénomènes électromagnétiques

94/
EMC: BROADBAND or NARROWBAND ? Measurements value will vary
with the width of the filter used with the spectrum analyzer

CISEC: intégration systèmes et CEM phénomènes électromagnétiques

95/
EMC: measurement specification


In order to avoid misinterpretation in the value of amplitude measurement
results, bandwidth filter and time between each frequency step used for
emission are defined in normative document for different frequency band
measurement. Example

CISEC: intégration systèmes et CEM phénomènes électromagnétiques

96/
What’s About PED ?

MAXIMUM VALUES
L e v e l, d B u V /m

Measured PEDs
WB Switching Power Supplies
and Video Dis play Sweeps

95
85
75
65
55
45
35
25
1E-2

1E-1

NB Local Oscillators
and Clocks

1E0
1E1
1E2
Frequency, MHz

1E3

1E4

CISEC: intégration systèmes et CEM phénomènes électromagnétiques

97/
CEM & PED: front door and back door coupling


Front-Door coupling
PED Undesired Emissions Coupled Through Fuselage Windows and Door
Seams to Radio, Navigation, and Radar Antennas (receiving mode) transmodulation effect

•

•
•
•
•
•
•
•
•
•
•
•


•
•

75 MHz: Marker Beacons
108-136 MHz: ILS Localizer, VDT, VOR, VHF Com, VDL
329-335 MHz: ILS Glide Slope
962-1215 MHz: DME (Military TACAN)
982 MHz: ADS-B UAT
1030, 1090 MHz: ATC & TCAS
1530-1610 MHz: Satellite Com
1575.42 MHz: GPS
4200-4400 MHz: Radar Altimeter
5030-5090 MHz: Microwave Landing System
5350-5470, 9300-9500, 15500-15700 MHz: Weather Radar

Back-Door Coupling
PED Undesired Emissions Coupled to Avionics Boxes
PED Undesired Emissions Coupled to Avionics Wiring

CISEC: intégration systèmes et CEM phénomènes électromagnétiques

98/
CEM: example of equipment conducted
emission measurement
Power supply switching fondamental & harmonics

Microprocessor

CISEC: intégration systèmes et CEM phénomènes électromagnétiques

99/
CEM: Example of radiated emission measurement

CISEC: intégration systèmes et CEM phénomènes électromagnétiques

100/
CEM: Example of radiated susceptibility measurement
in RADAR frequency domain on FADEC

CISEC: intégration systèmes et CEM phénomènes électromagnétiques

101/
Test with Reverberating chamber by using cavity resonance
frequencies (starting only above 6 times the first low resonance frequency
can be used for radiated susceptibility but also for emission tests)

Testing equipment or System

Calibration for the Em. FIELD

CISEC: intégration systèmes et CEM phénomènes électromagnétiques

102/
Example of Specific test which are not
included in aeronautical norm or specification




This helicopter was used by
EDF for the maintenance of
electric line and the
cleaning with KARCHER of
Isolators
The objective of test was to
see if there is no misoperating of ECMU under
High voltage & high
magnetic field at low
frequency (50 Hz)

CISEC: intégration systèmes et CEM phénomènes électromagnétiques

103/
ELECTROMAGNETIC PROTECTION:
don’t forget embedded software


Software example: ECMU (Electronic control motor unit)







Tolerances
accuracy (prediction of periodic maintenance)
Gradient test
Consistency test
Numeric filtering

Consequences



Many features
Opposite part:
• Response time
• Memory size

CISEC: intégration systèmes et CEM phénomènes électromagnétiques

104/
ELECTROMAGNETIC PROTECTION:
overview of basic protections












Shielding
Bonding
Grounding
Clamping
Filtering
Segregation
Optical fiber link
Clean and dirty zones design
Balanced Hardening concept
And….

CISEC: intégration systèmes et CEM phénomènes électromagnétiques

105/
Protection device:typical filter structure
Linear filter are commonly used to protect equipment against the adverse effect of wire
induced current in the frequency domain or of power switching supply rejected
signal . Different structure are possible taking into account simultaneously source
and load impedances in order to get the maximum mismatching

CISEC: intégration systèmes et CEM phénomènes électromagnétiques

106/
Example of filter attenuation curve for different structure and of cells Nbr

Note: in general cases attenuation curve are given for nominal value of source and load resistance
but in the real practice it’s never the case in a large frequency domain

CISEC: intégration systèmes et CEM phénomènes électromagnétiques

107/
Example of different filter set-up
Coaxial structure reduce connection inductance

CISEC: intégration systèmes et CEM phénomènes électromagnétiques

108/
Basic limitation of filter
For the correct design of filters there are important parameter to take into
account


For inductance:
– Serial resistance (loss of nominal supply voltage)
– Parasitic capacitance between wounding (high frequency limitation)
– saturation of ferromagnetic material due to permanent supply current CC or CA
– Ferromagnetic losses (EDDY current et hysteresis cycle)
– Ferromagnetic material maxi temperature en temperature coefficient



For capacitance:
– Parallel resistance (leak current)
– Serial inductance of connection (high frequency limitation)
– Breakdown voltage CC et CA
– Diverted current for CA supply
– Dielectric losses
– Dielectric material maxi temperature en temperature coefficient

CISEC: intégration systèmes et CEM phénomènes électromagnétiques

109/
Non linear devices basic set for protection in the time domain

CISEC: intégration systèmes et CEM phénomènes électromagnétiques

110/
Non linear protections: typical value of different devices such as zener
diodes, varistor or gaz spark

CISEC: intégration systèmes et CEM phénomènes électromagnétiques

111/
Time domain pulses: in order to get a safe design, hypothesis of matching
of source and load resistance is taken (max transmitted energy)

CISEC: intégration systèmes et CEM phénomènes électromagnétiques

112/
Electromagnetic protection devices: design rules

Protection against time
domain threat:
•LEMP
•NEMP
•ESD

Protection against
frequency domain threat:
•HIRF
•HPM

CISEC: intégration systèmes et CEM phénomènes électromagnétiques

113/
PROTECTION DEVICES
COMPREHENSIVE & CONSISTENT HARDENING CONCEPT

CISEC: intégration systèmes et CEM phénomènes électromagnétiques

114/
Appendix
Electromagnetic environment and tests

Information necessary for a technical and
commercial proposal

CISEC: intégration systèmes et CEM phénomènes électromagnétiques

115/
Technical elements necessary to work out an estimate
System Or
Equipment
Under test

Test
Program

Technical
&
Commercial
proposal

Configurations

Furniture's

CISEC: intégration systèmes et CEM phénomènes électromagnétiques

116/
System or equipment under test









Equipment overall dimensions
 Maximum ground metallic plane and direction of radiation VS
equipment aircraft positionning
Blowing/Cooling
 Air or fluid Flow
 intermittent operation or not
Power supply
 Permanent & peak power
 Start current
Cabling (representativeness)
 Access, Break boxes
Equipment mass
 Handling (support, mounting)
 Maximum load on floor and on ground metallic plane

CISEC: intégration systèmes et CEM phénomènes électromagnétiques

117/
Equipment under test : configuration


How many Configurations ?
 Different operating modes
– Example:
» light or full load (computer must operate and acquire external signal & data
coming from sensors or simulators
» Fault detection
» susceptibility: signal of sensor adjusted to low tolerance value
» emission: signal of sensor adjusted to high tolerance value
» Energized or not or both
 Software

Version
– Specific test or true and last flight version
 Cables
 With or without over shielding
CISEC: intégration systèmes et CEM phénomènes électromagnétiques

118/
TEST PROGRAM


Applicable norms and documents





Severity and test procedures
Progressive increase of test level ( 3dB? 6dB?….)
Test file
– From most severe to less severe : objective to get asap first results
to modify the equipment

– From less severe to most severe : demonstration to the buyer that
first results are already positive


Correct operation checking before, during and after,
tests



Acceptable or not susceptibility criteria definition
Necessity to identify the origin of dysfunctions or
breakdowns

CISEC: intégration systèmes et CEM phénomènes électromagnétiques

119/
Furnitures/constraints


Stimulis




Means necessary to obtain representative operation
– availibility
– Particular software test
– BUS access for spying data flow without disturbances

Instrumentation



sensors: voltage, current, position, temperature etc.
Internal accessibility

CISEC: intégration systèmes et CEM phénomènes électromagnétiques

120/
CONCLUSION






Information's described previously very seldom appears in the
request for proposal or are incomplete
They are however necessary to determine the feasibility of the
all tests which is not always acquired
They have a direct impact over the duration of tests and thus on
the cost
the customer does not control all subtleties of the tests within a
program. The tests center must also play the part of council

Before providing a credible offer, one, even
several meetings with the customer are
necessary to tackle the problems mentioned
above
CISEC: intégration systèmes et CEM phénomènes électromagnétiques

121/
CONCLUSION &……. QUESTIONS
According to the field
of frequency to be treated
Used tools
for simulation
will not be the same ones

Necessity for designing
electromagnetic
protections
in comprehensive &
Consistent manner

Whatever
computer code has been used
It is necessary to validate
the ideal model
using
large Experimental
simulators

about the functional level:
Role of the HARDWARE
and SOFTWARE:
Attention with the differences
Between the TEST version for
laboratory
and the real embedded Version

80 to 90%of disturbances
come from cables
Future:
Optical numeric BUS
but mechanical, thermal
properties
and maintenance
to be improved

CISEC: intégration systèmes et CEM phénomènes électromagnétiques

122/
And perhaps for next CISEC conference cycle !!!

CISEC: intégration systèmes et CEM phénomènes électromagnétiques

123/

Más contenido relacionado

La actualidad más candente

Oil Exploration and Extraction - John Herbst - v2 - 2010
Oil Exploration and Extraction - John Herbst - v2 - 2010Oil Exploration and Extraction - John Herbst - v2 - 2010
Oil Exploration and Extraction - John Herbst - v2 - 2010cahouser
 
William Good: Extra Small Modular Reactors
William Good: Extra Small Modular ReactorsWilliam Good: Extra Small Modular Reactors
William Good: Extra Small Modular ReactorsEnergyTech2015
 
Analysis of the power quality impact of multiple directed energy loads on an ...
Analysis of the power quality impact of multiple directed energy loads on an ...Analysis of the power quality impact of multiple directed energy loads on an ...
Analysis of the power quality impact of multiple directed energy loads on an ...cahouser
 
Advanced Rotating Machines - Mike Werst
Advanced Rotating Machines - Mike WerstAdvanced Rotating Machines - Mike Werst
Advanced Rotating Machines - Mike Werstcahouser
 
Design of charging station for electric vehicle batteries
Design of charging station for electric vehicle batteriesDesign of charging station for electric vehicle batteries
Design of charging station for electric vehicle batteriesIJAEMSJORNAL
 
Introduction to electric flight
Introduction to electric flightIntroduction to electric flight
Introduction to electric flightAviationshared
 
Serial hybrid marine propulsion
Serial hybrid marine propulsionSerial hybrid marine propulsion
Serial hybrid marine propulsionAlys Spillman
 
Steve Mitchell: Wireless Charge Electric Mine Vehicle
Steve Mitchell: Wireless Charge Electric Mine VehicleSteve Mitchell: Wireless Charge Electric Mine Vehicle
Steve Mitchell: Wireless Charge Electric Mine VehicleNSW Environment and Planning
 
EcoMarine Propulsion Systems - An Overview
EcoMarine Propulsion Systems - An OverviewEcoMarine Propulsion Systems - An Overview
EcoMarine Propulsion Systems - An Overviewquonseteer
 
Energy storage system
Energy storage systemEnergy storage system
Energy storage systemmikkumar5
 
Bradley Glenn: Holomorphic Embedding Load Flow Method (helmtm) Algorithm Deve...
Bradley Glenn: Holomorphic Embedding Load Flow Method (helmtm) Algorithm Deve...Bradley Glenn: Holomorphic Embedding Load Flow Method (helmtm) Algorithm Deve...
Bradley Glenn: Holomorphic Embedding Load Flow Method (helmtm) Algorithm Deve...EnergyTech2015
 
Module 3 electric propulsion electric vehicle technology ppt
Module 3 electric propulsion   electric vehicle technology pptModule 3 electric propulsion   electric vehicle technology ppt
Module 3 electric propulsion electric vehicle technology pptDrCVMOHAN
 
Microgrids and energy storage system: An overview and control aspects
Microgrids and energy storage system: An overview and control aspectsMicrogrids and energy storage system: An overview and control aspects
Microgrids and energy storage system: An overview and control aspectsKrishnakumar R. Vasudevan
 
Energy storage (why & how)
Energy storage (why & how)Energy storage (why & how)
Energy storage (why & how)Suresh Sunny
 
Railway Electrification - Traction
Railway Electrification - TractionRailway Electrification - Traction
Railway Electrification - TractionSUDIN BISWAS
 
A hybrid vehicle configuration with zero emission
A hybrid vehicle configuration with zero emissionA hybrid vehicle configuration with zero emission
A hybrid vehicle configuration with zero emissionKichu Joy
 
Electric traction ppt
Electric traction pptElectric traction ppt
Electric traction pptragulkncet
 
Electric traction in railways
Electric traction in railwaysElectric traction in railways
Electric traction in railwayssuresh shindhe
 

La actualidad más candente (20)

Oil Exploration and Extraction - John Herbst - v2 - 2010
Oil Exploration and Extraction - John Herbst - v2 - 2010Oil Exploration and Extraction - John Herbst - v2 - 2010
Oil Exploration and Extraction - John Herbst - v2 - 2010
 
William Good: Extra Small Modular Reactors
William Good: Extra Small Modular ReactorsWilliam Good: Extra Small Modular Reactors
William Good: Extra Small Modular Reactors
 
Analysis of the power quality impact of multiple directed energy loads on an ...
Analysis of the power quality impact of multiple directed energy loads on an ...Analysis of the power quality impact of multiple directed energy loads on an ...
Analysis of the power quality impact of multiple directed energy loads on an ...
 
Advanced Rotating Machines - Mike Werst
Advanced Rotating Machines - Mike WerstAdvanced Rotating Machines - Mike Werst
Advanced Rotating Machines - Mike Werst
 
Design of charging station for electric vehicle batteries
Design of charging station for electric vehicle batteriesDesign of charging station for electric vehicle batteries
Design of charging station for electric vehicle batteries
 
Smes d 19-ee-04
Smes d 19-ee-04Smes d 19-ee-04
Smes d 19-ee-04
 
Introduction to electric flight
Introduction to electric flightIntroduction to electric flight
Introduction to electric flight
 
Serial hybrid marine propulsion
Serial hybrid marine propulsionSerial hybrid marine propulsion
Serial hybrid marine propulsion
 
Steve Mitchell: Wireless Charge Electric Mine Vehicle
Steve Mitchell: Wireless Charge Electric Mine VehicleSteve Mitchell: Wireless Charge Electric Mine Vehicle
Steve Mitchell: Wireless Charge Electric Mine Vehicle
 
EcoMarine Propulsion Systems - An Overview
EcoMarine Propulsion Systems - An OverviewEcoMarine Propulsion Systems - An Overview
EcoMarine Propulsion Systems - An Overview
 
Energy storage system
Energy storage systemEnergy storage system
Energy storage system
 
drivingforce
drivingforcedrivingforce
drivingforce
 
Bradley Glenn: Holomorphic Embedding Load Flow Method (helmtm) Algorithm Deve...
Bradley Glenn: Holomorphic Embedding Load Flow Method (helmtm) Algorithm Deve...Bradley Glenn: Holomorphic Embedding Load Flow Method (helmtm) Algorithm Deve...
Bradley Glenn: Holomorphic Embedding Load Flow Method (helmtm) Algorithm Deve...
 
Module 3 electric propulsion electric vehicle technology ppt
Module 3 electric propulsion   electric vehicle technology pptModule 3 electric propulsion   electric vehicle technology ppt
Module 3 electric propulsion electric vehicle technology ppt
 
Microgrids and energy storage system: An overview and control aspects
Microgrids and energy storage system: An overview and control aspectsMicrogrids and energy storage system: An overview and control aspects
Microgrids and energy storage system: An overview and control aspects
 
Energy storage (why & how)
Energy storage (why & how)Energy storage (why & how)
Energy storage (why & how)
 
Railway Electrification - Traction
Railway Electrification - TractionRailway Electrification - Traction
Railway Electrification - Traction
 
A hybrid vehicle configuration with zero emission
A hybrid vehicle configuration with zero emissionA hybrid vehicle configuration with zero emission
A hybrid vehicle configuration with zero emission
 
Electric traction ppt
Electric traction pptElectric traction ppt
Electric traction ppt
 
Electric traction in railways
Electric traction in railwaysElectric traction in railways
Electric traction in railways
 

Destacado

BOEING 787 US's Dreamliner Or Nightmare-Liner? Who will Ultimately Win the Ae...
BOEING 787 US's Dreamliner Or Nightmare-Liner? Who will Ultimately Win the Ae...BOEING 787 US's Dreamliner Or Nightmare-Liner? Who will Ultimately Win the Ae...
BOEING 787 US's Dreamliner Or Nightmare-Liner? Who will Ultimately Win the Ae...France Houdard
 
Week 1 Using The Social Web For Social Change - Elluminate (#bgimgt566sx)
Week 1 Using The Social Web For Social Change - Elluminate (#bgimgt566sx)Week 1 Using The Social Web For Social Change - Elluminate (#bgimgt566sx)
Week 1 Using The Social Web For Social Change - Elluminate (#bgimgt566sx)Christopher Allen
 
Composite materials technology overview andrew george
Composite materials technology overview   andrew georgeComposite materials technology overview   andrew george
Composite materials technology overview andrew georgeWalt Maruszczak
 
Crouzet Aerospace - Brand presentation
Crouzet Aerospace - Brand presentationCrouzet Aerospace - Brand presentation
Crouzet Aerospace - Brand presentationCrouzet
 
Hybrid-electric aircraft: Technology options and implications
Hybrid-electric aircraft: Technology options and implicationsHybrid-electric aircraft: Technology options and implications
Hybrid-electric aircraft: Technology options and implicationsTorben Haagh
 
Innovation in the Modern Supply Chain
Innovation in the Modern Supply Chain Innovation in the Modern Supply Chain
Innovation in the Modern Supply Chain SYSPRO
 
Application of shape memory alloys in Aerospace industries
Application of shape memory alloys in Aerospace industriesApplication of shape memory alloys in Aerospace industries
Application of shape memory alloys in Aerospace industriesMohammad Tanhaei
 
Aero Industrial Sales - MRO AFRICA 2015
Aero Industrial Sales - MRO AFRICA 2015 Aero Industrial Sales - MRO AFRICA 2015
Aero Industrial Sales - MRO AFRICA 2015 Dahir_Mohammed
 
Thrust augmentation
Thrust augmentationThrust augmentation
Thrust augmentationBuddhikaaero
 
Lucintel globalcompositemarketanalysis-acma2012-educationalsession
Lucintel globalcompositemarketanalysis-acma2012-educationalsessionLucintel globalcompositemarketanalysis-acma2012-educationalsession
Lucintel globalcompositemarketanalysis-acma2012-educationalsessiontehamoud
 
Aircraft Systems - Chapter 06
Aircraft Systems - Chapter 06Aircraft Systems - Chapter 06
Aircraft Systems - Chapter 06junio_oliveira
 

Destacado (15)

BOEING 787 US's Dreamliner Or Nightmare-Liner? Who will Ultimately Win the Ae...
BOEING 787 US's Dreamliner Or Nightmare-Liner? Who will Ultimately Win the Ae...BOEING 787 US's Dreamliner Or Nightmare-Liner? Who will Ultimately Win the Ae...
BOEING 787 US's Dreamliner Or Nightmare-Liner? Who will Ultimately Win the Ae...
 
A350 orders march10_en
A350 orders march10_enA350 orders march10_en
A350 orders march10_en
 
Week 1 Using The Social Web For Social Change - Elluminate (#bgimgt566sx)
Week 1 Using The Social Web For Social Change - Elluminate (#bgimgt566sx)Week 1 Using The Social Web For Social Change - Elluminate (#bgimgt566sx)
Week 1 Using The Social Web For Social Change - Elluminate (#bgimgt566sx)
 
Composite materials technology overview andrew george
Composite materials technology overview   andrew georgeComposite materials technology overview   andrew george
Composite materials technology overview andrew george
 
Crouzet Aerospace - Brand presentation
Crouzet Aerospace - Brand presentationCrouzet Aerospace - Brand presentation
Crouzet Aerospace - Brand presentation
 
Triumph Actuation Systems, Inc.
Triumph Actuation Systems, Inc. Triumph Actuation Systems, Inc.
Triumph Actuation Systems, Inc.
 
Hybrid-electric aircraft: Technology options and implications
Hybrid-electric aircraft: Technology options and implicationsHybrid-electric aircraft: Technology options and implications
Hybrid-electric aircraft: Technology options and implications
 
AIRBUS A350 XWB
AIRBUS A350 XWBAIRBUS A350 XWB
AIRBUS A350 XWB
 
Global Data Center Rack PDU Market 2017 - 2021
Global Data Center Rack PDU Market 2017 - 2021Global Data Center Rack PDU Market 2017 - 2021
Global Data Center Rack PDU Market 2017 - 2021
 
Innovation in the Modern Supply Chain
Innovation in the Modern Supply Chain Innovation in the Modern Supply Chain
Innovation in the Modern Supply Chain
 
Application of shape memory alloys in Aerospace industries
Application of shape memory alloys in Aerospace industriesApplication of shape memory alloys in Aerospace industries
Application of shape memory alloys in Aerospace industries
 
Aero Industrial Sales - MRO AFRICA 2015
Aero Industrial Sales - MRO AFRICA 2015 Aero Industrial Sales - MRO AFRICA 2015
Aero Industrial Sales - MRO AFRICA 2015
 
Thrust augmentation
Thrust augmentationThrust augmentation
Thrust augmentation
 
Lucintel globalcompositemarketanalysis-acma2012-educationalsession
Lucintel globalcompositemarketanalysis-acma2012-educationalsessionLucintel globalcompositemarketanalysis-acma2012-educationalsession
Lucintel globalcompositemarketanalysis-acma2012-educationalsession
 
Aircraft Systems - Chapter 06
Aircraft Systems - Chapter 06Aircraft Systems - Chapter 06
Aircraft Systems - Chapter 06
 

Similar a 20140218 cisec-emc-in-aeronautics

Presentation department of space by jmv lps
Presentation department of space by jmv lpsPresentation department of space by jmv lps
Presentation department of space by jmv lpsMahesh Chandra Manav
 
Presentation department of space by jmv lps
Presentation department of space by jmv lpsPresentation department of space by jmv lps
Presentation department of space by jmv lpsMahesh Chandra Manav
 
EC8072 UNIT V .pptx
EC8072 UNIT V .pptxEC8072 UNIT V .pptx
EC8072 UNIT V .pptxponni2
 
Technology Conference_Final_PVC Covered Jumper
Technology Conference_Final_PVC Covered JumperTechnology Conference_Final_PVC Covered Jumper
Technology Conference_Final_PVC Covered JumperSeeralin Nayager (Pr Eng)
 
Ferrite Specifications and ACME Ferrites (2)
Ferrite Specifications and ACME Ferrites (2)Ferrite Specifications and ACME Ferrites (2)
Ferrite Specifications and ACME Ferrites (2)Ray Lai
 
James Fenwick - Engineering Design 4 IEEE Paper (RMIT)
James Fenwick - Engineering Design 4 IEEE Paper (RMIT)James Fenwick - Engineering Design 4 IEEE Paper (RMIT)
James Fenwick - Engineering Design 4 IEEE Paper (RMIT)James Fenwick
 
1 txh000247c0202 opr_lightning_protection_systems
1 txh000247c0202 opr_lightning_protection_systems1 txh000247c0202 opr_lightning_protection_systems
1 txh000247c0202 opr_lightning_protection_systemsTra Thanh
 
Electromagnetic Interference and Compatibility - Aircraft issues
Electromagnetic Interference and Compatibility - Aircraft issuesElectromagnetic Interference and Compatibility - Aircraft issues
Electromagnetic Interference and Compatibility - Aircraft issuesAXISCADES
 
Automotive emc-compliance
Automotive emc-complianceAutomotive emc-compliance
Automotive emc-complianceIntertek CE
 
ARDUINO MICROCONTROLLER BASED UNDERGROUND CABLE FAULT DISTANCE LOCATOR
ARDUINO MICROCONTROLLER BASED UNDERGROUND CABLE FAULT DISTANCE LOCATORARDUINO MICROCONTROLLER BASED UNDERGROUND CABLE FAULT DISTANCE LOCATOR
ARDUINO MICROCONTROLLER BASED UNDERGROUND CABLE FAULT DISTANCE LOCATORIAEME Publication
 
Electromagnetic interference shielding in unmanned aerial vehicle against lig...
Electromagnetic interference shielding in unmanned aerial vehicle against lig...Electromagnetic interference shielding in unmanned aerial vehicle against lig...
Electromagnetic interference shielding in unmanned aerial vehicle against lig...TELKOMNIKA JOURNAL
 
Electromagnetic Interference and Electromagnetic Compatibility (EMI/EMC
Electromagnetic Interference and Electromagnetic Compatibility (EMI/EMCElectromagnetic Interference and Electromagnetic Compatibility (EMI/EMC
Electromagnetic Interference and Electromagnetic Compatibility (EMI/EMCAishwary Singh
 

Similar a 20140218 cisec-emc-in-aeronautics (20)

E bomb
E bombE bomb
E bomb
 
Electromagnetic bomb
Electromagnetic bombElectromagnetic bomb
Electromagnetic bomb
 
Presentation department of space by jmv lps
Presentation department of space by jmv lpsPresentation department of space by jmv lps
Presentation department of space by jmv lps
 
Presentation department of space by jmv lps
Presentation department of space by jmv lpsPresentation department of space by jmv lps
Presentation department of space by jmv lps
 
EC8072 UNIT V .pptx
EC8072 UNIT V .pptxEC8072 UNIT V .pptx
EC8072 UNIT V .pptx
 
Emi and emc
Emi and emcEmi and emc
Emi and emc
 
Technology Conference_Final_PVC Covered Jumper
Technology Conference_Final_PVC Covered JumperTechnology Conference_Final_PVC Covered Jumper
Technology Conference_Final_PVC Covered Jumper
 
Lindsey ERS Questionnaire
Lindsey ERS QuestionnaireLindsey ERS Questionnaire
Lindsey ERS Questionnaire
 
40120140505014 2
40120140505014 240120140505014 2
40120140505014 2
 
Ferrite Specifications and ACME Ferrites (2)
Ferrite Specifications and ACME Ferrites (2)Ferrite Specifications and ACME Ferrites (2)
Ferrite Specifications and ACME Ferrites (2)
 
James Fenwick - Engineering Design 4 IEEE Paper (RMIT)
James Fenwick - Engineering Design 4 IEEE Paper (RMIT)James Fenwick - Engineering Design 4 IEEE Paper (RMIT)
James Fenwick - Engineering Design 4 IEEE Paper (RMIT)
 
EMC and HFPQ for industrial networks - Jos Knockaert, UGent and Peter Thomas...
EMC and HFPQ for industrial networks -  Jos Knockaert, UGent and Peter Thomas...EMC and HFPQ for industrial networks -  Jos Knockaert, UGent and Peter Thomas...
EMC and HFPQ for industrial networks - Jos Knockaert, UGent and Peter Thomas...
 
1 txh000247c0202 opr_lightning_protection_systems
1 txh000247c0202 opr_lightning_protection_systems1 txh000247c0202 opr_lightning_protection_systems
1 txh000247c0202 opr_lightning_protection_systems
 
Electromagnetic Interference and Compatibility - Aircraft issues
Electromagnetic Interference and Compatibility - Aircraft issuesElectromagnetic Interference and Compatibility - Aircraft issues
Electromagnetic Interference and Compatibility - Aircraft issues
 
ORBITAL ESE ACTIVE LIGHTNING ARRESTER
ORBITAL ESE ACTIVE LIGHTNING ARRESTERORBITAL ESE ACTIVE LIGHTNING ARRESTER
ORBITAL ESE ACTIVE LIGHTNING ARRESTER
 
Automotive emc-compliance
Automotive emc-complianceAutomotive emc-compliance
Automotive emc-compliance
 
ARDUINO MICROCONTROLLER BASED UNDERGROUND CABLE FAULT DISTANCE LOCATOR
ARDUINO MICROCONTROLLER BASED UNDERGROUND CABLE FAULT DISTANCE LOCATORARDUINO MICROCONTROLLER BASED UNDERGROUND CABLE FAULT DISTANCE LOCATOR
ARDUINO MICROCONTROLLER BASED UNDERGROUND CABLE FAULT DISTANCE LOCATOR
 
Electromagnetic interference shielding in unmanned aerial vehicle against lig...
Electromagnetic interference shielding in unmanned aerial vehicle against lig...Electromagnetic interference shielding in unmanned aerial vehicle against lig...
Electromagnetic interference shielding in unmanned aerial vehicle against lig...
 
Electromagnetic Interference and Electromagnetic Compatibility (EMI/EMC
Electromagnetic Interference and Electromagnetic Compatibility (EMI/EMCElectromagnetic Interference and Electromagnetic Compatibility (EMI/EMC
Electromagnetic Interference and Electromagnetic Compatibility (EMI/EMC
 
EMC for Networks - Peter Thomas, Control Specialists and Jos Knockaert, UGent
EMC for Networks - Peter Thomas, Control Specialists and Jos Knockaert, UGentEMC for Networks - Peter Thomas, Control Specialists and Jos Knockaert, UGent
EMC for Networks - Peter Thomas, Control Specialists and Jos Knockaert, UGent
 

Más de CISEC

20150317 cisec-automotive systems-h-foligne
20150317 cisec-automotive systems-h-foligne20150317 cisec-automotive systems-h-foligne
20150317 cisec-automotive systems-h-foligneCISEC
 
20150127 cisec-aeoro spacesystems-jp-blanquart-ptraverse
20150127 cisec-aeoro spacesystems-jp-blanquart-ptraverse20150127 cisec-aeoro spacesystems-jp-blanquart-ptraverse
20150127 cisec-aeoro spacesystems-jp-blanquart-ptraverseCISEC
 
20150122 cisec mbsa-lismma
20150122 cisec mbsa-lismma20150122 cisec mbsa-lismma
20150122 cisec mbsa-lismmaCISEC
 
20140610 cisec-antescofo
20140610 cisec-antescofo20140610 cisec-antescofo
20140610 cisec-antescofoCISEC
 
20140425 cisec-human factor-f-reuzeau
20140425 cisec-human factor-f-reuzeau20140425 cisec-human factor-f-reuzeau
20140425 cisec-human factor-f-reuzeauCISEC
 
20140318 cisec-critical-hmi
20140318 cisec-critical-hmi20140318 cisec-critical-hmi
20140318 cisec-critical-hmiCISEC
 
20140311 cisec-automotive systems
20140311 cisec-automotive systems20140311 cisec-automotive systems
20140311 cisec-automotive systemsCISEC
 
20140211 critical-electronics-for-aircraft
20140211 critical-electronics-for-aircraft20140211 critical-electronics-for-aircraft
20140211 critical-electronics-for-aircraftCISEC
 
20140121 cisec-safety criticalsoftwaredevelopment
20140121 cisec-safety criticalsoftwaredevelopment20140121 cisec-safety criticalsoftwaredevelopment
20140121 cisec-safety criticalsoftwaredevelopmentCISEC
 
20140128 cisec-continental-automotive-electronics-development-and-assurance
20140128 cisec-continental-automotive-electronics-development-and-assurance20140128 cisec-continental-automotive-electronics-development-and-assurance
20140128 cisec-continental-automotive-electronics-development-and-assuranceCISEC
 
20131216 cisec-standards-jp blanquart-jmastruc
20131216 cisec-standards-jp blanquart-jmastruc20131216 cisec-standards-jp blanquart-jmastruc
20131216 cisec-standards-jp blanquart-jmastrucCISEC
 

Más de CISEC (11)

20150317 cisec-automotive systems-h-foligne
20150317 cisec-automotive systems-h-foligne20150317 cisec-automotive systems-h-foligne
20150317 cisec-automotive systems-h-foligne
 
20150127 cisec-aeoro spacesystems-jp-blanquart-ptraverse
20150127 cisec-aeoro spacesystems-jp-blanquart-ptraverse20150127 cisec-aeoro spacesystems-jp-blanquart-ptraverse
20150127 cisec-aeoro spacesystems-jp-blanquart-ptraverse
 
20150122 cisec mbsa-lismma
20150122 cisec mbsa-lismma20150122 cisec mbsa-lismma
20150122 cisec mbsa-lismma
 
20140610 cisec-antescofo
20140610 cisec-antescofo20140610 cisec-antescofo
20140610 cisec-antescofo
 
20140425 cisec-human factor-f-reuzeau
20140425 cisec-human factor-f-reuzeau20140425 cisec-human factor-f-reuzeau
20140425 cisec-human factor-f-reuzeau
 
20140318 cisec-critical-hmi
20140318 cisec-critical-hmi20140318 cisec-critical-hmi
20140318 cisec-critical-hmi
 
20140311 cisec-automotive systems
20140311 cisec-automotive systems20140311 cisec-automotive systems
20140311 cisec-automotive systems
 
20140211 critical-electronics-for-aircraft
20140211 critical-electronics-for-aircraft20140211 critical-electronics-for-aircraft
20140211 critical-electronics-for-aircraft
 
20140121 cisec-safety criticalsoftwaredevelopment
20140121 cisec-safety criticalsoftwaredevelopment20140121 cisec-safety criticalsoftwaredevelopment
20140121 cisec-safety criticalsoftwaredevelopment
 
20140128 cisec-continental-automotive-electronics-development-and-assurance
20140128 cisec-continental-automotive-electronics-development-and-assurance20140128 cisec-continental-automotive-electronics-development-and-assurance
20140128 cisec-continental-automotive-electronics-development-and-assurance
 
20131216 cisec-standards-jp blanquart-jmastruc
20131216 cisec-standards-jp blanquart-jmastruc20131216 cisec-standards-jp blanquart-jmastruc
20131216 cisec-standards-jp blanquart-jmastruc
 

Último

Human Factors of XR: Using Human Factors to Design XR Systems
Human Factors of XR: Using Human Factors to Design XR SystemsHuman Factors of XR: Using Human Factors to Design XR Systems
Human Factors of XR: Using Human Factors to Design XR SystemsMark Billinghurst
 
Developer Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQLDeveloper Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQLScyllaDB
 
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmaticsKotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmaticscarlostorres15106
 
Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?Mattias Andersson
 
The Future of Software Development - Devin AI Innovative Approach.pdf
The Future of Software Development - Devin AI Innovative Approach.pdfThe Future of Software Development - Devin AI Innovative Approach.pdf
The Future of Software Development - Devin AI Innovative Approach.pdfSeasiaInfotech2
 
DevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache MavenDevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache MavenHervé Boutemy
 
Connect Wave/ connectwave Pitch Deck Presentation
Connect Wave/ connectwave Pitch Deck PresentationConnect Wave/ connectwave Pitch Deck Presentation
Connect Wave/ connectwave Pitch Deck PresentationSlibray Presentation
 
Dev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio WebDev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio WebUiPathCommunity
 
Search Engine Optimization SEO PDF for 2024.pdf
Search Engine Optimization SEO PDF for 2024.pdfSearch Engine Optimization SEO PDF for 2024.pdf
Search Engine Optimization SEO PDF for 2024.pdfRankYa
 
"Debugging python applications inside k8s environment", Andrii Soldatenko
"Debugging python applications inside k8s environment", Andrii Soldatenko"Debugging python applications inside k8s environment", Andrii Soldatenko
"Debugging python applications inside k8s environment", Andrii SoldatenkoFwdays
 
My INSURER PTE LTD - Insurtech Innovation Award 2024
My INSURER PTE LTD - Insurtech Innovation Award 2024My INSURER PTE LTD - Insurtech Innovation Award 2024
My INSURER PTE LTD - Insurtech Innovation Award 2024The Digital Insurer
 
"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr Bagan"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr BaganFwdays
 
Beyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
Beyond Boundaries: Leveraging No-Code Solutions for Industry InnovationBeyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
Beyond Boundaries: Leveraging No-Code Solutions for Industry InnovationSafe Software
 
Anypoint Exchange: It’s Not Just a Repo!
Anypoint Exchange: It’s Not Just a Repo!Anypoint Exchange: It’s Not Just a Repo!
Anypoint Exchange: It’s Not Just a Repo!Manik S Magar
 
WordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your BrandWordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your Brandgvaughan
 
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek SchlawackFwdays
 
DevEX - reference for building teams, processes, and platforms
DevEX - reference for building teams, processes, and platformsDevEX - reference for building teams, processes, and platforms
DevEX - reference for building teams, processes, and platformsSergiu Bodiu
 
Unleash Your Potential - Namagunga Girls Coding Club
Unleash Your Potential - Namagunga Girls Coding ClubUnleash Your Potential - Namagunga Girls Coding Club
Unleash Your Potential - Namagunga Girls Coding ClubKalema Edgar
 
Story boards and shot lists for my a level piece
Story boards and shot lists for my a level pieceStory boards and shot lists for my a level piece
Story boards and shot lists for my a level piececharlottematthew16
 

Último (20)

Human Factors of XR: Using Human Factors to Design XR Systems
Human Factors of XR: Using Human Factors to Design XR SystemsHuman Factors of XR: Using Human Factors to Design XR Systems
Human Factors of XR: Using Human Factors to Design XR Systems
 
Developer Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQLDeveloper Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQL
 
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmaticsKotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
 
Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?
 
The Future of Software Development - Devin AI Innovative Approach.pdf
The Future of Software Development - Devin AI Innovative Approach.pdfThe Future of Software Development - Devin AI Innovative Approach.pdf
The Future of Software Development - Devin AI Innovative Approach.pdf
 
DevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache MavenDevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache Maven
 
Connect Wave/ connectwave Pitch Deck Presentation
Connect Wave/ connectwave Pitch Deck PresentationConnect Wave/ connectwave Pitch Deck Presentation
Connect Wave/ connectwave Pitch Deck Presentation
 
Dev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio WebDev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio Web
 
Search Engine Optimization SEO PDF for 2024.pdf
Search Engine Optimization SEO PDF for 2024.pdfSearch Engine Optimization SEO PDF for 2024.pdf
Search Engine Optimization SEO PDF for 2024.pdf
 
"Debugging python applications inside k8s environment", Andrii Soldatenko
"Debugging python applications inside k8s environment", Andrii Soldatenko"Debugging python applications inside k8s environment", Andrii Soldatenko
"Debugging python applications inside k8s environment", Andrii Soldatenko
 
My INSURER PTE LTD - Insurtech Innovation Award 2024
My INSURER PTE LTD - Insurtech Innovation Award 2024My INSURER PTE LTD - Insurtech Innovation Award 2024
My INSURER PTE LTD - Insurtech Innovation Award 2024
 
DMCC Future of Trade Web3 - Special Edition
DMCC Future of Trade Web3 - Special EditionDMCC Future of Trade Web3 - Special Edition
DMCC Future of Trade Web3 - Special Edition
 
"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr Bagan"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr Bagan
 
Beyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
Beyond Boundaries: Leveraging No-Code Solutions for Industry InnovationBeyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
Beyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
 
Anypoint Exchange: It’s Not Just a Repo!
Anypoint Exchange: It’s Not Just a Repo!Anypoint Exchange: It’s Not Just a Repo!
Anypoint Exchange: It’s Not Just a Repo!
 
WordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your BrandWordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your Brand
 
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
 
DevEX - reference for building teams, processes, and platforms
DevEX - reference for building teams, processes, and platformsDevEX - reference for building teams, processes, and platforms
DevEX - reference for building teams, processes, and platforms
 
Unleash Your Potential - Namagunga Girls Coding Club
Unleash Your Potential - Namagunga Girls Coding ClubUnleash Your Potential - Namagunga Girls Coding Club
Unleash Your Potential - Namagunga Girls Coding Club
 
Story boards and shot lists for my a level piece
Story boards and shot lists for my a level pieceStory boards and shot lists for my a level piece
Story boards and shot lists for my a level piece
 

20140218 cisec-emc-in-aeronautics

  • 1. cisec Plus d’information à http://asso-cisec.org 2013-2014 Le lundi mardi, de 17h à 19h Série de Conférences Ingénierie des systèmes embarqués critiques 1- Introduction, systèmes critiques Aéronautique (P. Traverse, Airbus, 18/11/2013) Espace (JP. Blanquart, Astrium, 25/11/2013) Automobile (H. Foligné, Continental Automotive, Reportée,au 11/03/2014 2- Sûreté, historique Histoire de la sécurité du Concorde à l’A380 (JP. Heckmann, Apsys, 9/12/2013) Comparaison de normes de sûreté (JP. Blanquart, Astrium, JM. Astruc, Continental, 16/12/2013) 3- Développement logiciel, assurance (H. Bonnin, Capgemini, 21/1/2014) 4- Développement matériel, assurance Automobile (JP. Loncle, Continental, 28/1/2014) Aéronautique (P. Pons, Airbus, 11/2/2014) 5- Intégration système et compatibilité électromagnétique (JC. Gautherot, ex DGA/CEAT) Partie 1, 18/2/2014 Partie 2, 25/2/2014 6- Interactions homme-système (F, Reuzeau, Airbus, P. Palanque, IRIT, 18/3/2014) 7- Chaîne de production d’électronique pour l’automobile (Continental, 25/3/2014) 8- Diagnostic et maintenance de systèmes (Actia, 1/4/2014) 9- Systèmes autonomes dans les transports (drones, aide à la conduite automobile) (ONERA, Continental, 8/4/2014) 10- Les systèmes domotiques (R. Alami, LAAS, 15/4/2014) CISEC: intégration systèmes et CEM phénomènes électromagnétiques 1/
  • 2. SUMMARY  PART1  GENERAL CONTEXT in the AERONAUTICAL FIELD • 1/3 Structures composite materials • 2/3 Electronics and critical functions • 3/3 New architectures and System evolution ELECTROMAGNETIC PHENOMENA • Panorama of electromagnetic phenomena and threats • High intensity radiated field HIRF • LIGTHNING direct effect   PART2 • • • LIGTHNING indirect effect Electromagnetic Compatibility EMC Hardening and electromagnetic protection  APPENDIX:  Technical elements necessary to work out a financial estimate CONCLUSION • CISEC: intégration systèmes et CEM phénomènes électromagnétiques 2/
  • 3. GENERAL CONTEXT 1/3: New Materials  COMPOSITES STRUCTURES • Better mechanical properties • Mass gain and improved stiffness • Reduced delay and manufacturing process • Maintenance (external corrosion? & Ref: refer 787 li-battery fire) • Absorbing properties (STEALTH military aircraft) • But poor Faraday performances (attenuation ) and poor electrical properties VS light alloys (aluminum) i.e. grounding and metallization problems (resistivity of carbon fiber 1000 more greater than aluminum alloy) • Bad electrochemical compatibility (emf: 900 mV with aluminum) which need in particular locations the use of TITANE in order to avoid corrosion phenomena CISEC: intégration systèmes et CEM phénomènes électromagnétiques 3/
  • 4. Aircraft composites structure 1/3 B787 & A350 CISEC: intégration systèmes et CEM phénomènes électromagnétiques 4/
  • 5. GENERAL CONTEXT 1/3: A380 COMPOSITES CISEC: intégration systèmes et CEM phénomènes électromagnétiques 5/
  • 6. Aircraft composites structure 1/3 Military aircraft & helicopter  Rafale CISEC: intégration systèmes et CEM phénomènes électromagnétiques 6/
  • 7. General view of the trend to increased use of composites materials 1/3 CISEC: intégration systèmes et CEM phénomènes électromagnétiques 7/
  • 8. GENERAL CONTEXT 2/3: Electronic & critical functions  Even more Electronic • • • •  FMS,GPWS,TCAS,IFE (2500 kg for A 380 2 à 3 Mips 4,7 M€) Increased density of electronic equipment Analogical electronic disappear for the profit all numerical electronic Easy change thanks to embedded soft Critical functions (no mechanical back-up) FADEC (Engine control) • Fly by wire (FBW) • etc. FREQUENCY SPECTRUM • Up to 18 GHz or more (40 GHz) • Increased sensitivity (ex. GPS, ) •  CISEC: intégration systèmes et CEM phénomènes électromagnétiques 8/
  • 9. Illustration of avionics changes 2/3: Example of old helicopter generation analogical Electronic (AS 355) Example of new helicopter (EC 725) Numerical electronic CISEC: intégration systèmes et CEM phénomènes électromagnétiques 9/
  • 10. GENERAL CONTEXT 2/3: Electronic critical functions natural stability VS artificial which need computer operating with high safety Fv Fe Aircraft with natural stability P Fv Fe P Aircraft with artificial stability provided by electronic computer CISEC: intégration systèmes et CEM phénomènes électromagnétiques 10/
  • 11. General context Frequency spectrum 2/3 Frequency spectrum in the world Typical radio-navigation frequencies for civil aircraft CISEC: intégration systèmes et CEM phénomènes électromagnétiques 11/
  • 12. GENERAL CONTEXT 3/3: New architectures and concepts for the aircraft system  INCREASED ELECTRIC POWER • Even more electric actuators and less hydraulic • Deicing & no Engine bleed air (ex B 787) • Air conditioning compressor driven with electric motor (ex B 787) • Mass gain (more particularly starter-generator ) • Regulations and control law more easy • Cable routing more easy than hydraulic rigid pipes • Improved Maintenance opposite hydraulic (drain, leakage, pollution, fire risk….) • but…. • Electromagnetic disturbances to be solved CISEC: intégration systèmes et CEM phénomènes électromagnétiques 12/
  • 13. GENERAL CONTEXT 3/3: TREND to INCREASED ELECTRIC POWER CISEC: intégration systèmes et CEM phénomènes électromagnétiques 13/
  • 14. Change in the aircraft architecture 3/3 conventionnal architecture New architecture: example air conditioning system driven with electrical motor CISEC: intégration systèmes et CEM phénomènes électromagnétiques 14/
  • 15. Just a look inside aircraft body: you can see…… Of course many hydraulic pipes….. But also even more electrical cables (low level signal & power supply wires) This the reason why electromagnetic threats shall be taken into account at the first step of the design This was the case for A 320 airworthiness with Special condition 75 for lightning & 76 for HIRF CISEC: intégration systèmes et CEM phénomènes électromagnétiques 15/
  • 16. Evolution to more electric Aircraft 3/3  BOEING 787  95 km of cables  More than 60 000 electrical bonding  40 000 cables segments  1 500 Electrical harness  400 optical bonding  AIRBUS A 380  500 km of cables  More than 9 000 connectors  1 600 electrical harness CISEC: intégration systèmes et CEM phénomènes électromagnétiques 16/
  • 17. ELECTROMAGNETIC PHENOMENA & THREATS non-intentional Artificial sources Natural sources SPIKE HIRF CHAMPS FORTS Transitoires d'alimentation EMC ESD Couplage Radioélectrique Bruit Tempest Furtivité Terrestre Atmosphérique Galactique Solaire PHENOMENES PHENOMENES Anticompromission intentional électrostatiques Compatibilité Electromagnétique CRE DES Décharges LEMP CEM ERC FOUDRE ELECTROMAGNETIQUES ELECTROMAGNETIQUES Stealth HERP MFP Sécurité du Micro-onde Forte Puissance IEMN HPM EMP DRAM Personnel Dommages des rayonnements sur armes et munitions HERO CISEC: intégration systèmes et CEM phénomènes électromagnétiques 17/
  • 18. Nuclear Electromagnetic Pulse  Generated by a High altitude nuclear explosion    Compton effect in the atmosphere Principal Characteristics  bi-exponential  Crest Amplitude 50 kV/m  Rise time approximately:10 ns  Half time duration 200 ns  Capture area notion Military system are essentially concerned CISEC: intégration systèmes et CEM phénomènes électromagnétiques 18/
  • 19. Electromagnetic tests / Electrostatic discharges  created by rubbing:  On isolating or low conductivity materials with low air moisture ratio  Principal characteristics  Bi exponential waveform  Crest amplitude approximately 15 kV  Rise time: some ns  Half time duration : 20 ns CISEC: intégration systèmes et CEM phénomènes électromagnétiques 19/
  • 20. Example measurement of electrostatic charging due to blades rotation and hot gas turbine exhaust during load winching operation for helicopter : equivalent to a capacitor of 1nF charged up to 40 kV which can be lethal CISEC: intégration systèmes et CEM phénomènes électromagnétiques 20/
  • 21. Electrostatic charges: Example of efficiency measurement of e-discharger. The objective of the design is to get a continuous flow of low current in order to avoid high discontinuous high current discharges and then to reduce the noise which can introduce disturbances & a loss of sensitivity on aircraft radio receiver. But as we will see those devices are often damaged in the case of aircraft lightning event CISEC: intégration systèmes et CEM phénomènes électromagnétiques 21/
  • 22. Example of High Power transmitter antenna balanced hardening notion (limit in the level of electromagnetic protection) Military aircraft or helicopter has enough agility to avoid collision, this is not the case for civil aircraft, in that way safety distance which are taken into account in regulatory document are increased Curtain antenna CISEC: intégration systèmes et CEM phénomènes électromagnétiques 22/
  • 23. HIGH INTENSITY RADIATED FIELD : Power transmitter OTHB 12 elements 1MW EIRP = 100 MW 5 to 28 MHz 41,70 N 121,18 W CISEC: intégration systèmes et CEM phénomènes électromagnétiques 23/
  • 24. Some example of Incidence due to HIRF       Tornado crash in the vicinity of VOA Transmitters (was at the origin of CS 76 for A320 Certification) ECMU failure of Ecureuil AS 355N In the vicinity of CENTAURE Radar INS ALIZE MARINE Failure on Aircraft Carrier AS332 disturbance of NG DNG T4 indicators when landing on ship Phone which was forget « on » in the freight compartment near fire detector unit Inopportune opening of hydraulic barrage gate during security inspection due to TW emission Don’t make confusion for turning “off “ portable computer during take off and landing operation: it’s an EMC problem (noise and or radio interference with radio navigation system CISEC: intégration systèmes et CEM phénomènes électromagnétiques 24/
  • 25. HIGH INTENSITY RADIATED FIELD : near field for electric dipole CISEC: intégration systèmes et CEM phénomènes électromagnétiques 25/
  • 26. HIGH INTENSITY RADIATED FIELD: near field for magnetic loop CISEC: intégration systèmes et CEM phénomènes électromagnétiques 26/
  • 27. HIGH INTENSITY RADIATED FIELD Example of Radiated field in the vicinity of high power transmitter Curtain antenna 250 kW 15 MHz Rhombic antenna 150 kW 15 MHz CISEC: intégration systèmes et CEM phénomènes électromagnétiques 27/
  • 28. HIGH INTENSITY RADIATED FIELD: formulas simplification CISEC: intégration systèmes et CEM phénomènes électromagnétiques 28/
  • 29. HIGH INTENSITY RADIATED FIELD: formulas simplification substantiation  According that the electromagnetic field in the vicinity of antenna vary strongly with the AC distance and if we observe for example the radiation pattern of aperture it can be seen that the law in 1/R2 for the value power density is an overestimation but conservative and then acceptable CISEC: intégration systèmes et CEM phénomènes électromagnétiques 29/
  • 30. HIGH INTENSITY RADIATED FIELD simple formulas for field calculation field calculation Basic formulas for a radiated electromagnetic field approximate calculation 2 P=E /Z0 W/m2 with Z0 = E/H = 120 p = 377 W - E Electric field V/m - H magnetic field A/m Knowing the transmitter power and the numerical antenna gain We can calculate the power radiated density and then the field for the distance R 2 P = GW/4 p R E = (30GW)1/2/R 2 For Near field (if R< D /2l) this formula is majoring l Is the wavelength in m calculated with l = f (in MHz)/ 300 D (in m) is the greatest antenna dimension en (Ex RADAR parabola diameter) Don’t make confusion between effective mean value and effective peak value Em For rectangular signal as for typical radar modulation with pulse duration t et repetition time T Em = Ec (t /T)1/2 CISEC: intégration systèmes et CEM phénomènes électromagnétiques 30/
  • 31. HIGH INTENSITY RADIATED FIELD: Special condition SC76 was edited for the certification of A320 CISEC: intégration systèmes et CEM phénomènes électromagnétiques 31/
  • 32. HIGH INTENSITY RADIATED FIELD: value and distance CISEC: intégration systèmes et CEM phénomènes électromagnétiques 32/
  • 33. HIGH INTENSITY RADIATED FIELD: average value and peak value (for RADAR modulation) CISEC: intégration systèmes et CEM phénomènes électromagnétiques 33/
  • 34. HIGH INTENSITY RADIATED FIELD: acceptable method of demonstration 1/2 Acceptable methods of demonstration are : 1° low level method based on electric field attenuation measurements performed where critical or essential equipments are located and also for the cables induced current coming from exposed zones, thus one have 2 transfer basic functions After extrapolation to the external threat (linearity hypothesis) comparison of the value obtained in laboratory test center with the value to be demonstrated. The quantified margin between this the extrapolated value and the laboratory value shall be positive However this method is sometime problematic if we take into account the representativeness of test s in the FARADAY chamber 2 high level demonstration directly on the aircraft this method is not possible in the whole frequency domain particularly for low frequency due to the great dimensions of civil aircraft Example direct injection in a coaxial line for a military aircraft limited to 100 MHz CISEC: intégration systèmes et CEM phénomènes électromagnétiques 34/
  • 35. HIGH INTENSITY RADIATED FIELD: demonstration methods 2/2 3° Calculation codes Approximately valid up to 400 MHz for internal electromagnetic parameters, but important problems to get a true representative model In any case the model shall be validated with the help of great experimental means associated with high performance measuring equipment on particular points In practice: this different methods are combined in order to take into account: - aircraft dimensions - test center facilities (amplifier power and antenna gain…) - data on similar aircraft (same technology) - New concept and technologies In any case it is necessary to quantify a hardening margin face to the specified external threat. This margin shall include : - a consumable part (putting back to initial level thanks to defined periodic maintenance operations in order to cover wear , aging and corrosion phenomena…) - and a permanent part in order to cover error measurements, manufacturing process drift etc., in order to get a good level of safety. CISEC: intégration systèmes et CEM phénomènes électromagnétiques 35/
  • 36. HIGH INTENSITY RADIATED FIELD: low level method or transfer function measurement Radiated field in the vicinity of avionic bay Cable induced Current measurement probe CISEC: intégration systèmes et CEM phénomènes électromagnétiques 36/
  • 37. HIGH INTENSITY RADIATED FIELD: CISEC: intégration systèmes et CEM phénomènes électromagnétiques 37/
  • 38. HIGH INTENSITY RADIATED FIELD: a minimum of 4 incidences and polarizations are performed for each frequency CISEC: intégration systèmes et CEM phénomènes électromagnétiques 38/
  • 39. HIRF TEST PROBLEMATIC: amplitude accuracy Taking for example this recorded curve where we get high resonant and anti resonant amplitude in relation with the frequency, in order to get an error less than 3 db we have to calculate the sampling by using this formula N=log(F2/F1)/log (1+1/Q)  F1, and F2 lower and upper frequency For F1= 400 MHz and F2= 18 GHz for Q= 10 a minimum of 40 frequencies and for Q=100 382 frequencies are necessary to cover correctly the spectrum CISEC: intégration systèmes et CEM phénomènes électromagnétiques 39/
  • 40. HIRF TEST PROBLEMATIC: data to be recorded For a aircraft qualification we have to take into account 4 to 5 Equipment locations 10 to 20 critical or essential equipments (mean 15) 2cables minimum per equipment 4 incidences minimum 2 polarizations H et V Consequences: For internal radiated Field: Frequency domain1 MHz to18 GHz Q= 100 i.e. 984 (1000) spot frequencies that leads to: 2x5x4x 1000 = 40 000 measurements For wire induced current Frequency domain10kHz à 100 MHz Q= 10 or 100 i.e. 96 (100) or 925 (1000) spot frequencies that leads to: 15x2x4x2x100 = 24 000 ou 240 000 measurements CISEC: intégration systèmes et CEM phénomènes électromagnétiques 40/
  • 41. Danger of the non ionizing radiations: Electric Field (thermal effects only) CISEC: intégration systèmes et CEM phénomènes électromagnétiques 41/
  • 42. Danger of the non ionizing radiations: Electric Field thermal effects only ICNIRP (International Commission on Non-Ionizing Radiation Protection) CISEC: intégration systèmes et CEM phénomènes électromagnétiques 42/
  • 43. LIGHTNING STROKE from CLOUD TO GROUND CISEC: intégration systèmes et CEM phénomènes électromagnétiques 43/
  • 44. Some examples of Lightning incidence & accident       Loss of 2 engines of small jet above Atlantic Sea (acoustic phenomena) Mirage F1 of CAMBRAI AAAF Base ejector seat was energized Helicopter replenishment service from BRISTOW ditching in north SEA after loss of tail rotor JAN 19 1995 Personal experience during Paris Toulouse A 300 Flight and discussion after landing: pilot tell me he was in North Sea stroked by lightning 6 times in 10 minutes ULM flight actuator blocked due to ARC WELDING crash follow Amateur Video recording from tower during 747 take off Important Studies were performed in USA by NASA F106B and USAF with CV 580 and in France by ONERA /CEV&CEAT on Transall C160 instrumented with electromagnetic sensor for measuring condition of occurrences amplitude and rise time, duration time, nbr of stroke….. CISEC: intégration systèmes et CEM phénomènes électromagnétiques 44/
  • 45. Two example of Helicopter struck by Lightning incidence & accident CISEC: intégration systèmes et CEM phénomènes électromagnétiques 45/
  • 46. Different cases of aircraft lightning event to consider  Intra or inter-cloud: in those cases the aircraft in the vicinity of clouds has triggered the arcing phenomena. it’s 80 % of lightning recorded cases. In flight measurement (CV 580 USAF or C160 AAF in France has shown that the amplitude is less than 40 kA)  Intercept stroke from cloud to ground: amplitude taken actually for airworthiness authority is 200kA Civil aircraft are struck by lightning every 4000 hrs, military: 7000 hrs  CISEC: intégration systèmes et CEM phénomènes électromagnétiques 46/
  • 47. Cockpit glass illumination due to high electrical field before lightning stroke holy ELME effect CISEC: intégration systèmes et CEM phénomènes électromagnétiques 47/
  • 48. LIGHTNING: result off the process electric cloud charge Cloud to ground Lightning process precursors Return stroke CISEC: intégration systèmes et CEM phénomènes électromagnétiques 48/
  • 49. Lightning threat modelization  Lightning Process       Precursor (fires of the holy ELME) Return stroke Intermediate current DC current Secondary discharges Phenomena  inter cloud & Intra cloud frequently aircraft initiated (cf. flight test CV 580 & Transall C160)   Cloud to ground (strongest values from the contained energy point of view) high voltage strong current and pulse repetition impossible to generate simultaneously    Points of attachment related to the tension Damages related to the current Coupling related to the local densities of current (see lightning simulation slides CISEC: intégration systèmes et CEM phénomènes électromagnétiques 49/
  • 50. Definition: multiple burst / multiple stroke LIGHTNING attachement Courant établi re-attachement Courant établi Composante persistante Multiple burst Multiple stroke Composante persistante Multiple burst Multiple stroke CISEC: intégration systèmes et CEM phénomènes électromagnétiques 50/
  • 51. Lightning current amplitude and probability CISEC: intégration systèmes et CEM phénomènes électromagnétiques 51/
  • 52. Aircraft lightning interaction: Directs & indirects effects  As it was said previously, one cannot simulate in experiments at the same time the effects of the high electric field and the strong current; one thus studies with large simulators the specific ones:  Direct effects      Return stroke or secondary lightning waveform A &t D Impact of the arc, lightning currents flow 2 Structural thermo mechanical damages Spark between poor metalized part (cover and structure) above vapor in fuel tank ( shall be less than 200m J) Im ax , ∫ )dt , ∫(t )dt i (t i Indirect effects     multistroke, multiburst phenomena Electromagnetic coupling Over voltage or current surges, noise Reversible Functional disturbances or non reversible equipment damages di (t ) d 2 i (t ) de(t ) Im ax , , , dt dt dt CISEC: intégration systèmes et CEM phénomènes électromagnétiques 52/
  • 53. Civil aircraft: First recorded lightning stroke with direct effects (thermal….) CISEC: intégration systèmes et CEM phénomènes électromagnétiques 53/
  • 54. Direct lightning effects on a weapon system Illustration of CORONA Effect !!! Example of irreversible damages CISEC: intégration systèmes et CEM phénomènes électromagnétiques 54/
  • 55. CISEC: intégration systèmes et CEM phénomènes électromagnétiques 55/
  • 56. LIGHTNING: waveform characteristics for direct effects current waveform A: 1er return stroke I max = 200 kA i 2dt  2.10 6 A2 .s  waveform D: secondary stroke Imax = 100 kA waveform B: intermediate current I mean = 2 kA i 2 dt  0,25.10 6 A 2 .s   idt  10C waveform C: sustaining current I mean = 200 A  idt  200C *non representative scale < 500µs 5 ms 0,1 à 1 s < 500µs durée CISEC: intégration systèmes et CEM phénomènes électromagnétiques 56/
  • 57. LIGHTNING Direct effect: ZONING concept  Zone 1 • •  Zone 2 • •  Zone 1A: initial attachment point with a low probability of arc hang on Zone 1B: initial attachment point with a high probability of arc hang on Zone 2A: swept zone attachment point with a low probability of arc hang on Zone 2B: swept zone attachment point with a high probability of arc hang on Zone 3 • All the other zones of the plane other than those of zones 1 and 2, there is a low possibility of attachment of the direct arc the lightning. Surfaces of Zone 3 can be traversed by important currents but only by direct conduction between 2 point of initial attachment or sweeping CISEC: intégration systèmes et CEM phénomènes électromagnétiques 57/
  • 58. LIGHTNING Direct effect: ZONING concept CISEC: intégration systèmes et CEM phénomènes électromagnétiques 58/
  • 59. LIGHTNING Direct effect: ZONING concept CISEC: intégration systèmes et CEM phénomènes électromagnétiques 59/
  • 60. Lightning as a function of Flight altitude 300-400 Civilian A/C 270-300 Military A/C 240-270 210-240 180-210 150-180 120-150 90-120 60-90 30-60 0-30 Ground 0 5 10 15 20 25 CISEC: intégration systèmes et CEM phénomènes électromagnétiques 30 60/
  • 62. Example of lightning AIR SAFETY REPORT CISEC: intégration systèmes et CEM phénomènes électromagnétiques 62/
  • 63. Example of high voltage test with MARX generator 25 stages charged at 200 kV = 5 MV Test on instrumented mock –up in order to study electro-charge distribution just before first arc junction under high electrical field Blade attachment CISEC: intégration systèmes et CEM phénomènes électromagnétiques 63/
  • 64. Effectiveness test of lightning strip diverter: Marx generator 5 MV pek current limited to 10 kA CISEC: intégration systèmes et CEM phénomènes électromagnétiques 64/
  • 65. CISEC: intégration systèmes et CEM phénomènes électromagnétiques 65/
  • 66. LIGHTNING direct effect: example of radome damage CISEC: intégration systèmes et CEM phénomènes électromagnétiques 66/
  • 67. cisec Plus d’information à http://asso-cisec.org 2013-2014 Le lundi mardi, de 17h à 19h Série de Conférences Ingénierie des systèmes embarqués critiques 1- Introduction, systèmes critiques Aéronautique (P. Traverse, Airbus, 18/11/2013) Espace (JP. Blanquart, Astrium, 25/11/2013) Automobile (H. Foligné, Continental Automotive, Reportée,au 11/03/2014 2- Sûreté, historique Histoire de la sécurité du Concorde à l’A380 (JP. Heckmann, Apsys, 9/12/2013) Comparaison de normes de sûreté (JP. Blanquart, Astrium, JM. Astruc, Continental, 16/12/2013) 3- Développement logiciel, assurance (H. Bonnin, Capgemini, 21/1/2014) 4- Développement matériel, assurance Automobile (JP. Loncle, Continental, 28/1/2014) Aéronautique (P. Pons, Airbus, 11/2/2014) 5- Intégration système et compatibilité électromagnétique (JC. Gautherot, DGA) Partie 1, 18/2/2014 Partie 2, 25/2/2014 6- Interactions homme-système (F, Reuzeau, Airbus, P. Palanque, IRIT, 18/3/2014) 7- Chaîne de production d’électronique pour l’automobile (Continental, 25/3/2014) 8- Diagnostic et maintenance de systèmes (Actia, 1/4/2014) 9- Systèmes autonomes dans les transports (drones, aide à la conduite automobile) (ONERA, Continental, 8/4/2014) 10- Les systèmes domotiques (R. Alami, LAAS, 15/4/2014) CISEC: intégration systèmes et CEM phénomènes électromagnétiques 67/
  • 68. Lightning indirect effect on complex system CISEC: intégration systèmes et CEM phénomènes électromagnétiques 68/
  • 69. Lightning waveform to take into account for indirect effect assessment Onde A 200 kA di/dt = 140 kA/µs 2 MJ/ohm Onde D 100 kA Onde H d/dt = 140 kA/µs 0.25 MJ/ohm Onde D/2 dI/dt = 200 kA/µs 50 kA 50 µs < dt < 1 ms Onde B Q = 10 C 10 kA Onde C 200 C 30 ms < dt < 300 ms 3 fois 20 pulses 1.5 s 13 pulses CISEC: intégration systèmes et CEM phénomènes électromagnétiques 69/
  • 70. From external lightning stroke to internal induced pulses CISEC: intégration systèmes et CEM phénomènes électromagnétiques 70/
  • 71. Lightning indirect effects : From external to internal pulses In a very simplified manner one can write : φext (t ) = kI (t ) φ int (t ) = A( f )φext (t ) dφ int (t ) dI (t ) e (t ) = =k dt dt dI (t ) V (t ) = RI (t ) + k dt Homothetic form Derivative form CISEC: intégration systèmes et CEM phénomènes électromagnétiques 71/
  • 72. Typical induced waveform at equipment level Long waveform (A, D,D/2) Long waveform Fast waveform Fast waveform (H) Fast waveform Oscillatory waveform Fast rise time= DIRAC pulse CISEC: intégration systèmes et CEM phénomènes électromagnétiques 72/
  • 73. CISEC: intégration systèmes et CEM phénomènes électromagnétiques 73/
  • 74. CISEC: intégration systèmes et CEM phénomènes électromagnétiques 74/
  • 75. Functional susceptibility: incidence of the occurrence of the pulses with respect to the computer cycle 1 pulse many Pulses pulses burst 1 erroneous bit 1 erroneous data many erroneous data Error Detection code Message repeated equipment declared faulty Necessity to achieve lightning tests on iron bird CISEC: intégration systèmes et CEM phénomènes électromagnétiques 75/
  • 76. Simulator in order to inject mutiple pulses Aircraft installation representative Cable Equipment under test Test Equipement control computer waveform de synthesizer converter Pulsed Power amplifier voltage Vco CISEC: intégration systèmes et CEM phénomènes électromagnétiques current It 76/
  • 77. BASIC ELECTROMAGNETIC COUPLING INTERNAL ENVIRONMENT EXTERNAL ENVIRONMENT I bulkhead AGRESSION E internal E external H external I cable Equipement Structure CISEC: intégration systèmes et CEM phénomènes électromagnétiques 77/
  • 78. External and internal Threats Modelization 2/2  Electromagnetic parameters    Electric Field E : (volt/meter) Magnetic Field H : (amps/meter) current: I (amps)  Time domain: Voltage or current waveform  Frequency Domain : current or field amplitude VS frequency curves (mean value , peak value)  Examples    LIGHTNING (LEMP): time domain current waveform EMP: time domain electric field HIRF: frequency domain CISEC: intégration systèmes et CEM phénomènes électromagnétiques 78/
  • 79. External and internal Threats Modelization 1/2     The current means of theoretical modeling of the electromagnetic phenomena make it possible to predict the electromagnetic constraints intern of a system subjected to an electromagnetic aggression The computer code and the grid are selected according to the accuracy which one wants to obtain for the field time/frequency that one wants to explore It is necessary, however, to validate the models by putting into operation great experimental means These great experimental means are complex of a high cost and immobilize the system to be evaluated in a context of increasingly tended programs CISEC: intégration systèmes et CEM phénomènes électromagnétiques 79/
  • 80. Electromagnetic Simulation & Modelization 1/5: different methods CISEC: intégration systèmes et CEM phénomènes électromagnétiques 80/
  • 81. Electromagnetic Simulation & Modelization 1/5: different methods 2/5: advantages & drawback of each methods CISEC: intégration systèmes et CEM phénomènes électromagnétiques 81/
  • 82. Electromagnetic Simulation & Modelization 3/5: examples for lightning probability CISEC: intégration systèmes et CEM phénomènes électromagnétiques 82/
  • 83. Example Lightning current distribution on the structure (arc between aircraft nose and right wing) CISEC: intégration systèmes et CEM phénomènes électromagnétiques 83/
  • 84. Electromagnetic Simulation & Modelization : theoretical demonstration in seven steps experimentation/validation du modèle CISEC: intégration systèmes et CEM phénomènes électromagnétiques 84/
  • 85. Experimental simulation on mock up limited to external phenomena applications examples: antenna pattern, ESR     It is possible in particular cases as for aero dynamical model in wind tunnel (cf. Reynolds number) to perform measurement at reduced scale However some electromagnetic law for similarity shall be applied in order to be representative Non linear phenomena are not taking into account such as :  Hysteresis  Magnetic Saturation  Ionization It’s necessary to reproduce skin effect dielectric & magnetic losses     emf2= e’m’f’2/r2 smf = s’m’f’/r2 If the tests are achieved in the same surrounding (see mock up inthe following table then e = e’ et m = m’ In particular cases conductivity can not be enough increased (problem of copper Vs aluminum and also ground for which it’s necessary to inject salt with water solution) CISEC: intégration systèmes et CEM phénomènes électromagnétiques 85/
  • 86. Electromagnetic law for experimental simulation on mock-up at reduced scale parameter Real system reduced scale Mock up Length L ( meter) l’ = l/r L’ = L/r Time T (second) t’ = t/g t’ = t/r Electrical field E (V/m) E’ = E/a E’ = E/a Magnetic field H (A/m) H’ = H/b H’ = H/a Magnetic permeability m (H/m) m’  m x (rb/ga) m’  m permittivity e (F/m) e’  e x (ra/bg) e’  e Electrical conductivity s (W/m) s’  s x (ra/b) s’  s x r voltage V (V) V’ = V /(ra) V’ = V /(ar) current I (A) I’ = I /(br) I’ = I /(ar) Surface current J (A/m2) J’ = J/b J’ = J/a frequency f (hertz) f’ = f x g f’ = f x r Résistance R (W) R’ = R x (b/a) R’ = R Inductance L (Henry) L’ = L x (b/ag) L’ = L/r Capacitance C (Farad) C’ = C x (a/bg) C’ = C/r CISEC: intégration systèmes et CEM phénomènes électromagnétiques 86/
  • 87. Example of Antenna characterization on typical mock up CISEC: intégration systèmes et CEM phénomènes électromagnétiques 87/
  • 88. Electromagnetic phenomena & threats CEM Aptitude d’un dispositif, d’un équipement ou d’un système à fonctionner de façon satisfaisante dans son environnement électromagnétique sans produire lui même des perturbations électromagnétiques intolérables pour tout ce qui se trouve dans cet environnement EMC The ability of equipments (or Systems) to operate satisfactorily in its electromagnetic environments without introducing intolerable disturbances to anything in that environment jean-charles.gautherot@wanadoo.fr CISEC: intégration systèmes et CEM phénomènes électromagnétiques 88/
  • 89. ELECTRO MAGNETIC COMPATIBILITY Definition & related basic documents     Electromagnetic disturbance is any phenomenon that may degrade the performance of a device, equipment, or system or adversely affect living or inert matter DO 160 F (equipment) for civil aircraft MILSTD 461 E (equipment) & MIL STD 464 (system) for military qualification And many other documents: FCC, IEC , CISPR…….OTAN document (AETCP 500 & 250) including French document in the past such as GAM EG13 (AIR 7306 for military aircraft) CISEC: intégration systèmes et CEM phénomènes électromagnétiques 89/
  • 90. ELECTRO MAGNETIC COMPATIBILITY COUPLING MODE EMITTER CULPRIT interconnexion RECEIVER VICTIM masse supply radiation : (wire, antenna or aperture) towards (wire, antenna or aperture) conduction : towards supply or interconnecting cables CISEC: intégration systèmes et CEM phénomènes électromagnétiques 90/
  • 91. ELECTRO MAGNETIC COMPATIBILITY 4 basic tests ref: DO 160 (for civil aircraft) & MILSTD 461 (for military aircraft) CEM Emission CE Section 19 Susceptibilité RE Section 21 CS Section 18 & 20 RS Section 20 CISEC: intégration systèmes et CEM phénomènes électromagnétiques 91/
  • 92. Fundamental principle of the CEM: trilogy A B EMITTER CULPRIT RECEIVER VICTIM COUPLING Negative margin Positive margin Emission level Susceptibility level B disturbed B non disturbed frequency CISEC: intégration systèmes et CEM phénomènes électromagnétiques 92/
  • 93. CEM: example limit for radiated emission taking into account radio receiver sensitivity an not only intrinsic EMC CISEC: intégration systèmes et CEM phénomènes électromagnétiques 93/
  • 94. EMC: Type of signal which are measured, spectrum in frequency domain (radiation or conduction) There are narrow band signal and broadband signal (d is pulse duration at 50% &T is rise and fall time between 10 & 90 %) Example of unique ( non repetitive ) pulse spectrum amplitude in frequency domain is given for example in dBm or dBµV/m or dBµA /Hz Time to frequency representation CISEC: intégration systèmes et CEM phénomènes électromagnétiques 94/
  • 95. EMC: BROADBAND or NARROWBAND ? Measurements value will vary with the width of the filter used with the spectrum analyzer CISEC: intégration systèmes et CEM phénomènes électromagnétiques 95/
  • 96. EMC: measurement specification  In order to avoid misinterpretation in the value of amplitude measurement results, bandwidth filter and time between each frequency step used for emission are defined in normative document for different frequency band measurement. Example CISEC: intégration systèmes et CEM phénomènes électromagnétiques 96/
  • 97. What’s About PED ? MAXIMUM VALUES L e v e l, d B u V /m Measured PEDs WB Switching Power Supplies and Video Dis play Sweeps 95 85 75 65 55 45 35 25 1E-2 1E-1 NB Local Oscillators and Clocks 1E0 1E1 1E2 Frequency, MHz 1E3 1E4 CISEC: intégration systèmes et CEM phénomènes électromagnétiques 97/
  • 98. CEM & PED: front door and back door coupling  Front-Door coupling PED Undesired Emissions Coupled Through Fuselage Windows and Door Seams to Radio, Navigation, and Radar Antennas (receiving mode) transmodulation effect • • • • • • • • • • • •  • • 75 MHz: Marker Beacons 108-136 MHz: ILS Localizer, VDT, VOR, VHF Com, VDL 329-335 MHz: ILS Glide Slope 962-1215 MHz: DME (Military TACAN) 982 MHz: ADS-B UAT 1030, 1090 MHz: ATC & TCAS 1530-1610 MHz: Satellite Com 1575.42 MHz: GPS 4200-4400 MHz: Radar Altimeter 5030-5090 MHz: Microwave Landing System 5350-5470, 9300-9500, 15500-15700 MHz: Weather Radar Back-Door Coupling PED Undesired Emissions Coupled to Avionics Boxes PED Undesired Emissions Coupled to Avionics Wiring CISEC: intégration systèmes et CEM phénomènes électromagnétiques 98/
  • 99. CEM: example of equipment conducted emission measurement Power supply switching fondamental & harmonics Microprocessor CISEC: intégration systèmes et CEM phénomènes électromagnétiques 99/
  • 100. CEM: Example of radiated emission measurement CISEC: intégration systèmes et CEM phénomènes électromagnétiques 100/
  • 101. CEM: Example of radiated susceptibility measurement in RADAR frequency domain on FADEC CISEC: intégration systèmes et CEM phénomènes électromagnétiques 101/
  • 102. Test with Reverberating chamber by using cavity resonance frequencies (starting only above 6 times the first low resonance frequency can be used for radiated susceptibility but also for emission tests) Testing equipment or System Calibration for the Em. FIELD CISEC: intégration systèmes et CEM phénomènes électromagnétiques 102/
  • 103. Example of Specific test which are not included in aeronautical norm or specification   This helicopter was used by EDF for the maintenance of electric line and the cleaning with KARCHER of Isolators The objective of test was to see if there is no misoperating of ECMU under High voltage & high magnetic field at low frequency (50 Hz) CISEC: intégration systèmes et CEM phénomènes électromagnétiques 103/
  • 104. ELECTROMAGNETIC PROTECTION: don’t forget embedded software  Software example: ECMU (Electronic control motor unit)      Tolerances accuracy (prediction of periodic maintenance) Gradient test Consistency test Numeric filtering Consequences   Many features Opposite part: • Response time • Memory size CISEC: intégration systèmes et CEM phénomènes électromagnétiques 104/
  • 105. ELECTROMAGNETIC PROTECTION: overview of basic protections           Shielding Bonding Grounding Clamping Filtering Segregation Optical fiber link Clean and dirty zones design Balanced Hardening concept And…. CISEC: intégration systèmes et CEM phénomènes électromagnétiques 105/
  • 106. Protection device:typical filter structure Linear filter are commonly used to protect equipment against the adverse effect of wire induced current in the frequency domain or of power switching supply rejected signal . Different structure are possible taking into account simultaneously source and load impedances in order to get the maximum mismatching CISEC: intégration systèmes et CEM phénomènes électromagnétiques 106/
  • 107. Example of filter attenuation curve for different structure and of cells Nbr Note: in general cases attenuation curve are given for nominal value of source and load resistance but in the real practice it’s never the case in a large frequency domain CISEC: intégration systèmes et CEM phénomènes électromagnétiques 107/
  • 108. Example of different filter set-up Coaxial structure reduce connection inductance CISEC: intégration systèmes et CEM phénomènes électromagnétiques 108/
  • 109. Basic limitation of filter For the correct design of filters there are important parameter to take into account  For inductance: – Serial resistance (loss of nominal supply voltage) – Parasitic capacitance between wounding (high frequency limitation) – saturation of ferromagnetic material due to permanent supply current CC or CA – Ferromagnetic losses (EDDY current et hysteresis cycle) – Ferromagnetic material maxi temperature en temperature coefficient  For capacitance: – Parallel resistance (leak current) – Serial inductance of connection (high frequency limitation) – Breakdown voltage CC et CA – Diverted current for CA supply – Dielectric losses – Dielectric material maxi temperature en temperature coefficient CISEC: intégration systèmes et CEM phénomènes électromagnétiques 109/
  • 110. Non linear devices basic set for protection in the time domain CISEC: intégration systèmes et CEM phénomènes électromagnétiques 110/
  • 111. Non linear protections: typical value of different devices such as zener diodes, varistor or gaz spark CISEC: intégration systèmes et CEM phénomènes électromagnétiques 111/
  • 112. Time domain pulses: in order to get a safe design, hypothesis of matching of source and load resistance is taken (max transmitted energy) CISEC: intégration systèmes et CEM phénomènes électromagnétiques 112/
  • 113. Electromagnetic protection devices: design rules Protection against time domain threat: •LEMP •NEMP •ESD Protection against frequency domain threat: •HIRF •HPM CISEC: intégration systèmes et CEM phénomènes électromagnétiques 113/
  • 114. PROTECTION DEVICES COMPREHENSIVE & CONSISTENT HARDENING CONCEPT CISEC: intégration systèmes et CEM phénomènes électromagnétiques 114/
  • 115. Appendix Electromagnetic environment and tests Information necessary for a technical and commercial proposal CISEC: intégration systèmes et CEM phénomènes électromagnétiques 115/
  • 116. Technical elements necessary to work out an estimate System Or Equipment Under test Test Program Technical & Commercial proposal Configurations Furniture's CISEC: intégration systèmes et CEM phénomènes électromagnétiques 116/
  • 117. System or equipment under test      Equipment overall dimensions  Maximum ground metallic plane and direction of radiation VS equipment aircraft positionning Blowing/Cooling  Air or fluid Flow  intermittent operation or not Power supply  Permanent & peak power  Start current Cabling (representativeness)  Access, Break boxes Equipment mass  Handling (support, mounting)  Maximum load on floor and on ground metallic plane CISEC: intégration systèmes et CEM phénomènes électromagnétiques 117/
  • 118. Equipment under test : configuration  How many Configurations ?  Different operating modes – Example: » light or full load (computer must operate and acquire external signal & data coming from sensors or simulators » Fault detection » susceptibility: signal of sensor adjusted to low tolerance value » emission: signal of sensor adjusted to high tolerance value » Energized or not or both  Software Version – Specific test or true and last flight version  Cables  With or without over shielding CISEC: intégration systèmes et CEM phénomènes électromagnétiques 118/
  • 119. TEST PROGRAM  Applicable norms and documents    Severity and test procedures Progressive increase of test level ( 3dB? 6dB?….) Test file – From most severe to less severe : objective to get asap first results to modify the equipment – From less severe to most severe : demonstration to the buyer that first results are already positive  Correct operation checking before, during and after, tests   Acceptable or not susceptibility criteria definition Necessity to identify the origin of dysfunctions or breakdowns CISEC: intégration systèmes et CEM phénomènes électromagnétiques 119/
  • 120. Furnitures/constraints  Stimulis   Means necessary to obtain representative operation – availibility – Particular software test – BUS access for spying data flow without disturbances Instrumentation   sensors: voltage, current, position, temperature etc. Internal accessibility CISEC: intégration systèmes et CEM phénomènes électromagnétiques 120/
  • 121. CONCLUSION     Information's described previously very seldom appears in the request for proposal or are incomplete They are however necessary to determine the feasibility of the all tests which is not always acquired They have a direct impact over the duration of tests and thus on the cost the customer does not control all subtleties of the tests within a program. The tests center must also play the part of council Before providing a credible offer, one, even several meetings with the customer are necessary to tackle the problems mentioned above CISEC: intégration systèmes et CEM phénomènes électromagnétiques 121/
  • 122. CONCLUSION &……. QUESTIONS According to the field of frequency to be treated Used tools for simulation will not be the same ones Necessity for designing electromagnetic protections in comprehensive & Consistent manner Whatever computer code has been used It is necessary to validate the ideal model using large Experimental simulators about the functional level: Role of the HARDWARE and SOFTWARE: Attention with the differences Between the TEST version for laboratory and the real embedded Version 80 to 90%of disturbances come from cables Future: Optical numeric BUS but mechanical, thermal properties and maintenance to be improved CISEC: intégration systèmes et CEM phénomènes électromagnétiques 122/
  • 123. And perhaps for next CISEC conference cycle !!! CISEC: intégration systèmes et CEM phénomènes électromagnétiques 123/