SlideShare una empresa de Scribd logo
1 de 36
Descargar para leer sin conexión
KKR Method 
Ins$tute 
for 
Solid 
State 
Physics, 
The 
University 
of 
Tokyo 
Hisazumi 
Akai 
KKR Hands-On 2014
Introduction 
What does KKR do? 
Condensed Matter Physics 
Computational Materials Design 
Materials Science ... 
Quantum simulation 
for many-body systmes 
Density Functional Theory 
Hohenberg-Kohn theorem 
Kohn-Sham equation 
Local Density Approximation (LDA) 
KKR method 
・・・method ・・・method・・ ・method
Kohn-Sham equations 
ϕ i(r) 
(−∇2 + veff )ϕ i = εi 
Equations for    containing N parameters 
ϕ i 
veff (r) = vext (r) + d3r% 2n(r%) 
r − r% + v∫ xc 
' 
( ) 
* ) 
Where 
NΣ 
n(r) = ϕ i (r) 2 
i=1 
(Sum over lowest N states) 
(Kohn-Sham equations) 
Note: 
∇2 = 
∂ 2 
∂ x2 + 
∂ 2 
∂ y2 + 
∂ 2 
∂ z2
Band structure calculation 
(−∇2 + veff )ϕ i (r) = ε iϕ i (r) 
How to solve this partial differential 
equations (boundary value problem) 
efficiently? 
One of the ways 
KKR method 
Korringa-Kohn-Rostoker method 
(Green’s function method)
KKR method 
• Sca>ering 
method 
• Sta$onary 
state 
of 
sca>ering 
→ 
energy 
eigen 
state 
• Muffin-­‐$n 
poten$al 
model: 
prototype 
• Calcula$on 
of 
sca>ering 
→ 
impurity 
sca>ering, 
sca>ering 
due 
to 
random 
poten$al 
are 
also 
dealt 
with. 
Incident 
electrons 
Scattered 
electrons 
Incident 
wave 
Scattered 
wave 
crystal
Muffin-tin potential model 
Muffin-tin potential 
Muffin Tin 
Spherical potential 
v(r) 
r 
Interstitial region
Electron scattering 
electrons 
attractive potential
Quantum mechanical scattering 
Single 
scattering 
v 
Double 
scattering 
v 
v 
g 
g: probability amplitude that the electron propagate freely 
V: probability amplitude that the electron is scattered once 
The electron is scattered once, twice,・・・・,n times 
are possible.
Scattering t-matrix (transition matrix) 
v vgv vgvgv 
+ + 
vgvgvgv t 
+ + ... = 
total scattering amplitude = sum of each scattering amplitude = t-matrix
Expression of t-matrix 
Formal expression 
t = v + vgv + vgvgv + 
= v 1+ (gv)+ (gv)2 
{ (gv)3 
+ +} 
= v 1 
1− gv
Multiple scattering due to assembly of potentials 
t t 
t t 
t 
g 
t 
g 
t 
tgt 
tgtgt 
g 
t-matrix describes scattering due to each potential. 
Multiple scattering is successive scattering due to 
many potentials. The total scattering amplitude is 
the sum of the amplitudes of those processes
Total scattering amplitude T 
Formal expression 
T = t + tgt + tgtgt + 
{ +} 
= t 1+ (gt) + (gt)2 
+ (gt)3 
= t 1 
1− gt
Scattering by a crystal 
T 
T describes scattering by a crystal.
Stationary state of scattering 
Electrons stay forever. No incident electron is needed.
Divergence of T (transition) matrix 
As long as T is finite, any incident 
electron will escape after all. Therefore it 
cannot be a stationary state. 
For a stationary state 
T is not finite. → diverges 
T = t 1 
1− gt 
→ ∞ 
det 1− gt = 0 
T diverges. → The incident electron states 
will decay immediately.
Stationary state= energy eigenstate 
g is a function of E and k in a 
crystal  g=g(E,k) 
t is a function of E  t=t(E) 
det 1− gt = 0 
determines E for given k 
Energy dispersion 
E = E(k) 
Traditional KKR band 
structure calculation
Energy dispersion relation 
Energy eigenvalues for a given k 
E(k) 
k
A bit different approach 
KKR-Green’s function method 
Instead 
of 
calcula$ng 
eigenvalue 
E(k) 
and 
the 
corresponding 
eigen 
states... 
Calcula$ng 
Green’s 
func$on 
of 
the 
system 
directly 
without 
knowing 
E(k).
Green’s function 
Linear partial differential equation 
To solve 
L: linear operator such as 
differentiation, Hamiltonian. 
Lf (r) = g(r) 
LG(r,r!) =δ (r − r!). 
f (r) = f0 (r) + ∫ dr!G(r,r!)g(r!), 
find a Green’s function 
The solution is expressed as 
 
G = 
where f0 is the solution of Lf0(r)=0. 
1 
L 
 
 
f = 
1 
L 
g = Gg
Check 
Put f (r) = f0 (r) + ∫ dr!G(r,r!)g(r!) 
into Lf (r) = g(r) : 
Lf (r) = Lf0 (r) + ∫ dr!LG(r,r!)g(r!) 
= ∫ dr!δ (r − r!)g(r!) = g(r) 
Definition of δ function 
certainly satisfies Lf (r) = g(r). 
f (r)
An example of Green’s functions 
Electro static field 
−∇2V = 
ρ (r) 
ε0 
Poisson equation 
Corresponding Green’s function 
−∇2G(r,r#) = 
1 
ε 0 
δ (r − r#) 
The solution is expressed as 
G(r,r!) = 
1 
4πε 0 
1 
r − r! 
Coulomb’s law
KKR Green’s function 
Kohn-Sham equation 
(εi − H)ϕ i = 0 
Corresponding Green’s function 
(z − H)G(r,r; z) =δ (r − r)
Green’s function of electrons in a crystal 
G = GS + GB 
GS : Green’s function for a single potential 
GB = g + gtg + gtgtg + 
= g + gTg 
・・・ 
Multiple scattering 
GS 
T 
GS, g is calculated, T is calculated using KKR.
Once Green’s function is known 
(z − H)G(r,r; z) =δ (r − r) 
Expand G into eigen states of Kohn-Sham equation 
k Σ 
G(r,r!; z) = Ck (r!) 
ϕ k (r) 
Put (2) into (1). 
k Σ 
(z − H) Ck (r) 
ϕ k (r) 
k Σ 
= Ck (r) 
(z − ε k )ϕ k (r) =δ (r − r) 
(1) 
(2)
Coefficients Ck(r) 
Multiply both side with ϕk 
*(r) and integrate 
Ck! (r!) 
! k Σ 
(z − ε k! )∫ drϕk 
* (r)ϕ k! (r) 
= ∫ drϕk 
* (r)δ (r − r!) 
using the orthogonality relation, we obtain 
Ck (r) = 
*(r) 
z −εk 
ϕ k
Expansion of Green’s function 
Using the expansion coefficients 
G(r,r!; z) = 
Important relation 
ϕ k (r)ϕ k 
* (r!) 
z − ε k k Σ 
1 
E + iδ 
= P.P. 1 
E 
 
# $ 
% 
 ' 
− iπδ (E) 
P.P. principal part 
P.P. 1E 
∞ ∫ dE ' 
∞ ∫ dE = lim 
-∞ 
ε →0 
1E 
1E 
∫ −ε dE + -∞ 
ε 
( 
) 
* 
+ 
,
Spectrum representation of G 
Using this relation 
z − ε k k Σ 
G(r,r!;ε + iδ ) = P.P. 
ϕ k (r)ϕ k 
* (r!) 
k Σ 
−iπ ϕ k (r)ϕ k 
* (r!)δ (ε −ε k ) 
Setting r=r’ gives the density of states. 
ρ(r,ε ) = ϕ k (r) 2 
δ (ε − ε k ) 
k Σ
Density of states 
ρ (r,ε ) = − 
1 
π 
ℑG(r,r;ε + iδ ) 
Electron density is thus expressed as 
ρ (r) = − 
1 
π 
ε F ∫ G(r,r;ε + iδ ) 
ℑ dε 
−∞ 
= − 
1 
π 
ε F +iδ 
∫ G(r,r; z) 
ℑ dz 
−∞
Consider complex energy 
ρ (r) = − 
1 
π 
ε F +iδ 
∫ G(r,r; z) 
ℑ dz 
−∞ 
ℑz 
εL εF 
Why complex integral? 
sum of delta function → sum of Lorentzian 
     Numerical integration becomes possible 
ℜz 
Consider complex contour integral
Spectrum for complex energy 
Set of δ functions Cannot be integrated 
Can be integrated 
Δ 
E 
E+iΔ 
Set of Lorenz curves
All we need is Green’s function 
Density functional method determines density. Other 
quantities are of secondary importance in this context. 
Energy integral of Green’s function 
e.g. the energy eigenvalues of Kohn-Sham equations and the 
density of states are not physical observables. 
Not necessary to solve eigenvalue problems
What can KKR do? 
Anything 
that 
normal 
band 
structure 
calcula$on 
do. 
In 
addi$on 
High 
speed 
High 
accuracy 
Scaering 
problem 
Systems 
with 
defects 
Impurity 
problem 
Disordered 
systems 
Par$al 
disorder 
Problems 
that 
require 
Green’s 
func$on. 
Transport 
proper$es 
Many-­‐body 
problems
In short 
What is the Green’s function method(KKR)? 
1.Sum up all the scattering amplitudes =KKR method 
2.Divergence of the amplitude gives eigen states. 
3. The imaginary part of the probability amplitude 
is proportional to the number of state at that 
energy (density of states). 
4.Electron density is obtained from the density of states.
Summary 
• Basic 
idea 
of 
KKR 
method 
• Green’s 
func$on 
method 
• Applica$on 
of 
KKR 
method 
Program 
package 
for 
KKR 
cpa2002v009c 
(AkaiKKR) 
(MACHIKANEYAMA2000) 
has 
been 
developed. 
Catalogues 
in 
MateriApps 
hp://ma.cms-­‐ini$a$ve.jp/ 
Query 
“akaikkr” 
will 
hit 
the 
web-­‐site. 
hp://kkr.phys.sci.osala-­‐u.ac.jp/
Hands-on tutorial 
• KKR 
and 
KKR-­‐CPA 
calcula$on 
– Pure 
Fe 
– Curie 
temperature 
of 
Fe 
and 
Co 
– Fe-­‐Ni 
random 
alloys 
– Impurity 
systems 
• Applica$ons 
– Half-­‐metallic 
Heusler 
alloys 
– Li-­‐ion 
baery 
– Hydrogen 
storage 
MgH2 
– Heat 
of 
forma$on 
of 
alloys
Demonstration 
• Run 
program 
on 
a 
laptop 
• Calcula$on 
of 
ferromagne$c 
Fe 
• Determina$on 
of 
the 
la`ce 
constant

Más contenido relacionado

La actualidad más candente

射頻電子 - [第一章] 知識回顧與通訊系統簡介
射頻電子 - [第一章] 知識回顧與通訊系統簡介射頻電子 - [第一章] 知識回顧與通訊系統簡介
射頻電子 - [第一章] 知識回顧與通訊系統簡介Simen Li
 
射頻電子 - [第六章] 低雜訊放大器設計
射頻電子 - [第六章] 低雜訊放大器設計射頻電子 - [第六章] 低雜訊放大器設計
射頻電子 - [第六章] 低雜訊放大器設計Simen Li
 
Integral table
Integral tableIntegral table
Integral tablebags07
 
傳輸線理論
傳輸線理論傳輸線理論
傳輸線理論祁 周
 
Centroid Decomposition - Sogang ICPC Team, 2019
Centroid Decomposition - Sogang ICPC Team, 2019Centroid Decomposition - Sogang ICPC Team, 2019
Centroid Decomposition - Sogang ICPC Team, 2019Suhyun Park
 
第0回 材料基礎 補足資料_2010
第0回 材料基礎 補足資料_2010第0回 材料基礎 補足資料_2010
第0回 材料基礎 補足資料_2010raira87
 
RF Module Design - [Chapter 8] Phase-Locked Loops
RF Module Design - [Chapter 8] Phase-Locked LoopsRF Module Design - [Chapter 8] Phase-Locked Loops
RF Module Design - [Chapter 8] Phase-Locked LoopsSimen Li
 
ヴァジラーニ著「近似アルゴリズム」第一章
ヴァジラーニ著「近似アルゴリズム」第一章ヴァジラーニ著「近似アルゴリズム」第一章
ヴァジラーニ著「近似アルゴリズム」第一章Keisuke Sugawara
 
電路學 - [第八章] 磁耦合電路
電路學 - [第八章] 磁耦合電路電路學 - [第八章] 磁耦合電路
電路學 - [第八章] 磁耦合電路Simen Li
 
Integrale definite prezpp (2)
Integrale definite prezpp (2)Integrale definite prezpp (2)
Integrale definite prezpp (2)oles vol
 
Circuit Network Analysis - [Chapter2] Sinusoidal Steady-state Analysis
Circuit Network Analysis - [Chapter2] Sinusoidal Steady-state AnalysisCircuit Network Analysis - [Chapter2] Sinusoidal Steady-state Analysis
Circuit Network Analysis - [Chapter2] Sinusoidal Steady-state AnalysisSimen Li
 
第2回 基本演算,データ型の基礎,ベクトルの操作方法(解答付き)
第2回 基本演算,データ型の基礎,ベクトルの操作方法(解答付き)第2回 基本演算,データ型の基礎,ベクトルの操作方法(解答付き)
第2回 基本演算,データ型の基礎,ベクトルの操作方法(解答付き)Wataru Shito
 
A lda+u study of selected iron compounds 第一章
A lda+u study of selected iron compounds 第一章A lda+u study of selected iron compounds 第一章
A lda+u study of selected iron compounds 第一章dc1394
 
el text.life science6.tsuneda191106
el text.life science6.tsuneda191106el text.life science6.tsuneda191106
el text.life science6.tsuneda191106RCCSRENKEI
 
PRML第6章「カーネル法」
PRML第6章「カーネル法」PRML第6章「カーネル法」
PRML第6章「カーネル法」Keisuke Sugawara
 

La actualidad más candente (20)

射頻電子 - [第一章] 知識回顧與通訊系統簡介
射頻電子 - [第一章] 知識回顧與通訊系統簡介射頻電子 - [第一章] 知識回顧與通訊系統簡介
射頻電子 - [第一章] 知識回顧與通訊系統簡介
 
射頻電子 - [第六章] 低雜訊放大器設計
射頻電子 - [第六章] 低雜訊放大器設計射頻電子 - [第六章] 低雜訊放大器設計
射頻電子 - [第六章] 低雜訊放大器設計
 
Integral table
Integral tableIntegral table
Integral table
 
傳輸線理論
傳輸線理論傳輸線理論
傳輸線理論
 
Centroid Decomposition - Sogang ICPC Team, 2019
Centroid Decomposition - Sogang ICPC Team, 2019Centroid Decomposition - Sogang ICPC Team, 2019
Centroid Decomposition - Sogang ICPC Team, 2019
 
PRML Chapter5.2
PRML Chapter5.2PRML Chapter5.2
PRML Chapter5.2
 
第0回 材料基礎 補足資料_2010
第0回 材料基礎 補足資料_2010第0回 材料基礎 補足資料_2010
第0回 材料基礎 補足資料_2010
 
RF Module Design - [Chapter 8] Phase-Locked Loops
RF Module Design - [Chapter 8] Phase-Locked LoopsRF Module Design - [Chapter 8] Phase-Locked Loops
RF Module Design - [Chapter 8] Phase-Locked Loops
 
ヴァジラーニ著「近似アルゴリズム」第一章
ヴァジラーニ著「近似アルゴリズム」第一章ヴァジラーニ著「近似アルゴリズム」第一章
ヴァジラーニ著「近似アルゴリズム」第一章
 
電路學 - [第八章] 磁耦合電路
電路學 - [第八章] 磁耦合電路電路學 - [第八章] 磁耦合電路
電路學 - [第八章] 磁耦合電路
 
Integrale definite prezpp (2)
Integrale definite prezpp (2)Integrale definite prezpp (2)
Integrale definite prezpp (2)
 
Es272 ch5a
Es272 ch5aEs272 ch5a
Es272 ch5a
 
Single page-integral-table
Single page-integral-table Single page-integral-table
Single page-integral-table
 
PRML5.5
PRML5.5PRML5.5
PRML5.5
 
Circuit Network Analysis - [Chapter2] Sinusoidal Steady-state Analysis
Circuit Network Analysis - [Chapter2] Sinusoidal Steady-state AnalysisCircuit Network Analysis - [Chapter2] Sinusoidal Steady-state Analysis
Circuit Network Analysis - [Chapter2] Sinusoidal Steady-state Analysis
 
第2回 基本演算,データ型の基礎,ベクトルの操作方法(解答付き)
第2回 基本演算,データ型の基礎,ベクトルの操作方法(解答付き)第2回 基本演算,データ型の基礎,ベクトルの操作方法(解答付き)
第2回 基本演算,データ型の基礎,ベクトルの操作方法(解答付き)
 
A lda+u study of selected iron compounds 第一章
A lda+u study of selected iron compounds 第一章A lda+u study of selected iron compounds 第一章
A lda+u study of selected iron compounds 第一章
 
el text.life science6.tsuneda191106
el text.life science6.tsuneda191106el text.life science6.tsuneda191106
el text.life science6.tsuneda191106
 
Lecture6
Lecture6Lecture6
Lecture6
 
PRML第6章「カーネル法」
PRML第6章「カーネル法」PRML第6章「カーネル法」
PRML第6章「カーネル法」
 

Similar a 第5回CCMSハンズオン(ソフトウェア講習会): AkaiKKRチュートリアル 1. KKR法

Linear response theory and TDDFT
Linear response theory and TDDFT Linear response theory and TDDFT
Linear response theory and TDDFT Claudio Attaccalite
 
SMB_2012_HR_VAN_ST-last version
SMB_2012_HR_VAN_ST-last versionSMB_2012_HR_VAN_ST-last version
SMB_2012_HR_VAN_ST-last versionLilyana Vankova
 
Astrodynamics_Note.pdf
Astrodynamics_Note.pdfAstrodynamics_Note.pdf
Astrodynamics_Note.pdffurexpose
 
Applications of Hoffman Algebra for the Multiple Gamma Functions
Applications of Hoffman Algebra for the Multiple Gamma FunctionsApplications of Hoffman Algebra for the Multiple Gamma Functions
Applications of Hoffman Algebra for the Multiple Gamma FunctionsHanamichi Kawamura
 
A Szemeredi-type theorem for subsets of the unit cube
A Szemeredi-type theorem for subsets of the unit cubeA Szemeredi-type theorem for subsets of the unit cube
A Szemeredi-type theorem for subsets of the unit cubeVjekoslavKovac1
 
MLP輪読スパース8章 トレースノルム正則化
MLP輪読スパース8章 トレースノルム正則化MLP輪読スパース8章 トレースノルム正則化
MLP輪読スパース8章 トレースノルム正則化Akira Tanimoto
 
Applied Mathematics Multiple Integration by Mrs. Geetanjali P.Kale.pdf
Applied Mathematics Multiple Integration by Mrs. Geetanjali P.Kale.pdfApplied Mathematics Multiple Integration by Mrs. Geetanjali P.Kale.pdf
Applied Mathematics Multiple Integration by Mrs. Geetanjali P.Kale.pdfGeetanjaliRao6
 
Modeling biased tracers at the field level
Modeling biased tracers at the field levelModeling biased tracers at the field level
Modeling biased tracers at the field levelMarcel Schmittfull
 
Analysis Of Algorithms Ii
Analysis Of Algorithms IiAnalysis Of Algorithms Ii
Analysis Of Algorithms IiSri Prasanna
 
Basics Nuclear Physics concepts
Basics Nuclear Physics conceptsBasics Nuclear Physics concepts
Basics Nuclear Physics conceptsMuhammad IrfaN
 

Similar a 第5回CCMSハンズオン(ソフトウェア講習会): AkaiKKRチュートリアル 1. KKR法 (20)

Linear response theory and TDDFT
Linear response theory and TDDFT Linear response theory and TDDFT
Linear response theory and TDDFT
 
SMB_2012_HR_VAN_ST-last version
SMB_2012_HR_VAN_ST-last versionSMB_2012_HR_VAN_ST-last version
SMB_2012_HR_VAN_ST-last version
 
FDTD Presentation
FDTD PresentationFDTD Presentation
FDTD Presentation
 
Astrodynamics_Note.pdf
Astrodynamics_Note.pdfAstrodynamics_Note.pdf
Astrodynamics_Note.pdf
 
Rdnd2008
Rdnd2008Rdnd2008
Rdnd2008
 
Adc
AdcAdc
Adc
 
Applications of Hoffman Algebra for the Multiple Gamma Functions
Applications of Hoffman Algebra for the Multiple Gamma FunctionsApplications of Hoffman Algebra for the Multiple Gamma Functions
Applications of Hoffman Algebra for the Multiple Gamma Functions
 
lecture6.ppt
lecture6.pptlecture6.ppt
lecture6.ppt
 
A Szemeredi-type theorem for subsets of the unit cube
A Szemeredi-type theorem for subsets of the unit cubeA Szemeredi-type theorem for subsets of the unit cube
A Szemeredi-type theorem for subsets of the unit cube
 
MLP輪読スパース8章 トレースノルム正則化
MLP輪読スパース8章 トレースノルム正則化MLP輪読スパース8章 トレースノルム正則化
MLP輪読スパース8章 トレースノルム正則化
 
balakrishnan2004
balakrishnan2004balakrishnan2004
balakrishnan2004
 
Pcv ch2
Pcv ch2Pcv ch2
Pcv ch2
 
Applied Mathematics Multiple Integration by Mrs. Geetanjali P.Kale.pdf
Applied Mathematics Multiple Integration by Mrs. Geetanjali P.Kale.pdfApplied Mathematics Multiple Integration by Mrs. Geetanjali P.Kale.pdf
Applied Mathematics Multiple Integration by Mrs. Geetanjali P.Kale.pdf
 
Modeling biased tracers at the field level
Modeling biased tracers at the field levelModeling biased tracers at the field level
Modeling biased tracers at the field level
 
Bird’s-eye view of Gaussian harmonic analysis
Bird’s-eye view of Gaussian harmonic analysisBird’s-eye view of Gaussian harmonic analysis
Bird’s-eye view of Gaussian harmonic analysis
 
NANO266 - Lecture 4 - Introduction to DFT
NANO266 - Lecture 4 - Introduction to DFTNANO266 - Lecture 4 - Introduction to DFT
NANO266 - Lecture 4 - Introduction to DFT
 
AI_HF_6.pdf
AI_HF_6.pdfAI_HF_6.pdf
AI_HF_6.pdf
 
Analysis Of Algorithms Ii
Analysis Of Algorithms IiAnalysis Of Algorithms Ii
Analysis Of Algorithms Ii
 
Quantum chaos of generic systems - Marko Robnik
Quantum chaos of generic systems - Marko RobnikQuantum chaos of generic systems - Marko Robnik
Quantum chaos of generic systems - Marko Robnik
 
Basics Nuclear Physics concepts
Basics Nuclear Physics conceptsBasics Nuclear Physics concepts
Basics Nuclear Physics concepts
 

Más de Computational Materials Science Initiative

Más de Computational Materials Science Initiative (20)

MateriApps LIVE! の設定
MateriApps LIVE! の設定MateriApps LIVE! の設定
MateriApps LIVE! の設定
 
How to setup MateriApps LIVE!
How to setup MateriApps LIVE!How to setup MateriApps LIVE!
How to setup MateriApps LIVE!
 
How to setup MateriApps LIVE!
How to setup MateriApps LIVE!How to setup MateriApps LIVE!
How to setup MateriApps LIVE!
 
MateriApps LIVE!の設定
MateriApps LIVE!の設定MateriApps LIVE!の設定
MateriApps LIVE!の設定
 
MateriApps LIVE! の設定
MateriApps LIVE! の設定MateriApps LIVE! の設定
MateriApps LIVE! の設定
 
How to setup MateriApps LIVE!
How to setup MateriApps LIVE!How to setup MateriApps LIVE!
How to setup MateriApps LIVE!
 
How to setup MateriApps LIVE!
How to setup MateriApps LIVE!How to setup MateriApps LIVE!
How to setup MateriApps LIVE!
 
MateriApps LIVE! の設定
MateriApps LIVE! の設定MateriApps LIVE! の設定
MateriApps LIVE! の設定
 
MateriApps LIVE! の設定
MateriApps LIVE! の設定MateriApps LIVE! の設定
MateriApps LIVE! の設定
 
How to setup MateriApps LIVE!
How to setup MateriApps LIVE!How to setup MateriApps LIVE!
How to setup MateriApps LIVE!
 
How to setup MateriApps LIVE!
How to setup MateriApps LIVE!How to setup MateriApps LIVE!
How to setup MateriApps LIVE!
 
MateriApps LIVE! の設定
MateriApps LIVE! の設定MateriApps LIVE! の設定
MateriApps LIVE! の設定
 
How to setup MateriApps LIVE!
How to setup MateriApps LIVE!How to setup MateriApps LIVE!
How to setup MateriApps LIVE!
 
MateriApps LIVE!の設定
MateriApps LIVE!の設定MateriApps LIVE!の設定
MateriApps LIVE!の設定
 
ALPSチュートリアル
ALPSチュートリアルALPSチュートリアル
ALPSチュートリアル
 
How to setup MateriApps LIVE!
How to setup MateriApps LIVE!How to setup MateriApps LIVE!
How to setup MateriApps LIVE!
 
MateriApps LIVE!の設定
MateriApps LIVE!の設定MateriApps LIVE!の設定
MateriApps LIVE!の設定
 
MateriApps: OpenMXを利用した第一原理計算の簡単な実習
MateriApps: OpenMXを利用した第一原理計算の簡単な実習MateriApps: OpenMXを利用した第一原理計算の簡単な実習
MateriApps: OpenMXを利用した第一原理計算の簡単な実習
 
CMSI計算科学技術特論C (2015) ALPS と量子多体問題②
CMSI計算科学技術特論C (2015) ALPS と量子多体問題②CMSI計算科学技術特論C (2015) ALPS と量子多体問題②
CMSI計算科学技術特論C (2015) ALPS と量子多体問題②
 
CMSI計算科学技術特論C (2015) ALPS と量子多体問題①
CMSI計算科学技術特論C (2015) ALPS と量子多体問題①CMSI計算科学技術特論C (2015) ALPS と量子多体問題①
CMSI計算科学技術特論C (2015) ALPS と量子多体問題①
 

Último

Presentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptxPresentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptxgindu3009
 
Biological Classification BioHack (3).pdf
Biological Classification BioHack (3).pdfBiological Classification BioHack (3).pdf
Biological Classification BioHack (3).pdfmuntazimhurra
 
Pests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdfPests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdfPirithiRaju
 
Zoology 4th semester series (krishna).pdf
Zoology 4th semester series (krishna).pdfZoology 4th semester series (krishna).pdf
Zoology 4th semester series (krishna).pdfSumit Kumar yadav
 
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...Sérgio Sacani
 
Disentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOSTDisentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOSTSérgio Sacani
 
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdfPests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdfPirithiRaju
 
Green chemistry and Sustainable development.pptx
Green chemistry  and Sustainable development.pptxGreen chemistry  and Sustainable development.pptx
Green chemistry and Sustainable development.pptxRajatChauhan518211
 
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptxSOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptxkessiyaTpeter
 
Hubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroidsHubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroidsSérgio Sacani
 
Chromatin Structure | EUCHROMATIN | HETEROCHROMATIN
Chromatin Structure | EUCHROMATIN | HETEROCHROMATINChromatin Structure | EUCHROMATIN | HETEROCHROMATIN
Chromatin Structure | EUCHROMATIN | HETEROCHROMATINsankalpkumarsahoo174
 
Formation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disksFormation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disksSérgio Sacani
 
GBSN - Microbiology (Unit 2)
GBSN - Microbiology (Unit 2)GBSN - Microbiology (Unit 2)
GBSN - Microbiology (Unit 2)Areesha Ahmad
 
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCRStunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCRDelhi Call girls
 
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...Sérgio Sacani
 
Botany krishna series 2nd semester Only Mcq type questions
Botany krishna series 2nd semester Only Mcq type questionsBotany krishna series 2nd semester Only Mcq type questions
Botany krishna series 2nd semester Only Mcq type questionsSumit Kumar yadav
 
Orientation, design and principles of polyhouse
Orientation, design and principles of polyhouseOrientation, design and principles of polyhouse
Orientation, design and principles of polyhousejana861314
 
Botany 4th semester series (krishna).pdf
Botany 4th semester series (krishna).pdfBotany 4th semester series (krishna).pdf
Botany 4th semester series (krishna).pdfSumit Kumar yadav
 

Último (20)

Presentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptxPresentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptx
 
Biological Classification BioHack (3).pdf
Biological Classification BioHack (3).pdfBiological Classification BioHack (3).pdf
Biological Classification BioHack (3).pdf
 
Pests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdfPests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdf
 
Zoology 4th semester series (krishna).pdf
Zoology 4th semester series (krishna).pdfZoology 4th semester series (krishna).pdf
Zoology 4th semester series (krishna).pdf
 
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
 
9953056974 Young Call Girls In Mahavir enclave Indian Quality Escort service
9953056974 Young Call Girls In Mahavir enclave Indian Quality Escort service9953056974 Young Call Girls In Mahavir enclave Indian Quality Escort service
9953056974 Young Call Girls In Mahavir enclave Indian Quality Escort service
 
Disentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOSTDisentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOST
 
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdfPests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
 
Green chemistry and Sustainable development.pptx
Green chemistry  and Sustainable development.pptxGreen chemistry  and Sustainable development.pptx
Green chemistry and Sustainable development.pptx
 
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptxSOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
 
Hubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroidsHubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroids
 
Chromatin Structure | EUCHROMATIN | HETEROCHROMATIN
Chromatin Structure | EUCHROMATIN | HETEROCHROMATINChromatin Structure | EUCHROMATIN | HETEROCHROMATIN
Chromatin Structure | EUCHROMATIN | HETEROCHROMATIN
 
Formation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disksFormation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disks
 
GBSN - Microbiology (Unit 2)
GBSN - Microbiology (Unit 2)GBSN - Microbiology (Unit 2)
GBSN - Microbiology (Unit 2)
 
The Philosophy of Science
The Philosophy of ScienceThe Philosophy of Science
The Philosophy of Science
 
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCRStunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
 
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
 
Botany krishna series 2nd semester Only Mcq type questions
Botany krishna series 2nd semester Only Mcq type questionsBotany krishna series 2nd semester Only Mcq type questions
Botany krishna series 2nd semester Only Mcq type questions
 
Orientation, design and principles of polyhouse
Orientation, design and principles of polyhouseOrientation, design and principles of polyhouse
Orientation, design and principles of polyhouse
 
Botany 4th semester series (krishna).pdf
Botany 4th semester series (krishna).pdfBotany 4th semester series (krishna).pdf
Botany 4th semester series (krishna).pdf
 

第5回CCMSハンズオン(ソフトウェア講習会): AkaiKKRチュートリアル 1. KKR法

  • 1. KKR Method Ins$tute for Solid State Physics, The University of Tokyo Hisazumi Akai KKR Hands-On 2014
  • 2. Introduction What does KKR do? Condensed Matter Physics Computational Materials Design Materials Science ... Quantum simulation for many-body systmes Density Functional Theory Hohenberg-Kohn theorem Kohn-Sham equation Local Density Approximation (LDA) KKR method ・・・method ・・・method・・ ・method
  • 3. Kohn-Sham equations ϕ i(r) (−∇2 + veff )ϕ i = εi Equations for    containing N parameters ϕ i veff (r) = vext (r) + d3r% 2n(r%) r − r% + v∫ xc ' ( ) * ) Where NΣ n(r) = ϕ i (r) 2 i=1 (Sum over lowest N states) (Kohn-Sham equations) Note: ∇2 = ∂ 2 ∂ x2 + ∂ 2 ∂ y2 + ∂ 2 ∂ z2
  • 4. Band structure calculation (−∇2 + veff )ϕ i (r) = ε iϕ i (r) How to solve this partial differential equations (boundary value problem) efficiently? One of the ways KKR method Korringa-Kohn-Rostoker method (Green’s function method)
  • 5. KKR method • Sca>ering method • Sta$onary state of sca>ering → energy eigen state • Muffin-­‐$n poten$al model: prototype • Calcula$on of sca>ering → impurity sca>ering, sca>ering due to random poten$al are also dealt with. Incident electrons Scattered electrons Incident wave Scattered wave crystal
  • 6. Muffin-tin potential model Muffin-tin potential Muffin Tin Spherical potential v(r) r Interstitial region
  • 7. Electron scattering electrons attractive potential
  • 8. Quantum mechanical scattering Single scattering v Double scattering v v g g: probability amplitude that the electron propagate freely V: probability amplitude that the electron is scattered once The electron is scattered once, twice,・・・・,n times are possible.
  • 9. Scattering t-matrix (transition matrix) v vgv vgvgv + + vgvgvgv t + + ... = total scattering amplitude = sum of each scattering amplitude = t-matrix
  • 10. Expression of t-matrix Formal expression t = v + vgv + vgvgv + = v 1+ (gv)+ (gv)2 { (gv)3 + +} = v 1 1− gv
  • 11. Multiple scattering due to assembly of potentials t t t t t g t g t tgt tgtgt g t-matrix describes scattering due to each potential. Multiple scattering is successive scattering due to many potentials. The total scattering amplitude is the sum of the amplitudes of those processes
  • 12. Total scattering amplitude T Formal expression T = t + tgt + tgtgt + { +} = t 1+ (gt) + (gt)2 + (gt)3 = t 1 1− gt
  • 13. Scattering by a crystal T T describes scattering by a crystal.
  • 14. Stationary state of scattering Electrons stay forever. No incident electron is needed.
  • 15. Divergence of T (transition) matrix As long as T is finite, any incident electron will escape after all. Therefore it cannot be a stationary state. For a stationary state T is not finite. → diverges T = t 1 1− gt → ∞ det 1− gt = 0 T diverges. → The incident electron states will decay immediately.
  • 16. Stationary state= energy eigenstate g is a function of E and k in a crystal  g=g(E,k) t is a function of E  t=t(E) det 1− gt = 0 determines E for given k Energy dispersion E = E(k) Traditional KKR band structure calculation
  • 17. Energy dispersion relation Energy eigenvalues for a given k E(k) k
  • 18. A bit different approach KKR-Green’s function method Instead of calcula$ng eigenvalue E(k) and the corresponding eigen states... Calcula$ng Green’s func$on of the system directly without knowing E(k).
  • 19. Green’s function Linear partial differential equation To solve L: linear operator such as differentiation, Hamiltonian. Lf (r) = g(r) LG(r,r!) =δ (r − r!). f (r) = f0 (r) + ∫ dr!G(r,r!)g(r!), find a Green’s function The solution is expressed as G = where f0 is the solution of Lf0(r)=0. 1 L f = 1 L g = Gg
  • 20. Check Put f (r) = f0 (r) + ∫ dr!G(r,r!)g(r!) into Lf (r) = g(r) : Lf (r) = Lf0 (r) + ∫ dr!LG(r,r!)g(r!) = ∫ dr!δ (r − r!)g(r!) = g(r) Definition of δ function certainly satisfies Lf (r) = g(r). f (r)
  • 21. An example of Green’s functions Electro static field −∇2V = ρ (r) ε0 Poisson equation Corresponding Green’s function −∇2G(r,r#) = 1 ε 0 δ (r − r#) The solution is expressed as G(r,r!) = 1 4πε 0 1 r − r! Coulomb’s law
  • 22. KKR Green’s function Kohn-Sham equation (εi − H)ϕ i = 0 Corresponding Green’s function (z − H)G(r,r; z) =δ (r − r)
  • 23. Green’s function of electrons in a crystal G = GS + GB GS : Green’s function for a single potential GB = g + gtg + gtgtg + = g + gTg ・・・ Multiple scattering GS T GS, g is calculated, T is calculated using KKR.
  • 24. Once Green’s function is known (z − H)G(r,r; z) =δ (r − r) Expand G into eigen states of Kohn-Sham equation k Σ G(r,r!; z) = Ck (r!) ϕ k (r) Put (2) into (1). k Σ (z − H) Ck (r) ϕ k (r) k Σ = Ck (r) (z − ε k )ϕ k (r) =δ (r − r) (1) (2)
  • 25. Coefficients Ck(r) Multiply both side with ϕk *(r) and integrate Ck! (r!) ! k Σ (z − ε k! )∫ drϕk * (r)ϕ k! (r) = ∫ drϕk * (r)δ (r − r!) using the orthogonality relation, we obtain Ck (r) = *(r) z −εk ϕ k
  • 26. Expansion of Green’s function Using the expansion coefficients G(r,r!; z) = Important relation ϕ k (r)ϕ k * (r!) z − ε k k Σ 1 E + iδ = P.P. 1 E # $ % ' − iπδ (E) P.P. principal part P.P. 1E ∞ ∫ dE ' ∞ ∫ dE = lim -∞ ε →0 1E 1E ∫ −ε dE + -∞ ε ( ) * + ,
  • 27. Spectrum representation of G Using this relation z − ε k k Σ G(r,r!;ε + iδ ) = P.P. ϕ k (r)ϕ k * (r!) k Σ −iπ ϕ k (r)ϕ k * (r!)δ (ε −ε k ) Setting r=r’ gives the density of states. ρ(r,ε ) = ϕ k (r) 2 δ (ε − ε k ) k Σ
  • 28. Density of states ρ (r,ε ) = − 1 π ℑG(r,r;ε + iδ ) Electron density is thus expressed as ρ (r) = − 1 π ε F ∫ G(r,r;ε + iδ ) ℑ dε −∞ = − 1 π ε F +iδ ∫ G(r,r; z) ℑ dz −∞
  • 29. Consider complex energy ρ (r) = − 1 π ε F +iδ ∫ G(r,r; z) ℑ dz −∞ ℑz εL εF Why complex integral? sum of delta function → sum of Lorentzian      Numerical integration becomes possible ℜz Consider complex contour integral
  • 30. Spectrum for complex energy Set of δ functions Cannot be integrated Can be integrated Δ E E+iΔ Set of Lorenz curves
  • 31. All we need is Green’s function Density functional method determines density. Other quantities are of secondary importance in this context. Energy integral of Green’s function e.g. the energy eigenvalues of Kohn-Sham equations and the density of states are not physical observables. Not necessary to solve eigenvalue problems
  • 32. What can KKR do? Anything that normal band structure calcula$on do. In addi$on High speed High accuracy Scaering problem Systems with defects Impurity problem Disordered systems Par$al disorder Problems that require Green’s func$on. Transport proper$es Many-­‐body problems
  • 33. In short What is the Green’s function method(KKR)? 1.Sum up all the scattering amplitudes =KKR method 2.Divergence of the amplitude gives eigen states. 3. The imaginary part of the probability amplitude is proportional to the number of state at that energy (density of states). 4.Electron density is obtained from the density of states.
  • 34. Summary • Basic idea of KKR method • Green’s func$on method • Applica$on of KKR method Program package for KKR cpa2002v009c (AkaiKKR) (MACHIKANEYAMA2000) has been developed. Catalogues in MateriApps hp://ma.cms-­‐ini$a$ve.jp/ Query “akaikkr” will hit the web-­‐site. hp://kkr.phys.sci.osala-­‐u.ac.jp/
  • 35. Hands-on tutorial • KKR and KKR-­‐CPA calcula$on – Pure Fe – Curie temperature of Fe and Co – Fe-­‐Ni random alloys – Impurity systems • Applica$ons – Half-­‐metallic Heusler alloys – Li-­‐ion baery – Hydrogen storage MgH2 – Heat of forma$on of alloys
  • 36. Demonstration • Run program on a laptop • Calcula$on of ferromagne$c Fe • Determina$on of the la`ce constant