SlideShare una empresa de Scribd logo
1 de 25
Descargar para leer sin conexión
-
Dr. Costas Sachpazis
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock Mechanics,
Foundation Engineering & Retaining Structures.
Tel.: (+30) 210 5238127, 210 5711263-Fax:+30 210 440171
Mobile: (+30) 6936425722
www.geodomisi.com - costas@sachpazis.info
Project: Raft Foundation Analysis and Design for a 2
Storey House Project.
In accordance with BS8110: PART 1: 1997 and Code of Practice
for Geotechnical design and the U.K. recommended values.
Job Ref. 0519025
www.geodomisi.com
info@geodomisi.com
Section
Civil & Geotechnical Engineering
Sheet no./rev. 1
Calc.
Dr. C. Sachpazis
Date
20/05/2021
Chk'd by Date App'd by Date
Page 1 of 25
ANALYSIS & DESIGN OF A RAFT FOUNDATION In
accordance with BS8110: PART 1: 1997 and Code of Practice for Geotechnical
design and the U.K. recommended values.
hedge
hboot
bedge
bboot
aedge
hslab
hhcoreslab
hhcorethick
Asslabtop
Asedgetop
Asslabbtm
Asedgebtm
Asedgelink
-
Dr. Costas Sachpazis
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock Mechanics,
Foundation Engineering & Retaining Structures.
Tel.: (+30) 210 5238127, 210 5711263-Fax:+30 210 440171
Mobile: (+30) 6936425722
www.geodomisi.com - costas@sachpazis.info
Project: Raft Foundation Analysis and Design for a 2
Storey House Project.
In accordance with BS8110: PART 1: 1997 and Code of Practice
for Geotechnical design and the U.K. recommended values.
Job Ref. 0519025
www.geodomisi.com
info@geodomisi.com
Section
Civil & Geotechnical Engineering
Sheet no./rev. 1
Calc.
Dr. C. Sachpazis
Date
20/05/2021
Chk'd by Date App'd by Date
Page 2 of 25
Soil and raft definition
Soil definition
Allowable bearing pressure; qallow = 50.0 kN/m2
Number of types of soil forming sub-soil; Two or more types
Soil density; Firm to loose
Depth of hardcore beneath slab; hhcoreslab = 150 mm; (Dispersal allowed for bearing pressure check)
Depth of hardcore beneath thickenings; hhcorethick = 0 mm; (Dispersal allowed for bearing pressure check)
Density of hardcore; hcore = 20.0 kN/m3
Basic assumed diameter of local depression; depbasic = 3500mm
Diameter under slab modified for hardcore; depslab = depbasic - hhcoreslab = 3350 mm
Diameter under thickenings modified for hardcore; depthick = depbasic - hhcorethick = 3500 mm
Raft slab definition
Max dimension/max dimension between joints; lmax = 13.100 m
Slab thickness; hslab = 200 mm
Concrete strength; fcu = 35 N/mm2
Poissons ratio of concrete;  = 0.2
Slab mesh reinforcement strength; fyslab = 500 N/mm2
Partial safety factor for steel reinforcement; s = 1.15
From C&CA document ‘Concrete ground floors’ Table 5
-
Dr. Costas Sachpazis
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock Mechanics,
Foundation Engineering & Retaining Structures.
Tel.: (+30) 210 5238127, 210 5711263-Fax:+30 210 440171
Mobile: (+30) 6936425722
www.geodomisi.com - costas@sachpazis.info
Project: Raft Foundation Analysis and Design for a 2
Storey House Project.
In accordance with BS8110: PART 1: 1997 and Code of Practice
for Geotechnical design and the U.K. recommended values.
Job Ref. 0519025
www.geodomisi.com
info@geodomisi.com
Section
Civil & Geotechnical Engineering
Sheet no./rev. 1
Calc.
Dr. C. Sachpazis
Date
20/05/2021
Chk'd by Date App'd by Date
Page 3 of 25
Minimum mesh required in top for shrinkage; A142;
Actual mesh provided in top; 2 x A393 (Asslabtop = 786 mm2
/m)
Mesh provided in bottom; A393 (Asslabbtm = 393 mm2
/m)
Top mesh bar diameter; slabtop = 10 mm
Bottom mesh bar diameter; slabbtm = 10 mm
Cover to top reinforcement; ctop = 20 mm
Cover to bottom reinforcement; cbtm = 35 mm
Average effective depth of top reinforcement; dtslabav = hslab - ctop - slabtop = 170 mm
Average effective depth of bottom reinforcement; dbslabav = hslab - cbtm - slabbtm = 155 mm
Overall average effective depth; dslabav = (dtslabav + dbslabav)/2 = 163 mm
Minimum effective depth of top reinforcement; dtslabmin = dtslabav - slabtop/2 = 165 mm
Minimum effective depth of bottom reinforcement; dbslabmin = dbslabav - slabbtm/2 = 150 mm
Edge beam definition
Overall depth; hedge = 450 mm
Width; bedge = 450 mm
Depth of boot; hboot = 225 mm
Width of boot; bboot = 180 mm
Angle of chamfer to horizontal; edge = 60 deg
Strength of main bar reinforcement; fy = 500 N/mm2
-
Dr. Costas Sachpazis
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock Mechanics,
Foundation Engineering & Retaining Structures.
Tel.: (+30) 210 5238127, 210 5711263-Fax:+30 210 440171
Mobile: (+30) 6936425722
www.geodomisi.com - costas@sachpazis.info
Project: Raft Foundation Analysis and Design for a 2
Storey House Project.
In accordance with BS8110: PART 1: 1997 and Code of Practice
for Geotechnical design and the U.K. recommended values.
Job Ref. 0519025
www.geodomisi.com
info@geodomisi.com
Section
Civil & Geotechnical Engineering
Sheet no./rev. 1
Calc.
Dr. C. Sachpazis
Date
20/05/2021
Chk'd by Date App'd by Date
Page 4 of 25
Strength of link reinforcement; fys = 500 N/mm2
Reinforcement provided in top; 3 H25 bars (Asedgetop = 1473 mm2
)
Reinforcement provided in bottom; 3 H25 bars (Asedgebtm = 1473 mm2
)
Link reinforcement provided; 2 H12 legs at 275 ctrs (Asv/sv = 0.823 mm)
Bottom cover to links; cbeam = 35 mm
Effective depth of top reinforcement; dedgetop = hedge - ctop - slabtop - edgelink - edgetop/2 = 395 mm
Effective depth of bottom reinforcement; dedgebtm = hedge - cbeam - edgelink - edgebtm/2 = 391 mm
Boot main reinforcement; H8 bars at 350 ctrs (Asboot = 144 mm2
/m)
Effective depth of boot reinforcement; dboot = hboot - cbeam - boot/2 = 186 mm
Internal beam definition
-
Dr. Costas Sachpazis
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock Mechanics,
Foundation Engineering & Retaining Structures.
Tel.: (+30) 210 5238127, 210 5711263-Fax:+30 210 440171
Mobile: (+30) 6936425722
www.geodomisi.com - costas@sachpazis.info
Project: Raft Foundation Analysis and Design for a 2
Storey House Project.
In accordance with BS8110: PART 1: 1997 and Code of Practice
for Geotechnical design and the U.K. recommended values.
Job Ref. 0519025
www.geodomisi.com
info@geodomisi.com
Section
Civil & Geotechnical Engineering
Sheet no./rev. 1
Calc.
Dr. C. Sachpazis
Date
20/05/2021
Chk'd by Date App'd by Date
Page 5 of 25
Overall depth; hint = 450 mm
Width; bint = 450 mm
Angle of chamfer to horizontal; int = 60 deg
hint
bint
aint
hslab
hhcoreslab
hhcorethick
Asslabtop
Asinttop
Asslabbtm
Asintbtm
Asintlink
-
Dr. Costas Sachpazis
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock Mechanics,
Foundation Engineering & Retaining Structures.
Tel.: (+30) 210 5238127, 210 5711263-Fax:+30 210 440171
Mobile: (+30) 6936425722
www.geodomisi.com - costas@sachpazis.info
Project: Raft Foundation Analysis and Design for a 2
Storey House Project.
In accordance with BS8110: PART 1: 1997 and Code of Practice
for Geotechnical design and the U.K. recommended values.
Job Ref. 0519025
www.geodomisi.com
info@geodomisi.com
Section
Civil & Geotechnical Engineering
Sheet no./rev. 1
Calc.
Dr. C. Sachpazis
Date
20/05/2021
Chk'd by Date App'd by Date
Page 6 of 25
Strength of main bar reinforcement; fy = 500 N/mm2
Strength of link reinforcement; fys = 500 N/mm2
Reinforcement provided in top; 3 H20 bars (Asinttop = 942 mm2
)
Reinforcement provided in bottom; 3 H20 bars (Asintbtm = 942 mm2
)
Link reinforcement provided; 2 H10 legs at 225 ctrs (Asv/sv = 0.698 mm)
Effective depth of top reinforcement; dinttop = hint - ctop - 2  slabtop - inttop/2 = 400 mm
Effective depth of bottom reinforcement; dintbtm = hint - cbeam - intlink - intbtm/2 = 395 mm
Internal slab design checks
Basic loading
Slab self weight; wslab = 24 kN/m3
 hslab = 4.8 kN/m2
Hardcore; whcoreslab = hcore  hhcoreslab = 3.0 kN/m2
Applied loading
Uniformly distributed dead load; wDudl = 0.1 kN/m2
Uniformly distributed live load; wLudl = 1.5 kN/m2
Internal slab bearing pressure check
Total uniform load at formation level; wudl = wslab + whcoreslab + wDudl + wLudl = 9.4 kN/m2
PASS - wudl <= qallow - Applied bearing pressure is less than allowable
-
Dr. Costas Sachpazis
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock Mechanics,
Foundation Engineering & Retaining Structures.
Tel.: (+30) 210 5238127, 210 5711263-Fax:+30 210 440171
Mobile: (+30) 6936425722
www.geodomisi.com - costas@sachpazis.info
Project: Raft Foundation Analysis and Design for a 2
Storey House Project.
In accordance with BS8110: PART 1: 1997 and Code of Practice
for Geotechnical design and the U.K. recommended values.
Job Ref. 0519025
www.geodomisi.com
info@geodomisi.com
Section
Civil & Geotechnical Engineering
Sheet no./rev. 1
Calc.
Dr. C. Sachpazis
Date
20/05/2021
Chk'd by Date App'd by Date
Page 7 of 25
Internal slab bending and shear check
Applied bending moments
Span of slab; lslab = depslab + dtslabav = 3520 mm
Ultimate self weight udl; wswult = 1.4  wslab = 6.7 kN/m2
Self weight moment at centre; Mcsw = wswult  lslab
2
 (1 + ) / 64 = 1.6 kNm/m
Self weight moment at edge; Mesw = wswult  lslab
2
/ 32 = 2.6 kNm/m
Self weight shear force at edge; Vsw = wswult  lslab / 4 = 5.9 kN/m
Moments due to applied uniformly distributed loads
Ultimate applied udl; wudlult = 1.4  wDudl + 1.6  wLudl = 2.5 kN/m2
Moment at centre; Mcudl = wudlult  lslab
2
 (1 + ) / 64 = 0.6 kNm/m
Moment at edge; Meudl = wudlult  lslab
2
/ 32 = 1.0 kNm/m
Shear force at edge; Vudl = wudlult  lslab / 4 = 2.2 kN/m
Resultant moments and shears
Total moment at edge; Me = 3.6 kNm/m
Total moment at centre; Mc = 2.2 kNm/m
Total shear force; V = 8.1 kN/m
Reinforcement required in top
K factor; Kslabtop = Me/(fcu  dtslabav
2
) = 0.004
-
Dr. Costas Sachpazis
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock Mechanics,
Foundation Engineering & Retaining Structures.
Tel.: (+30) 210 5238127, 210 5711263-Fax:+30 210 440171
Mobile: (+30) 6936425722
www.geodomisi.com - costas@sachpazis.info
Project: Raft Foundation Analysis and Design for a 2
Storey House Project.
In accordance with BS8110: PART 1: 1997 and Code of Practice
for Geotechnical design and the U.K. recommended values.
Job Ref. 0519025
www.geodomisi.com
info@geodomisi.com
Section
Civil & Geotechnical Engineering
Sheet no./rev. 1
Calc.
Dr. C. Sachpazis
Date
20/05/2021
Chk'd by Date App'd by Date
Page 8 of 25
Lever arm; zslabtop = dtslabav  min(0.95, 0.5 + (0.25 - Kslabtop/0.9)) = 161.5 mm
Area of steel required for bending; Asslabtopbend = Me/((1.0/s)  fyslab  zslabtop) = 51 mm2
/m
Minimum area of steel required; Asslabmin = 0.0013  hslab = 260 mm2
/m
Area of steel required; Asslabtopreq = max(Asslabtopbend, Asslabmin) = 260 mm2
/m
PASS - Asslabtopreq <= Asslabtop - Area of reinforcement provided in top to span local depressions is adequate
Reinforcement required in bottom
K factor; Kslabbtm = Mc/(fcu  dbslabav
2
) = 0.003
Lever arm; zslabbtm = dbslabav  min(0.95, 0.5 + (0.25 - Kslabbtm/0.9)) = 147.3 mm
Area of steel required for bending; Asslabbtmbend = Mc/((1.0/s)  fyslab  zslabbtm) = 34 mm2
/m
Area of steel required; Asslabbtmreq = max(Asslabbtmbend, Asslabmin) = 260 mm2
/m
PASS - Asslabbtmreq <= Asslabbtm - Area of reinforcement provided in bottom to span local depressions is adequate
Shear check
Applied shear stress; v = V/dtslabmin = 0.049 N/mm2
Tension steel ratio;  = 100  Asslabtop/dtslabmin = 0.476
From BS8110-1:1997 - Table 3.8;
Design concrete shear strength; vc = 0.689 N/mm2
PASS - v <= vc - Shear capacity of the slab is adequate
-
Dr. Costas Sachpazis
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock Mechanics,
Foundation Engineering & Retaining Structures.
Tel.: (+30) 210 5238127, 210 5711263-Fax:+30 210 440171
Mobile: (+30) 6936425722
www.geodomisi.com - costas@sachpazis.info
Project: Raft Foundation Analysis and Design for a 2
Storey House Project.
In accordance with BS8110: PART 1: 1997 and Code of Practice
for Geotechnical design and the U.K. recommended values.
Job Ref. 0519025
www.geodomisi.com
info@geodomisi.com
Section
Civil & Geotechnical Engineering
Sheet no./rev. 1
Calc.
Dr. C. Sachpazis
Date
20/05/2021
Chk'd by Date App'd by Date
Page 9 of 25
Internal slab deflection check
Basic allowable span to depth ratio; Ratiobasic = 26.0
Moment factor; Mfactor = Mc/dbslabav
2
= 0.090 N/mm2
Steel service stress; fs = 2/3  fyslab  Asslabbtmbend/Asslabbtm = 28.501 N/mm2
Modification factor; MFslab = min(2.0, 0.55 + [(477N/mm2
- fs)/(120  (0.9N/mm2
+ Mfactor))])
MFslab = 2.000
Modified allowable span to depth ratio; Ratioallow = Ratiobasic  MFslab = 52.000
Actual span to depth ratio; Ratioactual = lslab/ dbslabav = 22.710
PASS - Ratioactual <= Ratioallow - Slab span to depth ratio is adequate
Edge beam design checks
Basic loading
Hardcore; whcorethick = hcore  hhcorethick = 0.0 kN/m2
Edge beam
Rectangular beam element; wbeam = 24 kN/m3
 hedge  bedge = 4.9 kN/m
Boot element; wboot = 24 kN/m3
 hboot  bboot = 1.0 kN/m
Chamfer element; wchamfer = 24 kN/m3
 (hedge - hslab)2
/(2  tan(edge)) = 0.4 kN/m
Slab element; wslabelmt = 24 kN/m3
 hslab  (hedge - hslab)/tan(edge) = 0.7 kN/m
Edge beam self weight; wedge = wbeam + wboot + wchamfer + wslabelmt = 7.0 kN/m
-
Dr. Costas Sachpazis
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock Mechanics,
Foundation Engineering & Retaining Structures.
Tel.: (+30) 210 5238127, 210 5711263-Fax:+30 210 440171
Mobile: (+30) 6936425722
www.geodomisi.com - costas@sachpazis.info
Project: Raft Foundation Analysis and Design for a 2
Storey House Project.
In accordance with BS8110: PART 1: 1997 and Code of Practice
for Geotechnical design and the U.K. recommended values.
Job Ref. 0519025
www.geodomisi.com
info@geodomisi.com
Section
Civil & Geotechnical Engineering
Sheet no./rev. 1
Calc.
Dr. C. Sachpazis
Date
20/05/2021
Chk'd by Date App'd by Date
Page 10 of 25
Edge load number 1
Load type; Longitudinal line load
Dead load; wDedge1 = 45.8 kN/m
Live load; wLedge1 = 5.6 kN/m
Ultimate load; wultedge1 = 1.4  wDedge1 + 1.6  wLedge1 = 73.1 kN/m
Longitudinal line load width; bedge1 = 100 mm
Centroid of load from outside face of raft; xedge1 = 230 mm
Edge load number 2
Load type; Transverse line load
Dead load; wDedge2 = 42.7 kN/m
Live load; wLedge2 = 5.6 kN/m
Ultimate load; wultedge2 = 1.4  wDedge2 + 1.6  wLedge2 = 68.7 kN/m
Transverse line load width; bedge2 = 100 mm
Edge beam bearing pressure check
Effective bearing width of edge beam; bbearing = bedge + bboot + (hedge - hslab)/tan(edge) = 774 mm
Total uniform load at formation level; wudledge = wDudl+wLudl+wedge/bbearing+whcorethick = 10.6 kN/m2
Bearing pressure due to transverse line loads
Total dead transverse line load; wDtrans = 42.7 kN/m
Total live transverse line load; wLtrans = 5.6 kN/m
-
Dr. Costas Sachpazis
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock Mechanics,
Foundation Engineering & Retaining Structures.
Tel.: (+30) 210 5238127, 210 5711263-Fax:+30 210 440171
Mobile: (+30) 6936425722
www.geodomisi.com - costas@sachpazis.info
Project: Raft Foundation Analysis and Design for a 2
Storey House Project.
In accordance with BS8110: PART 1: 1997 and Code of Practice
for Geotechnical design and the U.K. recommended values.
Job Ref. 0519025
www.geodomisi.com
info@geodomisi.com
Section
Civil & Geotechnical Engineering
Sheet no./rev. 1
Calc.
Dr. C. Sachpazis
Date
20/05/2021
Chk'd by Date App'd by Date
Page 11 of 25
Total ultimate transverse line load; wulttrans = 68.7 kN/m
Minimum width of transverse line loads; btrans = 100 mm
Length of trans line load applied to edge beam; ltransapp = bedge + (hedge - hslab)/tan(edge) = 594 mm
Total ult trans line load applied to edge beam; Wulttrans = wulttrans  ltransapp = 40.9 kN
Approx moment capacity of bottom steel; Medgebtm = (1.0/s)  fy  0.9  dedgebtm  Asedgebtm = 225.0 kNm
Max allow dispersal based on moment capacity;
pedgemom=[2Medgebtm+(4Medgebtm
2
+2WulttransMedgebtmbtrans)]/Wulttrans
pedgemom = 22081 mm
Limiting max dispersal to say 5 x beam depth; pedge = min(pedgemom, 5  hedge) = 2250 mm
Total dispersal width of transverse line loads; ltrans = 2  pedge + btrans = 4600 mm
Bearing pressure due to trans line loads; qtrans = (wDtrans + wLtrans)  ltransapp/(ltrans  bbearing) = 8.1 kN/m2
Centroid of longitudinal and equivalent line loads from outside face of raft
Load x distance for edge load 1; Moment1 = wultedge1  xedge1 = 16.8 kN
Sum of ultimate longitud’l and equivalent line loads; UDL = 73.1 kN/m
Sum of load x distances; Moment = 16.8 kN
Centroid of loads; xbar = Moment/UDL = 230 mm
Initially assume no moment transferred into slab due to load/reaction eccentricity
Sum of unfactored longitud’l and eff’tive line loads; UDLsls = 51.4 kN/m
Allowable bearing width; ballow = 2  xbar + 2  hhcoreslab  tan(30) = 633 mm
-
Dr. Costas Sachpazis
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock Mechanics,
Foundation Engineering & Retaining Structures.
Tel.: (+30) 210 5238127, 210 5711263-Fax:+30 210 440171
Mobile: (+30) 6936425722
www.geodomisi.com - costas@sachpazis.info
Project: Raft Foundation Analysis and Design for a 2
Storey House Project.
In accordance with BS8110: PART 1: 1997 and Code of Practice
for Geotechnical design and the U.K. recommended values.
Job Ref. 0519025
www.geodomisi.com
info@geodomisi.com
Section
Civil & Geotechnical Engineering
Sheet no./rev. 1
Calc.
Dr. C. Sachpazis
Date
20/05/2021
Chk'd by Date App'd by Date
Page 12 of 25
Bearing pressure due to line/point loads; qlinepoint = UDLsls/ ballow = 81.2 kN/m2
Total applied bearing pressure; qedge = qlinepoint + qtrans + wudledge = 99.8 kN/m2
qedge > qallow - The slab is required to resist a moment due to eccentricity
Now assume moment due to load/reaction eccentricity is resisted by slab
Bearing width required; breq = UDLsls/(qallow - qtrans - wudledge) = 1639 mm
Effective bearing width at u/s of slab; breqeff = breq - 2  hhcoreslab  tan(30) = 1466 mm
Load/reaction eccentricity; e = breqeff/2 - xbar = 503 mm
Ultimate moment to be resisted by slab; Mecc = UDL  e = 36.8 kNm/m
From slab bending check
Moment due to depression under slab (hogging); Me = 3.6 kNm/m
Total moment to be resisted by slab top steel; Mslabtop = Mecc + Me = 40.3 kNm/m
K factor; Kslab = Mslabtop/(fcu  dtslabmin
2
) = 0.042
Lever arm; zslab = dtslabmin  min(0.95, 0.5 + (0.25 - Kslab/0.9)) = 157 mm
Area of steel required; Asslabreq = Mslabtop/((1.0/s)  fy  zslab) = 592 mm2
/m
PASS - Asslabreq <= Asslabtop - Area of reinforcement provided to transfer moment into slab is adequate
The allowable bearing pressure under the edge beam will not be exceeded
Library item - B pressure with moment transfer
Edge beam bending check
Divider for moments due to udl’s; udl = 10.0
-
Dr. Costas Sachpazis
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock Mechanics,
Foundation Engineering & Retaining Structures.
Tel.: (+30) 210 5238127, 210 5711263-Fax:+30 210 440171
Mobile: (+30) 6936425722
www.geodomisi.com - costas@sachpazis.info
Project: Raft Foundation Analysis and Design for a 2
Storey House Project.
In accordance with BS8110: PART 1: 1997 and Code of Practice
for Geotechnical design and the U.K. recommended values.
Job Ref. 0519025
www.geodomisi.com
info@geodomisi.com
Section
Civil & Geotechnical Engineering
Sheet no./rev. 1
Calc.
Dr. C. Sachpazis
Date
20/05/2021
Chk'd by Date App'd by Date
Page 13 of 25
Divider for moments due to point loads; point = 6.0
Applied bending moments
Span of edge beam; ledge = depthick + dedgetop = 3896 mm
Ultimate self weight udl; wedgeult = 1.4  wedge = 9.7 kN/m
Ultimate slab udl (approx); wedgeslab = max(0 kN/m,1.4wslab((depthick/23/4)-(bedge+(hedge-
hslab)/tan(edge))))
wedgeslab = 4.8 kN/m
Self weight and slab bending moment; Medgesw = (wedgeult + wedgeslab)  ledge
2
/udl = 22.1 kNm
Self weight shear force; Vedgesw = (wedgeult + wedgeslab)  ledge/2 = 28.4 kN
Moments due to applied uniformly distributed loads
Ultimate udl (approx); wedgeudl = wudlult  depthick/2  3/4 = 3.3 kN/m
Bending moment; Medgeudl = wedgeudl  ledge
2
/udl = 5.1 kNm
Shear force; Vedgeudl = wedgeudl  ledge/2 = 6.5 kN
Moment and shear due to load number 1
Bending moment; Medge1 = wultedge1  ledge
2
/udl = 110.9 kNm
Shear force; Vedge1 = wultedge1  ledge/2 = 142.3 kN
Moment and shear due to load number 2
Ultimate point load; Wedge2 = wultedge2  depthick/2  3/4 = 90.2 kN
Bending moment; Medge2 = Wedge2  ledge/point = 58.6 kNm
-
Dr. Costas Sachpazis
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock Mechanics,
Foundation Engineering & Retaining Structures.
Tel.: (+30) 210 5238127, 210 5711263-Fax:+30 210 440171
Mobile: (+30) 6936425722
www.geodomisi.com - costas@sachpazis.info
Project: Raft Foundation Analysis and Design for a 2
Storey House Project.
In accordance with BS8110: PART 1: 1997 and Code of Practice
for Geotechnical design and the U.K. recommended values.
Job Ref. 0519025
www.geodomisi.com
info@geodomisi.com
Section
Civil & Geotechnical Engineering
Sheet no./rev. 1
Calc.
Dr. C. Sachpazis
Date
20/05/2021
Chk'd by Date App'd by Date
Page 14 of 25
Shear force; Vedge2 = Wedge2 = 90.2 kN
Resultant moments and shears
Total moment (hogging and sagging); Medge = 196.6 kNm
Maximum shear force; Vedge = 267.4 kN
Reinforcement required in top
Width of section in compression zone; bedgetop = bedge + bboot = 630 mm
Average web width; bw = bedge + (hedge/tan(edge))/2 = 580 mm
K factor; Kedgetop = Medge/(fcu  bedgetop  dedgetop
2
) = 0.057
Lever arm; zedgetop = dedgetop  min(0.95, 0.5 + (0.25 - Kedgetop/0.9)) = 369 mm
Area of steel required for bending; Asedgetopbend = Medge/((1.0/s)  fy  zedgetop) = 1227 mm2
Minimum area of steel required; Asedgetopmin = 0.0013  1.0  bw  hedge = 339 mm2
Area of steel required; Asedgetopreq = max(Asedgetopbend, Asedgetopmin) = 1227 mm2
PASS - Asedgetopreq <= Asedgetop - Area of reinforcement provided in top of edge beams is adequate
Reinforcement required in bottom
Width of section in compression zone; bedgebtm = bedge + (hedge - hslab)/tan(edge) + 0.1  ledge = 984 mm
K factor; Kedgebtm = Medge/(fcu  bedgebtm  dedgebtm
2
) = 0.037
Lever arm; zedgebtm = dedgebtm  min(0.95, 0.5 + (0.25 - Kedgebtm/0.9)) = 371 mm
Area of steel required for bending; Asedgebtmbend = Medge/((1.0/s)  fy  zedgebtm) = 1219 mm2
-
Dr. Costas Sachpazis
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock Mechanics,
Foundation Engineering & Retaining Structures.
Tel.: (+30) 210 5238127, 210 5711263-Fax:+30 210 440171
Mobile: (+30) 6936425722
www.geodomisi.com - costas@sachpazis.info
Project: Raft Foundation Analysis and Design for a 2
Storey House Project.
In accordance with BS8110: PART 1: 1997 and Code of Practice
for Geotechnical design and the U.K. recommended values.
Job Ref. 0519025
www.geodomisi.com
info@geodomisi.com
Section
Civil & Geotechnical Engineering
Sheet no./rev. 1
Calc.
Dr. C. Sachpazis
Date
20/05/2021
Chk'd by Date App'd by Date
Page 15 of 25
Minimum area of steel required; Asedgebtmmin = 0.0013  1.0  bw  hedge = 339 mm2
Area of steel required; Asedgebtmreq = max(Asedgebtmbend, Asedgebtmmin) = 1219 mm2
PASS - Asedgebtmreq <= Asedgebtm - Area of reinforcement provided in bottom of edge beams is adequate
Edge beam shear check
Applied shear stress; vedge = Vedge/(bw  dedgetop) = 1.166 N/mm2
Tension steel ratio; edge = 100  Asedgetop/(bw  dedgetop) = 0.642
From BS8110-1:1997 - Table 3.8
Design concrete shear strength; vcedge = 0.612 N/mm2
vedge > vcedge + 0.4N/mm2
- Therefore designed links required
Link area to spacing ratio required; Asv_upon_svreqedge = (vedge - vcedge)  bw/((1.0/s)  fys) = 0.739 mm
Link area to spacing ratio provided; Asv_upon_svprovedge = Nedgelinkedgelink
2
/(4svedge) = 0.823 mm
PASS - Asv_upon_svreqedge <= Asv_upon_svprovedge - Shear reinforcement provided in edge beams is adequate
Boot design check
Effective cantilever span; lboot = bboot + dboot/2 = 273 mm
Approximate ultimate bearing pressure; qult = 1.55  qallow = 77.5 kN/m2
Cantilever moment; Mboot = qult  lboot
2
/2 = 2.9 kNm/m
Shear force; Vboot = qult  lboot = 21.2 kN/m
K factor; Kboot = Mboot/(fcu  dboot
2
) = 0.002
Lever arm; zboot = dboot  min(0.95, 0.5 + (0.25 - Kboot/0.9)) = 177 mm
-
Dr. Costas Sachpazis
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock Mechanics,
Foundation Engineering & Retaining Structures.
Tel.: (+30) 210 5238127, 210 5711263-Fax:+30 210 440171
Mobile: (+30) 6936425722
www.geodomisi.com - costas@sachpazis.info
Project: Raft Foundation Analysis and Design for a 2
Storey House Project.
In accordance with BS8110: PART 1: 1997 and Code of Practice
for Geotechnical design and the U.K. recommended values.
Job Ref. 0519025
www.geodomisi.com
info@geodomisi.com
Section
Civil & Geotechnical Engineering
Sheet no./rev. 1
Calc.
Dr. C. Sachpazis
Date
20/05/2021
Chk'd by Date App'd by Date
Page 16 of 25
Area of reinforcement required; Asbootreq = Mboot/((1.0/s)  fyboot  zboot) = 38 mm2
/m
PASS - Asbootreq <= Asboot - Area of reinforcement provided in boot is adequate for bending
Applied shear stress; vboot = Vboot/dboot = 0.114 N/mm2
Tension steel ratio; boot = 100  Asboot/dboot = 0.077
From BS8110-1:1997 - Table 3.8
Design concrete shear strength;vcboot = 0.365 N/mm2
PASS - vboot <= vcboot - Shear capacity of the boot is adequate
Corner design checks
Basic loading
Corner bearing pressure check
Total uniform load at formation level; wudlcorner = wDudl+wLudl+wedge/bbearing+whcorethick = 10.6 kN/m2
PASS - wudlcorner <= qallow - Applied bearing pressure is less than allowable
Corner beam bending check
Cantilever span of edge beam; lcorner = depthick/(2) + dedgetop/2 = 2673 mm
Moment and shear due to self weight
Ultimate self weight udl; wedgeult = 1.4  wedge = 9.7 kN/m
Average ultimate slab udl (approx); wcornerslab = max(0 kN/m,1.4wslab(depthick/((2)2)-(bedge+(hedge-
hslab)/tan(edge))))
-
Dr. Costas Sachpazis
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock Mechanics,
Foundation Engineering & Retaining Structures.
Tel.: (+30) 210 5238127, 210 5711263-Fax:+30 210 440171
Mobile: (+30) 6936425722
www.geodomisi.com - costas@sachpazis.info
Project: Raft Foundation Analysis and Design for a 2
Storey House Project.
In accordance with BS8110: PART 1: 1997 and Code of Practice
for Geotechnical design and the U.K. recommended values.
Job Ref. 0519025
www.geodomisi.com
info@geodomisi.com
Section
Civil & Geotechnical Engineering
Sheet no./rev. 1
Calc.
Dr. C. Sachpazis
Date
20/05/2021
Chk'd by Date App'd by Date
Page 17 of 25
wcornerslab = 4.3 kN/m
Self weight and slab bending moment; Mcornersw = (wedgeult + wcornerslab)  lcorner
2
/2 = 50.2 kNm
Self weight and slab shear force; Vcornersw = (wedgeult + wcornerslab)  lcorner = 37.6 kN
Moment and shear due to udls
Maximum ultimate udl; wcornerudl = ((1.4wDudl)+(1.6wLudl))  depthick/(2) = 6.3 kN/m
Bending moment; Mcornerudl = wcornerudl  lcorner
2
/6 = 7.5 kNm
Shear force; Vcornerudl = wcornerudl  lcorner/2 = 8.4 kN
Resultant moments and shears
Total design moment; Mcorner = Mcornersw+ Mcornerudl = 57.7 kNm
Total design shear force; Vcorner = Vcornersw+ Vcornerudl = 46.0 kN
Reinforcement required in top of edge beam
K factor; Kcorner = Mcorner/(fcu  bedgetop  dedgetop
2
) = 0.017
Lever arm; zcorner = dedgetop  min(0.95, 0.5 + (0.25 - Kcorner/0.9)) = 376 mm
Area of steel required for bending; Ascornerbend = Mcorner/((1.0/s)  fy  zcorner) = 353 mm2
Minimum area of steel required; Ascornermin = Asedgetopmin = 339 mm2
Area of steel required; Ascorner = max(Ascornerbend, Ascornermin) = 353 mm2
PASS - Ascorner <= Asedgetop - Area of reinforcement provided in top of edge beams at corners is adequate
Corner beam shear check
-
Dr. Costas Sachpazis
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock Mechanics,
Foundation Engineering & Retaining Structures.
Tel.: (+30) 210 5238127, 210 5711263-Fax:+30 210 440171
Mobile: (+30) 6936425722
www.geodomisi.com - costas@sachpazis.info
Project: Raft Foundation Analysis and Design for a 2
Storey House Project.
In accordance with BS8110: PART 1: 1997 and Code of Practice
for Geotechnical design and the U.K. recommended values.
Job Ref. 0519025
www.geodomisi.com
info@geodomisi.com
Section
Civil & Geotechnical Engineering
Sheet no./rev. 1
Calc.
Dr. C. Sachpazis
Date
20/05/2021
Chk'd by Date App'd by Date
Page 18 of 25
Average web width; bw = bedge + (hedge/tan(edge))/2 = 580 mm
Applied shear stress; vcorner = Vcorner/(bw  dedgetop) = 0.200 N/mm2
Tension steel ratio; corner = 100  Asedgetop/(bw  dedgetop) = 0.642
From BS8110-1:1997 - Table 3.8
Design concrete shear strength; vccorner = 0.610 N/mm2
vcorner <= vccorner + 0.4N/mm2
- Therefore minimum links required
Link area to spacing ratio required; Asv_upon_svreqcorner = 0.4N/mm2
 bw/((1.0/s)  fys) = 0.534 mm
Link area to spacing ratio provided; Asv_upon_svprovedge = Nedgelinkedgelink
2
/(4svedge) = 0.823 mm
PASS - Asv_upon_svreqcorner <= Asv_upon_svprovedge - Shear reinforcement provided in edge beams at corners is
adequate
Corner beam deflection check
Basic allowable span to depth ratio; Ratiobasiccorner = 7.0
Moment factor; Mfactorcorner = Mcorner/(bedgetop  dedgetop
2
) = 0.586 N/mm2
Steel service stress; fscorner = 2/3  fy  Ascornerbend/Asedgetop = 79.961 N/mm2
Modification factor; MFcorner=min(2.0,0.55+[(477N/mm2
-
fscorner)/(120(0.9N/mm2
+Mfactorcorner))])
MFcorner = 2.000
Modified allowable span to depth ratio; Ratioallowcorner = Ratiobasiccorner  MFcorner = 14.000
Actual span to depth ratio; Ratioactualcorner = lcorner/ dedgetop = 6.758
-
Dr. Costas Sachpazis
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock Mechanics,
Foundation Engineering & Retaining Structures.
Tel.: (+30) 210 5238127, 210 5711263-Fax:+30 210 440171
Mobile: (+30) 6936425722
www.geodomisi.com - costas@sachpazis.info
Project: Raft Foundation Analysis and Design for a 2
Storey House Project.
In accordance with BS8110: PART 1: 1997 and Code of Practice
for Geotechnical design and the U.K. recommended values.
Job Ref. 0519025
www.geodomisi.com
info@geodomisi.com
Section
Civil & Geotechnical Engineering
Sheet no./rev. 1
Calc.
Dr. C. Sachpazis
Date
20/05/2021
Chk'd by Date App'd by Date
Page 19 of 25
PASS - Ratioactualcorner <= Ratioallowcorner - Edge beam span to depth ratio is adequate
Internal beam design checks
Basic loading
Hardcore; whcorethick = hcore  hhcorethick = 0.0 kN/m2
Internal beam self weight; wint=24 kN/m3
[(hintbint)+(hint-hslab)2
/tan(int)+2hslab(hint-hslab)/tan(int)]
wint = 7.1 kN/m
Internal beam load number 1
Load type; Longitudinal line load
Dead load; wDint1 = 17.0 kN/m
Live load; wLint1 = 4.0 kN/m
Ultimate load; wultint1 = 1.4  wDint1 + 1.6  wLint1 = 30.2 kN/m
Longitudinal line load width; bint1 = 140 mm
Centroid of load from centreline of beam; xint1 = 0 mm
Internal beam load number 2
Load type; Half transverse line load;
Dead load; wDint2 = 21.6 kN/m
Live load; wLint2 = 4.0 kN/m
Ultimate load; wultint2 = 1.4  wDint2 + 1.6  wLint2 = 36.6 kN/m
Transverse line load width; bint2 = 140 mm
-
Dr. Costas Sachpazis
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock Mechanics,
Foundation Engineering & Retaining Structures.
Tel.: (+30) 210 5238127, 210 5711263-Fax:+30 210 440171
Mobile: (+30) 6936425722
www.geodomisi.com - costas@sachpazis.info
Project: Raft Foundation Analysis and Design for a 2
Storey House Project.
In accordance with BS8110: PART 1: 1997 and Code of Practice
for Geotechnical design and the U.K. recommended values.
Job Ref. 0519025
www.geodomisi.com
info@geodomisi.com
Section
Civil & Geotechnical Engineering
Sheet no./rev. 1
Calc.
Dr. C. Sachpazis
Date
20/05/2021
Chk'd by Date App'd by Date
Page 20 of 25
Location of load; +ve side of centreline
Internal beam bearing pressure check
Total uniform load at formation level; wudlint = wDudl+wLudl+whcorethick+24kN/m3
hint = 12.4 kN/m2
Effective point load due to transverse line/point loads
Effective point load due to load 2 (Line load); Wint2 = wultint2  [bint/2 + (hint - hslab)/tan(int)] = 13.5 kN
Total effective point load; Wint = 13.5 kN
Minimum width of effective point load; bintmin = 140 mm
Approximate longitudinal dispersal of effective point load
Approx moment capacity of bottom steel; Mintbtm = (1.0/s)  fy  0.9  dintbtm  Asintbtm = 145.7 kNm
Max allow dispersal based on moment capacity; pintmom = [2Mintbtm +
(4Mintbtm
2
+2WintMintbtmbintmin)]/Wint
pintmom = 43129 mm
Limiting max dispersal to say 5 x beam depth; pint = min(pintmom, 5  hint) = 2250 mm
Total dispersal length of effective point load; linteff = 2  pint + bintmin = 4640 mm
Equivalent and total beam line loads
Equivalent ultimate udl of internal load 2; wintudl2 = Wint2/linteff = 2.9 kN/m
Equivalent unfactored udl of internal load 2; wintudl2sls = wintudl2  (wDint2 + wLint2)/wultint2 = 2.0 kN/m
Sum of factored longitud’l and eff’tive line loads; UDLint = 33.1 kN/m
-
Dr. Costas Sachpazis
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock Mechanics,
Foundation Engineering & Retaining Structures.
Tel.: (+30) 210 5238127, 210 5711263-Fax:+30 210 440171
Mobile: (+30) 6936425722
www.geodomisi.com - costas@sachpazis.info
Project: Raft Foundation Analysis and Design for a 2
Storey House Project.
In accordance with BS8110: PART 1: 1997 and Code of Practice
for Geotechnical design and the U.K. recommended values.
Job Ref. 0519025
www.geodomisi.com
info@geodomisi.com
Section
Civil & Geotechnical Engineering
Sheet no./rev. 1
Calc.
Dr. C. Sachpazis
Date
20/05/2021
Chk'd by Date App'd by Date
Page 21 of 25
Sum of unfactored longitud’l and eff’tive line loads; UDLslsint = 23.0 kN/m
Centroid of loads from centreline of internal beam
Load x distance for internal load 1; Momentint1 = wultint1  xint1 = 0.0 kN
Load x distance for internal load 2; Momentint2 = wintudl2  (bint/2+(hint-hslab)/tan(int))/2 = 0.5 kN
Sum of load x distances; Momentint = 0.5 kN
Centroid of loads; xbarint = Momentint/UDLint = 16.3 mm
Moment due to eccentricity to be resisted by slab; Meccint = UDLint  abs(xbarint) = 0.5 kNm/m
Assume moment due to eccentricity is resisted equally by top steel of slab on one side and bottom steel of slab on other
From slab bending check
Moment due to depression under slab (hogging); Me = 3.6 kNm/m
Total moment to be resisted by slab top steel; Mslabtopint = Meccint/2 + Me = 3.9 kNm/m
K factor; Kslabtopint = Mslabtopint/(fcu  dtslabmin
2
) = 0.004
Lever arm; zslabtopint = dtslabmin  min(0.95, 0.5 + (0.25 - Kslabtopint/0.9)) = 157 mm
Area of steel required; Asslabtopintreq = Mslabtopint/((1.0/s)  fyslab  zslabtopint) = 57 mm2
/m
PASS - Asslabtopintreq <= Asslabtop - Area of reinforcement in top of slab is adequate to transfer moment into slab
Mt to be resisted by slab btm stl due to load ecc’ty; Mslabbtmint = Meccint/2 = 0.3 kNm/m
K factor; Kslabbtmint = Mslabbtmint/(fcu  dbslabmin
2
) = 0.000
Lever arm; zslabbtmint = dbslabmin  min(0.95, 0.5 + (0.25-Kslabbtmint/0.9)) = 143 mm
Area of steel required in bottom; Asslabbtmintreq = Mslabbtmint/((1.0/s)  fyslab  zslabbtmint) = 4 mm2
/m
-
Dr. Costas Sachpazis
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock Mechanics,
Foundation Engineering & Retaining Structures.
Tel.: (+30) 210 5238127, 210 5711263-Fax:+30 210 440171
Mobile: (+30) 6936425722
www.geodomisi.com - costas@sachpazis.info
Project: Raft Foundation Analysis and Design for a 2
Storey House Project.
In accordance with BS8110: PART 1: 1997 and Code of Practice
for Geotechnical design and the U.K. recommended values.
Job Ref. 0519025
www.geodomisi.com
info@geodomisi.com
Section
Civil & Geotechnical Engineering
Sheet no./rev. 1
Calc.
Dr. C. Sachpazis
Date
20/05/2021
Chk'd by Date App'd by Date
Page 22 of 25
PASS - Asslabbtmintreq <= Asslabbtm - Area of reinforcement in bottom of slab is adequate to transfer moment into slab
Bearing pressure
Initially check bearing pressure based on beam soffit/chamfer width only
Allowable bearing width; bbearint=min(2(bint/2tan(int)+hint)/(1+tan(int)),bint+2(hint-
hslab)/tan(int))
bbearint = 615 mm
Bearing pressure due to line/point loads; qlinepointint = UDLslsint/bbearint = 37.5 kN/m2
Total applied bearing pressure; qint = qlinepointint + wudlint = 49.9 kN/m2
PASS - qint <= qallow - Allowable bearing pressure is not exceeded
Internal beam bending check
Divider for moments due to udl’s; udl = 10.0
Divider for moments due to point loads; point = 6.0
Applied bending moments
Span of internal beam; lint = depthick + dinttop = 3900 mm
Ultimate self weight udl; wintult = 1.4  wint = 10.0 kN/m
Ultimate slab udl (approx); wintslab = max(0 kN/m,1.4wslab((depthick3/4)-(bint+2(hint-
hslab)/tan(int))))
wintslab = 12.7 kN/m
-
Dr. Costas Sachpazis
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock Mechanics,
Foundation Engineering & Retaining Structures.
Tel.: (+30) 210 5238127, 210 5711263-Fax:+30 210 440171
Mobile: (+30) 6936425722
www.geodomisi.com - costas@sachpazis.info
Project: Raft Foundation Analysis and Design for a 2
Storey House Project.
In accordance with BS8110: PART 1: 1997 and Code of Practice
for Geotechnical design and the U.K. recommended values.
Job Ref. 0519025
www.geodomisi.com
info@geodomisi.com
Section
Civil & Geotechnical Engineering
Sheet no./rev. 1
Calc.
Dr. C. Sachpazis
Date
20/05/2021
Chk'd by Date App'd by Date
Page 23 of 25
Self weight and slab bending moment; Mintsw = (wintult + wintslab)  lint
2
/udl = 34.4 kNm
Self weight shear force; Vintsw = (wintult + wintslab)  lint/2 = 44.1 kN
Moments due to applied uniformly distributed loads
Ultimate udl (approx); wintudl = wudlult  depthick  3/4 = 6.7 kN/m
Bending moment; Mintudl = wintudl  lint
2
/udl = 10.1 kNm
Shear force; Vintudl = wintudl  lint/2 = 13.0 kN
Moment and shear due to load number 1
Bending moment; Mint1 = wultint1  lint
2
/udl = 45.9 kNm
Shear force; Vint1 = wultint1  lint/2 = 58.9 kN
Moment and shear due to load number 2
Ultimate point load; Wint2 = wultint2  depthick/2  3/4 = 48.1 kN
Bending moment; Mint2 = Wint2  lint/point = 31.3 kNm
Shear force; Vint2 = Wint2 = 48.1 kN
Resultant moments and shears
Total moment (hogging and sagging); Mint = 121.8 kNm
Maximum shear force; Vint = 164.1 kN
Reinforcement required in top
Width of section in compression zone; binttop = bint = 450 mm
-
Dr. Costas Sachpazis
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock Mechanics,
Foundation Engineering & Retaining Structures.
Tel.: (+30) 210 5238127, 210 5711263-Fax:+30 210 440171
Mobile: (+30) 6936425722
www.geodomisi.com - costas@sachpazis.info
Project: Raft Foundation Analysis and Design for a 2
Storey House Project.
In accordance with BS8110: PART 1: 1997 and Code of Practice
for Geotechnical design and the U.K. recommended values.
Job Ref. 0519025
www.geodomisi.com
info@geodomisi.com
Section
Civil & Geotechnical Engineering
Sheet no./rev. 1
Calc.
Dr. C. Sachpazis
Date
20/05/2021
Chk'd by Date App'd by Date
Page 24 of 25
Average web width; bwint = bint + hint/tan(int) = 710 mm
K factor; Kinttop = Mint/(fcu  binttop  dinttop
2
) = 0.048
Lever arm; zinttop = dinttop  min(0.95, 0.5 + (0.25 - Kinttop/0.9)) = 377 mm
Area of steel required for bending; Asinttopbend = Mint/((1.0/s)  fy  zinttop) = 742 mm2
Minimum area of steel; Asinttopmin = 0.0013  bwint  hint = 415 mm2
Area of steel required; Asinttopreq = max(Asinttopbend, Asinttopmin) = 742 mm2
PASS - Asinttopreq <= Asinttop - Area of reinforcement provided in top of internal beams is adequate
Reinforcement required in bottom
Width of section in compression zone; bintbtm = bint + 2  (hint - hslab)/tan(int) + 0.2  lint = 1519 mm
K factor; Kintbtm = Mint/(fcu  bintbtm  dintbtm
2
) = 0.015
Lever arm; zintbtm = dintbtm  min(0.95, 0.5 + (0.25 - Kintbtm/0.9)) = 375 mm
Area of steel required for bending; Asintbtmbend = Mint/((1.0/s)  fy  zintbtm) = 746 mm2
Minimum area of steel required; Asintbtmmin = 0.0013  1.0  bwint  hint = 415 mm2
Area of steel required; Asintbtmreq = max(Asintbtmbend, Asintbtmmin) = 746 mm2
PASS - Asintbtmreq <= Asintbtm - Area of reinforcement provided in bottom of internal beams is adequate
Internal beam shear check
Applied shear stress; vint = Vint/(bwint  dinttop) = 0.578 N/mm2
Tension steel ratio; int = 100  Asinttop/(bwint  dinttop) = 0.332
From BS8110-1:1997 - Table 3.8
-
Dr. Costas Sachpazis
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock Mechanics,
Foundation Engineering & Retaining Structures.
Tel.: (+30) 210 5238127, 210 5711263-Fax:+30 210 440171
Mobile: (+30) 6936425722
www.geodomisi.com - costas@sachpazis.info
Project: Raft Foundation Analysis and Design for a 2
Storey House Project.
In accordance with BS8110: PART 1: 1997 and Code of Practice
for Geotechnical design and the U.K. recommended values.
Job Ref. 0519025
www.geodomisi.com
info@geodomisi.com
Section
Civil & Geotechnical Engineering
Sheet no./rev. 1
Calc.
Dr. C. Sachpazis
Date
20/05/2021
Chk'd by Date App'd by Date
Page 25 of 25
Design concrete shear strength; vcint = 0.490 N/mm2
vint <= vcint + 0.4N/mm2
- Therefore minimum links required
Link area to spacing ratio required; Asv_upon_svreqint = 0.4N/mm2
 bwint/((1.0/s)  fys) = 0.653 mm
Link area to spacing ratio provided; Asv_upon_svprovint = Nintlinkintlink
2
/(4svint) = 0.698 mm
PASS - Asv_upon_svreqint <= Asv_upon_svprovint - Shear reinforcement provided in internal beams is adequate
GEODOMISI Ltd. - Dr. Costas Sachpazis
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock Mechanics,
Foundation Engineering & Retaining Structures.
Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 -
Mobile: (+30) 6936425722 & (+44) 7585939944,
www.geodomisi.com - costas@sachpazis.info

Más contenido relacionado

La actualidad más candente

Rectangular tank example_latest
Rectangular tank example_latestRectangular tank example_latest
Rectangular tank example_latestVedachalam Mani
 
Steel Warehouse Project
Steel Warehouse ProjectSteel Warehouse Project
Steel Warehouse ProjectJawad Shaukat
 
Sachpazis: Wind Loading Analysis & Design for a Hipped Roof Example According...
Sachpazis: Wind Loading Analysis & Design for a Hipped Roof Example According...Sachpazis: Wind Loading Analysis & Design for a Hipped Roof Example According...
Sachpazis: Wind Loading Analysis & Design for a Hipped Roof Example According...Dr.Costas Sachpazis
 
Sachpazis: Strip Foundation Analysis and Design example (EN1997-1:2004)
Sachpazis: Strip Foundation Analysis and Design example (EN1997-1:2004)Sachpazis: Strip Foundation Analysis and Design example (EN1997-1:2004)
Sachpazis: Strip Foundation Analysis and Design example (EN1997-1:2004)Dr.Costas Sachpazis
 
Numerical problem pile capacity (usefulsearch.org) (useful search)
Numerical problem pile capacity (usefulsearch.org) (useful search)Numerical problem pile capacity (usefulsearch.org) (useful search)
Numerical problem pile capacity (usefulsearch.org) (useful search)Make Mannan
 
Question and Answers on Terzaghi’s Bearing Capacity Theory (usefulsearch.org)...
Question and Answers on Terzaghi’s Bearing Capacity Theory (usefulsearch.org)...Question and Answers on Terzaghi’s Bearing Capacity Theory (usefulsearch.org)...
Question and Answers on Terzaghi’s Bearing Capacity Theory (usefulsearch.org)...Make Mannan
 
Design of two way slabs(d.d.m.)
Design of two way slabs(d.d.m.)Design of two way slabs(d.d.m.)
Design of two way slabs(d.d.m.)Malika khalil
 
09-Strength of Gusset Plate (Steel Structural Design & Prof. Shehab Mourad)
09-Strength of Gusset Plate (Steel Structural Design & Prof. Shehab Mourad)09-Strength of Gusset Plate (Steel Structural Design & Prof. Shehab Mourad)
09-Strength of Gusset Plate (Steel Structural Design & Prof. Shehab Mourad)Hossam Shafiq II
 
Geotechnical Engineering-II [Lec #19: General Bearing Capacity Equation]
Geotechnical Engineering-II [Lec #19: General Bearing Capacity Equation]Geotechnical Engineering-II [Lec #19: General Bearing Capacity Equation]
Geotechnical Engineering-II [Lec #19: General Bearing Capacity Equation]Muhammad Irfan
 
Retaining walls (الجدران الاستنادية)-steel sheet piles - sheet piles wall
Retaining walls (الجدران الاستنادية)-steel sheet piles - sheet piles wallRetaining walls (الجدران الاستنادية)-steel sheet piles - sheet piles wall
Retaining walls (الجدران الاستنادية)-steel sheet piles - sheet piles wallDr.Youssef Hammida
 
Pile Eccentricity Analysis for 2 Columns Combined Pilecap
Pile Eccentricity Analysis for 2 Columns Combined PilecapPile Eccentricity Analysis for 2 Columns Combined Pilecap
Pile Eccentricity Analysis for 2 Columns Combined Pilecapazhar ahmad
 
Lateral Earth Pressure
Lateral Earth PressureLateral Earth Pressure
Lateral Earth PressureFast-NU Lahore
 
Repair and Retrofit on Beam and Column Joints
Repair and Retrofit on Beam and Column JointsRepair and Retrofit on Beam and Column Joints
Repair and Retrofit on Beam and Column Jointsamerald24
 
Geo Technical Engineering (lateral earth pressure)
Geo Technical Engineering (lateral earth pressure)Geo Technical Engineering (lateral earth pressure)
Geo Technical Engineering (lateral earth pressure)Latif Hyder Wadho
 
Unit 1 sheet pile-converted
Unit 1   sheet pile-convertedUnit 1   sheet pile-converted
Unit 1 sheet pile-convertedNigitha rajan
 

La actualidad más candente (20)

Rectangular tank example_latest
Rectangular tank example_latestRectangular tank example_latest
Rectangular tank example_latest
 
Steel Warehouse Project
Steel Warehouse ProjectSteel Warehouse Project
Steel Warehouse Project
 
Sachpazis: Wind Loading Analysis & Design for a Hipped Roof Example According...
Sachpazis: Wind Loading Analysis & Design for a Hipped Roof Example According...Sachpazis: Wind Loading Analysis & Design for a Hipped Roof Example According...
Sachpazis: Wind Loading Analysis & Design for a Hipped Roof Example According...
 
Sachpazis: Strip Foundation Analysis and Design example (EN1997-1:2004)
Sachpazis: Strip Foundation Analysis and Design example (EN1997-1:2004)Sachpazis: Strip Foundation Analysis and Design example (EN1997-1:2004)
Sachpazis: Strip Foundation Analysis and Design example (EN1997-1:2004)
 
Numerical problem pile capacity (usefulsearch.org) (useful search)
Numerical problem pile capacity (usefulsearch.org) (useful search)Numerical problem pile capacity (usefulsearch.org) (useful search)
Numerical problem pile capacity (usefulsearch.org) (useful search)
 
Chapter 21
Chapter 21Chapter 21
Chapter 21
 
Question and Answers on Terzaghi’s Bearing Capacity Theory (usefulsearch.org)...
Question and Answers on Terzaghi’s Bearing Capacity Theory (usefulsearch.org)...Question and Answers on Terzaghi’s Bearing Capacity Theory (usefulsearch.org)...
Question and Answers on Terzaghi’s Bearing Capacity Theory (usefulsearch.org)...
 
Design of two way slabs(d.d.m.)
Design of two way slabs(d.d.m.)Design of two way slabs(d.d.m.)
Design of two way slabs(d.d.m.)
 
One way slab load calculation
One way slab load calculation One way slab load calculation
One way slab load calculation
 
09-Strength of Gusset Plate (Steel Structural Design & Prof. Shehab Mourad)
09-Strength of Gusset Plate (Steel Structural Design & Prof. Shehab Mourad)09-Strength of Gusset Plate (Steel Structural Design & Prof. Shehab Mourad)
09-Strength of Gusset Plate (Steel Structural Design & Prof. Shehab Mourad)
 
Geotechnical Engineering-II [Lec #19: General Bearing Capacity Equation]
Geotechnical Engineering-II [Lec #19: General Bearing Capacity Equation]Geotechnical Engineering-II [Lec #19: General Bearing Capacity Equation]
Geotechnical Engineering-II [Lec #19: General Bearing Capacity Equation]
 
Retaining walls (الجدران الاستنادية)-steel sheet piles - sheet piles wall
Retaining walls (الجدران الاستنادية)-steel sheet piles - sheet piles wallRetaining walls (الجدران الاستنادية)-steel sheet piles - sheet piles wall
Retaining walls (الجدران الاستنادية)-steel sheet piles - sheet piles wall
 
Pile Eccentricity Analysis for 2 Columns Combined Pilecap
Pile Eccentricity Analysis for 2 Columns Combined PilecapPile Eccentricity Analysis for 2 Columns Combined Pilecap
Pile Eccentricity Analysis for 2 Columns Combined Pilecap
 
Design and analysis of slabs
Design and analysis of slabsDesign and analysis of slabs
Design and analysis of slabs
 
Prestressed Concrete
Prestressed ConcretePrestressed Concrete
Prestressed Concrete
 
Lateral Earth Pressure
Lateral Earth PressureLateral Earth Pressure
Lateral Earth Pressure
 
Ch 7 design of rcc footing
Ch 7 design of rcc footingCh 7 design of rcc footing
Ch 7 design of rcc footing
 
Repair and Retrofit on Beam and Column Joints
Repair and Retrofit on Beam and Column JointsRepair and Retrofit on Beam and Column Joints
Repair and Retrofit on Beam and Column Joints
 
Geo Technical Engineering (lateral earth pressure)
Geo Technical Engineering (lateral earth pressure)Geo Technical Engineering (lateral earth pressure)
Geo Technical Engineering (lateral earth pressure)
 
Unit 1 sheet pile-converted
Unit 1   sheet pile-convertedUnit 1   sheet pile-converted
Unit 1 sheet pile-converted
 

Similar a Sachpazis: Raft Foundation Analysis and Design for a two Storey House Project project

Sachpazis: Raft Foundation Analysis & Design BS8110:part 1-1997_for MultiStor...
Sachpazis: Raft Foundation Analysis & Design BS8110:part 1-1997_for MultiStor...Sachpazis: Raft Foundation Analysis & Design BS8110:part 1-1997_for MultiStor...
Sachpazis: Raft Foundation Analysis & Design BS8110:part 1-1997_for MultiStor...Dr.Costas Sachpazis
 
Sachpazis: Reinforced Concrete Beam Analysis & Design Example (EN1992-1-3)
Sachpazis: Reinforced Concrete Beam Analysis & Design Example (EN1992-1-3)Sachpazis: Reinforced Concrete Beam Analysis & Design Example (EN1992-1-3)
Sachpazis: Reinforced Concrete Beam Analysis & Design Example (EN1992-1-3)Dr.Costas Sachpazis
 
Sachpazis steel sheet piling analysis &amp; design, fixed earth support in ac...
Sachpazis steel sheet piling analysis &amp; design, fixed earth support in ac...Sachpazis steel sheet piling analysis &amp; design, fixed earth support in ac...
Sachpazis steel sheet piling analysis &amp; design, fixed earth support in ac...Dr.Costas Sachpazis
 
Sachpazis_CHS Column base plate to EC3 1993-1 with NA CEN
Sachpazis_CHS Column base plate to EC3 1993-1 with NA CENSachpazis_CHS Column base plate to EC3 1993-1 with NA CEN
Sachpazis_CHS Column base plate to EC3 1993-1 with NA CENDr.Costas Sachpazis
 
Sachpazis_Pile Analysis & Design example According to EN 1997-1_2004_March-2017
Sachpazis_Pile Analysis & Design example According to EN 1997-1_2004_March-2017Sachpazis_Pile Analysis & Design example According to EN 1997-1_2004_March-2017
Sachpazis_Pile Analysis & Design example According to EN 1997-1_2004_March-2017Dr.Costas Sachpazis
 
Sachpazis cantilever retaining wall analysis & design (en1997-1-2004)
Sachpazis cantilever retaining wall analysis & design (en1997-1-2004)Sachpazis cantilever retaining wall analysis & design (en1997-1-2004)
Sachpazis cantilever retaining wall analysis & design (en1997-1-2004)Dr.Costas Sachpazis
 
Sachpazis: Sloped rear face retaining wall example
Sachpazis: Sloped rear face retaining wall exampleSachpazis: Sloped rear face retaining wall example
Sachpazis: Sloped rear face retaining wall exampleDr.Costas Sachpazis
 
Sachpazis RC Slab Analysis and Design in accordance with EN 1992 1-1 2004-Two...
Sachpazis RC Slab Analysis and Design in accordance with EN 1992 1-1 2004-Two...Sachpazis RC Slab Analysis and Design in accordance with EN 1992 1-1 2004-Two...
Sachpazis RC Slab Analysis and Design in accordance with EN 1992 1-1 2004-Two...Dr.Costas Sachpazis
 
Sachpazis pile analysis & design. calculation according to en 1997 1-2004
Sachpazis pile analysis & design. calculation according to en 1997 1-2004Sachpazis pile analysis & design. calculation according to en 1997 1-2004
Sachpazis pile analysis & design. calculation according to en 1997 1-2004Dr.Costas Sachpazis
 
Sachpazis pile analysis & design, in accordance with en 1997 1-2004
Sachpazis pile analysis & design, in accordance with en 1997 1-2004Sachpazis pile analysis & design, in accordance with en 1997 1-2004
Sachpazis pile analysis & design, in accordance with en 1997 1-2004Dr.Costas Sachpazis
 
Sachpazis: Flat slab design to bs8110 part 1-1997
Sachpazis: Flat slab design to bs8110 part 1-1997Sachpazis: Flat slab design to bs8110 part 1-1997
Sachpazis: Flat slab design to bs8110 part 1-1997Dr.Costas Sachpazis
 
Sachpazis reinforced masonry retaining wall analysis & design, in accordance ...
Sachpazis reinforced masonry retaining wall analysis & design, in accordance ...Sachpazis reinforced masonry retaining wall analysis & design, in accordance ...
Sachpazis reinforced masonry retaining wall analysis & design, in accordance ...Dr.Costas Sachpazis
 
Sachpazis Masonry Column with eccentric vertical Loading Analysis & Design (E...
Sachpazis Masonry Column with eccentric vertical Loading Analysis & Design (E...Sachpazis Masonry Column with eccentric vertical Loading Analysis & Design (E...
Sachpazis Masonry Column with eccentric vertical Loading Analysis & Design (E...Dr.Costas Sachpazis
 
Sachpazis masonry column with eccentric vertical and wind loading in accordan...
Sachpazis masonry column with eccentric vertical and wind loading in accordan...Sachpazis masonry column with eccentric vertical and wind loading in accordan...
Sachpazis masonry column with eccentric vertical and wind loading in accordan...Dr.Costas Sachpazis
 
Sachpazis Foundation Pad with Two Columns Analysis & Design According to EC2 ...
Sachpazis Foundation Pad with Two Columns Analysis & Design According to EC2 ...Sachpazis Foundation Pad with Two Columns Analysis & Design According to EC2 ...
Sachpazis Foundation Pad with Two Columns Analysis & Design According to EC2 ...Dr.Costas Sachpazis
 
Sachpazis_Circular Section Column Design & Analysis, Calculations according t...
Sachpazis_Circular Section Column Design & Analysis, Calculations according t...Sachpazis_Circular Section Column Design & Analysis, Calculations according t...
Sachpazis_Circular Section Column Design & Analysis, Calculations according t...Dr.Costas Sachpazis
 
Sachpazis: Two-way RC Slab Slab Analysis & Design (EN1992-1-1:2004) example
Sachpazis: Two-way RC Slab Slab Analysis & Design (EN1992-1-1:2004) exampleSachpazis: Two-way RC Slab Slab Analysis & Design (EN1992-1-1:2004) example
Sachpazis: Two-way RC Slab Slab Analysis & Design (EN1992-1-1:2004) exampleDr.Costas Sachpazis
 
Masonry Wall Panel Analysis & Design, In accordance with EN1996-1-1:2005
Masonry Wall Panel Analysis & Design, In accordance with EN1996-1-1:2005Masonry Wall Panel Analysis & Design, In accordance with EN1996-1-1:2005
Masonry Wall Panel Analysis & Design, In accordance with EN1996-1-1:2005Dr.Costas Sachpazis
 
Sachpazis: Retaining wall Analysis & Design (EN1997-1:2004 incorporating Corr...
Sachpazis: Retaining wall Analysis & Design (EN1997-1:2004 incorporating Corr...Sachpazis: Retaining wall Analysis & Design (EN1997-1:2004 incorporating Corr...
Sachpazis: Retaining wall Analysis & Design (EN1997-1:2004 incorporating Corr...Dr.Costas Sachpazis
 
Geodomisi cantilever retaining_wall_analysis_sachpazis
Geodomisi cantilever retaining_wall_analysis_sachpazisGeodomisi cantilever retaining_wall_analysis_sachpazis
Geodomisi cantilever retaining_wall_analysis_sachpazisDr.Costas Sachpazis
 

Similar a Sachpazis: Raft Foundation Analysis and Design for a two Storey House Project project (20)

Sachpazis: Raft Foundation Analysis & Design BS8110:part 1-1997_for MultiStor...
Sachpazis: Raft Foundation Analysis & Design BS8110:part 1-1997_for MultiStor...Sachpazis: Raft Foundation Analysis & Design BS8110:part 1-1997_for MultiStor...
Sachpazis: Raft Foundation Analysis & Design BS8110:part 1-1997_for MultiStor...
 
Sachpazis: Reinforced Concrete Beam Analysis & Design Example (EN1992-1-3)
Sachpazis: Reinforced Concrete Beam Analysis & Design Example (EN1992-1-3)Sachpazis: Reinforced Concrete Beam Analysis & Design Example (EN1992-1-3)
Sachpazis: Reinforced Concrete Beam Analysis & Design Example (EN1992-1-3)
 
Sachpazis steel sheet piling analysis &amp; design, fixed earth support in ac...
Sachpazis steel sheet piling analysis &amp; design, fixed earth support in ac...Sachpazis steel sheet piling analysis &amp; design, fixed earth support in ac...
Sachpazis steel sheet piling analysis &amp; design, fixed earth support in ac...
 
Sachpazis_CHS Column base plate to EC3 1993-1 with NA CEN
Sachpazis_CHS Column base plate to EC3 1993-1 with NA CENSachpazis_CHS Column base plate to EC3 1993-1 with NA CEN
Sachpazis_CHS Column base plate to EC3 1993-1 with NA CEN
 
Sachpazis_Pile Analysis & Design example According to EN 1997-1_2004_March-2017
Sachpazis_Pile Analysis & Design example According to EN 1997-1_2004_March-2017Sachpazis_Pile Analysis & Design example According to EN 1997-1_2004_March-2017
Sachpazis_Pile Analysis & Design example According to EN 1997-1_2004_March-2017
 
Sachpazis cantilever retaining wall analysis & design (en1997-1-2004)
Sachpazis cantilever retaining wall analysis & design (en1997-1-2004)Sachpazis cantilever retaining wall analysis & design (en1997-1-2004)
Sachpazis cantilever retaining wall analysis & design (en1997-1-2004)
 
Sachpazis: Sloped rear face retaining wall example
Sachpazis: Sloped rear face retaining wall exampleSachpazis: Sloped rear face retaining wall example
Sachpazis: Sloped rear face retaining wall example
 
Sachpazis RC Slab Analysis and Design in accordance with EN 1992 1-1 2004-Two...
Sachpazis RC Slab Analysis and Design in accordance with EN 1992 1-1 2004-Two...Sachpazis RC Slab Analysis and Design in accordance with EN 1992 1-1 2004-Two...
Sachpazis RC Slab Analysis and Design in accordance with EN 1992 1-1 2004-Two...
 
Sachpazis pile analysis & design. calculation according to en 1997 1-2004
Sachpazis pile analysis & design. calculation according to en 1997 1-2004Sachpazis pile analysis & design. calculation according to en 1997 1-2004
Sachpazis pile analysis & design. calculation according to en 1997 1-2004
 
Sachpazis pile analysis & design, in accordance with en 1997 1-2004
Sachpazis pile analysis & design, in accordance with en 1997 1-2004Sachpazis pile analysis & design, in accordance with en 1997 1-2004
Sachpazis pile analysis & design, in accordance with en 1997 1-2004
 
Sachpazis: Flat slab design to bs8110 part 1-1997
Sachpazis: Flat slab design to bs8110 part 1-1997Sachpazis: Flat slab design to bs8110 part 1-1997
Sachpazis: Flat slab design to bs8110 part 1-1997
 
Sachpazis reinforced masonry retaining wall analysis & design, in accordance ...
Sachpazis reinforced masonry retaining wall analysis & design, in accordance ...Sachpazis reinforced masonry retaining wall analysis & design, in accordance ...
Sachpazis reinforced masonry retaining wall analysis & design, in accordance ...
 
Sachpazis Masonry Column with eccentric vertical Loading Analysis & Design (E...
Sachpazis Masonry Column with eccentric vertical Loading Analysis & Design (E...Sachpazis Masonry Column with eccentric vertical Loading Analysis & Design (E...
Sachpazis Masonry Column with eccentric vertical Loading Analysis & Design (E...
 
Sachpazis masonry column with eccentric vertical and wind loading in accordan...
Sachpazis masonry column with eccentric vertical and wind loading in accordan...Sachpazis masonry column with eccentric vertical and wind loading in accordan...
Sachpazis masonry column with eccentric vertical and wind loading in accordan...
 
Sachpazis Foundation Pad with Two Columns Analysis & Design According to EC2 ...
Sachpazis Foundation Pad with Two Columns Analysis & Design According to EC2 ...Sachpazis Foundation Pad with Two Columns Analysis & Design According to EC2 ...
Sachpazis Foundation Pad with Two Columns Analysis & Design According to EC2 ...
 
Sachpazis_Circular Section Column Design & Analysis, Calculations according t...
Sachpazis_Circular Section Column Design & Analysis, Calculations according t...Sachpazis_Circular Section Column Design & Analysis, Calculations according t...
Sachpazis_Circular Section Column Design & Analysis, Calculations according t...
 
Sachpazis: Two-way RC Slab Slab Analysis & Design (EN1992-1-1:2004) example
Sachpazis: Two-way RC Slab Slab Analysis & Design (EN1992-1-1:2004) exampleSachpazis: Two-way RC Slab Slab Analysis & Design (EN1992-1-1:2004) example
Sachpazis: Two-way RC Slab Slab Analysis & Design (EN1992-1-1:2004) example
 
Masonry Wall Panel Analysis & Design, In accordance with EN1996-1-1:2005
Masonry Wall Panel Analysis & Design, In accordance with EN1996-1-1:2005Masonry Wall Panel Analysis & Design, In accordance with EN1996-1-1:2005
Masonry Wall Panel Analysis & Design, In accordance with EN1996-1-1:2005
 
Sachpazis: Retaining wall Analysis & Design (EN1997-1:2004 incorporating Corr...
Sachpazis: Retaining wall Analysis & Design (EN1997-1:2004 incorporating Corr...Sachpazis: Retaining wall Analysis & Design (EN1997-1:2004 incorporating Corr...
Sachpazis: Retaining wall Analysis & Design (EN1997-1:2004 incorporating Corr...
 
Geodomisi cantilever retaining_wall_analysis_sachpazis
Geodomisi cantilever retaining_wall_analysis_sachpazisGeodomisi cantilever retaining_wall_analysis_sachpazis
Geodomisi cantilever retaining_wall_analysis_sachpazis
 

Más de Dr.Costas Sachpazis

Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Dr.Costas Sachpazis
 
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Dr.Costas Sachpazis
 
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionSachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionDr.Costas Sachpazis
 
Sachpazis: Steel member fire resistance design to Eurocode 3 / Σαχπάζης: Σχεδ...
Sachpazis: Steel member fire resistance design to Eurocode 3 / Σαχπάζης: Σχεδ...Sachpazis: Steel member fire resistance design to Eurocode 3 / Σαχπάζης: Σχεδ...
Sachpazis: Steel member fire resistance design to Eurocode 3 / Σαχπάζης: Σχεδ...Dr.Costas Sachpazis
 
Sachpazis_Retaining Structures-Ground Anchors and Anchored Systems_C_Sachpazi...
Sachpazis_Retaining Structures-Ground Anchors and Anchored Systems_C_Sachpazi...Sachpazis_Retaining Structures-Ground Anchors and Anchored Systems_C_Sachpazi...
Sachpazis_Retaining Structures-Ground Anchors and Anchored Systems_C_Sachpazi...Dr.Costas Sachpazis
 
ΓΕΩΛΟΓΙΚΟΙ ΧΑΡΤΕΣ IntroToMaps_v2_PART1.ppt
ΓΕΩΛΟΓΙΚΟΙ ΧΑΡΤΕΣ IntroToMaps_v2_PART1.pptΓΕΩΛΟΓΙΚΟΙ ΧΑΡΤΕΣ IntroToMaps_v2_PART1.ppt
ΓΕΩΛΟΓΙΚΟΙ ΧΑΡΤΕΣ IntroToMaps_v2_PART1.pptDr.Costas Sachpazis
 
Sachpazis σαχπάζης φορέας αμφιέρειστης πλάκας
Sachpazis σαχπάζης φορέας αμφιέρειστης πλάκαςSachpazis σαχπάζης φορέας αμφιέρειστης πλάκας
Sachpazis σαχπάζης φορέας αμφιέρειστης πλάκαςDr.Costas Sachpazis
 
Single pile analysis &amp; design, l=18,00m d=1,10m, by C.Sachpazis
Single pile analysis &amp; design, l=18,00m d=1,10m, by C.SachpazisSingle pile analysis &amp; design, l=18,00m d=1,10m, by C.Sachpazis
Single pile analysis &amp; design, l=18,00m d=1,10m, by C.SachpazisDr.Costas Sachpazis
 
Pile configuration optimization on the design of combined piled raft foundations
Pile configuration optimization on the design of combined piled raft foundationsPile configuration optimization on the design of combined piled raft foundations
Pile configuration optimization on the design of combined piled raft foundationsDr.Costas Sachpazis
 
Σαχπάζης Πλεονεκτήματα και Προκλήσεις της Αιολικής Ενέργειας
Σαχπάζης Πλεονεκτήματα και Προκλήσεις της Αιολικής ΕνέργειαςΣαχπάζης Πλεονεκτήματα και Προκλήσεις της Αιολικής Ενέργειας
Σαχπάζης Πλεονεκτήματα και Προκλήσεις της Αιολικής ΕνέργειαςDr.Costas Sachpazis
 
Sachpazis_Pile Analysis and Design for Acropolis Project According to EN 1997...
Sachpazis_Pile Analysis and Design for Acropolis Project According to EN 1997...Sachpazis_Pile Analysis and Design for Acropolis Project According to EN 1997...
Sachpazis_Pile Analysis and Design for Acropolis Project According to EN 1997...Dr.Costas Sachpazis
 
Sachpazis truss analysis and design example_28-02-2021
Sachpazis truss analysis and design example_28-02-2021Sachpazis truss analysis and design example_28-02-2021
Sachpazis truss analysis and design example_28-02-2021Dr.Costas Sachpazis
 
Sachpazis" Analysis of Geogrid Reinforced Earth Slope Stability & Capacity
Sachpazis" Analysis of Geogrid Reinforced Earth Slope Stability & CapacitySachpazis" Analysis of Geogrid Reinforced Earth Slope Stability & Capacity
Sachpazis" Analysis of Geogrid Reinforced Earth Slope Stability & CapacityDr.Costas Sachpazis
 
Sachpazis what is differential settlement 4654
Sachpazis what is differential settlement 4654Sachpazis what is differential settlement 4654
Sachpazis what is differential settlement 4654Dr.Costas Sachpazis
 
Sachpazis: Retaining Walls - Know How Basics_
Sachpazis: Retaining Walls - Know How Basics_Sachpazis: Retaining Walls - Know How Basics_
Sachpazis: Retaining Walls - Know How Basics_Dr.Costas Sachpazis
 
Sachpazis: Hydraulic Structures / About Dams
Sachpazis: Hydraulic Structures / About DamsSachpazis: Hydraulic Structures / About Dams
Sachpazis: Hydraulic Structures / About DamsDr.Costas Sachpazis
 
Sachpazis: Slope Stability Analysis
Sachpazis: Slope Stability AnalysisSachpazis: Slope Stability Analysis
Sachpazis: Slope Stability AnalysisDr.Costas Sachpazis
 

Más de Dr.Costas Sachpazis (20)

Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
 
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
 
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionSachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
 
Sachpazis: Steel member fire resistance design to Eurocode 3 / Σαχπάζης: Σχεδ...
Sachpazis: Steel member fire resistance design to Eurocode 3 / Σαχπάζης: Σχεδ...Sachpazis: Steel member fire resistance design to Eurocode 3 / Σαχπάζης: Σχεδ...
Sachpazis: Steel member fire resistance design to Eurocode 3 / Σαχπάζης: Σχεδ...
 
Sachpazis_Retaining Structures-Ground Anchors and Anchored Systems_C_Sachpazi...
Sachpazis_Retaining Structures-Ground Anchors and Anchored Systems_C_Sachpazi...Sachpazis_Retaining Structures-Ground Anchors and Anchored Systems_C_Sachpazi...
Sachpazis_Retaining Structures-Ground Anchors and Anchored Systems_C_Sachpazi...
 
Chapter9Lec16Jan03.ppt
Chapter9Lec16Jan03.pptChapter9Lec16Jan03.ppt
Chapter9Lec16Jan03.ppt
 
ΓΕΩΛΟΓΙΚΟΙ ΧΑΡΤΕΣ IntroToMaps_v2_PART1.ppt
ΓΕΩΛΟΓΙΚΟΙ ΧΑΡΤΕΣ IntroToMaps_v2_PART1.pptΓΕΩΛΟΓΙΚΟΙ ΧΑΡΤΕΣ IntroToMaps_v2_PART1.ppt
ΓΕΩΛΟΓΙΚΟΙ ΧΑΡΤΕΣ IntroToMaps_v2_PART1.ppt
 
MBA-EMarketing-Lecture.pptx
MBA-EMarketing-Lecture.pptxMBA-EMarketing-Lecture.pptx
MBA-EMarketing-Lecture.pptx
 
Marketing.ppt
Marketing.pptMarketing.ppt
Marketing.ppt
 
Sachpazis σαχπάζης φορέας αμφιέρειστης πλάκας
Sachpazis σαχπάζης φορέας αμφιέρειστης πλάκαςSachpazis σαχπάζης φορέας αμφιέρειστης πλάκας
Sachpazis σαχπάζης φορέας αμφιέρειστης πλάκας
 
Single pile analysis &amp; design, l=18,00m d=1,10m, by C.Sachpazis
Single pile analysis &amp; design, l=18,00m d=1,10m, by C.SachpazisSingle pile analysis &amp; design, l=18,00m d=1,10m, by C.Sachpazis
Single pile analysis &amp; design, l=18,00m d=1,10m, by C.Sachpazis
 
Pile configuration optimization on the design of combined piled raft foundations
Pile configuration optimization on the design of combined piled raft foundationsPile configuration optimization on the design of combined piled raft foundations
Pile configuration optimization on the design of combined piled raft foundations
 
Σαχπάζης Πλεονεκτήματα και Προκλήσεις της Αιολικής Ενέργειας
Σαχπάζης Πλεονεκτήματα και Προκλήσεις της Αιολικής ΕνέργειαςΣαχπάζης Πλεονεκτήματα και Προκλήσεις της Αιολικής Ενέργειας
Σαχπάζης Πλεονεκτήματα και Προκλήσεις της Αιολικής Ενέργειας
 
Sachpazis_Pile Analysis and Design for Acropolis Project According to EN 1997...
Sachpazis_Pile Analysis and Design for Acropolis Project According to EN 1997...Sachpazis_Pile Analysis and Design for Acropolis Project According to EN 1997...
Sachpazis_Pile Analysis and Design for Acropolis Project According to EN 1997...
 
Sachpazis truss analysis and design example_28-02-2021
Sachpazis truss analysis and design example_28-02-2021Sachpazis truss analysis and design example_28-02-2021
Sachpazis truss analysis and design example_28-02-2021
 
Sachpazis" Analysis of Geogrid Reinforced Earth Slope Stability & Capacity
Sachpazis" Analysis of Geogrid Reinforced Earth Slope Stability & CapacitySachpazis" Analysis of Geogrid Reinforced Earth Slope Stability & Capacity
Sachpazis" Analysis of Geogrid Reinforced Earth Slope Stability & Capacity
 
Sachpazis what is differential settlement 4654
Sachpazis what is differential settlement 4654Sachpazis what is differential settlement 4654
Sachpazis what is differential settlement 4654
 
Sachpazis: Retaining Walls - Know How Basics_
Sachpazis: Retaining Walls - Know How Basics_Sachpazis: Retaining Walls - Know How Basics_
Sachpazis: Retaining Walls - Know How Basics_
 
Sachpazis: Hydraulic Structures / About Dams
Sachpazis: Hydraulic Structures / About DamsSachpazis: Hydraulic Structures / About Dams
Sachpazis: Hydraulic Structures / About Dams
 
Sachpazis: Slope Stability Analysis
Sachpazis: Slope Stability AnalysisSachpazis: Slope Stability Analysis
Sachpazis: Slope Stability Analysis
 

Último

1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdfAldoGarca30
 
Block diagram reduction techniques in control systems.ppt
Block diagram reduction techniques in control systems.pptBlock diagram reduction techniques in control systems.ppt
Block diagram reduction techniques in control systems.pptNANDHAKUMARA10
 
COST-EFFETIVE and Energy Efficient BUILDINGS ptx
COST-EFFETIVE  and Energy Efficient BUILDINGS ptxCOST-EFFETIVE  and Energy Efficient BUILDINGS ptx
COST-EFFETIVE and Energy Efficient BUILDINGS ptxJIT KUMAR GUPTA
 
Engineering Drawing focus on projection of planes
Engineering Drawing focus on projection of planesEngineering Drawing focus on projection of planes
Engineering Drawing focus on projection of planesRAJNEESHKUMAR341697
 
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills KuwaitKuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwaitjaanualu31
 
Thermal Engineering Unit - I & II . ppt
Thermal Engineering  Unit - I & II . pptThermal Engineering  Unit - I & II . ppt
Thermal Engineering Unit - I & II . pptDineshKumar4165
 
NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...
NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...
NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...Amil baba
 
Verification of thevenin's theorem for BEEE Lab (1).pptx
Verification of thevenin's theorem for BEEE Lab (1).pptxVerification of thevenin's theorem for BEEE Lab (1).pptx
Verification of thevenin's theorem for BEEE Lab (1).pptxchumtiyababu
 
Introduction to Serverless with AWS Lambda
Introduction to Serverless with AWS LambdaIntroduction to Serverless with AWS Lambda
Introduction to Serverless with AWS LambdaOmar Fathy
 
Unleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leapUnleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leapRishantSharmaFr
 
Double Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torqueDouble Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torqueBhangaleSonal
 
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXssuser89054b
 
Computer Networks Basics of Network Devices
Computer Networks  Basics of Network DevicesComputer Networks  Basics of Network Devices
Computer Networks Basics of Network DevicesChandrakantDivate1
 
Employee leave management system project.
Employee leave management system project.Employee leave management system project.
Employee leave management system project.Kamal Acharya
 
Orlando’s Arnold Palmer Hospital Layout Strategy-1.pptx
Orlando’s Arnold Palmer Hospital Layout Strategy-1.pptxOrlando’s Arnold Palmer Hospital Layout Strategy-1.pptx
Orlando’s Arnold Palmer Hospital Layout Strategy-1.pptxMuhammadAsimMuhammad6
 
data_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdfdata_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdfJiananWang21
 
Thermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - VThermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - VDineshKumar4165
 
School management system project Report.pdf
School management system project Report.pdfSchool management system project Report.pdf
School management system project Report.pdfKamal Acharya
 

Último (20)

1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
 
Block diagram reduction techniques in control systems.ppt
Block diagram reduction techniques in control systems.pptBlock diagram reduction techniques in control systems.ppt
Block diagram reduction techniques in control systems.ppt
 
COST-EFFETIVE and Energy Efficient BUILDINGS ptx
COST-EFFETIVE  and Energy Efficient BUILDINGS ptxCOST-EFFETIVE  and Energy Efficient BUILDINGS ptx
COST-EFFETIVE and Energy Efficient BUILDINGS ptx
 
Engineering Drawing focus on projection of planes
Engineering Drawing focus on projection of planesEngineering Drawing focus on projection of planes
Engineering Drawing focus on projection of planes
 
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills KuwaitKuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
 
Thermal Engineering Unit - I & II . ppt
Thermal Engineering  Unit - I & II . pptThermal Engineering  Unit - I & II . ppt
Thermal Engineering Unit - I & II . ppt
 
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced LoadsFEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
 
NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...
NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...
NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...
 
Verification of thevenin's theorem for BEEE Lab (1).pptx
Verification of thevenin's theorem for BEEE Lab (1).pptxVerification of thevenin's theorem for BEEE Lab (1).pptx
Verification of thevenin's theorem for BEEE Lab (1).pptx
 
Introduction to Serverless with AWS Lambda
Introduction to Serverless with AWS LambdaIntroduction to Serverless with AWS Lambda
Introduction to Serverless with AWS Lambda
 
Unleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leapUnleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leap
 
Double Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torqueDouble Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torque
 
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
 
Integrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - NeometrixIntegrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - Neometrix
 
Computer Networks Basics of Network Devices
Computer Networks  Basics of Network DevicesComputer Networks  Basics of Network Devices
Computer Networks Basics of Network Devices
 
Employee leave management system project.
Employee leave management system project.Employee leave management system project.
Employee leave management system project.
 
Orlando’s Arnold Palmer Hospital Layout Strategy-1.pptx
Orlando’s Arnold Palmer Hospital Layout Strategy-1.pptxOrlando’s Arnold Palmer Hospital Layout Strategy-1.pptx
Orlando’s Arnold Palmer Hospital Layout Strategy-1.pptx
 
data_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdfdata_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdf
 
Thermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - VThermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - V
 
School management system project Report.pdf
School management system project Report.pdfSchool management system project Report.pdf
School management system project Report.pdf
 

Sachpazis: Raft Foundation Analysis and Design for a two Storey House Project project

  • 1. - Dr. Costas Sachpazis Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Tel.: (+30) 210 5238127, 210 5711263-Fax:+30 210 440171 Mobile: (+30) 6936425722 www.geodomisi.com - costas@sachpazis.info Project: Raft Foundation Analysis and Design for a 2 Storey House Project. In accordance with BS8110: PART 1: 1997 and Code of Practice for Geotechnical design and the U.K. recommended values. Job Ref. 0519025 www.geodomisi.com info@geodomisi.com Section Civil & Geotechnical Engineering Sheet no./rev. 1 Calc. Dr. C. Sachpazis Date 20/05/2021 Chk'd by Date App'd by Date Page 1 of 25 ANALYSIS & DESIGN OF A RAFT FOUNDATION In accordance with BS8110: PART 1: 1997 and Code of Practice for Geotechnical design and the U.K. recommended values. hedge hboot bedge bboot aedge hslab hhcoreslab hhcorethick Asslabtop Asedgetop Asslabbtm Asedgebtm Asedgelink
  • 2. - Dr. Costas Sachpazis Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Tel.: (+30) 210 5238127, 210 5711263-Fax:+30 210 440171 Mobile: (+30) 6936425722 www.geodomisi.com - costas@sachpazis.info Project: Raft Foundation Analysis and Design for a 2 Storey House Project. In accordance with BS8110: PART 1: 1997 and Code of Practice for Geotechnical design and the U.K. recommended values. Job Ref. 0519025 www.geodomisi.com info@geodomisi.com Section Civil & Geotechnical Engineering Sheet no./rev. 1 Calc. Dr. C. Sachpazis Date 20/05/2021 Chk'd by Date App'd by Date Page 2 of 25 Soil and raft definition Soil definition Allowable bearing pressure; qallow = 50.0 kN/m2 Number of types of soil forming sub-soil; Two or more types Soil density; Firm to loose Depth of hardcore beneath slab; hhcoreslab = 150 mm; (Dispersal allowed for bearing pressure check) Depth of hardcore beneath thickenings; hhcorethick = 0 mm; (Dispersal allowed for bearing pressure check) Density of hardcore; hcore = 20.0 kN/m3 Basic assumed diameter of local depression; depbasic = 3500mm Diameter under slab modified for hardcore; depslab = depbasic - hhcoreslab = 3350 mm Diameter under thickenings modified for hardcore; depthick = depbasic - hhcorethick = 3500 mm Raft slab definition Max dimension/max dimension between joints; lmax = 13.100 m Slab thickness; hslab = 200 mm Concrete strength; fcu = 35 N/mm2 Poissons ratio of concrete;  = 0.2 Slab mesh reinforcement strength; fyslab = 500 N/mm2 Partial safety factor for steel reinforcement; s = 1.15 From C&CA document ‘Concrete ground floors’ Table 5
  • 3. - Dr. Costas Sachpazis Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Tel.: (+30) 210 5238127, 210 5711263-Fax:+30 210 440171 Mobile: (+30) 6936425722 www.geodomisi.com - costas@sachpazis.info Project: Raft Foundation Analysis and Design for a 2 Storey House Project. In accordance with BS8110: PART 1: 1997 and Code of Practice for Geotechnical design and the U.K. recommended values. Job Ref. 0519025 www.geodomisi.com info@geodomisi.com Section Civil & Geotechnical Engineering Sheet no./rev. 1 Calc. Dr. C. Sachpazis Date 20/05/2021 Chk'd by Date App'd by Date Page 3 of 25 Minimum mesh required in top for shrinkage; A142; Actual mesh provided in top; 2 x A393 (Asslabtop = 786 mm2 /m) Mesh provided in bottom; A393 (Asslabbtm = 393 mm2 /m) Top mesh bar diameter; slabtop = 10 mm Bottom mesh bar diameter; slabbtm = 10 mm Cover to top reinforcement; ctop = 20 mm Cover to bottom reinforcement; cbtm = 35 mm Average effective depth of top reinforcement; dtslabav = hslab - ctop - slabtop = 170 mm Average effective depth of bottom reinforcement; dbslabav = hslab - cbtm - slabbtm = 155 mm Overall average effective depth; dslabav = (dtslabav + dbslabav)/2 = 163 mm Minimum effective depth of top reinforcement; dtslabmin = dtslabav - slabtop/2 = 165 mm Minimum effective depth of bottom reinforcement; dbslabmin = dbslabav - slabbtm/2 = 150 mm Edge beam definition Overall depth; hedge = 450 mm Width; bedge = 450 mm Depth of boot; hboot = 225 mm Width of boot; bboot = 180 mm Angle of chamfer to horizontal; edge = 60 deg Strength of main bar reinforcement; fy = 500 N/mm2
  • 4. - Dr. Costas Sachpazis Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Tel.: (+30) 210 5238127, 210 5711263-Fax:+30 210 440171 Mobile: (+30) 6936425722 www.geodomisi.com - costas@sachpazis.info Project: Raft Foundation Analysis and Design for a 2 Storey House Project. In accordance with BS8110: PART 1: 1997 and Code of Practice for Geotechnical design and the U.K. recommended values. Job Ref. 0519025 www.geodomisi.com info@geodomisi.com Section Civil & Geotechnical Engineering Sheet no./rev. 1 Calc. Dr. C. Sachpazis Date 20/05/2021 Chk'd by Date App'd by Date Page 4 of 25 Strength of link reinforcement; fys = 500 N/mm2 Reinforcement provided in top; 3 H25 bars (Asedgetop = 1473 mm2 ) Reinforcement provided in bottom; 3 H25 bars (Asedgebtm = 1473 mm2 ) Link reinforcement provided; 2 H12 legs at 275 ctrs (Asv/sv = 0.823 mm) Bottom cover to links; cbeam = 35 mm Effective depth of top reinforcement; dedgetop = hedge - ctop - slabtop - edgelink - edgetop/2 = 395 mm Effective depth of bottom reinforcement; dedgebtm = hedge - cbeam - edgelink - edgebtm/2 = 391 mm Boot main reinforcement; H8 bars at 350 ctrs (Asboot = 144 mm2 /m) Effective depth of boot reinforcement; dboot = hboot - cbeam - boot/2 = 186 mm Internal beam definition
  • 5. - Dr. Costas Sachpazis Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Tel.: (+30) 210 5238127, 210 5711263-Fax:+30 210 440171 Mobile: (+30) 6936425722 www.geodomisi.com - costas@sachpazis.info Project: Raft Foundation Analysis and Design for a 2 Storey House Project. In accordance with BS8110: PART 1: 1997 and Code of Practice for Geotechnical design and the U.K. recommended values. Job Ref. 0519025 www.geodomisi.com info@geodomisi.com Section Civil & Geotechnical Engineering Sheet no./rev. 1 Calc. Dr. C. Sachpazis Date 20/05/2021 Chk'd by Date App'd by Date Page 5 of 25 Overall depth; hint = 450 mm Width; bint = 450 mm Angle of chamfer to horizontal; int = 60 deg hint bint aint hslab hhcoreslab hhcorethick Asslabtop Asinttop Asslabbtm Asintbtm Asintlink
  • 6. - Dr. Costas Sachpazis Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Tel.: (+30) 210 5238127, 210 5711263-Fax:+30 210 440171 Mobile: (+30) 6936425722 www.geodomisi.com - costas@sachpazis.info Project: Raft Foundation Analysis and Design for a 2 Storey House Project. In accordance with BS8110: PART 1: 1997 and Code of Practice for Geotechnical design and the U.K. recommended values. Job Ref. 0519025 www.geodomisi.com info@geodomisi.com Section Civil & Geotechnical Engineering Sheet no./rev. 1 Calc. Dr. C. Sachpazis Date 20/05/2021 Chk'd by Date App'd by Date Page 6 of 25 Strength of main bar reinforcement; fy = 500 N/mm2 Strength of link reinforcement; fys = 500 N/mm2 Reinforcement provided in top; 3 H20 bars (Asinttop = 942 mm2 ) Reinforcement provided in bottom; 3 H20 bars (Asintbtm = 942 mm2 ) Link reinforcement provided; 2 H10 legs at 225 ctrs (Asv/sv = 0.698 mm) Effective depth of top reinforcement; dinttop = hint - ctop - 2  slabtop - inttop/2 = 400 mm Effective depth of bottom reinforcement; dintbtm = hint - cbeam - intlink - intbtm/2 = 395 mm Internal slab design checks Basic loading Slab self weight; wslab = 24 kN/m3  hslab = 4.8 kN/m2 Hardcore; whcoreslab = hcore  hhcoreslab = 3.0 kN/m2 Applied loading Uniformly distributed dead load; wDudl = 0.1 kN/m2 Uniformly distributed live load; wLudl = 1.5 kN/m2 Internal slab bearing pressure check Total uniform load at formation level; wudl = wslab + whcoreslab + wDudl + wLudl = 9.4 kN/m2 PASS - wudl <= qallow - Applied bearing pressure is less than allowable
  • 7. - Dr. Costas Sachpazis Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Tel.: (+30) 210 5238127, 210 5711263-Fax:+30 210 440171 Mobile: (+30) 6936425722 www.geodomisi.com - costas@sachpazis.info Project: Raft Foundation Analysis and Design for a 2 Storey House Project. In accordance with BS8110: PART 1: 1997 and Code of Practice for Geotechnical design and the U.K. recommended values. Job Ref. 0519025 www.geodomisi.com info@geodomisi.com Section Civil & Geotechnical Engineering Sheet no./rev. 1 Calc. Dr. C. Sachpazis Date 20/05/2021 Chk'd by Date App'd by Date Page 7 of 25 Internal slab bending and shear check Applied bending moments Span of slab; lslab = depslab + dtslabav = 3520 mm Ultimate self weight udl; wswult = 1.4  wslab = 6.7 kN/m2 Self weight moment at centre; Mcsw = wswult  lslab 2  (1 + ) / 64 = 1.6 kNm/m Self weight moment at edge; Mesw = wswult  lslab 2 / 32 = 2.6 kNm/m Self weight shear force at edge; Vsw = wswult  lslab / 4 = 5.9 kN/m Moments due to applied uniformly distributed loads Ultimate applied udl; wudlult = 1.4  wDudl + 1.6  wLudl = 2.5 kN/m2 Moment at centre; Mcudl = wudlult  lslab 2  (1 + ) / 64 = 0.6 kNm/m Moment at edge; Meudl = wudlult  lslab 2 / 32 = 1.0 kNm/m Shear force at edge; Vudl = wudlult  lslab / 4 = 2.2 kN/m Resultant moments and shears Total moment at edge; Me = 3.6 kNm/m Total moment at centre; Mc = 2.2 kNm/m Total shear force; V = 8.1 kN/m Reinforcement required in top K factor; Kslabtop = Me/(fcu  dtslabav 2 ) = 0.004
  • 8. - Dr. Costas Sachpazis Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Tel.: (+30) 210 5238127, 210 5711263-Fax:+30 210 440171 Mobile: (+30) 6936425722 www.geodomisi.com - costas@sachpazis.info Project: Raft Foundation Analysis and Design for a 2 Storey House Project. In accordance with BS8110: PART 1: 1997 and Code of Practice for Geotechnical design and the U.K. recommended values. Job Ref. 0519025 www.geodomisi.com info@geodomisi.com Section Civil & Geotechnical Engineering Sheet no./rev. 1 Calc. Dr. C. Sachpazis Date 20/05/2021 Chk'd by Date App'd by Date Page 8 of 25 Lever arm; zslabtop = dtslabav  min(0.95, 0.5 + (0.25 - Kslabtop/0.9)) = 161.5 mm Area of steel required for bending; Asslabtopbend = Me/((1.0/s)  fyslab  zslabtop) = 51 mm2 /m Minimum area of steel required; Asslabmin = 0.0013  hslab = 260 mm2 /m Area of steel required; Asslabtopreq = max(Asslabtopbend, Asslabmin) = 260 mm2 /m PASS - Asslabtopreq <= Asslabtop - Area of reinforcement provided in top to span local depressions is adequate Reinforcement required in bottom K factor; Kslabbtm = Mc/(fcu  dbslabav 2 ) = 0.003 Lever arm; zslabbtm = dbslabav  min(0.95, 0.5 + (0.25 - Kslabbtm/0.9)) = 147.3 mm Area of steel required for bending; Asslabbtmbend = Mc/((1.0/s)  fyslab  zslabbtm) = 34 mm2 /m Area of steel required; Asslabbtmreq = max(Asslabbtmbend, Asslabmin) = 260 mm2 /m PASS - Asslabbtmreq <= Asslabbtm - Area of reinforcement provided in bottom to span local depressions is adequate Shear check Applied shear stress; v = V/dtslabmin = 0.049 N/mm2 Tension steel ratio;  = 100  Asslabtop/dtslabmin = 0.476 From BS8110-1:1997 - Table 3.8; Design concrete shear strength; vc = 0.689 N/mm2 PASS - v <= vc - Shear capacity of the slab is adequate
  • 9. - Dr. Costas Sachpazis Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Tel.: (+30) 210 5238127, 210 5711263-Fax:+30 210 440171 Mobile: (+30) 6936425722 www.geodomisi.com - costas@sachpazis.info Project: Raft Foundation Analysis and Design for a 2 Storey House Project. In accordance with BS8110: PART 1: 1997 and Code of Practice for Geotechnical design and the U.K. recommended values. Job Ref. 0519025 www.geodomisi.com info@geodomisi.com Section Civil & Geotechnical Engineering Sheet no./rev. 1 Calc. Dr. C. Sachpazis Date 20/05/2021 Chk'd by Date App'd by Date Page 9 of 25 Internal slab deflection check Basic allowable span to depth ratio; Ratiobasic = 26.0 Moment factor; Mfactor = Mc/dbslabav 2 = 0.090 N/mm2 Steel service stress; fs = 2/3  fyslab  Asslabbtmbend/Asslabbtm = 28.501 N/mm2 Modification factor; MFslab = min(2.0, 0.55 + [(477N/mm2 - fs)/(120  (0.9N/mm2 + Mfactor))]) MFslab = 2.000 Modified allowable span to depth ratio; Ratioallow = Ratiobasic  MFslab = 52.000 Actual span to depth ratio; Ratioactual = lslab/ dbslabav = 22.710 PASS - Ratioactual <= Ratioallow - Slab span to depth ratio is adequate Edge beam design checks Basic loading Hardcore; whcorethick = hcore  hhcorethick = 0.0 kN/m2 Edge beam Rectangular beam element; wbeam = 24 kN/m3  hedge  bedge = 4.9 kN/m Boot element; wboot = 24 kN/m3  hboot  bboot = 1.0 kN/m Chamfer element; wchamfer = 24 kN/m3  (hedge - hslab)2 /(2  tan(edge)) = 0.4 kN/m Slab element; wslabelmt = 24 kN/m3  hslab  (hedge - hslab)/tan(edge) = 0.7 kN/m Edge beam self weight; wedge = wbeam + wboot + wchamfer + wslabelmt = 7.0 kN/m
  • 10. - Dr. Costas Sachpazis Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Tel.: (+30) 210 5238127, 210 5711263-Fax:+30 210 440171 Mobile: (+30) 6936425722 www.geodomisi.com - costas@sachpazis.info Project: Raft Foundation Analysis and Design for a 2 Storey House Project. In accordance with BS8110: PART 1: 1997 and Code of Practice for Geotechnical design and the U.K. recommended values. Job Ref. 0519025 www.geodomisi.com info@geodomisi.com Section Civil & Geotechnical Engineering Sheet no./rev. 1 Calc. Dr. C. Sachpazis Date 20/05/2021 Chk'd by Date App'd by Date Page 10 of 25 Edge load number 1 Load type; Longitudinal line load Dead load; wDedge1 = 45.8 kN/m Live load; wLedge1 = 5.6 kN/m Ultimate load; wultedge1 = 1.4  wDedge1 + 1.6  wLedge1 = 73.1 kN/m Longitudinal line load width; bedge1 = 100 mm Centroid of load from outside face of raft; xedge1 = 230 mm Edge load number 2 Load type; Transverse line load Dead load; wDedge2 = 42.7 kN/m Live load; wLedge2 = 5.6 kN/m Ultimate load; wultedge2 = 1.4  wDedge2 + 1.6  wLedge2 = 68.7 kN/m Transverse line load width; bedge2 = 100 mm Edge beam bearing pressure check Effective bearing width of edge beam; bbearing = bedge + bboot + (hedge - hslab)/tan(edge) = 774 mm Total uniform load at formation level; wudledge = wDudl+wLudl+wedge/bbearing+whcorethick = 10.6 kN/m2 Bearing pressure due to transverse line loads Total dead transverse line load; wDtrans = 42.7 kN/m Total live transverse line load; wLtrans = 5.6 kN/m
  • 11. - Dr. Costas Sachpazis Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Tel.: (+30) 210 5238127, 210 5711263-Fax:+30 210 440171 Mobile: (+30) 6936425722 www.geodomisi.com - costas@sachpazis.info Project: Raft Foundation Analysis and Design for a 2 Storey House Project. In accordance with BS8110: PART 1: 1997 and Code of Practice for Geotechnical design and the U.K. recommended values. Job Ref. 0519025 www.geodomisi.com info@geodomisi.com Section Civil & Geotechnical Engineering Sheet no./rev. 1 Calc. Dr. C. Sachpazis Date 20/05/2021 Chk'd by Date App'd by Date Page 11 of 25 Total ultimate transverse line load; wulttrans = 68.7 kN/m Minimum width of transverse line loads; btrans = 100 mm Length of trans line load applied to edge beam; ltransapp = bedge + (hedge - hslab)/tan(edge) = 594 mm Total ult trans line load applied to edge beam; Wulttrans = wulttrans  ltransapp = 40.9 kN Approx moment capacity of bottom steel; Medgebtm = (1.0/s)  fy  0.9  dedgebtm  Asedgebtm = 225.0 kNm Max allow dispersal based on moment capacity; pedgemom=[2Medgebtm+(4Medgebtm 2 +2WulttransMedgebtmbtrans)]/Wulttrans pedgemom = 22081 mm Limiting max dispersal to say 5 x beam depth; pedge = min(pedgemom, 5  hedge) = 2250 mm Total dispersal width of transverse line loads; ltrans = 2  pedge + btrans = 4600 mm Bearing pressure due to trans line loads; qtrans = (wDtrans + wLtrans)  ltransapp/(ltrans  bbearing) = 8.1 kN/m2 Centroid of longitudinal and equivalent line loads from outside face of raft Load x distance for edge load 1; Moment1 = wultedge1  xedge1 = 16.8 kN Sum of ultimate longitud’l and equivalent line loads; UDL = 73.1 kN/m Sum of load x distances; Moment = 16.8 kN Centroid of loads; xbar = Moment/UDL = 230 mm Initially assume no moment transferred into slab due to load/reaction eccentricity Sum of unfactored longitud’l and eff’tive line loads; UDLsls = 51.4 kN/m Allowable bearing width; ballow = 2  xbar + 2  hhcoreslab  tan(30) = 633 mm
  • 12. - Dr. Costas Sachpazis Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Tel.: (+30) 210 5238127, 210 5711263-Fax:+30 210 440171 Mobile: (+30) 6936425722 www.geodomisi.com - costas@sachpazis.info Project: Raft Foundation Analysis and Design for a 2 Storey House Project. In accordance with BS8110: PART 1: 1997 and Code of Practice for Geotechnical design and the U.K. recommended values. Job Ref. 0519025 www.geodomisi.com info@geodomisi.com Section Civil & Geotechnical Engineering Sheet no./rev. 1 Calc. Dr. C. Sachpazis Date 20/05/2021 Chk'd by Date App'd by Date Page 12 of 25 Bearing pressure due to line/point loads; qlinepoint = UDLsls/ ballow = 81.2 kN/m2 Total applied bearing pressure; qedge = qlinepoint + qtrans + wudledge = 99.8 kN/m2 qedge > qallow - The slab is required to resist a moment due to eccentricity Now assume moment due to load/reaction eccentricity is resisted by slab Bearing width required; breq = UDLsls/(qallow - qtrans - wudledge) = 1639 mm Effective bearing width at u/s of slab; breqeff = breq - 2  hhcoreslab  tan(30) = 1466 mm Load/reaction eccentricity; e = breqeff/2 - xbar = 503 mm Ultimate moment to be resisted by slab; Mecc = UDL  e = 36.8 kNm/m From slab bending check Moment due to depression under slab (hogging); Me = 3.6 kNm/m Total moment to be resisted by slab top steel; Mslabtop = Mecc + Me = 40.3 kNm/m K factor; Kslab = Mslabtop/(fcu  dtslabmin 2 ) = 0.042 Lever arm; zslab = dtslabmin  min(0.95, 0.5 + (0.25 - Kslab/0.9)) = 157 mm Area of steel required; Asslabreq = Mslabtop/((1.0/s)  fy  zslab) = 592 mm2 /m PASS - Asslabreq <= Asslabtop - Area of reinforcement provided to transfer moment into slab is adequate The allowable bearing pressure under the edge beam will not be exceeded Library item - B pressure with moment transfer Edge beam bending check Divider for moments due to udl’s; udl = 10.0
  • 13. - Dr. Costas Sachpazis Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Tel.: (+30) 210 5238127, 210 5711263-Fax:+30 210 440171 Mobile: (+30) 6936425722 www.geodomisi.com - costas@sachpazis.info Project: Raft Foundation Analysis and Design for a 2 Storey House Project. In accordance with BS8110: PART 1: 1997 and Code of Practice for Geotechnical design and the U.K. recommended values. Job Ref. 0519025 www.geodomisi.com info@geodomisi.com Section Civil & Geotechnical Engineering Sheet no./rev. 1 Calc. Dr. C. Sachpazis Date 20/05/2021 Chk'd by Date App'd by Date Page 13 of 25 Divider for moments due to point loads; point = 6.0 Applied bending moments Span of edge beam; ledge = depthick + dedgetop = 3896 mm Ultimate self weight udl; wedgeult = 1.4  wedge = 9.7 kN/m Ultimate slab udl (approx); wedgeslab = max(0 kN/m,1.4wslab((depthick/23/4)-(bedge+(hedge- hslab)/tan(edge)))) wedgeslab = 4.8 kN/m Self weight and slab bending moment; Medgesw = (wedgeult + wedgeslab)  ledge 2 /udl = 22.1 kNm Self weight shear force; Vedgesw = (wedgeult + wedgeslab)  ledge/2 = 28.4 kN Moments due to applied uniformly distributed loads Ultimate udl (approx); wedgeudl = wudlult  depthick/2  3/4 = 3.3 kN/m Bending moment; Medgeudl = wedgeudl  ledge 2 /udl = 5.1 kNm Shear force; Vedgeudl = wedgeudl  ledge/2 = 6.5 kN Moment and shear due to load number 1 Bending moment; Medge1 = wultedge1  ledge 2 /udl = 110.9 kNm Shear force; Vedge1 = wultedge1  ledge/2 = 142.3 kN Moment and shear due to load number 2 Ultimate point load; Wedge2 = wultedge2  depthick/2  3/4 = 90.2 kN Bending moment; Medge2 = Wedge2  ledge/point = 58.6 kNm
  • 14. - Dr. Costas Sachpazis Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Tel.: (+30) 210 5238127, 210 5711263-Fax:+30 210 440171 Mobile: (+30) 6936425722 www.geodomisi.com - costas@sachpazis.info Project: Raft Foundation Analysis and Design for a 2 Storey House Project. In accordance with BS8110: PART 1: 1997 and Code of Practice for Geotechnical design and the U.K. recommended values. Job Ref. 0519025 www.geodomisi.com info@geodomisi.com Section Civil & Geotechnical Engineering Sheet no./rev. 1 Calc. Dr. C. Sachpazis Date 20/05/2021 Chk'd by Date App'd by Date Page 14 of 25 Shear force; Vedge2 = Wedge2 = 90.2 kN Resultant moments and shears Total moment (hogging and sagging); Medge = 196.6 kNm Maximum shear force; Vedge = 267.4 kN Reinforcement required in top Width of section in compression zone; bedgetop = bedge + bboot = 630 mm Average web width; bw = bedge + (hedge/tan(edge))/2 = 580 mm K factor; Kedgetop = Medge/(fcu  bedgetop  dedgetop 2 ) = 0.057 Lever arm; zedgetop = dedgetop  min(0.95, 0.5 + (0.25 - Kedgetop/0.9)) = 369 mm Area of steel required for bending; Asedgetopbend = Medge/((1.0/s)  fy  zedgetop) = 1227 mm2 Minimum area of steel required; Asedgetopmin = 0.0013  1.0  bw  hedge = 339 mm2 Area of steel required; Asedgetopreq = max(Asedgetopbend, Asedgetopmin) = 1227 mm2 PASS - Asedgetopreq <= Asedgetop - Area of reinforcement provided in top of edge beams is adequate Reinforcement required in bottom Width of section in compression zone; bedgebtm = bedge + (hedge - hslab)/tan(edge) + 0.1  ledge = 984 mm K factor; Kedgebtm = Medge/(fcu  bedgebtm  dedgebtm 2 ) = 0.037 Lever arm; zedgebtm = dedgebtm  min(0.95, 0.5 + (0.25 - Kedgebtm/0.9)) = 371 mm Area of steel required for bending; Asedgebtmbend = Medge/((1.0/s)  fy  zedgebtm) = 1219 mm2
  • 15. - Dr. Costas Sachpazis Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Tel.: (+30) 210 5238127, 210 5711263-Fax:+30 210 440171 Mobile: (+30) 6936425722 www.geodomisi.com - costas@sachpazis.info Project: Raft Foundation Analysis and Design for a 2 Storey House Project. In accordance with BS8110: PART 1: 1997 and Code of Practice for Geotechnical design and the U.K. recommended values. Job Ref. 0519025 www.geodomisi.com info@geodomisi.com Section Civil & Geotechnical Engineering Sheet no./rev. 1 Calc. Dr. C. Sachpazis Date 20/05/2021 Chk'd by Date App'd by Date Page 15 of 25 Minimum area of steel required; Asedgebtmmin = 0.0013  1.0  bw  hedge = 339 mm2 Area of steel required; Asedgebtmreq = max(Asedgebtmbend, Asedgebtmmin) = 1219 mm2 PASS - Asedgebtmreq <= Asedgebtm - Area of reinforcement provided in bottom of edge beams is adequate Edge beam shear check Applied shear stress; vedge = Vedge/(bw  dedgetop) = 1.166 N/mm2 Tension steel ratio; edge = 100  Asedgetop/(bw  dedgetop) = 0.642 From BS8110-1:1997 - Table 3.8 Design concrete shear strength; vcedge = 0.612 N/mm2 vedge > vcedge + 0.4N/mm2 - Therefore designed links required Link area to spacing ratio required; Asv_upon_svreqedge = (vedge - vcedge)  bw/((1.0/s)  fys) = 0.739 mm Link area to spacing ratio provided; Asv_upon_svprovedge = Nedgelinkedgelink 2 /(4svedge) = 0.823 mm PASS - Asv_upon_svreqedge <= Asv_upon_svprovedge - Shear reinforcement provided in edge beams is adequate Boot design check Effective cantilever span; lboot = bboot + dboot/2 = 273 mm Approximate ultimate bearing pressure; qult = 1.55  qallow = 77.5 kN/m2 Cantilever moment; Mboot = qult  lboot 2 /2 = 2.9 kNm/m Shear force; Vboot = qult  lboot = 21.2 kN/m K factor; Kboot = Mboot/(fcu  dboot 2 ) = 0.002 Lever arm; zboot = dboot  min(0.95, 0.5 + (0.25 - Kboot/0.9)) = 177 mm
  • 16. - Dr. Costas Sachpazis Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Tel.: (+30) 210 5238127, 210 5711263-Fax:+30 210 440171 Mobile: (+30) 6936425722 www.geodomisi.com - costas@sachpazis.info Project: Raft Foundation Analysis and Design for a 2 Storey House Project. In accordance with BS8110: PART 1: 1997 and Code of Practice for Geotechnical design and the U.K. recommended values. Job Ref. 0519025 www.geodomisi.com info@geodomisi.com Section Civil & Geotechnical Engineering Sheet no./rev. 1 Calc. Dr. C. Sachpazis Date 20/05/2021 Chk'd by Date App'd by Date Page 16 of 25 Area of reinforcement required; Asbootreq = Mboot/((1.0/s)  fyboot  zboot) = 38 mm2 /m PASS - Asbootreq <= Asboot - Area of reinforcement provided in boot is adequate for bending Applied shear stress; vboot = Vboot/dboot = 0.114 N/mm2 Tension steel ratio; boot = 100  Asboot/dboot = 0.077 From BS8110-1:1997 - Table 3.8 Design concrete shear strength;vcboot = 0.365 N/mm2 PASS - vboot <= vcboot - Shear capacity of the boot is adequate Corner design checks Basic loading Corner bearing pressure check Total uniform load at formation level; wudlcorner = wDudl+wLudl+wedge/bbearing+whcorethick = 10.6 kN/m2 PASS - wudlcorner <= qallow - Applied bearing pressure is less than allowable Corner beam bending check Cantilever span of edge beam; lcorner = depthick/(2) + dedgetop/2 = 2673 mm Moment and shear due to self weight Ultimate self weight udl; wedgeult = 1.4  wedge = 9.7 kN/m Average ultimate slab udl (approx); wcornerslab = max(0 kN/m,1.4wslab(depthick/((2)2)-(bedge+(hedge- hslab)/tan(edge))))
  • 17. - Dr. Costas Sachpazis Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Tel.: (+30) 210 5238127, 210 5711263-Fax:+30 210 440171 Mobile: (+30) 6936425722 www.geodomisi.com - costas@sachpazis.info Project: Raft Foundation Analysis and Design for a 2 Storey House Project. In accordance with BS8110: PART 1: 1997 and Code of Practice for Geotechnical design and the U.K. recommended values. Job Ref. 0519025 www.geodomisi.com info@geodomisi.com Section Civil & Geotechnical Engineering Sheet no./rev. 1 Calc. Dr. C. Sachpazis Date 20/05/2021 Chk'd by Date App'd by Date Page 17 of 25 wcornerslab = 4.3 kN/m Self weight and slab bending moment; Mcornersw = (wedgeult + wcornerslab)  lcorner 2 /2 = 50.2 kNm Self weight and slab shear force; Vcornersw = (wedgeult + wcornerslab)  lcorner = 37.6 kN Moment and shear due to udls Maximum ultimate udl; wcornerudl = ((1.4wDudl)+(1.6wLudl))  depthick/(2) = 6.3 kN/m Bending moment; Mcornerudl = wcornerudl  lcorner 2 /6 = 7.5 kNm Shear force; Vcornerudl = wcornerudl  lcorner/2 = 8.4 kN Resultant moments and shears Total design moment; Mcorner = Mcornersw+ Mcornerudl = 57.7 kNm Total design shear force; Vcorner = Vcornersw+ Vcornerudl = 46.0 kN Reinforcement required in top of edge beam K factor; Kcorner = Mcorner/(fcu  bedgetop  dedgetop 2 ) = 0.017 Lever arm; zcorner = dedgetop  min(0.95, 0.5 + (0.25 - Kcorner/0.9)) = 376 mm Area of steel required for bending; Ascornerbend = Mcorner/((1.0/s)  fy  zcorner) = 353 mm2 Minimum area of steel required; Ascornermin = Asedgetopmin = 339 mm2 Area of steel required; Ascorner = max(Ascornerbend, Ascornermin) = 353 mm2 PASS - Ascorner <= Asedgetop - Area of reinforcement provided in top of edge beams at corners is adequate Corner beam shear check
  • 18. - Dr. Costas Sachpazis Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Tel.: (+30) 210 5238127, 210 5711263-Fax:+30 210 440171 Mobile: (+30) 6936425722 www.geodomisi.com - costas@sachpazis.info Project: Raft Foundation Analysis and Design for a 2 Storey House Project. In accordance with BS8110: PART 1: 1997 and Code of Practice for Geotechnical design and the U.K. recommended values. Job Ref. 0519025 www.geodomisi.com info@geodomisi.com Section Civil & Geotechnical Engineering Sheet no./rev. 1 Calc. Dr. C. Sachpazis Date 20/05/2021 Chk'd by Date App'd by Date Page 18 of 25 Average web width; bw = bedge + (hedge/tan(edge))/2 = 580 mm Applied shear stress; vcorner = Vcorner/(bw  dedgetop) = 0.200 N/mm2 Tension steel ratio; corner = 100  Asedgetop/(bw  dedgetop) = 0.642 From BS8110-1:1997 - Table 3.8 Design concrete shear strength; vccorner = 0.610 N/mm2 vcorner <= vccorner + 0.4N/mm2 - Therefore minimum links required Link area to spacing ratio required; Asv_upon_svreqcorner = 0.4N/mm2  bw/((1.0/s)  fys) = 0.534 mm Link area to spacing ratio provided; Asv_upon_svprovedge = Nedgelinkedgelink 2 /(4svedge) = 0.823 mm PASS - Asv_upon_svreqcorner <= Asv_upon_svprovedge - Shear reinforcement provided in edge beams at corners is adequate Corner beam deflection check Basic allowable span to depth ratio; Ratiobasiccorner = 7.0 Moment factor; Mfactorcorner = Mcorner/(bedgetop  dedgetop 2 ) = 0.586 N/mm2 Steel service stress; fscorner = 2/3  fy  Ascornerbend/Asedgetop = 79.961 N/mm2 Modification factor; MFcorner=min(2.0,0.55+[(477N/mm2 - fscorner)/(120(0.9N/mm2 +Mfactorcorner))]) MFcorner = 2.000 Modified allowable span to depth ratio; Ratioallowcorner = Ratiobasiccorner  MFcorner = 14.000 Actual span to depth ratio; Ratioactualcorner = lcorner/ dedgetop = 6.758
  • 19. - Dr. Costas Sachpazis Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Tel.: (+30) 210 5238127, 210 5711263-Fax:+30 210 440171 Mobile: (+30) 6936425722 www.geodomisi.com - costas@sachpazis.info Project: Raft Foundation Analysis and Design for a 2 Storey House Project. In accordance with BS8110: PART 1: 1997 and Code of Practice for Geotechnical design and the U.K. recommended values. Job Ref. 0519025 www.geodomisi.com info@geodomisi.com Section Civil & Geotechnical Engineering Sheet no./rev. 1 Calc. Dr. C. Sachpazis Date 20/05/2021 Chk'd by Date App'd by Date Page 19 of 25 PASS - Ratioactualcorner <= Ratioallowcorner - Edge beam span to depth ratio is adequate Internal beam design checks Basic loading Hardcore; whcorethick = hcore  hhcorethick = 0.0 kN/m2 Internal beam self weight; wint=24 kN/m3 [(hintbint)+(hint-hslab)2 /tan(int)+2hslab(hint-hslab)/tan(int)] wint = 7.1 kN/m Internal beam load number 1 Load type; Longitudinal line load Dead load; wDint1 = 17.0 kN/m Live load; wLint1 = 4.0 kN/m Ultimate load; wultint1 = 1.4  wDint1 + 1.6  wLint1 = 30.2 kN/m Longitudinal line load width; bint1 = 140 mm Centroid of load from centreline of beam; xint1 = 0 mm Internal beam load number 2 Load type; Half transverse line load; Dead load; wDint2 = 21.6 kN/m Live load; wLint2 = 4.0 kN/m Ultimate load; wultint2 = 1.4  wDint2 + 1.6  wLint2 = 36.6 kN/m Transverse line load width; bint2 = 140 mm
  • 20. - Dr. Costas Sachpazis Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Tel.: (+30) 210 5238127, 210 5711263-Fax:+30 210 440171 Mobile: (+30) 6936425722 www.geodomisi.com - costas@sachpazis.info Project: Raft Foundation Analysis and Design for a 2 Storey House Project. In accordance with BS8110: PART 1: 1997 and Code of Practice for Geotechnical design and the U.K. recommended values. Job Ref. 0519025 www.geodomisi.com info@geodomisi.com Section Civil & Geotechnical Engineering Sheet no./rev. 1 Calc. Dr. C. Sachpazis Date 20/05/2021 Chk'd by Date App'd by Date Page 20 of 25 Location of load; +ve side of centreline Internal beam bearing pressure check Total uniform load at formation level; wudlint = wDudl+wLudl+whcorethick+24kN/m3 hint = 12.4 kN/m2 Effective point load due to transverse line/point loads Effective point load due to load 2 (Line load); Wint2 = wultint2  [bint/2 + (hint - hslab)/tan(int)] = 13.5 kN Total effective point load; Wint = 13.5 kN Minimum width of effective point load; bintmin = 140 mm Approximate longitudinal dispersal of effective point load Approx moment capacity of bottom steel; Mintbtm = (1.0/s)  fy  0.9  dintbtm  Asintbtm = 145.7 kNm Max allow dispersal based on moment capacity; pintmom = [2Mintbtm + (4Mintbtm 2 +2WintMintbtmbintmin)]/Wint pintmom = 43129 mm Limiting max dispersal to say 5 x beam depth; pint = min(pintmom, 5  hint) = 2250 mm Total dispersal length of effective point load; linteff = 2  pint + bintmin = 4640 mm Equivalent and total beam line loads Equivalent ultimate udl of internal load 2; wintudl2 = Wint2/linteff = 2.9 kN/m Equivalent unfactored udl of internal load 2; wintudl2sls = wintudl2  (wDint2 + wLint2)/wultint2 = 2.0 kN/m Sum of factored longitud’l and eff’tive line loads; UDLint = 33.1 kN/m
  • 21. - Dr. Costas Sachpazis Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Tel.: (+30) 210 5238127, 210 5711263-Fax:+30 210 440171 Mobile: (+30) 6936425722 www.geodomisi.com - costas@sachpazis.info Project: Raft Foundation Analysis and Design for a 2 Storey House Project. In accordance with BS8110: PART 1: 1997 and Code of Practice for Geotechnical design and the U.K. recommended values. Job Ref. 0519025 www.geodomisi.com info@geodomisi.com Section Civil & Geotechnical Engineering Sheet no./rev. 1 Calc. Dr. C. Sachpazis Date 20/05/2021 Chk'd by Date App'd by Date Page 21 of 25 Sum of unfactored longitud’l and eff’tive line loads; UDLslsint = 23.0 kN/m Centroid of loads from centreline of internal beam Load x distance for internal load 1; Momentint1 = wultint1  xint1 = 0.0 kN Load x distance for internal load 2; Momentint2 = wintudl2  (bint/2+(hint-hslab)/tan(int))/2 = 0.5 kN Sum of load x distances; Momentint = 0.5 kN Centroid of loads; xbarint = Momentint/UDLint = 16.3 mm Moment due to eccentricity to be resisted by slab; Meccint = UDLint  abs(xbarint) = 0.5 kNm/m Assume moment due to eccentricity is resisted equally by top steel of slab on one side and bottom steel of slab on other From slab bending check Moment due to depression under slab (hogging); Me = 3.6 kNm/m Total moment to be resisted by slab top steel; Mslabtopint = Meccint/2 + Me = 3.9 kNm/m K factor; Kslabtopint = Mslabtopint/(fcu  dtslabmin 2 ) = 0.004 Lever arm; zslabtopint = dtslabmin  min(0.95, 0.5 + (0.25 - Kslabtopint/0.9)) = 157 mm Area of steel required; Asslabtopintreq = Mslabtopint/((1.0/s)  fyslab  zslabtopint) = 57 mm2 /m PASS - Asslabtopintreq <= Asslabtop - Area of reinforcement in top of slab is adequate to transfer moment into slab Mt to be resisted by slab btm stl due to load ecc’ty; Mslabbtmint = Meccint/2 = 0.3 kNm/m K factor; Kslabbtmint = Mslabbtmint/(fcu  dbslabmin 2 ) = 0.000 Lever arm; zslabbtmint = dbslabmin  min(0.95, 0.5 + (0.25-Kslabbtmint/0.9)) = 143 mm Area of steel required in bottom; Asslabbtmintreq = Mslabbtmint/((1.0/s)  fyslab  zslabbtmint) = 4 mm2 /m
  • 22. - Dr. Costas Sachpazis Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Tel.: (+30) 210 5238127, 210 5711263-Fax:+30 210 440171 Mobile: (+30) 6936425722 www.geodomisi.com - costas@sachpazis.info Project: Raft Foundation Analysis and Design for a 2 Storey House Project. In accordance with BS8110: PART 1: 1997 and Code of Practice for Geotechnical design and the U.K. recommended values. Job Ref. 0519025 www.geodomisi.com info@geodomisi.com Section Civil & Geotechnical Engineering Sheet no./rev. 1 Calc. Dr. C. Sachpazis Date 20/05/2021 Chk'd by Date App'd by Date Page 22 of 25 PASS - Asslabbtmintreq <= Asslabbtm - Area of reinforcement in bottom of slab is adequate to transfer moment into slab Bearing pressure Initially check bearing pressure based on beam soffit/chamfer width only Allowable bearing width; bbearint=min(2(bint/2tan(int)+hint)/(1+tan(int)),bint+2(hint- hslab)/tan(int)) bbearint = 615 mm Bearing pressure due to line/point loads; qlinepointint = UDLslsint/bbearint = 37.5 kN/m2 Total applied bearing pressure; qint = qlinepointint + wudlint = 49.9 kN/m2 PASS - qint <= qallow - Allowable bearing pressure is not exceeded Internal beam bending check Divider for moments due to udl’s; udl = 10.0 Divider for moments due to point loads; point = 6.0 Applied bending moments Span of internal beam; lint = depthick + dinttop = 3900 mm Ultimate self weight udl; wintult = 1.4  wint = 10.0 kN/m Ultimate slab udl (approx); wintslab = max(0 kN/m,1.4wslab((depthick3/4)-(bint+2(hint- hslab)/tan(int)))) wintslab = 12.7 kN/m
  • 23. - Dr. Costas Sachpazis Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Tel.: (+30) 210 5238127, 210 5711263-Fax:+30 210 440171 Mobile: (+30) 6936425722 www.geodomisi.com - costas@sachpazis.info Project: Raft Foundation Analysis and Design for a 2 Storey House Project. In accordance with BS8110: PART 1: 1997 and Code of Practice for Geotechnical design and the U.K. recommended values. Job Ref. 0519025 www.geodomisi.com info@geodomisi.com Section Civil & Geotechnical Engineering Sheet no./rev. 1 Calc. Dr. C. Sachpazis Date 20/05/2021 Chk'd by Date App'd by Date Page 23 of 25 Self weight and slab bending moment; Mintsw = (wintult + wintslab)  lint 2 /udl = 34.4 kNm Self weight shear force; Vintsw = (wintult + wintslab)  lint/2 = 44.1 kN Moments due to applied uniformly distributed loads Ultimate udl (approx); wintudl = wudlult  depthick  3/4 = 6.7 kN/m Bending moment; Mintudl = wintudl  lint 2 /udl = 10.1 kNm Shear force; Vintudl = wintudl  lint/2 = 13.0 kN Moment and shear due to load number 1 Bending moment; Mint1 = wultint1  lint 2 /udl = 45.9 kNm Shear force; Vint1 = wultint1  lint/2 = 58.9 kN Moment and shear due to load number 2 Ultimate point load; Wint2 = wultint2  depthick/2  3/4 = 48.1 kN Bending moment; Mint2 = Wint2  lint/point = 31.3 kNm Shear force; Vint2 = Wint2 = 48.1 kN Resultant moments and shears Total moment (hogging and sagging); Mint = 121.8 kNm Maximum shear force; Vint = 164.1 kN Reinforcement required in top Width of section in compression zone; binttop = bint = 450 mm
  • 24. - Dr. Costas Sachpazis Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Tel.: (+30) 210 5238127, 210 5711263-Fax:+30 210 440171 Mobile: (+30) 6936425722 www.geodomisi.com - costas@sachpazis.info Project: Raft Foundation Analysis and Design for a 2 Storey House Project. In accordance with BS8110: PART 1: 1997 and Code of Practice for Geotechnical design and the U.K. recommended values. Job Ref. 0519025 www.geodomisi.com info@geodomisi.com Section Civil & Geotechnical Engineering Sheet no./rev. 1 Calc. Dr. C. Sachpazis Date 20/05/2021 Chk'd by Date App'd by Date Page 24 of 25 Average web width; bwint = bint + hint/tan(int) = 710 mm K factor; Kinttop = Mint/(fcu  binttop  dinttop 2 ) = 0.048 Lever arm; zinttop = dinttop  min(0.95, 0.5 + (0.25 - Kinttop/0.9)) = 377 mm Area of steel required for bending; Asinttopbend = Mint/((1.0/s)  fy  zinttop) = 742 mm2 Minimum area of steel; Asinttopmin = 0.0013  bwint  hint = 415 mm2 Area of steel required; Asinttopreq = max(Asinttopbend, Asinttopmin) = 742 mm2 PASS - Asinttopreq <= Asinttop - Area of reinforcement provided in top of internal beams is adequate Reinforcement required in bottom Width of section in compression zone; bintbtm = bint + 2  (hint - hslab)/tan(int) + 0.2  lint = 1519 mm K factor; Kintbtm = Mint/(fcu  bintbtm  dintbtm 2 ) = 0.015 Lever arm; zintbtm = dintbtm  min(0.95, 0.5 + (0.25 - Kintbtm/0.9)) = 375 mm Area of steel required for bending; Asintbtmbend = Mint/((1.0/s)  fy  zintbtm) = 746 mm2 Minimum area of steel required; Asintbtmmin = 0.0013  1.0  bwint  hint = 415 mm2 Area of steel required; Asintbtmreq = max(Asintbtmbend, Asintbtmmin) = 746 mm2 PASS - Asintbtmreq <= Asintbtm - Area of reinforcement provided in bottom of internal beams is adequate Internal beam shear check Applied shear stress; vint = Vint/(bwint  dinttop) = 0.578 N/mm2 Tension steel ratio; int = 100  Asinttop/(bwint  dinttop) = 0.332 From BS8110-1:1997 - Table 3.8
  • 25. - Dr. Costas Sachpazis Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Tel.: (+30) 210 5238127, 210 5711263-Fax:+30 210 440171 Mobile: (+30) 6936425722 www.geodomisi.com - costas@sachpazis.info Project: Raft Foundation Analysis and Design for a 2 Storey House Project. In accordance with BS8110: PART 1: 1997 and Code of Practice for Geotechnical design and the U.K. recommended values. Job Ref. 0519025 www.geodomisi.com info@geodomisi.com Section Civil & Geotechnical Engineering Sheet no./rev. 1 Calc. Dr. C. Sachpazis Date 20/05/2021 Chk'd by Date App'd by Date Page 25 of 25 Design concrete shear strength; vcint = 0.490 N/mm2 vint <= vcint + 0.4N/mm2 - Therefore minimum links required Link area to spacing ratio required; Asv_upon_svreqint = 0.4N/mm2  bwint/((1.0/s)  fys) = 0.653 mm Link area to spacing ratio provided; Asv_upon_svprovint = Nintlinkintlink 2 /(4svint) = 0.698 mm PASS - Asv_upon_svreqint <= Asv_upon_svprovint - Shear reinforcement provided in internal beams is adequate GEODOMISI Ltd. - Dr. Costas Sachpazis Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 - Mobile: (+30) 6936425722 & (+44) 7585939944, www.geodomisi.com - costas@sachpazis.info