SlideShare una empresa de Scribd logo
1 de 86
Protein structure concepts and its related computation problem Speaker: Chia Han Chu (PHD candidate) 21/07/2009 nthu CSBB lab
What are proteins made of? ,[object Object],H OH “ Backbone”: N, C, C, N, C, C… R: “side chain” 21/07/2009 nthu CSBB lab
What are proteins made of? ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],21/07/2009 nthu CSBB lab
What are proteins made of? ,[object Object],[object Object],[object Object],21/07/2009 nthu CSBB lab
What are proteins made of? ,[object Object],21/07/2009 nthu CSBB lab 羧基 胺基 脫水
What is protein structure? ,[object Object],21/07/2009 nthu CSBB lab
What is protein structure? ,[object Object],[object Object],[object Object],[object Object],[object Object],Example: Hemoglobin 21/07/2009 nthu CSBB lab
What are the primary secondary structures? ,[object Object],[object Object],[object Object],[object Object],[object Object],Wikipedia 21/07/2009 nthu CSBB lab
What are the primary secondary structures? ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],The picture comes from Wiki 21/07/2009 nthu CSBB lab
What are the primary secondary structures? ,[object Object],21/07/2009 nthu CSBB lab Parallel Anti-parallel
What are the primary secondary structures? ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],Figure 2.8, Brandon & Tooze 21/07/2009 nthu CSBB lab
What are the super-secondary structures? ,[object Object],Beta hairpin Beta-alpha-beta unit Helix hairpin 21/07/2009 nthu CSBB lab
What are the super-secondary structures? ,[object Object],β   hairpin 21/07/2009 nthu CSBB lab
What are the super-secondary structures? ,[object Object],Green key 21/07/2009 nthu CSBB lab
What are the super-secondary structures? ,[object Object],β-α-β Found almost in every protein structure with a parallel   -sheet 21/07/2009 nthu CSBB lab
What is a protein domain? ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],Pyruvate kinase, a protein from three domains ( PDB   1pkn ). *The picture above comes from wiki Domain 1 Domain 2 Domain 3 21/07/2009 nthu CSBB lab
What is a protein domain? ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],Calmodulin with four EF-Hand-motifs. *The above picture comes from Wiki loop region (usually about 12 amino acids) 21/07/2009 nthu CSBB lab
What is a protein domain? ,[object Object],1.BS-RNase.  2.The picture comes from the paper, 3D Domain swapping: A mechanism for  oligomer assembly,  Protein Science  (1995) 21/07/2009 nthu CSBB lab
General concepts for structural bioinformatics Sequence Structure Analysis Classification Function Prediction Modelling Design Engineering 21/07/2009 nthu CSBB lab
Structure Databases ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],21/07/2009 nthu CSBB lab
Other primary structure databases ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],21/07/2009 nthu CSBB lab
Structure Databases ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],21/07/2009 nthu CSBB lab
Structure Databases ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],21/07/2009 nthu CSBB lab
Structure Databases 21/07/2009 nthu CSBB lab
Structure Databases ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],21/07/2009 nthu CSBB lab
Structure Databases ,[object Object],[object Object],[object Object],[object Object],21/07/2009 nthu CSBB lab
Structure Databases ,[object Object],21/07/2009 nthu CSBB lab
Structure Databases ,[object Object],21/07/2009 nthu CSBB lab
Structure Databases ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],21/07/2009 nthu CSBB lab
Structure Databases ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],21/07/2009 nthu CSBB lab
Structure Databases ,[object Object],[object Object],[object Object],[object Object],21/07/2009 nthu CSBB lab
Structure Classification Databases ,[object Object],[object Object],[object Object],[object Object],21/07/2009 nthu CSBB lab
Structure Classification Databases ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],21/07/2009 nthu CSBB lab
Structure Classification Databases ,[object Object],[object Object],[object Object],21/07/2009 nthu CSBB lab
Structure Classification Databases ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],21/07/2009 nthu CSBB lab
Structure Classification Databases Information comes from Murzin,A., Brenner,S.E., Hubbard,T.J.P. and Chothia,C. (1995)  SCOP: a Structural Classification of Proteins database for the investigation of sequences and structures.  J. Mol. Biol.  247, 536-540 and Wiki. 21/07/2009 nthu CSBB lab Family :  Clear evolutionary relationship Proteins are clustered together into families on the basis of one of two criteria that imply their having a common  evolutionary origin. Criteria 1 : All proteins that have residue identities of  30%  and  greater . Criteria 2 : Proteins with  lower sequence identities  but whose  functions and structures are very similar . For example,  globins  with sequence identities of 15%. Superfamily :  Probable common evolutionary origin Families , whose proteins have  low sequence identities  but whose  structures  and, in many cases,  functional features  suggest that a common evolutionary origin is probable, are placed together in  superfamilies . Example actin, the ATPase domain of the heat-shock protein and hexokinase Fold :   Major Structural Similarity Superfamilies  and  families  are defined as  having a common fold  if their proteins have  same major secondary structures  in  same arrangement  with the  same topological connections . Advantage There may, however, be cases where a common evolutionary origin is obscured by the extent of the divergence in sequence, structure and function. In these cases, it is possible that the discovery of new structures, with folds between those of the previously known structures, will make clear their common evolutionary relationship. Class (1) α- helical  domains  (2) β- sheet  domains  (3) α/β  domains  which consist of from " beta-alpha-beta " structural units or "motifs" that form  mainly parallel  β- sheets   (4) α+β  domains  formed by  independent  α- helices  and  mainly antiparallel  β- sheets  (5) multi-domain proteins  (for those with domains of different fold and for which no homologues are known at present) (6)membrane and cell surface proteins and peptides (7)small proteins  (8)coiled-coil proteins  (9)low-resolution protein structures  (10)peptides and fragments  (11)designed proteins of non-natural sequence
Structure Classification Databases ,[object Object],21/07/2009 nthu CSBB lab
Structure Classification Databases ,[object Object],21/07/2009 nthu CSBB lab
Structure Classification Databases ,[object Object],21/07/2009 nthu CSBB lab
Structure Classification Databases ,[object Object],21/07/2009 nthu CSBB lab
Structure Classification Databases ,[object Object],21/07/2009 nthu CSBB lab
Structure Classification Databases ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],21/07/2009 nthu CSBB lab
Structure Classification Databases ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],21/07/2009 nthu CSBB lab
Structure Classification Databases ,[object Object],21/07/2009 nthu CSBB lab
Structure Classification Databases ,[object Object],21/07/2009 nthu CSBB lab
Structure Classification Databases ,[object Object],21/07/2009 nthu CSBB lab
Structure Classification Databases ,[object Object],21/07/2009 nthu CSBB lab
Structure – sequence relationship ,[object Object],[object Object],Human Myoglobin  pdb:2mm1 Human Hemoglobin alpha-chain  pdb:1jebA Sequence id:  27% Structural id:  90% 21/07/2009 nthu CSBB lab
Principles of Protein Structure ,[object Object],[object Object],[object Object],21/07/2009 nthu CSBB lab
Why structural alignment? ,[object Object],[object Object],[object Object],[object Object],21/07/2009 nthu CSBB lab
Structure superimposition ,[object Object],[object Object],21/07/2009 nthu CSBB lab
Structure superimposition ,[object Object],21/07/2009 nthu CSBB lab
Structure superimposition ,[object Object],21/07/2009 nthu CSBB lab
Structure superimposition ,[object Object],[object Object],21/07/2009 nthu CSBB lab
Kinds of transformations ,[object Object],[object Object],[object Object],[object Object],21/07/2009 nthu CSBB lab
Translation X Y 21/07/2009 nthu CSBB lab
Rotation X Y 21/07/2009 nthu CSBB lab
Scale X Y 21/07/2009 nthu CSBB lab
Correspondence is Unknown ,[object Object],+ 21/07/2009 nthu CSBB lab
Correspondence is Unknown ,[object Object],?   21/07/2009 nthu CSBB lab
Correspondence is Unknown ,[object Object],Question: how do we asses the quality of the transformation? 21/07/2009 nthu CSBB lab +
Scoring the Alignment ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],21/07/2009 nthu CSBB lab
Scoring the Alignment ,[object Object],[object Object],[object Object],[object Object],[object Object],Find the highest number of atoms aligned with the lowest  RMSD 21/07/2009 nthu CSBB lab
Matching of structures ,[object Object],[object Object],[object Object],21/07/2009 nthu CSBB lab
Matching of structures ,[object Object],21/07/2009 nthu CSBB lab
Matching of structures ,[object Object],[object Object],[object Object],Alignment of  3adk  and  1gky 21/07/2009 nthu CSBB lab
Matching of structures ,[object Object],[object Object],[object Object],[object Object],21/07/2009 nthu CSBB lab
Matching of structures ,[object Object],f g ||f    g|| 2 s Over which support? 21/07/2009 nthu CSBB lab
Matching of structures ,[object Object],21/07/2009 nthu CSBB lab
Matching of structures ,[object Object],21/07/2009 nthu CSBB lab
Matching of structures ,[object Object],Should gaps be penalized? 21/07/2009 nthu CSBB lab B A B A
Matching of structures ,[object Object],Sequence along backbone is not preserved 21/07/2009 nthu CSBB lab B A
Matching of structures ,[object Object],21/07/2009 nthu CSBB lab 
Scoring Issues ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],21/07/2009 nthu CSBB lab
RMSD v.s. Similarity measure RMSD dissimilarity measure    emphasizes differences    smaller support STRUCTAL ’s similarity measure   emphasizes similarities    larger support 21/07/2009 nthu CSBB lab Gap penalty
Comparison of Similarity Measures ,[object Object],[object Object],21/07/2009 nthu CSBB lab
Bottom Line ,[object Object],[object Object],[object Object],[object Object],[object Object],21/07/2009 nthu CSBB lab
Algorithms for structure superimposition ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],21/07/2009 nthu CSBB lab
Algorithms for structure superimposition ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],21/07/2009 nthu CSBB lab
Dali An intra-molecular distance plot for myoglobin 21/07/2009 nthu CSBB lab
Dali ,[object Object],[object Object],[object Object],[object Object],21/07/2009 nthu CSBB lab
VAST 21/07/2009 nthu CSBB lab
VAST ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],21/07/2009 nthu CSBB lab
Recommanded books 21/07/2009 nthu CSBB lab
Recommanded books 21/07/2009 nthu CSBB lab
Thank you for your attention! 21/07/2009 nthu CSBB lab

Más contenido relacionado

Similar a 2009 CSBB LAB 新生訓練

Types of biological databases-protein database
Types of biological databases-protein databaseTypes of biological databases-protein database
Types of biological databases-protein databasechinmayeec
 
Molecular Structures 2009
Molecular Structures 2009Molecular Structures 2009
Molecular Structures 2009lyonja
 
Bioinformatics introduction
Bioinformatics introductionBioinformatics introduction
Bioinformatics introductionDrGopaSarma
 
Pep Talk San Diego 011311
Pep Talk San Diego 011311Pep Talk San Diego 011311
Pep Talk San Diego 011311Philip Bourne
 
Protein databases
Protein databasesProtein databases
Protein databasessarumalay
 
Protein structure classification/domain prediction: SCOP and CATH (Bioinforma...
Protein structure classification/domain prediction: SCOP and CATH (Bioinforma...Protein structure classification/domain prediction: SCOP and CATH (Bioinforma...
Protein structure classification/domain prediction: SCOP and CATH (Bioinforma...SELF-EXPLANATORY
 
Structural bioinformatics and pdb
Structural bioinformatics and pdbStructural bioinformatics and pdb
Structural bioinformatics and pdbJanmoniBorah1
 
Systems Biology Model Semantics and Integration
Systems Biology Model Semantics and IntegrationSystems Biology Model Semantics and Integration
Systems Biology Model Semantics and IntegrationAllyson Lister
 
Protein structure
Protein structureProtein structure
Protein structurePooja Pawar
 
Protein Data Bank ( PDB ) - Bioinformatics
Protein Data Bank ( PDB ) - BioinformaticsProtein Data Bank ( PDB ) - Bioinformatics
Protein Data Bank ( PDB ) - Bioinformaticskarmandeepkaur7
 
Protein Structure, Databases and Structural Alignment
Protein Structure, Databases and Structural AlignmentProtein Structure, Databases and Structural Alignment
Protein Structure, Databases and Structural AlignmentSaramita De Chakravarti
 

Similar a 2009 CSBB LAB 新生訓練 (20)

Types of biological databases-protein database
Types of biological databases-protein databaseTypes of biological databases-protein database
Types of biological databases-protein database
 
protein data bank
protein data bankprotein data bank
protein data bank
 
Molecular Structures 2009
Molecular Structures 2009Molecular Structures 2009
Molecular Structures 2009
 
Protein database
Protein databaseProtein database
Protein database
 
Protein Data Bank
Protein Data BankProtein Data Bank
Protein Data Bank
 
Bioinformatics introduction
Bioinformatics introductionBioinformatics introduction
Bioinformatics introduction
 
protein.pptx
protein.pptxprotein.pptx
protein.pptx
 
Pep Talk San Diego 011311
Pep Talk San Diego 011311Pep Talk San Diego 011311
Pep Talk San Diego 011311
 
Protein databases
Protein databasesProtein databases
Protein databases
 
Protein structure classification/domain prediction: SCOP and CATH (Bioinforma...
Protein structure classification/domain prediction: SCOP and CATH (Bioinforma...Protein structure classification/domain prediction: SCOP and CATH (Bioinforma...
Protein structure classification/domain prediction: SCOP and CATH (Bioinforma...
 
Proteomic databases
Proteomic databasesProteomic databases
Proteomic databases
 
Databases
DatabasesDatabases
Databases
 
Structural bioinformatics and pdb
Structural bioinformatics and pdbStructural bioinformatics and pdb
Structural bioinformatics and pdb
 
Biological databases
Biological databasesBiological databases
Biological databases
 
Systems Biology Model Semantics and Integration
Systems Biology Model Semantics and IntegrationSystems Biology Model Semantics and Integration
Systems Biology Model Semantics and Integration
 
Protein structure
Protein structureProtein structure
Protein structure
 
Protein Data Bank ( PDB ) - Bioinformatics
Protein Data Bank ( PDB ) - BioinformaticsProtein Data Bank ( PDB ) - Bioinformatics
Protein Data Bank ( PDB ) - Bioinformatics
 
Protein Structure, Databases and Structural Alignment
Protein Structure, Databases and Structural AlignmentProtein Structure, Databases and Structural Alignment
Protein Structure, Databases and Structural Alignment
 
Protein database
Protein databaseProtein database
Protein database
 
Protein Databases
Protein DatabasesProtein Databases
Protein Databases
 

Más de Abner Huang

2009 CSBB LAB 新生訓練
2009 CSBB LAB 新生訓練2009 CSBB LAB 新生訓練
2009 CSBB LAB 新生訓練Abner Huang
 
2009 CSBB LAB 新生訓練
2009 CSBB LAB 新生訓練2009 CSBB LAB 新生訓練
2009 CSBB LAB 新生訓練Abner Huang
 
2009 CSBB LAB 新生訓練
2009 CSBB LAB 新生訓練2009 CSBB LAB 新生訓練
2009 CSBB LAB 新生訓練Abner Huang
 
2009 CSBB LAB 新生訓練
2009 CSBB LAB 新生訓練2009 CSBB LAB 新生訓練
2009 CSBB LAB 新生訓練Abner Huang
 
2009 CSBB LAB 新生訓練
2009 CSBB LAB 新生訓練2009 CSBB LAB 新生訓練
2009 CSBB LAB 新生訓練Abner Huang
 
2009 CSBB LAB 新生訓練
2009 CSBB LAB 新生訓練2009 CSBB LAB 新生訓練
2009 CSBB LAB 新生訓練Abner Huang
 
2009 CSBB LAB 新生訓練
2009 CSBB LAB 新生訓練2009 CSBB LAB 新生訓練
2009 CSBB LAB 新生訓練Abner Huang
 
Introduction to CSBB Lab
Introduction to CSBB LabIntroduction to CSBB Lab
Introduction to CSBB LabAbner Huang
 

Más de Abner Huang (8)

2009 CSBB LAB 新生訓練
2009 CSBB LAB 新生訓練2009 CSBB LAB 新生訓練
2009 CSBB LAB 新生訓練
 
2009 CSBB LAB 新生訓練
2009 CSBB LAB 新生訓練2009 CSBB LAB 新生訓練
2009 CSBB LAB 新生訓練
 
2009 CSBB LAB 新生訓練
2009 CSBB LAB 新生訓練2009 CSBB LAB 新生訓練
2009 CSBB LAB 新生訓練
 
2009 CSBB LAB 新生訓練
2009 CSBB LAB 新生訓練2009 CSBB LAB 新生訓練
2009 CSBB LAB 新生訓練
 
2009 CSBB LAB 新生訓練
2009 CSBB LAB 新生訓練2009 CSBB LAB 新生訓練
2009 CSBB LAB 新生訓練
 
2009 CSBB LAB 新生訓練
2009 CSBB LAB 新生訓練2009 CSBB LAB 新生訓練
2009 CSBB LAB 新生訓練
 
2009 CSBB LAB 新生訓練
2009 CSBB LAB 新生訓練2009 CSBB LAB 新生訓練
2009 CSBB LAB 新生訓練
 
Introduction to CSBB Lab
Introduction to CSBB LabIntroduction to CSBB Lab
Introduction to CSBB Lab
 

2009 CSBB LAB 新生訓練

  • 1. Protein structure concepts and its related computation problem Speaker: Chia Han Chu (PHD candidate) 21/07/2009 nthu CSBB lab
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.
  • 8.
  • 9.
  • 10.
  • 11.
  • 12.
  • 13.
  • 14.
  • 15.
  • 16.
  • 17.
  • 18.
  • 19. General concepts for structural bioinformatics Sequence Structure Analysis Classification Function Prediction Modelling Design Engineering 21/07/2009 nthu CSBB lab
  • 20.
  • 21.
  • 22.
  • 23.
  • 25.
  • 26.
  • 27.
  • 28.
  • 29.
  • 30.
  • 31.
  • 32.
  • 33.
  • 34.
  • 35.
  • 36. Structure Classification Databases Information comes from Murzin,A., Brenner,S.E., Hubbard,T.J.P. and Chothia,C. (1995) SCOP: a Structural Classification of Proteins database for the investigation of sequences and structures. J. Mol. Biol. 247, 536-540 and Wiki. 21/07/2009 nthu CSBB lab Family : Clear evolutionary relationship Proteins are clustered together into families on the basis of one of two criteria that imply their having a common evolutionary origin. Criteria 1 : All proteins that have residue identities of 30% and greater . Criteria 2 : Proteins with lower sequence identities but whose functions and structures are very similar . For example, globins with sequence identities of 15%. Superfamily : Probable common evolutionary origin Families , whose proteins have low sequence identities but whose structures and, in many cases, functional features suggest that a common evolutionary origin is probable, are placed together in superfamilies . Example actin, the ATPase domain of the heat-shock protein and hexokinase Fold : Major Structural Similarity Superfamilies and families are defined as having a common fold if their proteins have same major secondary structures in same arrangement with the same topological connections . Advantage There may, however, be cases where a common evolutionary origin is obscured by the extent of the divergence in sequence, structure and function. In these cases, it is possible that the discovery of new structures, with folds between those of the previously known structures, will make clear their common evolutionary relationship. Class (1) α- helical domains (2) β- sheet domains (3) α/β domains which consist of from " beta-alpha-beta " structural units or "motifs" that form mainly parallel β- sheets (4) α+β domains formed by independent α- helices and mainly antiparallel β- sheets (5) multi-domain proteins (for those with domains of different fold and for which no homologues are known at present) (6)membrane and cell surface proteins and peptides (7)small proteins (8)coiled-coil proteins (9)low-resolution protein structures (10)peptides and fragments (11)designed proteins of non-natural sequence
  • 37.
  • 38.
  • 39.
  • 40.
  • 41.
  • 42.
  • 43.
  • 44.
  • 45.
  • 46.
  • 47.
  • 48.
  • 49.
  • 50.
  • 51.
  • 52.
  • 53.
  • 54.
  • 55.
  • 56. Translation X Y 21/07/2009 nthu CSBB lab
  • 57. Rotation X Y 21/07/2009 nthu CSBB lab
  • 58. Scale X Y 21/07/2009 nthu CSBB lab
  • 59.
  • 60.
  • 61.
  • 62.
  • 63.
  • 64.
  • 65.
  • 66.
  • 67.
  • 68.
  • 69.
  • 70.
  • 71.
  • 72.
  • 73.
  • 74.
  • 75. RMSD v.s. Similarity measure RMSD dissimilarity measure  emphasizes differences  smaller support STRUCTAL ’s similarity measure  emphasizes similarities  larger support 21/07/2009 nthu CSBB lab Gap penalty
  • 76.
  • 77.
  • 78.
  • 79.
  • 80. Dali An intra-molecular distance plot for myoglobin 21/07/2009 nthu CSBB lab
  • 81.
  • 83.
  • 86. Thank you for your attention! 21/07/2009 nthu CSBB lab

Notas del editor

  1. 可以再增加 case