Se ha denunciado esta presentación.
Utilizamos tu perfil de LinkedIn y tus datos de actividad para personalizar los anuncios y mostrarte publicidad más relevante. Puedes cambiar tus preferencias de publicidad en cualquier momento.

Practical Cross-Dataset Queries with SPARQL (Introduction)

3.115 visualizaciones

Publicado el

Introduction slide deck for the tutorial on “Practical Cross-Dataset Queries for the Web of Data” we presented at WWW2012. The tutorial homepage, including other presentations, is here: http://latc-project.eu/events/www2012-tutorial-cross-dataset-queries

Publicado en: Tecnología
  • Sé el primero en comentar

Practical Cross-Dataset Queries with SPARQL (Introduction)

  1. 1. Practical Cross-Dataset Queries on the Web of Data Tutorial @ WWW2012, Lyon, France Richard Cyganiak, KnudMöller, AnjaJentzsch, An dreas Schultz, Robert Isele, Pablo Mendes
  2. 2. The Web is becoming a platform for data exchange.• Microdata, Schema.org, web APIs, Linked Data Cloud, Open Data movement, …• Often need to combine local and remote data from several heterogeneous sources• Scripting and mash-ups. This works, but can we do better?
  3. 3. SPARQL as a query language for the Web• Data from all of these data sources can be converted to RDF using off-the-shelf tools, or the sources are already RDF.• SPARQL is W3Cs standard query language for RDF• SPARQL 1.1 just out, great new features for working with heterogeneous data
  4. 4. Caveats• We will focus on ad-hoc queries.• This is not just about what works, but also about what doesnt work.
  5. 5. How to get data into RDF format• Relational: R2RML standard; D2RQ, Virtuoso RDF Views, RevelytixSpyder• Excel, CSV: RDF Extension for Google Refine, XLWrap• XML: XSPARQL• JSON: JSON-LD• Microformats, Microdata: Apache Any23• Collect data from many web pages: LDSpider
  6. 6. SPARQL: The big picture
  7. 7. Scenario: Remote SPARQL endpoint SPARQL client SPARQL Protocol SPARQL engine RDF Store
  8. 8. Scenario: Local SPARQL store SPARQL client SPARQL engine RDF Store
  9. 9. Scenario: Local SPARQL engine,load data from files on the fly, no store SPARQL client Local SPARQL engine RDF file Conversion Non- RDF file Remote RDF file
  10. 10. Scenario: CONSTRUCT the input data SPARQL client Local Local RDF SPARQL engine RDF file file SPARQL SPARQL CONSTRUCT CONSTRUCT query query SPARQL engine SPARQL engine RDF RDF Store Store
  11. 11. Scenario: Federated Query SPARQL client Local RDF SPARQL engine file Basic Federated Query SPARQL engine RDF Store
  12. 12. … or any combination of these.
  13. 13. Agenda – Morning• Linked Data Basics• SPARQL Basics• 10:30–11:00 Coffee• Federated queries with SPARQL• Hands-on session 1• 12:30–13:30 Lunch
  14. 14. Agenda – Afternoon• 12:30–13:30 Lunch• Schema mapping with SPARQL CONSTRUCT• Instance matching with Silk• Finding RDF datasets• 15:00–15:30 Coffee• Visualizing SPARQL query results• Hands-on session 2• 17:00 Adjourn
  15. 15. Hands-on sessions• USB sticks with data, queries, and instructions• Install Apache Jena command line tools• Need a browser with a JavaScript console (recommended: Firefox+Firebug or Chrome)
  16. 16. Music
  17. 17. Presenters• Richard Cyganiak, DERI• KnudMöller, Talis• AnjaJentzsch, FU Berlin• Andreas Schultz, FU Berlin• Robert Isele, FU Berlin• Pablo Mendes, FU Berlin• (Christophe Guéret, VUA)• (Michael Hausenblas, DERI)
  18. 18. Please interrupt and ask questions!

×