SlideShare una empresa de Scribd logo
1 de 7
Descargar para leer sin conexión
Calculation of foundation: Ultimate Limit State 1
Calculation according to EN 1997-1:2008
Foundation geometry - Trapezoidal pad for one column
Width of foundation B = 2.00 m
Length of foundation L = 3.00 m
Height of foundation H = 0.80 m
Width of top platform B1 = 1.00 m
Length of top platform L1 = 2.00 m
Height of step H1 = 0.50 m
Dimensions of column l1 = 0.50 m
b1 = 0.50 m
Column position ex1 = -0.50 m
ey = 0.20 m
Soil input
Nr Name Z
[m] 
H
[m] 
γsoil
[kN/m3
]
γs
[kN/m3
]
γd
[kN/m3
]
φ'
[deg] 
C'
[kPa] 
Cu
[kPa] 
MOi
[kPa] 
Mi
[kPa] 
1 inorganic
high plasticy
clays
-4.00 4.00 11.66 26.60 20.50 0.33 0.00 100.00 20192.31 20192.31
2 clayey
gravels
-7.00 3.00 11.67 26.50 20.50 0.56 0.00 9.50 30000.00 30000.00
Foundation formation level zFL = -1.00 m
Ground water level zWL = -3.00 m
Foundation cast-in-situ
Bearing pressure check Critical ULS2 qmax / qult = 100% Pass
Sliding check Critical ULS3 Hxd / Rxres = 14% Pass
Sliding check Critical ULS3 Hyd / Ryres = 8% Pass
Uplift check (UPL) Critical ULS1 Vdst,d / Gstb,d = 0% Pass
Dimensions after optimization
Width of foundation B = 5.80 m
Length of foundation L = 6.80 m
Height of foundation H = 1.50 m
Width of top foundation B1 = 1.00 m
Length of top foundation L1 = 2.00 m
Height of down stepped foundation h1 = 0.50 m
Height of top stepped foundation h2 = 1.00 m
Loads
Design load combinations:
Name Limit state VA
[kN]
HxA
[kN]
HyA
[kN]
MxA
[kNm]
MyA
[kNm]
q
[kPa]
ULS1 ULS 450.00 85.00 50.00 25.00 150.00 3.00
ULS2 ULS 800.00 25.00 25.00 250.00 50.00 3.00
ULS3 ULS 500.00 100.00 55.00 30.00 10.00 5.00
Bearing pressure check
Critical ULS2 qmax / qult = 100% Pass
q1= 52.92 kN/m2
q2= 76.39 kN/m2
q3= 38.93 kN/m2
q4= 62.41 kN/m2
Maximum pressure 
qmax = 76.39 kN/m2
Minimum pressure 
qmin = 38.93 kN/m2
A = B * L = 39.44 m2
V = VA + VB + F = 2274.22 kN
eTx=(VA * ex1 + VB * ex2 + MxA + MxB + (HxA + HxB) * H) / V = -0.14 m
eTy=(VA * ey + VB * ey + MyA + MyB + (HyA + HyB) * H) / V = 0.20 m
Base reaction acts within combined middle third of base
abs(eTy) / B < 1/3
abs(eTx) / L < 1/3
B = B - 2 * 0.10 m = 5.80 m
L = L - 2 * 0.10 m = 6.80 m
B' = min(B - 2 * abs(eTy), L - 2 * abs(eTx)) = 6.39 m
L' = max(B - 2 * abs(eTy), L - 2 * abs(eTx)) = 7.38 m
Bearing pressure for drained conditions
Soil layer - clayey gravels
Nq = eπ*tan(φ')
*tan2
(45 + φ' / 2) = 23.18
Nc = (Nq - 1) * ctg(φ') = 35.49
Ny = 2 * (Nq - 1) * tan(φ') = 27.72
bq = by = (1 - α * tan(φ'))2
= 1.00
bc = bq - (1 - bq) / (Nc * tan(φ')) = 1.00
sq = 1 + (B' / L') * sin(φ') = 1.46
sy = 1 - 0.3 * (B' / L') = 0.74
sc = (sq * Nq - 1) / (Nq - 1) = 1.48
mB = [2 + (B' / L')] / [1 + (B' / L')] = 1.54
mL = [2 + (L' / B')] / [1 + (L' / B')] = 1.46
θ = atan(Hx / Hy) = 0.79
m = mL * cos2
θ + mB * sin2
θ = 1.50
iq = [1 - H / (V + A' * c' * ctg(φ'))]m
= 0.99
ic = iq - (1 - iq) / (Nc * tan(φ')) = 0.99
iy = [1 - H / (V + A' * c' * ctg(φ'))]m+1
= 0.99
q' = 20.50 kPa
Allowable bearing pressure qultD = c' * Nc * bc * sc * ic + q' * Nq * bq * sq * iq + 0,5 * γi' * B' * Nγ * bγ * sγ
* iγ = 2014.38 kN/m2
Bearing pressure for undrained conditions
Soil layer - clayey gravels
bc = 1 - 2 * α / (π + 2) = 1.00
sc = 1 + 0.2 * (B' / L') = 1.17
ic = 1 / 2 *[1 + sqrt(1 - H / (A' * cu))] = 0.98
q = 20.50 kPa
qultUD = (π + 2) * cu * bc * sc * ic + q = 76.65 kN/m2
Allowable bearing pressure qult = min (qultD, qultUD ) / γR,v = 76.65 kN/m2
Sliding check
Critical ULS3 Hxd/ Rxres = 14% Pass
Total horizontal load Hxd = HxA + HxB + Rxa = 100.00 kN
Minimum vertical load VG,min = [VGA + VGB + A * (qGsur + qswt + qsoil)] * γFG.pos = 2059.00 kN
Bearing pressure for drained conditions RdD = VG,min * tan(δk) / γR,h = 708.97 kN
Bearing pressure for undrained
conditions
RdUD = A' * cu / γR,h = 4718.70 kN
Total resistance to sliding Rxres = min(RdD, RdUD) + Rxp,d + Rd.add = 708.97 kN
Critical ULS3 Hyd/ Ryres = 8% Pass
Total horizontal load Hyd = HyA + HyB + Rya = 55.00 kN
Minimum vertical load VG,min = [VGA + VGB + A * (qGsur + qswt + qsoil)] * γFG.pos = 2059.00 kN
Bearing pressure for drained conditions RdD = VG,min * tan(δk) / γR,h = 708.97 kN
Bearing pressure for undrained
conditions
RdUD = A' * cu / γR,h = 4718.70 kN
Total resistance to sliding Ryres = min(RdD, RdUD) + Ryp,d + Rd.add = 708.97 kN
Uplift check (UPL)
Critical ULS1 Vdst,d / Gstb,d = 0% Pass
Stabilizing vertical actions Gstb,d = VG,min * γGstb = 1476.63 kN
Destabilizing permanent and variable
vetical actions
Vdst,d = max(-V + γw * min(hFL - hWL, 0) * A; γw * max(hFL - hWL, 0) * A) =
0.00 kN
Calculation of foundation: Reinforcement 1
Calculation according to EN 1997-1:2008
Foundation geometry - Trapezoidal pad for one column
Width of foundation B = 2.00 m
Length of foundation L = 3.00 m
Height of foundation H = 0.80 m
Width of top platform B1 = 1.00 m
Length of top platform L1 = 2.00 m
Height of step H1 = 0.50 m
Dimensions of column l1 = 0.50 m
b1 = 0.50 m
Column position ex1 = -0.50 m
ey = 0.20 m
Soil input
Nr Name Z
[m] 
H
[m] 
γsoil
[kN/m3
]
γs
[kN/m3
]
γd
[kN/m3
]
φ'
[deg] 
C'
[kPa] 
Cu
[kPa] 
MOi
[kPa] 
Mi
[kPa] 
1 inorganic
high plasticy
clays
-4.00 4.00 11.66 26.60 20.50 0.33 0.00 100.00 20192.31 20192.31
2 clayey
gravels
-7.00 3.00 11.67 26.50 20.50 0.56 0.00 9.50 30000.00 30000.00
Foundation formation level zFL = -1.00 m
Ground water level zWL = -3.00 m
Foundation cast-in-situ
Bending in direction x - Bottom reinforcement Critical ULS3 As.xreq / As.xprov = 47% Pass
Bending in direction y - Bottom reinforcement Critical ULS3 As.yreq / As.yprov = 49% Pass
Punching shear check Critical ULS3 VEd / VRd.c = 30% & VEd' / VRd.c max =
12% Pass
Dimensions after optimization
Width of foundation B = 4.70 m
Length of foundation L = 5.70 m
Height of foundation H = 1.20 m
Width of top foundation B1 = 1.00 m
Length of top foundation L1 = 2.00 m
Height of down stepped foundation h1 = 0.50 m
Height of top stepped foundation h2 = 0.70 m
Loads
Design load combinations:
Name Limit state VA
[kN]
HxA
[kN]
HyA
[kN]
MxA
[kNm]
MyA
[kNm]
q
[kPa]
ULS1 ULS 450.00 85.00 50.00 25.00 150.00 3.00
ULS2 ULS 800.00 25.00 25.00 250.00 50.00 3.00
ULS3 ULS 500.00 100.00 55.00 30.00 10.00 5.00
Foundation properties
d1x = 0.053 m
d2x = 0.053 m
Concrete C20/25
fck = 20.00 MPa
γc = 1.50
fcd = 13.33 MPa
Steel B 400 B
fyk = 400.00 MPa
γs = 1.15
fyd = 347.83 MPa
minimum reinforcement ratio ρmin = 0.12 %
maximum reinforcement ratio ρmax = 4.00 %
Reinforcement ratio ρ = 0.00 %
Bending in direction x - Bottom reinforcement
ULS3 As.xreq / As.xprov = 47% Pass
Design bending moment in direction x My = 132.88 kNm
Theoretical area of reinforcement in
direction x
As.xreq = 3.76 cm2
/m
Provided area of reinforcement in
direction x
As.xprov = 8.04 cm2
/m
Bending in direction y - Bottom reinforcement
ULS3 As.yreg / As.yprov = 49% Pass
Design bending moment in direction y Mx = 52.73 kNm
Theoretical area of reinforcement in
direction y
As.yreg = 3.91 cm2
/m
Provided area of reinforcement in
direction y
As.yprov = 8.04 cm2
/m
Punching shear check
ULS3 VEd  VRd.c = 30% & VEd'  VRd.c max = 12% Pass
β = 1.38
u1 = min(4 * π * d + 2 * l1 + 2 * b1, 2 * (B + L)) = 12.05 m
u0 = 2 * l1 + 2 * b1 = 2.00 m
Net applied force VEd = β * VEd,red / (u1 * d) = 71.55 kN
VEd' = β * VEd,red / (u0 * d) = 431.18 kN
CRd.c = 0.18 / γc = 0.12
k = min(1 + sqrt(200 / d), 2) = 1.50
ρL = min(sqrt(ρx * ρy), 2) = 0.07 %
Vmin = 0.035 * k3 /2
* fck
1 /2
= 234.79 kN
Punching shear capacity at control
perimeter at distance 2*d from column
edge
VRd.c = min(C Rd.c * k * (100 * ρL * f ck)1/3
, V min) * 2 * d / a = 234.79 kN
ν = 0.6 * (1 - f ck / 250 MPa) = 0.55
Maximum punching shear capacity
column perimeter
VRd.c max = 0.5 * ν * f cd = 3680.00 kN

Más contenido relacionado

La actualidad más candente

La actualidad más candente (20)

Sachpazis" Analysis of Geogrid Reinforced Earth Slope Stability & Capacity
Sachpazis" Analysis of Geogrid Reinforced Earth Slope Stability & CapacitySachpazis" Analysis of Geogrid Reinforced Earth Slope Stability & Capacity
Sachpazis" Analysis of Geogrid Reinforced Earth Slope Stability & Capacity
 
Sachpazis_ANCHORED PILED RETAINING WALL to EC2
Sachpazis_ANCHORED PILED RETAINING WALL to EC2Sachpazis_ANCHORED PILED RETAINING WALL to EC2
Sachpazis_ANCHORED PILED RETAINING WALL to EC2
 
Sachpazis_Pile Analysis & Design example According to EN 1997-1_2004_March-2017
Sachpazis_Pile Analysis & Design example According to EN 1997-1_2004_March-2017Sachpazis_Pile Analysis & Design example According to EN 1997-1_2004_March-2017
Sachpazis_Pile Analysis & Design example According to EN 1997-1_2004_March-2017
 
Sachpazis: Wind Loading Analysis & Design for a Hipped Roof Example According...
Sachpazis: Wind Loading Analysis & Design for a Hipped Roof Example According...Sachpazis: Wind Loading Analysis & Design for a Hipped Roof Example According...
Sachpazis: Wind Loading Analysis & Design for a Hipped Roof Example According...
 
Sachpazis pile analysis & design, in accordance with en 1997 1-2004
Sachpazis pile analysis & design, in accordance with en 1997 1-2004Sachpazis pile analysis & design, in accordance with en 1997 1-2004
Sachpazis pile analysis & design, in accordance with en 1997 1-2004
 
Sachpazis Foundation Pad with Two Columns Analysis & Design According to EC2 ...
Sachpazis Foundation Pad with Two Columns Analysis & Design According to EC2 ...Sachpazis Foundation Pad with Two Columns Analysis & Design According to EC2 ...
Sachpazis Foundation Pad with Two Columns Analysis & Design According to EC2 ...
 
Sachpazis pile analysis & design. calculation according to en 1997 1-2004
Sachpazis pile analysis & design. calculation according to en 1997 1-2004Sachpazis pile analysis & design. calculation according to en 1997 1-2004
Sachpazis pile analysis & design. calculation according to en 1997 1-2004
 
Sachpazis verification of the ultimate punching shear resistance to ec2 1992 ...
Sachpazis verification of the ultimate punching shear resistance to ec2 1992 ...Sachpazis verification of the ultimate punching shear resistance to ec2 1992 ...
Sachpazis verification of the ultimate punching shear resistance to ec2 1992 ...
 
Sachpazis: Raft Foundation Analysis & Design BS8110:part 1-1997_for MultiStor...
Sachpazis: Raft Foundation Analysis & Design BS8110:part 1-1997_for MultiStor...Sachpazis: Raft Foundation Analysis & Design BS8110:part 1-1997_for MultiStor...
Sachpazis: Raft Foundation Analysis & Design BS8110:part 1-1997_for MultiStor...
 
Sachpazis: Sloped rear face retaining wall example
Sachpazis: Sloped rear face retaining wall exampleSachpazis: Sloped rear face retaining wall example
Sachpazis: Sloped rear face retaining wall example
 
Sachpazis_CHS Column base plate to EC3 1993-1 with NA CEN
Sachpazis_CHS Column base plate to EC3 1993-1 with NA CENSachpazis_CHS Column base plate to EC3 1993-1 with NA CEN
Sachpazis_CHS Column base plate to EC3 1993-1 with NA CEN
 
Sachpazis gabion retaining wall analysis & design bs8002-1994
Sachpazis gabion retaining wall analysis & design bs8002-1994Sachpazis gabion retaining wall analysis & design bs8002-1994
Sachpazis gabion retaining wall analysis & design bs8002-1994
 
Geodomisi cantilever retaining_wall_analysis_sachpazis
Geodomisi cantilever retaining_wall_analysis_sachpazisGeodomisi cantilever retaining_wall_analysis_sachpazis
Geodomisi cantilever retaining_wall_analysis_sachpazis
 
Sachpazis_CANTILEVER RETAINING WALL Analysis & DESIGN Example According to IB...
Sachpazis_CANTILEVER RETAINING WALL Analysis & DESIGN Example According to IB...Sachpazis_CANTILEVER RETAINING WALL Analysis & DESIGN Example According to IB...
Sachpazis_CANTILEVER RETAINING WALL Analysis & DESIGN Example According to IB...
 
Sachpazis reinforced masonry retaining wall analysis & design, in accordance ...
Sachpazis reinforced masonry retaining wall analysis & design, in accordance ...Sachpazis reinforced masonry retaining wall analysis & design, in accordance ...
Sachpazis reinforced masonry retaining wall analysis & design, in accordance ...
 
Sachpazis: Wind loading to EN 1991 1-4- for a hipped roof example
Sachpazis: Wind loading to EN 1991 1-4- for a hipped roof exampleSachpazis: Wind loading to EN 1991 1-4- for a hipped roof example
Sachpazis: Wind loading to EN 1991 1-4- for a hipped roof example
 
Sachpazis_Concrete Specification _BS 8500_1-2006_For Designed foundation example
Sachpazis_Concrete Specification _BS 8500_1-2006_For Designed foundation exampleSachpazis_Concrete Specification _BS 8500_1-2006_For Designed foundation example
Sachpazis_Concrete Specification _BS 8500_1-2006_For Designed foundation example
 
Sachpazis Pad Footing Analysis & Design (EN1997-1-2004)
Sachpazis Pad Footing Analysis & Design (EN1997-1-2004)Sachpazis Pad Footing Analysis & Design (EN1997-1-2004)
Sachpazis Pad Footing Analysis & Design (EN1997-1-2004)
 
Masonry Wall Panel Analysis & Design, In accordance with EN1996-1-1:2005
Masonry Wall Panel Analysis & Design, In accordance with EN1996-1-1:2005Masonry Wall Panel Analysis & Design, In accordance with EN1996-1-1:2005
Masonry Wall Panel Analysis & Design, In accordance with EN1996-1-1:2005
 
Sachpazis: Flat slab design to bs8110 part 1-1997
Sachpazis: Flat slab design to bs8110 part 1-1997Sachpazis: Flat slab design to bs8110 part 1-1997
Sachpazis: Flat slab design to bs8110 part 1-1997
 

Destacado (7)

Holly Hill Drive Plans 4-11-13
Holly Hill Drive Plans 4-11-13Holly Hill Drive Plans 4-11-13
Holly Hill Drive Plans 4-11-13
 
DFIT - Care for Eyes
DFIT - Care for EyesDFIT - Care for Eyes
DFIT - Care for Eyes
 
Padeye design calculation
Padeye design calculationPadeye design calculation
Padeye design calculation
 
Padeye calculation example
Padeye calculation examplePadeye calculation example
Padeye calculation example
 
Lateral stability (Complete Soil Mech. Undestanding Pakage: ABHAY)
Lateral stability (Complete Soil Mech. Undestanding Pakage: ABHAY)Lateral stability (Complete Soil Mech. Undestanding Pakage: ABHAY)
Lateral stability (Complete Soil Mech. Undestanding Pakage: ABHAY)
 
Lec 7 pile foundation
Lec 7 pile foundationLec 7 pile foundation
Lec 7 pile foundation
 
Design and analasys of a g+2 residential building
Design and analasys of a g+2 residential building Design and analasys of a g+2 residential building
Design and analasys of a g+2 residential building
 

Similar a Sachpazis_Trapezoid Foundation Analysis & Design. Calculation according to EN 1997-1-2008

Foundation Reinforcement Calcs & Connection Calcs
Foundation Reinforcement Calcs & Connection CalcsFoundation Reinforcement Calcs & Connection Calcs
Foundation Reinforcement Calcs & Connection Calcs
Magdel Kotze
 

Similar a Sachpazis_Trapezoid Foundation Analysis & Design. Calculation according to EN 1997-1-2008 (20)

Roof Truss Design (By Hamza Waheed UET Lahore )
Roof Truss Design (By Hamza Waheed UET Lahore )Roof Truss Design (By Hamza Waheed UET Lahore )
Roof Truss Design (By Hamza Waheed UET Lahore )
 
Puentes
PuentesPuentes
Puentes
 
96729556 hoja-de-calculo-para-zapatas
96729556 hoja-de-calculo-para-zapatas96729556 hoja-de-calculo-para-zapatas
96729556 hoja-de-calculo-para-zapatas
 
MSE Wall Design Calculation.pdf
MSE Wall Design Calculation.pdfMSE Wall Design Calculation.pdf
MSE Wall Design Calculation.pdf
 
Building Structure calculation
Building Structure calculationBuilding Structure calculation
Building Structure calculation
 
Building Structures Final Compilation
Building Structures Final CompilationBuilding Structures Final Compilation
Building Structures Final Compilation
 
Perhitungan struktur
Perhitungan strukturPerhitungan struktur
Perhitungan struktur
 
Margen izquierdo ok
Margen izquierdo okMargen izquierdo ok
Margen izquierdo ok
 
Analysis and Design of Residential building.pptx
Analysis and Design of Residential building.pptxAnalysis and Design of Residential building.pptx
Analysis and Design of Residential building.pptx
 
Design and detailing_of_retaining_walls counter fort.تصميم الجدران الاستنادية...
Design and detailing_of_retaining_walls counter fort.تصميم الجدران الاستنادية...Design and detailing_of_retaining_walls counter fort.تصميم الجدران الاستنادية...
Design and detailing_of_retaining_walls counter fort.تصميم الجدران الاستنادية...
 
Problems on bearing capacity of soil
Problems on bearing capacity of soilProblems on bearing capacity of soil
Problems on bearing capacity of soil
 
Building structure
Building structure Building structure
Building structure
 
Building Structure
Building Structure Building Structure
Building Structure
 
Muro voladizo gian
Muro voladizo gianMuro voladizo gian
Muro voladizo gian
 
B.structure report
B.structure reportB.structure report
B.structure report
 
Precast driven pile 450 x450
Precast driven pile 450 x450Precast driven pile 450 x450
Precast driven pile 450 x450
 
Foundation Reinforcement Calcs & Connection Calcs
Foundation Reinforcement Calcs & Connection CalcsFoundation Reinforcement Calcs & Connection Calcs
Foundation Reinforcement Calcs & Connection Calcs
 
PLANNING,ANALYSIS,DESIGNING AND ESTIMATION OF CANTILEVER RESIDENTIAL BUILDING
PLANNING,ANALYSIS,DESIGNING AND ESTIMATION OF CANTILEVER RESIDENTIAL BUILDINGPLANNING,ANALYSIS,DESIGNING AND ESTIMATION OF CANTILEVER RESIDENTIAL BUILDING
PLANNING,ANALYSIS,DESIGNING AND ESTIMATION OF CANTILEVER RESIDENTIAL BUILDING
 
Calculo de losa aligerada
Calculo de losa aligeradaCalculo de losa aligerada
Calculo de losa aligerada
 
Cantilever Retaining Wall
Cantilever Retaining Wall Cantilever Retaining Wall
Cantilever Retaining Wall
 

Más de Dr.Costas Sachpazis

Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Dr.Costas Sachpazis
 
Pile configuration optimization on the design of combined piled raft foundations
Pile configuration optimization on the design of combined piled raft foundationsPile configuration optimization on the design of combined piled raft foundations
Pile configuration optimization on the design of combined piled raft foundations
Dr.Costas Sachpazis
 
Σαχπάζης Πλεονεκτήματα και Προκλήσεις της Αιολικής Ενέργειας
Σαχπάζης Πλεονεκτήματα και Προκλήσεις της Αιολικής ΕνέργειαςΣαχπάζης Πλεονεκτήματα και Προκλήσεις της Αιολικής Ενέργειας
Σαχπάζης Πλεονεκτήματα και Προκλήσεις της Αιολικής Ενέργειας
Dr.Costas Sachpazis
 

Más de Dr.Costas Sachpazis (20)

Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
 
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
 
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionSachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
 
Sachpazis: Steel member fire resistance design to Eurocode 3 / Σαχπάζης: Σχεδ...
Sachpazis: Steel member fire resistance design to Eurocode 3 / Σαχπάζης: Σχεδ...Sachpazis: Steel member fire resistance design to Eurocode 3 / Σαχπάζης: Σχεδ...
Sachpazis: Steel member fire resistance design to Eurocode 3 / Σαχπάζης: Σχεδ...
 
Sachpazis_Retaining Structures-Ground Anchors and Anchored Systems_C_Sachpazi...
Sachpazis_Retaining Structures-Ground Anchors and Anchored Systems_C_Sachpazi...Sachpazis_Retaining Structures-Ground Anchors and Anchored Systems_C_Sachpazi...
Sachpazis_Retaining Structures-Ground Anchors and Anchored Systems_C_Sachpazi...
 
Chapter9Lec16Jan03.ppt
Chapter9Lec16Jan03.pptChapter9Lec16Jan03.ppt
Chapter9Lec16Jan03.ppt
 
ΓΕΩΛΟΓΙΚΟΙ ΧΑΡΤΕΣ IntroToMaps_v2_PART1.ppt
ΓΕΩΛΟΓΙΚΟΙ ΧΑΡΤΕΣ IntroToMaps_v2_PART1.pptΓΕΩΛΟΓΙΚΟΙ ΧΑΡΤΕΣ IntroToMaps_v2_PART1.ppt
ΓΕΩΛΟΓΙΚΟΙ ΧΑΡΤΕΣ IntroToMaps_v2_PART1.ppt
 
MBA-EMarketing-Lecture.pptx
MBA-EMarketing-Lecture.pptxMBA-EMarketing-Lecture.pptx
MBA-EMarketing-Lecture.pptx
 
Marketing.ppt
Marketing.pptMarketing.ppt
Marketing.ppt
 
Sachpazis σαχπάζης φορέας αμφιέρειστης πλάκας
Sachpazis σαχπάζης φορέας αμφιέρειστης πλάκαςSachpazis σαχπάζης φορέας αμφιέρειστης πλάκας
Sachpazis σαχπάζης φορέας αμφιέρειστης πλάκας
 
Single pile analysis &amp; design, l=18,00m d=1,10m, by C.Sachpazis
Single pile analysis &amp; design, l=18,00m d=1,10m, by C.SachpazisSingle pile analysis &amp; design, l=18,00m d=1,10m, by C.Sachpazis
Single pile analysis &amp; design, l=18,00m d=1,10m, by C.Sachpazis
 
Pile configuration optimization on the design of combined piled raft foundations
Pile configuration optimization on the design of combined piled raft foundationsPile configuration optimization on the design of combined piled raft foundations
Pile configuration optimization on the design of combined piled raft foundations
 
Σαχπάζης Πλεονεκτήματα και Προκλήσεις της Αιολικής Ενέργειας
Σαχπάζης Πλεονεκτήματα και Προκλήσεις της Αιολικής ΕνέργειαςΣαχπάζης Πλεονεκτήματα και Προκλήσεις της Αιολικής Ενέργειας
Σαχπάζης Πλεονεκτήματα και Προκλήσεις της Αιολικής Ενέργειας
 
Sachpazis: Raft Foundation Analysis and Design for a two Storey House Project...
Sachpazis: Raft Foundation Analysis and Design for a two Storey House Project...Sachpazis: Raft Foundation Analysis and Design for a two Storey House Project...
Sachpazis: Raft Foundation Analysis and Design for a two Storey House Project...
 
Sachpazis_Pile Analysis and Design for Acropolis Project According to EN 1997...
Sachpazis_Pile Analysis and Design for Acropolis Project According to EN 1997...Sachpazis_Pile Analysis and Design for Acropolis Project According to EN 1997...
Sachpazis_Pile Analysis and Design for Acropolis Project According to EN 1997...
 
Sachpazis truss analysis and design example_28-02-2021
Sachpazis truss analysis and design example_28-02-2021Sachpazis truss analysis and design example_28-02-2021
Sachpazis truss analysis and design example_28-02-2021
 
Sachpazis what is differential settlement 4654
Sachpazis what is differential settlement 4654Sachpazis what is differential settlement 4654
Sachpazis what is differential settlement 4654
 
Sachpazis: Retaining Walls - Know How Basics_
Sachpazis: Retaining Walls - Know How Basics_Sachpazis: Retaining Walls - Know How Basics_
Sachpazis: Retaining Walls - Know How Basics_
 
Sachpazis: Hydraulic Structures / About Dams
Sachpazis: Hydraulic Structures / About DamsSachpazis: Hydraulic Structures / About Dams
Sachpazis: Hydraulic Structures / About Dams
 
Sachpazis: Slope Stability Analysis
Sachpazis: Slope Stability AnalysisSachpazis: Slope Stability Analysis
Sachpazis: Slope Stability Analysis
 

Último

1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
AldoGarca30
 
Standard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power PlayStandard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power Play
Epec Engineered Technologies
 
Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7
Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7
Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7
9953056974 Low Rate Call Girls In Saket, Delhi NCR
 
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills KuwaitKuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
jaanualu31
 

Último (20)

kiln thermal load.pptx kiln tgermal load
kiln thermal load.pptx kiln tgermal loadkiln thermal load.pptx kiln tgermal load
kiln thermal load.pptx kiln tgermal load
 
Engineering Drawing focus on projection of planes
Engineering Drawing focus on projection of planesEngineering Drawing focus on projection of planes
Engineering Drawing focus on projection of planes
 
Orlando’s Arnold Palmer Hospital Layout Strategy-1.pptx
Orlando’s Arnold Palmer Hospital Layout Strategy-1.pptxOrlando’s Arnold Palmer Hospital Layout Strategy-1.pptx
Orlando’s Arnold Palmer Hospital Layout Strategy-1.pptx
 
Double Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torqueDouble Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torque
 
NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...
NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...
NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...
 
GEAR TRAIN- BASIC CONCEPTS AND WORKING PRINCIPLE
GEAR TRAIN- BASIC CONCEPTS AND WORKING PRINCIPLEGEAR TRAIN- BASIC CONCEPTS AND WORKING PRINCIPLE
GEAR TRAIN- BASIC CONCEPTS AND WORKING PRINCIPLE
 
School management system project Report.pdf
School management system project Report.pdfSchool management system project Report.pdf
School management system project Report.pdf
 
Computer Lecture 01.pptxIntroduction to Computers
Computer Lecture 01.pptxIntroduction to ComputersComputer Lecture 01.pptxIntroduction to Computers
Computer Lecture 01.pptxIntroduction to Computers
 
Thermal Engineering Unit - I & II . ppt
Thermal Engineering  Unit - I & II . pptThermal Engineering  Unit - I & II . ppt
Thermal Engineering Unit - I & II . ppt
 
Work-Permit-Receiver-in-Saudi-Aramco.pptx
Work-Permit-Receiver-in-Saudi-Aramco.pptxWork-Permit-Receiver-in-Saudi-Aramco.pptx
Work-Permit-Receiver-in-Saudi-Aramco.pptx
 
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced LoadsFEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
 
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
 
Standard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power PlayStandard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power Play
 
Online food ordering system project report.pdf
Online food ordering system project report.pdfOnline food ordering system project report.pdf
Online food ordering system project report.pdf
 
PE 459 LECTURE 2- natural gas basic concepts and properties
PE 459 LECTURE 2- natural gas basic concepts and propertiesPE 459 LECTURE 2- natural gas basic concepts and properties
PE 459 LECTURE 2- natural gas basic concepts and properties
 
Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7
Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7
Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7
 
Computer Networks Basics of Network Devices
Computer Networks  Basics of Network DevicesComputer Networks  Basics of Network Devices
Computer Networks Basics of Network Devices
 
Wadi Rum luxhotel lodge Analysis case study.pptx
Wadi Rum luxhotel lodge Analysis case study.pptxWadi Rum luxhotel lodge Analysis case study.pptx
Wadi Rum luxhotel lodge Analysis case study.pptx
 
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills KuwaitKuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
 
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
 

Sachpazis_Trapezoid Foundation Analysis & Design. Calculation according to EN 1997-1-2008

  • 1. Calculation of foundation: Ultimate Limit State 1 Calculation according to EN 1997-1:2008 Foundation geometry - Trapezoidal pad for one column Width of foundation B = 2.00 m Length of foundation L = 3.00 m Height of foundation H = 0.80 m Width of top platform B1 = 1.00 m Length of top platform L1 = 2.00 m Height of step H1 = 0.50 m Dimensions of column l1 = 0.50 m b1 = 0.50 m Column position ex1 = -0.50 m ey = 0.20 m Soil input Nr Name Z [m]  H [m]  γsoil [kN/m3 ] γs [kN/m3 ] γd [kN/m3 ] φ' [deg]  C' [kPa]  Cu [kPa]  MOi [kPa]  Mi [kPa]  1 inorganic high plasticy clays -4.00 4.00 11.66 26.60 20.50 0.33 0.00 100.00 20192.31 20192.31 2 clayey gravels -7.00 3.00 11.67 26.50 20.50 0.56 0.00 9.50 30000.00 30000.00 Foundation formation level zFL = -1.00 m Ground water level zWL = -3.00 m Foundation cast-in-situ Bearing pressure check Critical ULS2 qmax / qult = 100% Pass Sliding check Critical ULS3 Hxd / Rxres = 14% Pass Sliding check Critical ULS3 Hyd / Ryres = 8% Pass Uplift check (UPL) Critical ULS1 Vdst,d / Gstb,d = 0% Pass
  • 2. Dimensions after optimization Width of foundation B = 5.80 m Length of foundation L = 6.80 m Height of foundation H = 1.50 m Width of top foundation B1 = 1.00 m Length of top foundation L1 = 2.00 m Height of down stepped foundation h1 = 0.50 m Height of top stepped foundation h2 = 1.00 m Loads Design load combinations: Name Limit state VA [kN] HxA [kN] HyA [kN] MxA [kNm] MyA [kNm] q [kPa] ULS1 ULS 450.00 85.00 50.00 25.00 150.00 3.00 ULS2 ULS 800.00 25.00 25.00 250.00 50.00 3.00 ULS3 ULS 500.00 100.00 55.00 30.00 10.00 5.00 Bearing pressure check Critical ULS2 qmax / qult = 100% Pass q1= 52.92 kN/m2 q2= 76.39 kN/m2 q3= 38.93 kN/m2 q4= 62.41 kN/m2 Maximum pressure  qmax = 76.39 kN/m2 Minimum pressure  qmin = 38.93 kN/m2 A = B * L = 39.44 m2 V = VA + VB + F = 2274.22 kN eTx=(VA * ex1 + VB * ex2 + MxA + MxB + (HxA + HxB) * H) / V = -0.14 m eTy=(VA * ey + VB * ey + MyA + MyB + (HyA + HyB) * H) / V = 0.20 m Base reaction acts within combined middle third of base
  • 3. abs(eTy) / B < 1/3 abs(eTx) / L < 1/3 B = B - 2 * 0.10 m = 5.80 m L = L - 2 * 0.10 m = 6.80 m B' = min(B - 2 * abs(eTy), L - 2 * abs(eTx)) = 6.39 m L' = max(B - 2 * abs(eTy), L - 2 * abs(eTx)) = 7.38 m Bearing pressure for drained conditions Soil layer - clayey gravels Nq = eπ*tan(φ') *tan2 (45 + φ' / 2) = 23.18 Nc = (Nq - 1) * ctg(φ') = 35.49 Ny = 2 * (Nq - 1) * tan(φ') = 27.72 bq = by = (1 - α * tan(φ'))2 = 1.00 bc = bq - (1 - bq) / (Nc * tan(φ')) = 1.00 sq = 1 + (B' / L') * sin(φ') = 1.46 sy = 1 - 0.3 * (B' / L') = 0.74 sc = (sq * Nq - 1) / (Nq - 1) = 1.48 mB = [2 + (B' / L')] / [1 + (B' / L')] = 1.54 mL = [2 + (L' / B')] / [1 + (L' / B')] = 1.46 θ = atan(Hx / Hy) = 0.79 m = mL * cos2 θ + mB * sin2 θ = 1.50 iq = [1 - H / (V + A' * c' * ctg(φ'))]m = 0.99 ic = iq - (1 - iq) / (Nc * tan(φ')) = 0.99 iy = [1 - H / (V + A' * c' * ctg(φ'))]m+1 = 0.99 q' = 20.50 kPa Allowable bearing pressure qultD = c' * Nc * bc * sc * ic + q' * Nq * bq * sq * iq + 0,5 * γi' * B' * Nγ * bγ * sγ * iγ = 2014.38 kN/m2 Bearing pressure for undrained conditions Soil layer - clayey gravels bc = 1 - 2 * α / (π + 2) = 1.00 sc = 1 + 0.2 * (B' / L') = 1.17 ic = 1 / 2 *[1 + sqrt(1 - H / (A' * cu))] = 0.98 q = 20.50 kPa qultUD = (π + 2) * cu * bc * sc * ic + q = 76.65 kN/m2 Allowable bearing pressure qult = min (qultD, qultUD ) / γR,v = 76.65 kN/m2 Sliding check Critical ULS3 Hxd/ Rxres = 14% Pass Total horizontal load Hxd = HxA + HxB + Rxa = 100.00 kN Minimum vertical load VG,min = [VGA + VGB + A * (qGsur + qswt + qsoil)] * γFG.pos = 2059.00 kN Bearing pressure for drained conditions RdD = VG,min * tan(δk) / γR,h = 708.97 kN Bearing pressure for undrained conditions RdUD = A' * cu / γR,h = 4718.70 kN Total resistance to sliding Rxres = min(RdD, RdUD) + Rxp,d + Rd.add = 708.97 kN Critical ULS3 Hyd/ Ryres = 8% Pass Total horizontal load Hyd = HyA + HyB + Rya = 55.00 kN Minimum vertical load VG,min = [VGA + VGB + A * (qGsur + qswt + qsoil)] * γFG.pos = 2059.00 kN Bearing pressure for drained conditions RdD = VG,min * tan(δk) / γR,h = 708.97 kN
  • 4. Bearing pressure for undrained conditions RdUD = A' * cu / γR,h = 4718.70 kN Total resistance to sliding Ryres = min(RdD, RdUD) + Ryp,d + Rd.add = 708.97 kN Uplift check (UPL) Critical ULS1 Vdst,d / Gstb,d = 0% Pass Stabilizing vertical actions Gstb,d = VG,min * γGstb = 1476.63 kN Destabilizing permanent and variable vetical actions Vdst,d = max(-V + γw * min(hFL - hWL, 0) * A; γw * max(hFL - hWL, 0) * A) = 0.00 kN Calculation of foundation: Reinforcement 1 Calculation according to EN 1997-1:2008 Foundation geometry - Trapezoidal pad for one column Width of foundation B = 2.00 m Length of foundation L = 3.00 m Height of foundation H = 0.80 m Width of top platform B1 = 1.00 m Length of top platform L1 = 2.00 m Height of step H1 = 0.50 m Dimensions of column l1 = 0.50 m b1 = 0.50 m Column position ex1 = -0.50 m ey = 0.20 m Soil input Nr Name Z [m]  H [m]  γsoil [kN/m3 ] γs [kN/m3 ] γd [kN/m3 ] φ' [deg]  C' [kPa]  Cu [kPa]  MOi [kPa]  Mi [kPa] 
  • 5. 1 inorganic high plasticy clays -4.00 4.00 11.66 26.60 20.50 0.33 0.00 100.00 20192.31 20192.31 2 clayey gravels -7.00 3.00 11.67 26.50 20.50 0.56 0.00 9.50 30000.00 30000.00 Foundation formation level zFL = -1.00 m Ground water level zWL = -3.00 m Foundation cast-in-situ Bending in direction x - Bottom reinforcement Critical ULS3 As.xreq / As.xprov = 47% Pass Bending in direction y - Bottom reinforcement Critical ULS3 As.yreq / As.yprov = 49% Pass Punching shear check Critical ULS3 VEd / VRd.c = 30% & VEd' / VRd.c max = 12% Pass Dimensions after optimization Width of foundation B = 4.70 m Length of foundation L = 5.70 m Height of foundation H = 1.20 m Width of top foundation B1 = 1.00 m Length of top foundation L1 = 2.00 m Height of down stepped foundation h1 = 0.50 m Height of top stepped foundation h2 = 0.70 m Loads Design load combinations: Name Limit state VA [kN] HxA [kN] HyA [kN] MxA [kNm] MyA [kNm] q [kPa] ULS1 ULS 450.00 85.00 50.00 25.00 150.00 3.00 ULS2 ULS 800.00 25.00 25.00 250.00 50.00 3.00 ULS3 ULS 500.00 100.00 55.00 30.00 10.00 5.00 Foundation properties d1x = 0.053 m d2x = 0.053 m Concrete C20/25 fck = 20.00 MPa γc = 1.50 fcd = 13.33 MPa Steel B 400 B fyk = 400.00 MPa γs = 1.15 fyd = 347.83 MPa
  • 6. minimum reinforcement ratio ρmin = 0.12 % maximum reinforcement ratio ρmax = 4.00 % Reinforcement ratio ρ = 0.00 % Bending in direction x - Bottom reinforcement ULS3 As.xreq / As.xprov = 47% Pass Design bending moment in direction x My = 132.88 kNm Theoretical area of reinforcement in direction x As.xreq = 3.76 cm2 /m Provided area of reinforcement in direction x As.xprov = 8.04 cm2 /m Bending in direction y - Bottom reinforcement ULS3 As.yreg / As.yprov = 49% Pass Design bending moment in direction y Mx = 52.73 kNm Theoretical area of reinforcement in direction y As.yreg = 3.91 cm2 /m Provided area of reinforcement in direction y As.yprov = 8.04 cm2 /m Punching shear check ULS3 VEd VRd.c = 30% & VEd' VRd.c max = 12% Pass β = 1.38 u1 = min(4 * π * d + 2 * l1 + 2 * b1, 2 * (B + L)) = 12.05 m u0 = 2 * l1 + 2 * b1 = 2.00 m Net applied force VEd = β * VEd,red / (u1 * d) = 71.55 kN VEd' = β * VEd,red / (u0 * d) = 431.18 kN CRd.c = 0.18 / γc = 0.12 k = min(1 + sqrt(200 / d), 2) = 1.50 ρL = min(sqrt(ρx * ρy), 2) = 0.07 % Vmin = 0.035 * k3 /2 * fck 1 /2 = 234.79 kN
  • 7. Punching shear capacity at control perimeter at distance 2*d from column edge VRd.c = min(C Rd.c * k * (100 * ρL * f ck)1/3 , V min) * 2 * d / a = 234.79 kN ν = 0.6 * (1 - f ck / 250 MPa) = 0.55 Maximum punching shear capacity column perimeter VRd.c max = 0.5 * ν * f cd = 3680.00 kN